
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Session Fixation –
the Forgotten Vulnerability?

Michael Schrank†,
Bastian Braun†,
Martin Johns*,
Henrich C. Pöhls†
† Institute of IT-Security and Law,
 University of Passau
* SAP Research

OWASP

 Background
 Exploits & Impact
 Practical Experiments Outcome
 Solution: Session Fixation Protection Proxy
 Conclusion & Future Work

2 10-07-09

OWASP

 Session Fixation known for several years (at the latest from
2002)

 Little attention compared to XSS, SQLi, CSRF
 Little awareness in developers’ world

 Session Management not provided for HTTP (stateless)
 Fallback procedure: session tracking by identifier (ID)

  Cookie, URL parameter, hidden form field
  Carry ID with every request

 Session Management + Authorization Management
 Mismatch of responsibilities: framework vs developer
 Session management done by programming framework/

application server
 User authentication/authorization is application’s duty

3 10-07-09

OWASP

 Attack sketch
 Attacker sets victim’s session ID instead of session ID theft
 Victim authenticates using attacker provided session ID
 Attacker resumes authenticated session making use of

known session ID
 Session Fixation starts before user authentication
 Attack vectors: two attack stages

 2nd stage: Session’s authentication level is raised for the
provided “fixed” session ID

 1st stage: needs other vulnerability to set SID
  XSS, meta tags, cross-protocol attack, sub domain cookie

bakery, http response splitting, http header injection

4 10-07-09

OWASP
5 10-07-09

OWASP

 First stage attack preconditions
 Mislead victim into clicking on a link
 Set cookie via other vulnerability
 Make the victim log into his account and meet that

time frame
 Session Fixation preconditions

 Application is vulnerable
 If session is bound to IP or browser: additional

obstacle
 Individual session ID needed for every victim

 But: if all conditions are met Session Fixation is
severe attack
 Full impersonation of victim mostly without any notice

6 10-07-09

OWASP

Default
configuration
vulnerable to
Session
Fixation?

 If yes, we
“only” need
first stage
attack

7 10-07-09

OWASP

  Cookie: CMS accepts foisted cookies
  URL: CMS accepts session ID via URL parameter
  SID: CMS accepts arbitrary SID values

8 10-07-09

OWASP

 First stage attack: attacker sets cookie on client side
 Our case: user defined data taken for redirection
 header("Location: http://localhost/index.php?

lang=".$_GET['lang']);

9 10-07-09

OWASP

 Results:
 PHP: vulnerable in version < 4.4.2, < 5.1.2
 J2EE: not vulnerable
 CherryPy: vulnerable
 Perl: partially vulnerable (name ended with colon)
 Ruby on Rails: recently patched

10 10-07-09

OWASP

Case studies:

 9 out of 12 open-source Content Management
Systems (CMS) vulnerable to session fixation

 2 out of 5 web application frameworks (at least
partially) vulnerable to http header injection

 5 out of 8 web application frameworks vulnerable
to session fixation (different work)

11 10-07-09

OWASP

 Fixing vulnerability straightforward: renew
session ID if authorization level raises

 However: vulnerability on server side, risk on
client side (like cross site scripting case)

 little interest by application providers to find & fix
 Our proposed solution:

 a proxy to strip off fixated session identifiers
 Implements transparent session handling between

client and proxy
 Either on client side or on server side

12 10-07-09

OWASP

 Proxy links PSID a and SID x
 If proxy receives request with unknown SID y, all

session ids are stripped off and a new session is
established

 AppServer never sees PSID

13 10-07-09

OWASP

 Public level of attention still rather low
 Despite given results: real world applications

tested
 Popular web services vulnerable (2 out of 4)
 Online Banking web sites vulnerable (2 out of 5)
 Internet access provider (1 out of 1)

 Risk exists though fixing is fairly easy
 Business partner uses proxy to buy time
 Proxy on server side – no big deal
 Proxy on client side – session ID detection not

trivial
 Future Work!

14 10-07-09

OWASP

  API: provides API to rotate SID
  AutoRotate: SID is rotated on every request (default

configuration)
  Conf. Fallback: URL parameter fallback behavior configurable
  AutoDisable: URL parameter fallback is disabled per default

15 10-07-09

