
CHAPTER 2

Sets, Functions, Relations

2.1. Set Theory

2.1.1. Sets. A set is a collection of objects, called elements of the
set. A set can be represented by listing its elements between braces:
A = {1, 2, 3, 4, 5}. The symbol ∈ is used to express that an element is
(or belongs to) a set, for instance 3 ∈ A. Its negation is represented by
6∈, e.g. 7 6∈ A. If the set is finite, its number of elements is represented
|A|, e.g. if A = {1, 2, 3, 4, 5} then |A| = 5.

Some important sets are the following:

1. N = {0, 1, 2, 3, · · · } = the set of natural numbers.1

2. Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } = the set of integers.
3. Q = the set of rational numbers.
4. R = the set of real numbers.
5. C = the set of complex numbers.

Is S is one of those sets then we also use the following notations:2

1. S+ = set of positive elements in S, for instance

Z+ = {1, 2, 3, · · · } = the set of positive integers.

2. S− = set of negative elements in S, for instance

Z− = {−1,−2,−3, · · · } = the set of negative integers.

3. S∗ = set of elements in S excluding zero, for instance R∗ = the
set of non zero real numbers.

Set-builder notation. An alternative way to define a set, called set-
builder notation, is by stating a property (predicate) P (x) verified by
exactly its elements, for instance A = {x ∈ Z | 1 ≤ x ≤ 5} = “set of

1Note that N includes zero—for some authors N = {1, 2, 3, · · · }, without zero.
2When working with strings we will use a similar notation with a different

meaning—be careful not to confuse it.
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integers x such that 1 ≤ x ≤ 5”—i.e.: A = {1, 2, 3, 4, 5}. In general:
A = {x ∈ U | p(x)}, where U is the universe of discourse in which the
predicate P (x) must be interpreted, or A = {x | P (x)} if the universe
of discourse for P (x) is implicitly understood. In set theory the term
universal set is often used in place of “universe of discourse” for a given
predicate.3

Principle of Extension. Two sets are equal if and only if they have
the same elements, i.e.:

A = B ≡ ∀x (x ∈ A ↔ x ∈ B) .

Subset. We say that A is a subset of set B, or A is contained in
B, and we represent it “A ⊆ B”, if all elements of A are in B, e.g., if
A = {a, b, c} and B = {a, b, c, d, e} then A ⊆ B.

A is a proper subset of B, represented “A ⊂ B”, if A ⊆ B but
A 6= B, i.e., there is some element in B which is not in A.

Empty Set. A set with no elements is called empty set (or null set,
or void set), and is represented by ∅ or {}.

Note that nothing prevents a set from possibly being an element of
another set (which is not the same as being a subset!). For instance
if A = {1, a, {3, t}, {1, 2, 3}} and B = {3, t}, then obviously B is an
element of A, i.e., B ∈ A.

Power Set. The collection of all subsets of a set A is called the
power set of A, and is represented P(A). For instance, if A = {1, 2, 3},
then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A} .

Exercise: Prove by induction that if |A| = n then |P(A)| = 2n.

Multisets. Two ordinary sets are identical if they have the same
elements, so for instance, {a, a, b} and {a, b} are the same set because
they have exactly the same elements, namely a and b. However, in
some applications it might be useful to allow repeated elements in a
set. In that case we use multisets, which are mathematical entities
similar to sets, but with possibly repeated elements. So, as multisets,
{a, a, b} and {a, b} would be considered different, since in the first one
the element a occurs twice and in the second one it occurs only once.

3Properly speaking, the universe of discourse of set theory is the collection of
all sets (which is not a set).
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2.1.2. Venn Diagrams. Venn diagrams are graphic representa-
tions of sets as enclosed areas in the plane. For instance, in figure 2.1,
the rectangle represents the universal set (the set of all elements con-
sidered in a given problem) and the shaded region represents a set A.
The other figures represent various set operations.

A

Figure 2.1. Venn Diagram.
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Figure 2.2. Intersection A ∩B.

BA

Figure 2.3. Union A ∪B.
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A

Figure 2.4. Complement A.

BA

Figure 2.5. Difference A−B.

BA

Figure 2.6. Symmetric Difference A⊕B.

2.1.3. Set Operations.

1. Intersection: The common elements of two sets:

A ∩B = {x | (x ∈ A) ∧ (x ∈ B)} .

If A ∩B = ∅, the sets are said to be disjoint.

2. Union: The set of elements that belong to either of two sets:

A ∪B = {x | (x ∈ A) ∨ (x ∈ B)} .
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3. Complement : The set of elements (in the universal set) that do
not belong to a given set:

A = {x ∈ U | x 6∈ A} .

4. Difference or Relative Complement : The set of elements that
belong to a set but not to another:

A−B = {x | (x ∈ A) ∧ (x 6∈ B)} = A ∩B .

5. Symmetric Difference: Given two sets, their symmetric differ-
ence is the set of elements that belong to either one or the other
set but not both.

A⊕B = {x | (x ∈ A)⊕ (x ∈ B)} .

It can be expressed also in the following way:

A⊕B = A ∪B − A ∩B = (A−B) ∪ (B − A) .

2.1.4. Counting with Venn Diagrams. A Venn diagram with
n sets intersecting in the most general way divides the plane into 2n

regions. If we have information about the number of elements of some
portions of the diagram, then we can find the number of elements in
each of the regions and use that information for obtaining the number
of elements in other portions of the plane.

Example: Let M , P and C be the sets of students taking Mathe-
matics courses, Physics courses and Computer Science courses respec-
tively in a university. Assume |M | = 300, |P | = 350, |C| = 450,
|M ∩ P | = 100, |M ∩ C| = 150, |P ∩ C| = 75, |M ∩ P ∩C| = 10. How
many students are taking exactly one of those courses? (fig. 2.7)
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Figure 2.7. Counting with Venn diagrams.

We see that |(M∩P )−(M∩P∩C)| = 100−10 = 90, |(M∩C)−(M∩
P ∩C)| = 150−10 = 140 and |(P ∩C)− (M ∩P ∩C)| = 75−10 = 65.
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Then the region corresponding to students taking Mathematics courses
only has cardinality 300−(90+10+140) = 60. Analogously we compute
the number of students taking Physics courses only (185) and taking
Computer Science courses only (235). The sum 60 + 185 + 235 = 480
is the number of students taking exactly one of those courses.

2.1.5. Properties of Sets. The set operations verify the follow-
ing properties:

1. Associative Laws:

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

2. Commutative Laws:

A ∪B = B ∪ A

A ∩B = B ∩ A

3. Distributive Laws:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

4. Identity Laws:
A ∪ ∅ = A

A ∩ U = A

5. Complement Laws:

A ∪ A = U

A ∩ A = ∅
6. Idempotent Laws:

A ∪ A = A

A ∩ A = A

7. Bound Laws:
A ∪ U = U

A ∩ ∅ = ∅
8. Absorption Laws:

A ∪ (A ∩B) = A

A ∩ (A ∪B) = A

9. Involution Law:

A = A
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10. 0/1 Laws:

∅ = U

U = ∅
11. DeMorgan’s Laws:

A ∪B = A ∩B

A ∩B = A ∪B

2.1.6. Generalized Union and Intersection. Given a collec-
tion of sets A1, A2, . . . , AN , their union is defined as the set of elements
that belong to at least one of the sets (here n represents an integer in
the range from 1 to N):

N⋃
n=1

An = A1 ∪ A2 ∪ · · · ∪ AN = {x | ∃n (x ∈ An)} .

Analogously, their intersection is the set of elements that belong to all
the sets simultaneously:

N⋂
n=1

An = A1 ∩ A2 ∩ · · · ∩ AN = {x | ∀n (x ∈ An)} .

These definitions can be applied to infinite collections of sets as well.
For instance assume that Sn = {kn | k = 2, 3, 4, . . . } = set of multiples
of n greater than n. Then

∞⋃
n=2

Sn = S2 ∪ S3 ∪ S4 ∪ · · · = {4, 6, 8, 9, 10, 12, 14, 15, . . . }

= set of composite positive integers .

2.1.7. Partitions. A partition of a set X is a collection S of non
overlapping non empty subsets of X whose union is the whole X. For
instance a partition of X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} could be

S = {{1, 2, 4, 8}, {3, 6}, {5, 7, 9, 10}} .

Given a partition S of a set X, every element of X belongs to exactly
one member of S.

Example: The division of the integers Z into even and odd numbers
is a partition: S = {E, O}, where E = {2n | n ∈ Z}, O = {2n + 1 | n ∈
Z}.
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Example: The divisions of Z in negative integers, positive integers
and zero is a partition: S = {Z+, Z−, {0}}.

2.1.8. Ordered Pairs, Cartesian Product. An ordinary pair
{a, b} is a set with two elements. In a set the order of the elements is
irrelevant, so {a, b} = {b, a}. If the order of the elements is relevant,
then we use a different object called ordered pair, represented (a, b).
Now (a, b) 6= (b, a) (unless a = b). In general (a, b) = (a′, b′) iff a = a′

and b = b′.

Given two sets A, B, their Cartesian product A×B is the set of all
ordered pairs (a, b) such that a ∈ A and b ∈ B:

A×B = {(a, b) | (a ∈ A) ∧ (b ∈ B)} .

Analogously we can define triples or 3-tuples (a, b, c), 4-tuples (a, b, c, d),
. . . , n-tuples (a1, a2, . . . , an), and the corresponding 3-fold, 4-fold,. . . ,
n-fold Cartesian products:

A1 × A2 × · · · × An =

{(a1, a2, . . . , an) | (a1 ∈ A1) ∧ (a2 ∈ A2) ∧ · · · ∧ (an ∈ An)} .

If all the sets in a Cartesian product are the same, then we can use
an exponent: A2 = A× A, A3 = A× A× A, etc. In general:

An = A× A× (n times)· · · × A .

An example of Cartesian product is the real plane R2, where R is
the set of real numbers (R is sometimes called real line).


