TF 4

CRIMSI Pilot PL Session 8

Welcome to Carnegie Learning's Texas Math Solution
Brandy King, Texas Content Lead Jennifer Penton, Texas Product Specialist Alejandra Neira, Manager of School Partnerships

Why We're Here

By the end of today's live session, participants will be able to...

- Define how the key mathematical concepts flow across this course and how they are connected to other courses.
- Identify the Big Ideas in each Module within this course.
- Connect how this big picture view of each course fits into the topic and lesson level internalization.
- Walk away with concrete tools and processes to use in their instructional planning.

When it comes to the sequence of mathematics concepts in your course:

KNOW	WANT TO	KNOW	LEARNED
What do you already know?	What do you Want to know?	Leave this blank: we'll come back to it later!	

Think Time K-W-L Chart

TEA

The Story of This Course

Geometry and Algebra II Modules 1 and 2

Geometry Module 1

Reasoning with Shapes
Topic 1: Using a
Rectangular Coordinate
System

Topic 2: Rigid Motions on a Plane

Topic 3: Congruence Through Transformations

Geometry Module 2

 Establishing CongruenceTopic 1: Composing and Decomposing Shapes

Topic 2: Justifying Line and Angle Relationships

Topic 3: Using
Congruence Theorems

Algebra 2 Module 1 Exploring Patterns in Linear and Quadratic Relationships

Topic 1: Extending Linear Relationships

Topic 2: Exploring and Analyzing Patterns

Topic 3: Applications of Quadratics

Algebra 2 Module 2
Analyzing Structure
Topic 1: Composing and Decomposing Functions

Topic 2: Characteristics of Polynomial Functions

T\#

Summarizing Module 1

In chat, provide a short summary of the content of module 1 for your course. Type A2 or Geo before your summary.

- Try not to use module or topic names as you summarize

Geometry Module 1: Reasoning with Shapes

Topic 1: Using the Rectangular Coordinate System

- Informal \rightarrow Formal Reasoning
- Measurement tools \rightarrow Constructions
- Connecting Algebra to Geometry through the coordinate plane
- Distance and midpoint formulas to classify shapes
- Proportional and non-proportional changes and the effect on area and perimeter
- First experience with Formal Proofs

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Geometry Module 1: Reasoning with Shapes

Topic 2: Rigid Motions on a Plane

- Rigid motions as functions
- Isometries preserve size and shape

A translation function maps each point of a pre-image an equal distance along parallel lines onto an image.

$$
\begin{aligned}
& T_{A B}(P)=P^{\prime} \\
& T_{A C}(P)=P^{\prime \prime}
\end{aligned}
$$

- Rigid motions on the coordinate plane
- Reflectional and Rotational Symmetry

A reflection function maps each point of a pre-image across a line onto the image so that each point is equidistant from the line of reflection.

A rotation function rotates every point in a pre-image around arcs of concentric circles at a specific rotation angle.

Geometry Module 1: Reasoning with Shapes

Topic 3: Congruence Through Transformations

- Students use formal reasoning to prove geometric theorems.
- Triangle congruence theorems are proved using constructions.
- Students use the triangle congruence theorems to determine whether triangles are congruent.
- The Distance Formula is used to apply the congruence theorems to triangles with given measurements on the plane.

Algebra II Module 1: Exploring Patterns in Linear and Quadratic Relationships

Topic 1: Extending Linear Relationships

Extending Linear Relationships advances students' ability to solve systems of equations and introduces students to absolute value functions.

Students use Gaussian elimination and matrices to solve systems of linear equations in three variables.

Students solve systems consisting of a linear and a quadratic equation.

Student explore linear programming, where they use the vertices of the solution region to determine maximum or minimum values.

League Baseballs (cm)
They graph, transform and then solve absolute value equations and inequalities.

Algebra II Module 1: Exploring Patterns in Linear and Quadratic Relationships
 Topic 2: Exploring and Analyzing Patterns
 $$
\begin{aligned} x^{2}-4 x & =-3 \\ x^{2}-4 x+3 & =-3+3 \\ x^{2}-4 x+3 & =0 \\ (x-3)(x-1) & =0 \end{aligned}
$$ describe various patterns. Lessons provide opportunities for students to review linear,

 exponential, and quadratic functions using multiple representations.

Quadratic functions can be written in different forms.
Standard form: $f(x)=a x^{2}+b x+c$, where a does not equal 0 .
Factored form: $f(x)=a\left(x-r_{1}\right)\left(x-r_{2}\right)$, where a does not equal 0 .
Vertex form: $\quad f(x)=a(x-h)^{2}+k$, where a does not equal 0 .

$$
\begin{aligned}
& (x-3)=0 \\
& x-3+3=0+3 \text { and } x-1+1=0+1 \\
& x=3 \quad \text { and } \quad x=1
\end{aligned}
$$

Students use factoring, completing the square and the quadratic formula to solve quadratic equations.

Students are introduced to complex number operations through the complex plane.

Algebra II Module 1: Exploring Patterns in Linear and Quadratic Relationships

Topic 3: Applications of Quadratics

Applications of Quadratics provides students with an opportunity to review what they have learned about quadratics in Algebra 1 by modeling and solving problems for situations involving quadratics.

Students explore inverse functions and determine inverses from a graph, table, and equation.

$$
\begin{aligned}
& x^{2}-4 x+3<0 \\
& x^{2}-4 x+3=0 \\
& (x-3)(x-1)=0 \\
& (x-3)=0 \text { or } \\
& (x-1)=0 \\
& x=3 \text { or } \quad x=1
\end{aligned}
$$

Quadratic inequalities are solved graphically and algebraically.

Students explore parabolas as a conic section and write the general and standard equations.

TEA

Summarizing Module 2

Use the Course Scope and Sequence document to get an overview of the content of Module 2.

- What are the key concepts?
- What connections exist within this module or back to Module 1?

Be prepared to provide a summary statement in chat when directed.

Geometry Course Overview

Module 1 Reasoning with Shapes
Topic 1: Using a Rectangular Coordinate System Topic 2: Rigid Motions on a Plane Topic 3: Congruence Through Transformations

Module 2 Establishing Congruence
Topic 1: Composing and Decomposing Shapes
Topic 2: Justifying
Line and Angle
Relationships
Topic 3: Using
Congruence
Theorems

Topic 1: Similarity

Topic 2: Trigonometry

Module 4
Connecting Geometric and Algebraic Descriotions

Topic 1: Circles and Volume

Topic 2: Circles and Cross Sections

Module 5 Making Informed Decisions

Topic 1:
Independence and Conditional
Probability
Topic 2: Computing Probabilities

Geometry Module 2: Establishing Congruence

Topic 1: Composing and Decomposing Shapes

- In this topic we are moving toward abstraction.
- The content builds from shapes students are already familiar with, squares, circles, and quadrilaterals.
- Conjecturing in this topic prepares students to write formal proofs in the next topic.
- Circles are used to conjecture about line and angle relationships as well as quadrilaterals.

three major constructions: inscribing a square, an equilateral triangle, and a regular hexagon in a circle
introduction to circle vocabulary: central angle, major arc, minor arc, secant, chord, inscribed angle, intercepted arc, circumscribed angle, tangent

	Acute Triangle	Obtuse Triangle	Right Triangle
Circumcenter	Interior	Exterior	On Hypotenuse
Incenter	Interior	Interior	Interior
Centroid	Interior	Interior	Interior
Orthocenter	Interior	Exterior	At Vertex of Right Angle

Geometry Module 2: Establishing Congruence

Topic 2: Justifying Line and Angle Relationships

- This topic moves from the conjectures made in Composing and Decomposing Shapes to formal proofs.

Proof plan

- Students have the opportunity to experience proofs before having to write them entirely on their own.
- Have students develop proof plans before they write formal proofs.

Statements	Reasons
1. $\overline{A B} \cong \overline{C D}$	1. Given
2. $\mathrm{m} \overline{A B}=\mathrm{m} \overline{C D}$	2. Definition of congruent segments
3. $\mathrm{m} \overline{B C}=\mathrm{m} \overline{B C}$	3. Reflexive Property
4. $\mathrm{m} \overline{A B}+\mathrm{m} \overline{B C}=\mathrm{m} \overline{C D}+\mathrm{m} \overline{B C}$	4. Addition Property of Equality
5. $\mathrm{m} \overline{A B}+\mathrm{m} \overline{B C}=\mathrm{m} \overline{A C}$	5. Segment Addition Postulate
6. $\mathrm{m} \overline{B C}+\mathrm{m} \overline{C D}=\mathrm{m} \overline{B D}$	6. Segment Addition Postulate
7. $\mathrm{m} \overline{A C}=\mathrm{m} \overline{B D}$	7. Substitution Property
8. $\overline{A C} \cong \overline{B D}$	8. Definition of congruent segments

Two-column Proof

Abelina	Madison
I'll show that alternate interior angles 4 and 5 are congruent. It's given that the two lines are parallel and are cut by a transversal, so I know that angles 4 and 6 are supplementary, because they are same-side interior angles. And angles 5 and 6 are supplementary, because they are a linear pair. So, $m \angle 4+m \angle 6=180^{\circ}$. But $m \angle 5+m \angle 6$ is also equal to 180°. That means that angles 4 and 5 have to have the same measure.	I need to prove that angles 3 and 6 are congruent, which means they have the same measure. The Given states that the lines are parallel and cut by a transversal. so angles 2 and 6 are congruent, because they are corresponding. But angles 2 and 3 are congruent too, because they are vertical angles. if $\angle 3$ and $\angle 6$ are both congruent to the same angle $\angle 2$, then they must be congruent to each other.

Students are reminded that corresponding parts of congruent triangles are congruent (CPCTC) and then learn how to use CPCTC as a reason in proofs. They consider special types of right triangles- $45^{\circ}-45^{\circ}-90^{\circ}$ and $30^{\circ}-60^{\circ}-90^{\circ}$ triangles-and think about the relationship between their sides and angles in preparation for trigonometry.

Geometry Module 2: Establishing Congruence

Topic 3: Using Congruence Theorems

Students use the theorems that they have proven to prove new theorems about triangles, quadrilaterals, and relationships between chords.

HA: AAS

LL: SSS or SAS

HL: SSS or SAS

Students use triangle congruence theorems to verify properties of parallelograms.

Note: This text uses the inclusive definition of a trapezoid: a trapezoid is a quadrilateral with at least one pair of parallel sides.

Algebra II Course Overview

Module 1 Exploring patterns in Linear and Quadratic Relationshios
Topic 1: Extending Linear Relationships
Topic 2: Exploring
and Analyzing
Patterns
:---
of Quadratics

Module 2
Mnalyzing Structure
Topic 1: Composing and Decomposing Functions
Topic 2: Characteristics of Polynomial Functions

Module 3
Developing Structural
Similarities

Topic 1: Relating Factors and Zeros

Topic 2: Polynomial Models

Topic 1: Rational Functions

Topic 2: Radical Functions

Module 5 Inverting Functions

Topic 1: Exponential and Logarithmic Functions

Topic 2: Exponential and Logarithmic Equations

Topic 3: Applications of Exponential Functions

Algebra II Module 2: Analyzing Structure

Topic 1: Composing and Decomposing Functions

The modeling process is reviewed as students build a quadratic function from two linear factors to model a situation that represents the cross-sectional area of a drain.

Composing and Decomposing Functions introduces students to the concept of building new functions on the coordinate plane by operating on or transforming functions.

$$
\begin{aligned}
& h(x)=\left(\frac{1}{2} x-1\right)(x+4) \\
& \text { Sketch }(x+4) \cdot h(x) . \\
& \text { Zeros: }-4,-4,2
\end{aligned}
$$

Students then use transformations to build a degree-3 polynomial and explore how the zeros of the function are related to the linear factors that were multiplied to build the function.

Students continue to build cubic functions, using what they know about the degree- 3 formulas that are used to calculate the volume of prisms and cylinders.

HE

Algebra II Module 2: Analyzing Structure

Topic 2: Characteristics of Polynomial Functions

Students investigate the key characteristics of a polynomial function.

Students transform polynomial functions.

Students analyze a polynomial regression that models a problem situation.

$$
g(x)=A f(B(x-C))+D
$$

Type of Transformation Performed on $f(x)$	Coordinates of $f(x) \rightarrow$ Coordinates of $g(x)$
Vertical Dilation by a Factor of A	$(x, y) \rightarrow\left({ }^{x}, ~ A y \quad\right)$
Horizontal Dilation by a Factor of B	$(x, y) \rightarrow\left(\underline{\left(\frac{1}{B}\right) x,}\right.$, ${ }^{\text {a }}$)
Horizontal Translation of C units	$(x, y) \rightarrow(\underline{x+C}, \underline{y})$
Vertical Translation of D units	$(x, y) \rightarrow(\underline{x}, \underline{y+D})$
All four transformations: A, B, C, and D	$(x, y) \rightarrow\left(\left(\frac{1}{B}\right) x+C, A y+D\right)$

They extend their understanding of zeros to include cubic polynomials. With a clear understanding of these characteristics, students are now able to sketch graphs of polynomial functions.

Geometry Course Overview

Module 1 Reasoning with Shapes
Topic 1: Using a Rectangular Coordinate System Topic 2: Rigid Motions on a Plane Topic 3: Congruence Through Transformations

Module 2 Establishing Congruence	Module 3 Investigating Proportionality	Module 4 Connecting Geometric and Algebraic Descriptions
Topic 1: Composing and Decomposing Shapes	Topic 1: Similarity	Topic 1: Circles and Volume
Topic 2: Justifying Line and Angle Relationships	Topic 2: Trigonometry	Topic 2: Circles and Cross Sections
Topic 3: Using Congruence Theorems		

Module 5 Making Informed Decisions

Topic 1:
Independence and
Conditional
Probability
Topic 2: Computing
Probabilities

Geometry Module 3: Investigating Proportionality

Topic 1: Similarity

- Student use proof by construction to prove theorems related to similar triangles.
- They investigate specific cases of proportionality within similar triangles.
- The geometric mean is defined and used to solve problems and to prove the Pythagorean Theorem with similar triangles.
- Students solve indirect measurement problems using similarity and right triangles.
- Students use triangle proportionality theorems to verify that they partitioned a line segment by a specified ratio.

Dilations are non-rigid motion transformations that create similar figures

Students prove the Angle-Angle Similarity Theorem, the Side-Side-Side Similarity Theorem, and the Side-Angle-Side Similarity Theorem.

Students go outside and apply what they have learned about similarity to measure the height of objects such as flagpoles, tops of trees, telephone poles, or buildings.

Geometry Module 3: Investigating Proportionality

Topic 2: Trigonometry

- Through an exploration of $45^{\circ}-45^{\circ}-90^{\circ}$ and $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, students learn that there are common ratios that exist between the side lengths within a special right triangle.
- Students gain understanding through measurement and then generalize based on investigations of multiple triangles.
- Tangent is formally introduced first by relating Tangent to slope. Sine and Cosine follow.

$$
\begin{aligned}
& \tan A=\frac{\text { length of side opposite of } \angle A}{\text { length of side adjacent to } \angle A}=\frac{B C}{A C} \\
& \sin A=\frac{\text { length of side opposite of } \angle A}{\text { length of hypotenuse }}=\frac{B C}{A B} \\
& \cos A=\frac{\text { length of side adjacent to } \angle A}{\text { hypotenuse }}=\frac{A C}{A B}
\end{aligned}
$$

Geometry Module 4: Connecting Geometric and Algebraic Descriptions
 Area of segment $=\frac{m}{360^{\circ}}\left(\pi r^{2}\right)-\frac{1}{2} b h$

Topic 1: Circles and Volume

- Circles and Volume begins by using translation and dilation to establish the similarity of all circles.
- Students recognize arc lengths as proportions of the circumference
- They define a sector as proportional to the area of a circle. They then use what they know about the areas of triangles along with the areas of sectors to determine the areas of segments of circles.
- Using transformations, two-dimensional figures are used to build three-dimensional solids.
- Students develop the formulas for surface area and volume of prisms, cylinders, cones and spheres.

Prisms	Pyramids	Cylinders	Cones	Spheres
$V=($ area of base $) \times$ height $V=B h$	$V=\frac{1}{3} B h$	$V=\pi r^{2} h$	$V=\frac{1}{3} \pi r^{2} h$	$V=\frac{4}{3} \pi r^{3}$

Geometry Module 4: Connecting Geometric and Algebraic Descriptions

Topic 2: Circles and Cross Sections

The Distance Formula is used to derive equations for a circle centered at the origin and a circle centered at point (h,k).

Students begin by reasoning about cross-sections formed when a plane intersects a geometric solid.

The equation of a circle centered at the origin is $x^{2}+y^{2}=r^{2}$, where r is the radius of the circle.

The standard form of the equation of a circle centered at (h, k) with radius r can be expressed as $(x-h)^{2}+(y-k)^{2}=r^{2}$.

Students use the Pythagorean Theorem and the Distance Formula to determine whether a point lies on a circle.

Geometry Module 5: Making Informed Decisions

Topic 1: Independence and Conditional Probability

- Students formalize their intuitive understanding of probability.
- This topic emphasizes modeling and analyzing sample spaces to determine rules for calculating probabilities in different situations.
- Students are presented with a variety of scenarios which they must categorize as independent or dependent events and calculate the compound probability of an intersection or union of events.

Students learn strategies for determining the sample space of compound events including tree diagrams and organized lists.

The Rule of Compound Probability involving and States: "If Event A and Event B are independent events, then the probability that Event A happens and Event B happens is the product of the probability that Event A happens and the probability that Event B happens, given that Event A has happened."

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

The Addition Rule for Probability states: "The probability that Event A occurs or Event B occurs is the probability that Event A occurs plus the probability that Event B occurs minus the probability that both A and B occur."

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Geometry Module 5: Making Informed Decisions

Topic 2: Computing Probabilities

- This topic builds on the learning from the previous topic by addressing more compound probability concepts and counting strategies.
- Compound probability concepts are presented using two-way frequency tables, conditional probability, and independent trials. The counting strategies include permutations, permutations with repetition, circular permutations, and combinations.

Sports Participation

	Individual	Team	Does Not Play	Total
Left	$\frac{3}{63} \approx 4.8 \%$	$\frac{13}{63} \approx 25.4 \%$	$\frac{8}{63} \approx 12.7 \%$	$\frac{24}{63} \approx 38.1 \%$
Right	$\frac{6}{63} \approx 9.5 \%$	$\frac{23}{63} \approx 36.5 \%$	$\frac{4}{63} \approx 6.3 \%$	$\frac{33}{63} \approx 52.4 \%$
Mixed	$\frac{1}{63} \approx 1.6 \%$	$\frac{3}{63} \approx 4.8 \%$	$\frac{2}{63} \approx 3.2 \%$	$\frac{6}{63} \approx 9.5 \%$
Total	$\frac{10}{63} \approx 15.9 \%$	$\frac{39}{63} \approx 61.9 \%$	$\frac{14}{63} \approx 22.2 \%$	$\frac{63}{63}=100 \%$

You can use a two-way relative frequency table to calculate the probability of events occuring.

Students consider probabilities using geometric shapes. They calculate expected values in gaming situations and make decisions as to whether the game is worth the risk.

Algebra 2 Course Overview

Module 1 Exploring patterns in Linear and Quadratic Relationshios
Topic 1: Extending Linear Relationships
Topic 2: Exploring
and Analyzing
Patterns
Topic 3: Applications
of Quadratics

Module 2
Analyzing Structure

Topic 1: Composing and Decomposing Functions

Topic 2:
Characteristics of Polynomial Functions

Module 3 Developing Structural Similarities

Topic 1: Relating Factors and Zeros

Topic 2: Polynomial Models

Module 4
Extending Beyond Polynomials

Topic 1: Rational
Functions

Topic 2: Radical Functions

Module 5 Inverting Functions

Topic 1: Exponential and Logarithmic Functions

Topic 2: Exponential and Logarithmic Equations

Topic 3: Applications of Exponential Functions

- Why is this module named what it is?
- What is the mathematics of this module?
- How is this module connected to prior learning?
- When will students use knowledge from this module in future learning?

TEA. Module Overview: Big Picture of Planning

TOPIC PLANNING PROCESS:

Lesson Internalization Process Overview

0. Read the Topic Overview
1. Read to Understand
2. DO the MATH
3. Read the Facilitator Notes for Engage, Develop, and Demonstrate
4. Chunk, Pace, and Strategize
5. Identify or Create Opening and Closing Activities

5 Minute Quick Hit

Best Practice Tip(s)

- Utilize the plethora of resources on the Texas Help Center as you explore connections across other grade level courses.
- Use your common planning, department meetings, or PLC time (with other grade levels) to share your module/course overviews in order to make connections across courses.

When it comes to the sequence of mathematics concepts in your course:

| KNOW | completeWANT TO
 KNOW | What have you |
| :---: | :---: | :---: | :---: |
| complete | learned during
 this session? | |

Think Time K-W-L Chart

Revisiting Why We're Here

After today's live session, participants are now able to...

- Define how the key mathematical concepts flow across this course and how they are connected to other courses.
- Identify the Big Ideas in each Module within this course.
- Connect how this big picture view of each course fits into the topic and lesson level internalization.
- Walk away with concrete tools and processes to use in their instructional planning.

TEM

We're here to help!

Contact Us
texas-partner@carnegielearning.com

Session Survey: We’d love your feedback!

The facilitation of today's session was strong. *

Strongly Disagree
 Disagree
 Neutral
 Strongly Agree

The logistics and technology for today's session were smooth. *

Please pay close attention to the wording when selecting your answer. Positive and critical responses are in different places.

What about today's learning was valuable?

The pacing of today's session was... *Too Slow
Just Right
Too Fast

Please leave actionable feedback. Tell us what specific experience was good or bad and why. This helps us keep specifics that work and eliminate those that don't.

Before signing off, please take the survey on your experience in today's session (link in chat).

The post-work and exit ticket are posted in TEALearn. Please complete in the next ten days.

What questions might you have about what's next for you in terms of the professional learning tasks?

Algebra II Module 3: Developing Structural Similarities

Topic 1: Relating Factors and Zeros

Now that students are familiar with the key characteristics of polynomial functions, this topic presents them with opportunities to analyze, factor, solve, and sketch polynomial functions given algebraic representations.

This warm up sets the stage for the entire topic.

$$
\begin{aligned}
9 x^{2}+21 x+10 & =(3 x)^{2}+7(3 x)+10 \\
& =z^{2}+7 z+10 \\
& =(z+5)(z+2) \\
& =(3 x+5)(3 x+2)
\end{aligned}
$$

$$
\begin{array}{r}
x+1 \sqrt{x^{3}+x^{2}+3 x+3} \\
\frac{-\left(x^{3}+x^{2}\right)}{0 x^{2}+3 x} \\
\frac{-\left(0 x^{2}+0 x\right)}{3 x+3} \\
\frac{-(3 x+3)}{0}
\end{array} \underbrace{\text { Coefficients of dividend }}_{\substack{a \\
\text { Coefficients } \\
\text { of quotient }}}
$$

	Integer Example	Polynomial Example
Addition	$\begin{array}{r} 400+30+7 \\ +\quad 20+5 \\ \hline 400+50+12 \end{array}$	$\begin{array}{r} 4 x^{2}+3 x+7 \\ +\quad 2 x+5 \\ \hline 4 x^{2}+5 x+12 \end{array}$
Subtraction	$\begin{array}{r} 400+30+7 \\ -\quad(20+5) \\ \hline 400+10+2 \end{array}$	$\begin{array}{r} 4 x^{2}+3 x+7 \\ -\quad(2 x+5) \\ \hline 4 x^{2}+x+2 \end{array}$
Multiplication	$400+$$30+7$ $20+5$ $\times \quad 2000+150+35$ $8000+600+140$ $8000+2600+290+35$	$\begin{array}{r} 4 x^{2}+\begin{array}{l} 3 x+7 \\ 2 x+5 \\ \times \quad 20 x^{2}+15 x+35 \\ \hline 8 x^{3}+6 x^{2}+14 x \\ \hline 8 x^{3}+26 x^{2}+29 x+35 \end{array} \end{array}$
Division	$\frac{437}{25}=17 \mathrm{R} 12$	$\frac{4 x^{2}+3 x+7}{2 x+5}=(2 x-3) R(-x+22)$

Students divide polynomials when one factor is known, using long division and synthetic division to write polynomials in factored form.

Polynomial operations are compared to integer operations throughout.

Algebra II Module 3: Developing Structural Similarities

Topic 2: Polynomial Models
In this topic, students use the concept of equality to represent mathematical relationships in different ways.

$$
\begin{aligned}
46^{2} & =(40+6)^{2} \\
& =40^{2}+2(40)(6)+6^{2} \\
& =1600+2(40)(6)+36 \\
& =1600+480+36 \\
& =2116
\end{aligned}
$$

The value of 46^{2} is 2116 .

Students use polynomial identities to perform calculations, verify Euclid's Formula, and generate Pythagorean triples.

Students then explore patterns in Pascal's Triangle and use the values in Pascal's Triangle to expand powers of binomials. Next, they apply the Binomial Theorem and its combinatorics as an alternative method to expand powers of binomials.

They determine the degree of the polynomial that is most appropriate for a given data set and use technology to write a regression equation.

Algebra II Module 4: Extending Beyond Polynomials

Topic 1: Rational Functions

In Rational Functions, student analyze, graph, transform, and solve rational functions.

Students are introduced to and graph rational functions.

	Domain	Range
Inequalities	$x>4$ or $x<4$	$g(x)>4$ or $g(x)<4$
Interval notation	$(-x, 4) \cup(4, \infty)$	$(-\infty, 4) \cup(4, x)$
Set notation	$\{x \mid x \neq 4\}$	$(g(x) \mid g(x) \neq 4\}$

Students write the domain and range as an inequality, in interval notation, and using set notation.

$$
r(x)=A\left(\frac{1}{B(x-C)}\right)+D
$$

Students apply what they know about transformation form to rational functions.

	Rational Numbers	Rational Expressions Involving Variables	
Example 1	$\begin{aligned} \frac{1}{5} \div \frac{3}{10} & =\frac{1}{5_{1}} \cdot \frac{{ }^{2}}{3} \\ & =\frac{2}{3} \end{aligned}$	$\begin{aligned} \frac{x y}{5 z} \div \frac{3 x y}{10 z} & =\frac{x_{y}}{5 z} \cdot \frac{10 z}{3 x y} \\ & =\frac{2}{3} \end{aligned}$	$\begin{aligned} \frac{x y^{2}}{5 z} \div \frac{3 x y}{10 z^{2}} & =\frac{\frac{y y^{2}}{5 z} \cdot \frac{2 z z^{2}}{3 x y}}{1} \\ & =\frac{2 y z}{3} ; x, y, z \neq 0 \end{aligned}$
Example 2	$\begin{aligned} \frac{6}{7} \div 4 & =\frac{3}{7} \cdot \frac{1}{4} \\ & =\frac{3}{14}^{2} \end{aligned}$	$\begin{aligned} \frac{6 a}{7 b} \div 4 a & =\frac{6 a}{7 b} \cdot \frac{1}{4 a} \\ & =\frac{3}{14 b}^{2} \end{aligned}$	$\begin{aligned} \frac{6 a^{3}}{7 b} \div 4 a & =\frac{\frac{3 a^{2}}{7}}{7 b} \cdot \frac{1}{4 a} \\ & =\frac{3 a^{2}}{14 b^{2}} ; a, b, \neq 0 \end{aligned}$

Operations with Rational functions are introduced by comparing them to operations with rational numbers.

	Portion of the Garden Watered	Time Spent Watering	Rate of Watering
Gardens	Minutes	Gardens/Minute	
Maureen	$40\left(\frac{1}{90}\right)=\frac{4}{9}$	40	$\frac{1}{90}$
Sandra Jane	$40\left(\frac{1}{x}\right)=\frac{40}{x}$	40	$\frac{1}{x}$
Entire Job, or 1 Garden	$\frac{4}{9}+\frac{40}{x}$	40	

Students apply rational equations to solve work, distance, cost and mixture problems.

Algebra II Module 4: Extending Beyond Polynomials

Topic 2: Radical Functions

In Rational Functions, student analyze, graph, transform, and solve rational functions.

Students are introduced to rational functions by investigating inverses of quadratic and cubic functions.

Students graph radical functions, write their equations, and determine their key characteristics.

They transform radical functions and determine what effect transformations have on the inverse function.

Transformation of Quadratic Function, $f(x)$	Transformation of Inverse Function, $f^{-1}(x)$
translation up D units	translation right D units
translation down D units	translation left D units
translation right C units	translation up C units
translation left C units	translation down C units

| Using Radicals | | Using Powers |
| :--- | :--- | ---: | :--- |
| $\sqrt[3]{8 x^{6}}$ $=\sqrt[3]{2^{3} \cdot x^{6}}$ $8 x^{6}$ $=\left(8 x^{6}\right)^{\frac{1}{3}}$
 $=\sqrt[3]{2^{3} \cdot\left(x^{2}\right)^{3}}$ $\left(2^{3} \cdot x^{6}\right)^{\frac{1}{3}}$
 $=\sqrt[3]{2^{3}} \cdot \sqrt[3]{\left(x^{2}\right)^{3}}$ $=2^{\frac{3}{3}} \cdot x^{\frac{6}{3}}$
 $=$ $2 x^{2}$ $=2^{1} \cdot x^{2}$
 $=2 x^{2}$ | | |

Students rewrite radical expressions using radicals and powers. They also solve radical equations in and out of context.

Algebra II Module 5: Inverting Functions

Topic 1: Exponentials and Logarithmic Functions

In Exponential and Logarithmic Functions, students build of their knowledge of exponential functions to analyze, graph, and transform exponential functions and their inverses, logarithmic functions.

Students use exponential functions to model real-world situations. They use tables and graphs to compare linear and exponential growth.

$e \approx 2.718281828459045 \ldots$

They use the compound interest formula to derive the value of the constant e.

Students then integrate their knowledge of exponential functions and inverses to define a new function: the logarithm.

$$
g(x)=A \cdot \log (B(x-C))+D
$$

Students apply transformation form to logarithmic and exponential functions.

Students use technology to generate exponential regressions, and they use these equations to make predictions.

Algebra II Module 5: Inverting Functions

Topic 2: Exponential and Logarithmic Equations

Students use their understanding of exponential and logarithmic functions to solve exponential and logarithmic equations. NOTE: In this topic, some of the content goes beyond the scope of the course standards. The content is included to enhance students' understanding of mathematics and provide opportunities for extension.

Argument Is Unknown Exponent Is Unknown Base Is Unknown

$\log _{4} y=3$	$\log _{4} 64=x$	$\log _{b} 64=3$
$4^{3}=y$	$4^{x}=64$	$b^{3}=64$
$64=y$	$4^{x}=4^{3}$	$b^{3}=4^{3}$
	$x=3$	$b=4$

Students convert between exponential and logarithmic forms of an equation, and they then use this relationship to solve for an unknown base, exponent, or argument in a logarithmic equation.

They use properties of logarithms to write a single logarithms in expanded form and vice versa.

$$
\log _{b} c=\frac{\log _{a} c}{\log _{a} b}
$$

They learn the Change of Base Formula and learn to solve exponential equations by taking the logarithms of both sides.

They solve for the base, argument, or exponent of logarithmic equations, using the properties of logarithms.

$$
\begin{aligned}
2.2 & =-\log \mathrm{H}^{+} \\
10^{-2.2} & =\mathrm{H}^{+} \\
\mathrm{H}^{+} & \approx 0.0063
\end{aligned}
$$

The concentration of hydrogen ions in vinegar is about 0.0063 mole per cubic liter. Students write and solve exponential and logarithmic equations arising from real-world contexts.

Algebra II Module 5: Inverting Functions

Topic 3: Applications of Exponential Functions

Students explore various real-world and mathematical situations that are modeled by exponential functions. NOTE: In this topic, some of the content goes beyond the scope of the course standards. The content is included to enhance students' understanding of mathematics and provide opportunities for extension

$$
\begin{aligned}
& S_{n}=\frac{g_{n}(r)-g_{1}}{r-1} \\
& S_{n}=\frac{\sigma_{1}\left(r^{n}-1\right)}{r-1}
\end{aligned}
$$

Students develop two formulas to determine the sum of the terms of a geometric sequence or geometric series. form. They also apply the formulas in the real-world context of credit card debt.

Students use transformed functions to draw and interpret graphics, paying attention to the domain restrictions required by the image.

Stage 0

Stage 2

Stage 1

Stage 3

They investigate the Sierpinski Triangle, the Menger Sponge, the Koch Snowflake, and the Sierpinski Carpet as examples of fractals. Students describe the growth patterns of the fractals in terms of geometric sequences.

