Setting up the Tools

Introduction to Simulink and the

XILINX Xilinx Gateway
SYSTEM
GENERATOR" Software Overview
Black Box
Multiplier Accumulator
Xl I | NnX System The Costas Loop
Filter
G ene rato r V2) 1 for Image Enhancement Example
SI mu | | nk Combination Lock State Machine

Introductory Tutorials

Xilinx System Generator v2.1 Basic Tutorial Printed in U.S.A.

Xilinx System Generator v2.1

Preface

About the Tutorials

This set of tutorials is a beginner’s guide for designers unfamiliar with the features of
the Xilinx System Generator software, v2.1 and later. These tutorials show the features
and capabilities of the System Generator tools, using simple designs and examples.

Tutorials Contents

This set of tutorials contains the following chapters.

Chapter 1, Setting up the Tools, gives instructions for installing the software and
lists software dependencies.

Chapter 2, Introduction to Simulink and the Xilinx Gateway, provides a simple intro-
duction to Simulink which will ensure correct installation of the tools, and
provides basic information on the gateways for using the Xilinx Blockset.

Chapter 3, Software Overview, walks you through a simple integrator sample
model and exhibits some of the behavior of the Xilinx Blockset. This chapter also
gives a very basic flow through the downstream Xilinx tools, using the
Foundation ISE Project Navigator.

Chapter 4, Black Box, shows you how the System Generator lets you create your
own blocks and have them included in the generated code.

Chapter 5, Multiplier Accumulator, gives directions and some hints for creating a
new model using the Xilinx Blockset.

Chapter 6, The Costas Loop, is another example project provided with the System
Generator. If time allows, you may want to run the Costas Loop simulations and
look at a larger design that uses elements from the Xilinx Blockset as well as
Simulink blocks.

Chapter 7, Filter, demonstrates the effects of applying a filter to a random signal.
You will run MATLAB console commands to set up your design to automatically
preload coefficients and use the MATLAB “SPTool” utility to define filter coeffi-
cients.

Chapter 8, Image Enhancement Example, demonstrates an image run through a
filter, also showing the benefits of simulating the entire system, including the
Xilinx blocks, in Simulink.

Chapter 9, Combination Lock State Machine, demonstrates how to design a state
machine for a combination lock using the Xilinx Mealy State Machine block.

Additional Resources

For additional information, see the System Generator Reference Guide and Quickstart
Guide, supplied with your installation of the System Generator. These files are
installed, by default, into SMATLAB/toolbox/xilinx/sysgen/help

Xilinx Development System

About the Tutorials

Contents

Chapter 1 Setting Up the TOOIS........ooveeiiicce e 4

Software Dependencies
Using the System Generator installer
Compiling IP libraries for simulation

Chapter 2 Introduction to Simulink and the Xilinx Gateways................ccceee.... 8
Chapter 3 SOftWAre OVEIVIEW.uuuiiiiiiiiiiiiiieeee e e e e 16

Simulink Design Flow

Customizing the Xilinx Blockset Elements in a Design
Simulation

System Generator Block

Files Produced by System Generator Code Generation
Testbench Generation

Implementation within the Xilinx Design Environment

Chapter 4 BlaCk BOXES.........ccvuiiiiiiiiiiiie e e e e e e e e e e e e e eeeaaannnnes 30
Chapter 5 Multiplier ACCUMUIALON 32

Incomplete Design
Complete the Multiplier/ Accumulator

Chapter 6 The COStaS LOOP.....cuiiiiiiiiiieiiie ettt 36
Design Overview
(O 0T o) (= S A 1 (=T OSSPSR 39

SPTool Utility
Design Overview

Chapter 8 Image Enhancement............ooooiiiiiiiiiiiii e 45

Design Overview

Process the Design in Simulink
Generate VHDL and Testbench Vectors
Simulation and Implementation

Chapter 9 Combination Lock State Machine...............ccccceeeiiiiiiiiiiieiiiieeeeeeeins 52

State Machine Library
Design Overview
Implementation
Simulation

Xilinx System Generator v2.1 Basic Tutorial 3

Xilinx System Generator v2.1

Chapter 1

Setting Up the Tools

This chapter describes the software dependencies, setup, and installation process of
the Xilinx System Generator.

Software Dependencies

This section describes the product dependencies for the System Generator. You must
have the following software installed on your computer before you install the System
Generator.

e R12 or R12.1 of The MathWorks tools, including:
¢ R12: MATLAB v6.0 and Simulink v4.0
¢ R12.1: MATLAB v6.1 and Simulink v4.1

e Xilinx ISE v4.1i software, including

+ Xilinx CORE Generator (comes standard with Foundation and Alliance ISE
software tools)

+ Software Service Pack 1
¢ 4.xIP Update #1

¢ The environment variable XILINX must be set and must point to your Xilinx
ISE 4.1i software installation directory.

The correct Service Pack and IP Update may be downloaded from the appropriate
sections of the 4.1i Software Updates Center:

4 Xilinx Development System

Setting Up the Tools

http://support.xilinx.com/support/software/install_info.htm

4.1i Software Updates Center - Xilinx Support - Netscape
File Edit %iew Go Communicator Help

w!' Bookmarks 4 NBtSitBZIhttp:x',.’Suppl:nrt.xiIinx.CDmfsupport,’sofh-varefinstall_info.htm

SUPPORT.XILINX.COMI

-

2. XILINX

| Treubleshoot | Hardware | Software | Downlo

| BUPPORT | EDUCATION | BUY ONLINE | CONTACT | SEARCH

ad | Documentation | Design | Services |
Xilinx : Support: Software Updates : 4.1i Software Resources
[answerDatanase =] 4.1i Software Updates Center

I Updated 1052252001
* Sepvice Packs - Service Pack 2 is now available. Service FPacks are cumulative for 4.11 Software and

Search | Resetl
contain the latest updates for all Xilink software tools except CORE Generator, IP Updates, and
Advanced Search Systern Generator which must be downloaded and installed separately.
Ifyou are already registered for Senice Pack downloads:

Answear Browser "

s Diownlogad PC Service Pack 2
Softiare Manuals = Diownload Solaris Service Pack 2
Feedback ® Dowwnload HP Service Pack 2

Agents

= | need to Register for Service Pack Downloads

Forums o Sewice Pack 3is scheduled for release December 12, 2001,
FProblem Solvers * Unisim or Simprim Libraries may need to be recompiled after a Service Pack. See Answer 12628 for
WehCase mare information on compiling simulation libraries.,
. + Intellectual Property: IP Updates - IF Update #1 is now available. [P Updates include new and
Site Map updated IP, as well as software updates to the Xiling CORE Generator.

o Download 410 1P Update #1
o MXE users be sure to read the item below.
o P Update #2 is scheduled for Release Q1 2002
» MXE Users - When upgrading your IP, you will also need to download the [atest pre-compiled
ModelSim XE Libraries in order to simulate any new or updated Core inthe 4,11 IP Update.
o Mew MHE libraries for IP Update #1 are now available
o Diownload WHOL E-IF #1 ME Libraties.

Figure 1-1 Service Packs and Updates on Xilinx Web Site

To simulate, synthesize, and implement the VHDL and cores generated from the
System Generator, you must also have

* aVHDL (behavioral) simulator, such as

¢+ MXE (Modelsim Xilinx Edition) 4.1i, available with the Xilinx Foundation ISE
4.1i software tools

¢+ ModelSim PE or SE v5.5 or similar version from Model Technology
» asynthesis compiler, such as

¢+ XST (Xilinx Synthesis Technology), available in the Xilinx Foundation ISE 4.1i
software tools

¢ Synplicity: Synplify Pro v6.2.4 or v7.0.1
¢+ Exemplar: LeonardoSpectrum v2000.1b

» the Xilinx implementation tools, available in the Xilinx Foundation or Alliance ISE
4.1i software tools

Software Download

The System Generator v2.1 is available only via download from a Xilinx web page.
You may purchase, register, and download the System Generator software from the

Xilinx System Generator v2.1 Basic Tutorial 5

Xilinx System Generator v2.1

site at: http://www.xilinx.com/products/software/sysgen.htm

On this web page, you will see the following sequence of steps:

f 154 Eha
5:.-5-'|I':'|"I'| Gangralar
at thie Xding Silcon

Xpresso Cale

Hagigtar with Allin
10 @8N accass 1o
Systen Generatar

1o download
tha [atast Sysham
Genarator softwarna

Figure 1-2 Interface for Downloading System Generator

After you have purchased and registered your copy of the System Generator, you will
be given a user ID and password. These will allow you to log in and download the
System Generator software from Step 3 .

Using the System Generator installer

The System Generator installer is now contained in a single MATLAB file:
setup.dil.

Download Sysgeninstall_v2_1.exe from the Xilinx web site and execute it. This
extracts setup.dll and README.txt to atemporary directory. Since setup.dll is
a MATLAB file, you will need to install the software from within MATLAB. Open the
MATLAB console, then change directories (cd) to the temporary directory where you
extracted setup.dll . Type:

>> setup

at the MATLAB console prompt. This will launch the System Generator installer.

Uninstalling previous System Generator directories

If you have previously installed the System Generator tools, the installer will ask if
you wish to install System Generator v2.1 to the same location. If so, it will warn you
that your old copy will be removed. If you have opened any System Generator
designs in your current MATLAB session, you must close and re-open MATLAB
before uninstalling can proceed.

Note that the System Generator will remove everything in your previously installed
System Generator directory and subdirectories. If you have added any files to the

Xilinx Development System

http://www.xilinx.com/products/software/sysgen.htm

Setting Up the Tools

installed System Generator area, they will be removed. We suggest that you back up
your System Generator designs into another directory, such as the SMATLAB/work
directory.

If you wish to uninstall System Generator v2.1 or previous versions by hand, you may
manually remove the entire directory, starting at the top level of the System Generator
installed area. This is located by default at SMATLAB/toolbox/xilinx

Recommended Documentation

The System Generator Reference Guide is included with your installation and contains a
comprehensive description of System Generator blocks, interfaces, and design
methodology.

To use the System Generator project flow from design through FPGA implementation,
you should be familiar with Xilinx and The MathWorks tools. It is recommended that
you refer to the manuals Using Simulink from The MathWorks, and ISE 4.1i User’s
Guide from Xilinx. These manuals explain the Simulink environment, as well as the
Xilinx implementation tools.

Compiling IP libraries for simulation

You must compile your IP (cores) libraries with ModelSim before you can simulate.

ModelSim (PE or EE/SE)

To compile your IP with ModelSim (PE or EE/SE) you will need to download a TCL/
TK script from the Xilinx web site, and run it to compile these libraries:

Xilinx Simprim
Unisim
XilinxCoreLib

Xilinx supplies two sets of instructions for compiling your IP libraries using TCL/TK
scripts. The instructions can be found at the following locations:

http://support.xilinx.com/techdocs/2561.htm
http://support.xilinx.com/techdocs/8066.htm

MXE libraries

If you plan to use ModelSim XE (Xilinx Edition), download the MXE pre-compiled
libraries from the Xilinx web site. You may find the latest libraries at:

http://support.xilinx.com/support/software/install_info.htm

Unzip these MXE libraries into your MXE installed directory (usually $MXE/xilinx/
vhdl/xilinxcorelib). This is the location where MXE expects to find your Xilinx
compiled libraries, so you do not need to make any changes to your modelsim.ini
file. This file should point to the correct installed location.

Xilinx System Generator v2.1 Basic Tutorial 7

Xilinx System Generator v2.1

Chapter 2

Introduction to Simulink and Xilinx Gateway Blocks

The purpose of this chapter is to introduce Simulink and the Xilinx Gateway blocks.

Introduction to Simulink

Simulink, which runs in MATLAB, is an interactive tool for modeling, simulating, and
analyzing dynamical systems. The Xilinx System Generator, a high-performance
design tool, runs as part of Simulink. The System Generator elements bundled as the
Xilinx Blockset, appear in the Simulink library browser.

This section provides steps to implement a sample model using Simulink blocks.

1.

Open the MATLAB command window by double-clicking on the
MATLAB icon on your desktop, or by launching it from the Start %
menu on your PC. [

You may nhavigate to product directories by typing a cd command MATLAB

in the MATLAB command window. Type Is to see directory

contents. Many UNIX shell commands work from the MATLAB command
window. cd to the examples directory installed with the System Generator. (This
is generally $SMATLAB/toolbox/xilinx/sysgen/examples)

Launch Simulink by typing simulink at the MATLAB command prompt, or
bring up the Simulink library browser by clicking on the corresponding button on
the MATLAB toolbar.

<) MATLAB

Eile Edit “iew ‘Weh ‘Window Help
Dﬁ’|3§iﬁ;f Cu ﬁ|?|Currt

Launch Pad

L MATLAE
:

J.. Cammmmd ratinna Tanlhoe

Figure 2-1 Simulink button, available on MATLAB console toolbar

4,

Look at the blocks available in the Simulink library browser. The following
elements should appear, among others:

¢ Simulink (sources and sinks)
+ DSP Blockset

+ Xilinx Blockset

Xilinx Development System

Introduction to Simulink and Xilinx Gateway Blocks

(¥ Simulink Library Browser

File Edit Wiew Help
O @ 4 find |
- Simulink - -
w- W Communications Block i‘ System Generator
= B Contral System Toalbo| 3 Addressable Shit
- Wi DSP Blockset ackdr Fegister
- W Fixed-Point Blockset
ﬂﬂl Meural Metwork Blocks . Black Box
w- B S-function demos _
w- B Sirmulink Extras " sl Concat
- B Xilinx Blockset 7

----- #| Basic Elements

----- H Communication | Constant

----- > DSP

_____ # Math cast| Conwvert

----- | Matlakb 10

-----] Memary outl Counter

----- | State Machine

=il Delay

Figure 2-2 Simulink Library Browser window, showing Xilinx Blockset

5. Right-mouse-click on any block in the library browser and choose help from the
MATLAB menu. This brings up details about the block. This also works on the
Xilinx Blockset elements.

B Simulink

2] Continuous

----- * Discrete

----- #| Functions & Tables

..... 2 MNonlinear

----- * Signals & Systems
= | Sinks

2 Sources

- 2] Bubsysterns

ﬂﬁl Communications Blockset

B Control Systermn Toolbaox
B DSPEBlockset

Display

Flaating Scope

Add to 'macl 2x8'

Help for the 'Floating Scope’ block

Go up a lewvel

Block Farameters

STOP

stop Simulation

Tetrminator

Figure 2-3 Opening a Help window on any block

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

6. Create a blank sheet "new model"” using the button on the Simulink library
browser.

File Edit “iew He
lﬁ."' = Find !i

= Create a new model

Figure 2-4 Create a new Simulink model via button on Simulink Browser window

7. Add the following 2 blocks to your project sheet. From Simulink Sources, add a
sine wave. From Simulink Sinks, add a scope block. Drag and drop the blocks
from the Simulink Library Browser into your new model. Draw a wire from the
sine wave to the scope block.

Sl untitled * =] B3

File Edit “iew Simulation Format Tools Help

DEHSE 2B 2 REY®|)

) L]
Ly
¥
Sine Wawve Floating
Scope

Figure 2-5 Sine wave block wired to Scope output block

8. Double click on the sine wave block. A Block parameters dialog box will open.
Change the frequency to pi/150.

Freguency (rad,f'aeu:j‘h
[pit150 e

Figure 2-6 Frequency option on the Sine Wave block parameters dialog

9. From your project sheet, pull down the Format menu, and select port data
types . Now, on your Simulink sheet, you can see that the signal is double
precision.

10. From your project sheet, pull down the Simulation =~ menu and select
Simulation parameters . From the Simulation Parameters dialog box, change
the stop time to inf. This will allow your simulation to run to infinity (until you
manually stop the simulation).

<} Simulation Parameters: untitled H@

Su:llverl YWiorkspace I,-"CI! Diagnuaticsl Advancedi

Simulation time

Start tire: I 0.0 Stop time[-! inf

Figure 2-7 Modifying simulation parameters

10 Xilinx Development System

Introduction to Simulink and Xilinx Gateway Blocks

11. Double click on the scope block. The scope display will open. Click on the Scope
Parameters button. In the Scope Parameters box, set the time range to 500. This is
the range that will now be displayed in the scope.

Figure 2-8 Modifying the Scope display parameters

12. Run the simulation. From your Simulink project sheet,
click on the Start simulation button (or you can | |
pull down the Simulation menu and select start).

Start simulation

13. On the scope display, click the autoscale button so the
output will fit into the scope. The autoscale button looks
like a pair of binoculars.

14. Look at the scope output. A smooth sine wave should fit into your scope window.
This is what you would expect, since you are running a double-precision software
simulation.

15. Stop the simulation. @———-—— .

|St|:|p simulation

Precision and the Xilinx Gateways

Now that you have seen some of the inputs (sources) and outputs (sinks) available in
Simulink, you will create your first design using System Generator blocks. All
System Generator designs start with the Xilinx Gateway Blocks. The Xilinx Gateway
In and Gateway Out blocks provide an interface to the Xilinx Blockset in Simulink. If
you want to add an FPGA design to your Simulink model, the Xilinx Gateway In
block represents an input port into the FPGA. The Gateway Out block is an output
port from the FPGA.

dbl fpt| Gateway In

fpt - dbl| Gatewsy Out

Figure 2-9 The Xilinx Gateway blocks

MATLAB uses double-precision floating-point and the Xilinx portion of the design
uses fixed-point precision. Xilinx Gateway blocks handle the type conversions. In the
following manual exercises, you will consider the number of bits necessary to
represent fractional numbers through the Gateway In block:

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Precision exercises

1.

The System Generator uses a Fix notation which shows the total number of bits
in a number, followed by the position of the binary point. Using this notation,
define the format of the following 2’s Complement binary fraction and calculate
the value it represents:

1] 1 0011i010111
Format <Fix_ >
Value =
2. Represent 8.4375 as a 2’s Complement binary fraction in the box below. You must
also show the position of the binary point:
3. Represent the following useful coefficient in <Ufix_8_8 > format.
1 i
4. Now determine the next size format that will provide greater precision for the
number above.
®
The answers to the precision exercises 1-4 are below.
ANSWERS to precision exercises:
1. Format<Fix_13 6 >. Value = (-1853/64) = -28.640625
2.
o 1.0 0 0 0 1 1 1
12 Xilinx Development System

Introduction to Simulink and Xilinx Gateway Blocks

11585716384 = 0.70709228515 gives 0.002% error. The format must increase
to <Ufix_14_14 > before any improvement is gained.

Add Xilinx Gateways to Sine Wave example

Now, considering the means for representing different precision within the fixed-
point data type, follow the steps to modify your previous sine-wave design by
sending the signal through Xilinx Gateway blocks.

1.

From the Xilinx Blockset (in the Simulink library browser), go to MATLAB 1/0
and drag the Gateway In block onto your sheet. Drop it on the connection
between the sine wave and the output scope. It will automatically insert itself.

Also from MATLAB I/0, drag a Gateway Out block onto the sheet, and drop it
between the Gateway In block and the output scope block.

We would like to compare the double-precision sine wave with the fixed-point
sine wave that has gone through the Xilinx Gateways. To see both of these plots
on the same scope, we will combine the outputs through a Simulink MUX block.
From the Simulink Signals & Systems block set, drag a MUX and drop it between
the Gateway Out and the scope.

Now add an additional net between the sine wave and the MUX. This way the
scope will display both the double-precision sine wave and the sine wave that has
gone into and back out of the Xilinx Gateways.

E,'t_untitled = _ (O]]

Eile Edit

Wiew Simulation Format Tools Help

NFEHS| i28 9- REL & » =

l'n'l. double
Sine Wawve Gateway In Gateway Qut
Floating
Scope

Figure 2-10 Sine wave example with Xilinx Gateway blocks inserted

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

14

To view the number of signals in the MUX, select e
the options under the Format menu: ¥ YWide nonscalar lines

Go to the Edit menu and select Update v Signal dimensions
Diagram . Now look at your port types. See thatthe ¥ Port data types
Gateway In block has changed the signals from

double precision to fixed point types. Fixed point

looks like Fix_8_2 in this case.

Double click on the Gateway In block. A block parameters dialog box will open.
Keep this box open for the rest of this lab; we will examine the effects of changing
some of the parameters.

Run the simulation (click the go button). You will see a jagged sine wave next to
the smooth sine wave that is not going through the Xilinx blocks. You are seeing
guantization effects (the difference between the double precision floating point of
MATLAB and the fixed point Fix_8_2 of the Xilinx block).

Figure 2-11 Quantization effects of double precision vs fixed point

9.

10.

11.

Now change the Gateway block input to Unsigned (instead of 2's
complement). Click Apply on the Gateway In dialog box. Notice the output
scope now displays unsigned results. (After you click Apply you may need to
click the Autoscale button on the output scope again.)

Now that the value is unsigned, you have some overflow (the negative part of the
sine wave). Since Overflow is set to Wrap on the Gateway In dialog, you can see
that the negative portion is wrapping on your output scope.

Change the Overflow option to Saturate and click Apply . See the different
results on the output scope. The negative part of the sine wave is saturated to 0.

Figure 2-12 An effect of changing overflow option on Gateway In block

12.
13.

14.

15.

Change the input back to 2's complement and click Apply .

Change the quantization to Round and click Apply . You'll see the sine wave is
rounded up to the peak value.

Finally, change the quantization to Truncate and click Apply . Now instead of
rounding up, the effect of quantization error is to truncate the peak value.

Remove some of the quantization error by changing the binary point. Instead of 2,
increase the binary point to 6 and click Apply . Now you will see a smoother sine

Xilinx Development System

Introduction to Simulink and Xilinx Gateway Blocks

16.
17.

18.

19.

20.

21.
22.
23.

24,

25.
26.

27.

wave, since more of the quantization error has been removed. The number of
fractional bits was increased from 2 to 6.

Stop the simulation.

Now we will examine the effects of the Sample Period box. Instead of a sample
period of 1, change it to 5 and click Apply .

Restart the simulation. Since it is sampling fewer times, you will see more
guantization error.

Stop the simulation.

Go to your Simulink sheet and remove the sine wave.
Replace it with a Ramp function from the Simulink _/ Ramp
Sources menu.

Open the Simulation Parameters dialog box.
Change the stop time to 100.

Change the binary point to 0 and the sample period to 10, in the Gateway In block
parameters dialog box.

Start the simulation. See that it is only sampling the ramp input every 10th clock
period.

Now change the sample period to 1 in the Gateway In block parameters dialog.

Start the simulation. Notice that the ramp is smoother since you are sampling the
block every clock period.

Stop the simulation.

At this point, you should be able to create a new System Generator design in
Simulink. You know how to interface between the Xilinx Gateway blocks and
Simulink blocks. The next step is to place Xilinx Blockset blocks within the Gateways
and thus create the FPGA portion of your design. The remaining tutorials installed
with the System Generator consist of designs created with the Xilinx Blockset, within
these Gateway blocks.

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Chapter 3

Software Overview

Introduction

16

This chapter tells how to use Simulink for modeling a system design with the System
Generator. It also tells us how to simulate and implement the design using Xilinx
implementation tools.

This chapter contains the following sections.

* Introduction

e Basic Simulink Functionality

e Customizing the Xilinx Blockset elements in a design
» Simulation

e System Generator Token

e Files produced by System Generator code generation
» Testbench Generation

e Implementation within Xilinx design environment

This tutorial uses a simple design to illustrate the basics of the System Generator.

This tutorial walks you step-by-step through the design flow to illustrate the basics of
System Generator. The primary goal is to provide enough information that you can
quickly begin using System Generator on your own. A secondary goal is to give you
an overview of the capabilities of the Xilinx tools.

The design example consists of a simple digital integrator, implemented using
elements of the Xilinx Blockset, with test bench consisting of other Simulink blocks.
As can be seen in the figure below, the input to the integrator is a scaled sinusoid,
modified by additive noise and a linear ramp.

The integrator acts as a simple low-pass filter, which smooths the additive noise. The
modulated input signal is further scaled for viewing in the Signal scope block, which
also shows the integrator output, and the quantization error at the integrator output.

Xilinx Development System

Software Overview

The example design, as seen in Simulink, is shown below.
=] inteqrate _[O]
File Edit “iew Simulation Format Tools

Dsd8 seR|xz|r « B

ﬂ'\;"] b fpt z1 L mla
atb—je a
Sine Wfawe i Delay’zjbb 4(ab)
b oo
AddA
JM T fot £ Results
fult
Random Noize Delayi
MNumber
dbl fpt =1
L 4 Zilinx System Feneratar
Ramp Soale Celay i Baszic Integrator Example
- For More Information
System Double-Click Here
Generator
Fieady [100 | | |odedh 4

Figure 3-1 Example Design as seen in Simulink

Simulink Design Flow

Opening the Design Example

The default directory location of the example designs is:
$MATLAB\toolbox\xilinx\sysgen\examples

tutorial is in the directory: integrate
1.

. The design example for this

To bring up the tutorial design, start MATLAB by double-clicking on
the desktop MATLAB icon (as shown on the right), or by launching $
it from the Start menu on your PC. [

bATLAR

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

The MATLAB console window will open.

) MATLAB =l 3
File Edit Yiew “Web Window Help
[= | 5 B < o | ﬁ | 7 |Current Director\,-':ID:lmatlabR12_1'ctoleoxlxilinxisysgemexamples j J

Launch Pad Command Window

To get started, select "MATLAR Help™ from the Help mernu.
#\ Commmications Toolbox g . P P

#\control System Toolbox e
{tFilter Design Toolbox j

|| Launchpag [workspace]

Current Directory

{D:imatlankiz_1ytoolbo ¥ | J| £ | i

All files IFile Type ILaS'
[Jblack_box Folder 19-0~4
[Jcostas_loop Folder 19-0
] denos Folder lQ—[v
-
4 | r | Command Histary Current Directary r 1 L

Figure 3-2 The MATLAB Command Window
2. Now you need to launch Simulink. This can be done in two ways:

¢+ Typesimulink at the MATLAB console prompt, or

¢ Click the Simulink Library Browser

button on the MATLAB toolbar |EJ\| ?
g,
3. From the Simulink Library Browser, you can of {Simulink Librat_w_,:E_lrowserL

browse to the example design from the Open
File button. You also can launch the design directly.

¢+ Open the design from the MATLAB console by navigating to it. For example,
if you have installed the tools to the default location:

¢+ >> cd C:\MATLAB\toolbox\xilinx\sysgen\examples\integrate
>> |s (this will show you the contents of the design directory)
>> integrate (this will launch the integrate.mdl file)

¢ You can also browse to the design from the File>Open menu IR AR

choice, or from the Open File button on the MATLAB
console D& 4%
' L
\

18 Xilinx Development System

Software Overview

The Simulink Library Browser

The Simulink Library Browser is shown below. Depending on which Simulink
blocksets you have installed, your library may contain different blocksets than those
shown here.

File Edit Wiew Help

0O) =& A Find |
& T Simulink - -
w- B Communications Block i‘ System Generator
= W Control System Toolbo| [g Addressable Shif
- W DSP Blockset >t Register
w8 Fixed-Point Blockset
m- B Neural Network Blocks . Black Box
w- W8 S-function demos _
w- B Simulink Extras : watl Concat
= Wl Xilirx Blockset
----- | Basic Elements
-----] Communication] Constant
..... y D=SFE
.....] Math cast| Convert
----- # Matlab 10
----- 3 Memary outl Counter
-----] State Machine

z7 Delay

Figure 3-3 The Simulink Library Browser

The Simulink Library Browser contains the blocks necessary for you to create a
Simulink subsystem.

In the figure above, note that the Xilinx Blockset Basic Elements library is selected. The
blocks available in the Basic Elements library are therefore viewable in the pane on the
right side.

4. You can expand the different categories of blocksets and see which individual
elements are available, both in the Xilinx Blockset and in the other Simulink
blocksets.

You will also be interested in the Simulink>Sources blocks, which contain sources
you can use in your simulation models. The integrator example design uses the
Sine Wave , Random Number , and Rampblocks from this library.

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

5. A description of each Simulink block is available by right-clicking on the library
element and selecting Help from the resulting menu.

= Simulink _
& Continuous D|5p|ay

----- # Discrete =

----- % Functions & Tahles Floating Scope

..... e

_____ g hNdjminear Add to 'macl 2x8"

..... y Signals & Systems Help for the 'Floating Scope' block
= # Sinks Go up a lewel k

.2 Sources

i Block Parameters
B Subsystems

ﬂﬁl Communications Blockset

------ B Control System Toolbox

- W D3P Blockset Terminator

sToP| Stop Simulation

Figure 3-4 Selecting Help for any Simulink block

The Simulink Model Window
6. When you open the integrator example design, it will come up in the Simulink

model window.
E! integrate I [l B3

File Edit Wiew Simulation Format Tools

EECEEITIEEDE

wot ipt dhl
ﬂU] bl fpt|—y L o SigBut
atb—{a S
Sine Wave WWave Delay2 b -
4(ab) P 3 1
2ddd b atb—e{d = g
,IM dbl fpt =1 —b Results
hiult Add2 Regist
i eqgister
Fandom Noise Lrelayl
Number
/ dbl fpt =1
' Zilinz System Generatar
Ramp el Delay i Basic Integrater Example
bt For Mare Information
System Double-Click Here
Genergtor
Fieady [100: | |odeds 5

Figure 3-5 Integrator Example Design

You can drag or copy blocks into the Simulink model window from the Library
Browser. You can wire them together as you would in a block editor.

The design example consists of a simple digital integrator, implemented using
elements of the Xilinx Blockset, with test bench consisting of other Simulink blocks.
The input to the integrator is a scaled sinusoid, modified by additive noise and a
linear ramp.

20 Xilinx Development System

Software Overview

The integrator acts as a simple low-pass filter, which smooths the additive noise. The
modulated input signal is further scaled for viewing in the Signal scope block, which
also shows the integrator output, and the quantization error at the integrator output.

The design uses input and output blocks from Simulink, with the remaining blocks all
from the Xilinx Blockset. Each Xilinx block can be recognized by its Xilinx shadow X
pattern. The Xilinx blocks can be translated into VHDL, targeting FPGA hardware.

Customizing the Xilinx Blockset Elements in a Design

7. Like any Simulink block, each Xilinx block can be customized through the Block
Parameters window that opens when you double-click on the block. For
example, click on the Adder “Add2” and view its block parameters dialog box.

=

Black Paramet dd2
—#iline Adder/Subtractor Block [mask] (ink)
Additions/zubtraction operator,

— Parameters
Mode |Addtion ~]
Precizion IU&erDefined j
Data Type ISigned [2's comp] =]
Mumber of Bits
f24
Binary Paint
18
Huantization |Round (urbiased: +/- Inf) ~]

Dverflow IWraI:'

Lelstic 5 aturate

Error

W Use Explicit 5ample Period

Sample Perod [uze -1 to inherit firgt knowe input penod)]
[

[Owerride Computation with Doubles

V' Implement with ¥l Smart-IP Core [if poszible]

¥ Generate Core

Figure 3-6 Adder block parameters dialog box

In this example, you may set Full or User Defined precision. User Defined
precision expands the window to include all the precision options shown here.

8. Double-click on some of the other Xilinx blocks on the Simulink model. View the
options available in their block parameters boxes.

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

22

9. Each block’s parameters can be viewed by putting the pointer over the top of the
block. A pop-up window shows what parameters have been set. For example, for
the adder block just shown, the pop-up window is shown:

= SigOut
»la ain
at+hb ' 2
b rabl ' 2E
o E < ath pld =1 g B ot dbl|—
b
htult - IntOut
fde Register
wiline Adder/Subtractor Block [mask][link]: “Add2"
mode=tddition It
pf 1 precizion=Uzer Defined -

anth_type=Signed [2's comp)

Delay n_bits=24
xili| bin_pt=13
Pas{ quantization=Round [unbiazed: +/- 1nf]
A averflow=\wrap

System F Iater)qy=ﬂ]

B e:-:pllu:lt_pennd=nn
period=1
dbl_ovrd=off

Use_Ccore=on

|ﬁ gen_core=on |

Figure 3-7 Viewing a Block’s Parameters

10. The Simulink model window has several options available under its Format
menu. For example, choosing the Port Data Types menu item will display the
precision of each element’s ports on the design sheet.

el Tools

4y B | Sample Time Colors
Wide Yectar Lines
“Wectar Line Widths
Fort Data Types

Figure 3-8 Format Menu Options

Gateway Blocks and Precision

The fundamental scalar data type used in Simulink is double precision floating point,
which won’t be translated into FPGA hardware. To bring part of the Simulink model
into the FPGA world, signals pass through Gateway blocks that convert double
precision floating point into a Xilinx fixed-point.

11. Note the port precision for the Wave Gateway block in the design.

™ double | 4y ot | Fix1 1.8

Sine Wave e

Figure 3-9 Input/Output Precision on Gateway Block

The Fix_11 9 indicates this bus is a signed fixed-point number of 11 bits with binary
point 9 bits from the right.

The Xilinx fixed-point type supports quantization (truncation or rounding to positive
or negative infinity) and overflow (saturation or wrapping).

In the integrate example, the Gateway-In blocks control the initial precision. The
first adder and multiplier produce full precision outputs. The integrator’s output

Xilinx Development System

Software Overview

precision allows only five signed bits, with saturation on overflow. The register
inherits its precision from the block that drives it.

Simulation
The design also has three output scopes in the Results box. Results opens in its
own window.
Output scopes can be dragged into your 4 Results To=]
Simulink model from the =
Simulink>Sinks section of the Iﬁﬂ&l ﬂl ;l @
Simulink Library Browser. " Signal into Integrator
[E1simulink Library Browser M= =
File Edit Yiew Help
0 = & Find |||
| Scope: simulink3/Sinks/Scope
=Tl Sirnulink)
-3 Continuous Dlsplay
-2 Discrete _
- 2 Functions & Tahles E Floating Scope
-2 Math Inteqrated Sigral
2] Nanlinear Outl
. Signals & Systems
.] [Binks E Scope
3| Sources N

12. To simulate the design and view the
results in the scopes, click on the
Start/Pause Simulation button in the
Simulink model window toolbar.

AEEE
Start/Pause Simulatiu:un|

13. To scale the waveforms for easier
viewing in each scope block, click on
the Autoscale button in the scope
block’s toolbar:

-':'k E__'-‘— | :-. - 100 200 200 400

The Signal scope shows the sine wave

plus random noise, multiplied by a ramp

signal. The Integrated Signal shows

the signal after having run through the

low-pass filter. The third scope shows the quantization error. (Every Xilinx signal has
an associated double-precision floating point value that can be observed via the
guantization error block, in the MATLAB IO section of the Xilinx Blockset.)

Huantization Error

Figure 3-10 Output Scopes

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

14. The design is set up to simulate from time 0 to 400. To simulate for a longer time,
change the parameters in the Simulation ~ menu pulldown in the Simulink
model window.

#|Simulation Parameters: integrate M= B3

Solver

Warkspace I,-"Ol Diagnu:usticsl

Sirmulation time

Start time: I 0.0 Stop tim&l 1DDEI|

Solver options

Figure 3-11 Changing Simulation Parameters

15. You can also change the scope display properties by clicking on the Properties
button in the scope window toolbox.

roperies
#|'Results’ properties [()]
General | Diata, histuryl Tig: try right clicking on axes
Ax

5
Mumber of axes: |3 I floating scope

Time range: I 1200

Tick labels: Ibuttcnm axis anly j

Sampling
Decimation j I 1

Ok | Cancell Help | Apply

Figure 3-12 Displaying Properties

Simulation past time 400 shows increased quantization error as the integrated signal
begins to overflow. (Remember to click on the Autoscale button to scale signals.)

Figure 3-13 Quantization Error

You can see a 90-degree phase shift (the integral of a sine is a cosine) as the additive
noise has been filtered out. The design is initially configured so the accumulator’s
adder will “wrap” on overflow.

24 Xilinx Development System

Software Overview

16. Change the accumulator’s adder to “saturate” and run the simulation again.
Observe the difference in the overflow integrated signal and in the quantization
error. (To change to “saturate” on overflow, double-click on the Add2 block,
change the Overflow pulldown, and Apply the change.)

17. Experiment with changing the precision and overflow on other blocks. Try to
predict the simulation outputs.

System Generator block

After you have finished modeling the system, you are ready to generate
VHDL and cores for a Xilinx FPGA. We do this with the System Generator x

token from the Xilinx blockset.

If your design has hierarchy, drag the System Generator block to the System
highest level for which you want to generate hardware files. (For Sanerster
examples of designs with hierarchy, see the demonstration designs in the examples/
demos directory.)

18. To generate VHDL and cores, double-click on the System Generator icon. This
opens its parameters dialog box..

<} System Generator :untitled [_ =] =]

[Hilinx System Generator

Xilinx Product Family Ivmex 'l
Target Directary I D:/matlabR12 ftoolbox/xiline Elmwse,,_l

Swstern Clock Period 100 ns

¥ Create Testbench
[~ Create Global Clack Enable Port

" Create Glohal Clear Part

[Simulink.

Owverride with Doubles INthere in SubSysterm j

#ilinx CORE Generator
|7Generate Cores IEverywhere Ausailable j

Generatel Ok | Apply | Cancell Help |

Figure 3-14 System Generator block parameters dialog box

Here you can choose
¢+ FPGA target device family
+ target directory in which all generated files will be written
+ whether to generate testbench vectors

+ where to use double-precision values in lieu of fixed point (this option applies
only to simulation of the model within Simulink)

+ whether to generate cores with the Xilinx CORE Generator (for your final
implementation, you will want to invoke the CORE Generator; however,

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

when debugging, you may not want to spend the time needed by the CORE
Generator)

¢ you can also specify a system clock period and global CLK or global CLR for
constraining your design

The Apply button will save your selections and leave the window visible. The OK
button will save your selections and close the window. Invoking the Generate
button generates your VHDL and cores.

Files Produced by System Generator Code Generation

19. From the System Generator block parameters dialog, choose a target directory,
choose the Virtex device, make sure the Create Testbench box is checked, and
click the Generate button. You will see taskbars showing the System Generator,
then the Xilinx CORE Generator running.

20. Now (in Windows Explorer or another file browser) view the files that have been
written to your target directory. You will see the following files (among others):

+ integrate.vhd - the top level VHDL file for your project. There are
additional VHDL files included when your design has more hierarchy.

+ integrate_xImult_corel - files associated with the generated multiplier
core, such as the behavioral simulation models and EDIF file.

¢+ corework - subdirectory containing the CORE Generator log file.

+ integrate.npl - project file for opening the design in Xilinx ISE 4.1i Project
Navigator, using the XST synthesis compiler and ModelSim simulator.

+ integrate_testbench.vhd - the top level VHDL testbench file, associated
with the top level VHDL source file in the project.

¢+ integrate_<gateways>.dat - stimulus files for inputs to testbenches, or
predicted outputs of testbenches. The .dat files are generated by Simulink
simulation and saved for running in Xilinx testbenches to verify design
behavior. In this example, <gateways> refers to the names of the Xilinx
gateway blocks, which collect and save the data.

+ integrate_synplicity.prj - a project file for running this design in
Synplify (synthesis tools from Synplicity).

¢+ integrate_leon.tcl - a project file for running this design in Leonardo
Spectrum (synthesis tools from Exemplar).

For a complete description of all of the files produced during code generation,
please see Chapter 4 of the System Generator Reference Guide.

Testbench Generation

26

Testbench files were generated if you chose Create Testbench on the System
Generator parameters dialog.

The testbench VHDL file, integrate_testbench.vhd , Is a wrapper for your top
level. The System Generator also generates .dat files. These contain test vectors
representing inputs and expected outputs, as generated and observed in the Simulink
simulation.

21. View the integrate_testbench.vhd file, and you will see references to the
.dat files.

Xilinx Development System

Software Overview

Implementation within the Xilinx Design Environment

After code generation, you are ready to simulate your design in a behavioral
simulator, then synthesize it using any of the synthesis compilers that support Xilinx
devices. In this tutorial, we will use MXE (Modelsim Xilinx Edition) simulation and
XST (Xilinx Synthesis Technology) synthesis through the Xilinx Foundation ISE 4.1i
Project Navigator tool.

The System Generator has created a basic Foundation ISE project file for you. By
opening this project file, you can import your System Generator design into the ISE
Project Navigator, and from there, you can continue to work on the design in the
Xilinx 4.1i software tools environment.

22. Double-click on the integrate.npl file that was created. The ISE Project
Navigator environment will open and will read in your System Generator project.

When first opening your System Generator project, you will receive a warning
indicating that you have not set up a device package. This is because System
Generator did not require that you enter a device package before generating VHDL.

23. You may nhow configure the rest of your Xilinx design by opening the Project
Navigator properties dialog. Right-click on the device and default package at the
top of the module view, and select Properties

Xilinx - Project Navigator - D:\matlabR12_1\toolboxixilinx\sysgH
File Edit Miew Project Source Process Macro Window Help

sl-2 =0 MENE AR ENERE Sl TN A0

:’fll Sources in Project:
o B integrate
SRHE - C.50-6hg? YHD
~[F] DAmatlabR12_Tytoal Dew Source..
[P const_pkg.vhd Add Source.. Insert
- integrate fintegratesh Add Copy of Source... Shift+lnsert
@ integrate_testhend Eemowe Helete

E@ integrate_xladdsu
EI@ integrate_xad: fil et L.
C [synth_reg ol
) s17e
=¥ synth_reg (D:r
M sMi7e (DA Togole Paths
E@ synth_wvalid_pi| Froperties.

E@ synth_reg_m SR

(8=l
ElEse

Figure 3-15 Opening Project Navigator properties on your design

From within the Properties dialog, you can choose other device families, speed
grades, packages, and VHDL compilers. For now, we will use the defaults that have
been set up already.

Behavioral Simulation

The System Generator project is already set up to run your behavioral simulation with
the ModelSim simulator from the Project Navigator. It will use a custom “do” file
called pn_behavioral.do. This file was produced by System Generator and has been
associated with your behavioral simulation for this project in the ISE Project
Navigator.

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

24. Select the integrate_testbench.vhd
module view. When you select the testbench, you will see that the processes
window changed to show available simulation processes. Double-click on
Simulate Behavioral VHDL Model

file in the Project Navigator sources

Xilinx - Project Navigator - D:\matlabR12_1\toolbox\xilinx\sysgeniexamples\integrate_outiintegrate.npl

E

x
(]

28

il Edit “iew Project Source Process Macro Window Help
(=W EEEREemE e ||¥ e cl]
Sources in Project: |;| fll

EIEE xowBl-Bbg256-X5T WHDL
B DihmatlabR12_1vtoolboxhxilined sysg
EI const_phkg.whd
E| [¥) integrate fintegrate vhd)
29 int= grate_testbench vwhd
=¥ integrate_xdaddsub {inteqrate_x

i
avioral WYHDL Model
Sir{}glate Fost-Translate “YHOL Model
Simulate Post-hMap vHDOL Model

Simulate Post-Place & Foute WHDL Model

Figure 3-16 Simulation processes associated with integrate_testbench.vhd

25. The ModelSim console will open, and the pn_behavioral.do

file (created by

System Generator) will run. It will compile and run the same System Generator
simulation that you ran in Simulink. To examine the results graphically, you will
look at the ModelSim debug windows. (You may view all of the debug windows
by choosing View All from the console pulldown menu. Further instruction on
the ModelSim environment can be found in the Xilinx Foundation ISE 4.1i
documentation.) After verifying your behavioral simulation, you may close

ModelSim.

Implementing your design

You have many options within Project Navigator for working on your project. You
can open any of the Xilinx software tools such as the Floorplanner, Constraints Editor,
report viewers, etc. To implement your design, you can simply instruct Project
Navigator to run your design all the way from synthesis to bitstream.

Xilinx Development System

Software Overview

26. Inthe S
you wil

ources window, select the top-level VHDL module in your design. Now
I notice that the Process window shows you all available processes that

can be run on the top-level VHDL module.

B ilinx - Project Navigator - D:\matlabR12_1\toolbox\xilinx\sysgeniexamples\integrate_out\integrg
Eile Edit “iew Project Source Process Macro Window Help

ZHd HFERRRE e || mas e m]
ﬂ Sources in Project: |;| ﬂ Processes for Current Source:
E integrate & Design Entry Utilities
E-£d xovB0-6bg256-<ST WHDL H-§F User Constraints
----- ¥l DymatlabR12_1 \toolboxxline sysg -3 Create Schematic Symbol
""" [F1 const_pkg.vhd -~ Launch ModelSim Simulator
= @ integrate (integr: o] Yiew WHDOL Instantiation Template
"""] integrate_testhenchvhd =43 Synthesize
EI @ integrate_xladdsub (integrate_x| B Wiew Synthesis Repart
B @ integrate_xladdsubl_synth_au -3 Analyze Hierarchy
= @ synth_reg (D:ymatiabR12_ -3 Check Syntax
=¥ a7 (D:AmatlabR12_ EIG Implement Design
B[4 synth_reg (D:AmatlabR12_14t H-¥3 Translate
=4 sl 7e (DyvmatiabR12_14c -0 MMap
- syrth_valid_pipe (D:\matiabF 73 Place & Route
E@ synth_reg_w_init (O:\matla [SES Generate Programming File
[single_reg_w_init (D4 i Programmmg Flle Genatlon Feport
— TR . o e . - —_——
Figure 3-17 Processes available to run on top-level integrate.vhd
27. In the Process window, right-click on Generate Programming File and select
Run. You are instructing Project Navigator to run through whatever processes are

necessary to produce a programming file (FPGA bitstream) from the selected
VHDL source. In the messages console window, you will see that Project
Navigator is synthesizing, translating, mapping, routing, and generating a
bitstream for your design.

Now that you have generated a bitstream for your design, you have access to all the
files that were produced on the way to bitstream creation.

28. For example, if you wish to see how your design was placed on the Xilinx FPGA,
select the FloorPlanner view underneath the Place & Route option in the Process
window. The Floorplanner window will open, showing your implemented
design. .

ERe)

Figure 3-18

Flace & Route

- Flace & Route Report

Asynchronous Delay Report
Pad Report
Generate Post Place & Pu:nute Statlc Tlmmg

G
5
0y

G

G

G

VIEW;"EdIt Pu:nuted Desngn (FPGA -k-]
Analyze Power (<FPower)

Generate Post-Flace & Route Simulation hMoc
Generate IBIS Model

kulti Fass Flace & Route

Back-annotate Pin Locations

Generate Programming File

Frogramming File Generation Report
Generate PROM File

T eafimee Do sime GhAD A T T ' '_

Click to run Floorplanner view on implemented design

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Chapter 4

Black Boxes

This chapter tells how to use black boxes in System Generator. Sometimes a design
must include subsystems that cannot be realized with Xilinx blocks. For example, the
design might require a FIR filter whose capabilities differ from those in the filter
supplied in the Xilinx Blockset. Black boxes provide a way to include such subsystems
in designs otherwise built from Xilinx blocks. To add a black box to a design, do the
following:

e Implement the subsystem (your black box) in Simulink. The subsystem can
contain any combination of Xilinx and non-Xilinx blocks.

» Place the Xilinx Black Box token at the top level sheet of the subsystem. This
indicates to System Generator that the user will provide the VHDL or Verilog
HDL necessary to implement that subsystem.

« Double-click on the token to open the Black Box block parameters dialog box.
Enter the information that describes the black box.

e You must manually enter your VHDL or Verilog HDL black box files into your
downstream software tools project after you run the System Generator code-
generation step.

A Black Box Example Model

30

The directory: /xilinx/sysgen/examples/black_box , ordinarily stored in
$MATLAB/toolbox , contains an example showing how to use black boxes.

1. For this example to run correctly, you must change your directory (cd within the
MATLAB console window) to this directory before launching the example model.

The files contained in this directory are:

e black _box.mdl - the Simulink model with an example black box
e bit_reverse.m - a MATLAB function for reversing bit order
e it _reverse.vhd - VHDL code for reversing bit order. This file is the actual

black box that must be passed to the Xilinx implementation tools. It imitates the
behavior of the MATLAB function.

2. Open the design example by typing black _box

The example project displays three windows:

e The top-level model (a model with black box instantiated in it),
e The black box (a new Simulink model), and

e The output simulation scopes.

Xilinx Development System

Black Boxes

3.

Run the simulation from the top-level model, and you can see the bits reverse in

the output scope. This simulation is running the MATLAB function

bit_reverse.
7 Scope

[0 21| Bl | &

Input

Figure 4-1 “Bit-Reverse” Black Box Simulation

The Black Box Window

The Xilinx Black Box token identifies the top level of your black box.

4.

Double-clicking on this token brings up a window that allows you to .
configure the black box. Black Bax

Open the file bit_reverse.vhd in an editor and view the code. You

will see the name of the component (bit_reverse) is the same name that you
assigned in the Black Box configuration window. The user-defined generic
(n_bits) is defined there as well. The others are default generics that correspond
to the ports (DIN and BRN) on the black box. You must make sure the VHDL code
you write has component and generic names matching those entered in the
configuration window.

Notice the

main : process (DIN)

section near the bottom of the VHDL file. This is where the actual bit-reversing
functionality takes place.

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Chapter 5

Multiplier Accumulator

This tutorial shows how to create a multiplier/accumulator and use it as a block
within a FIR filter created out of Xilinx blocks.

You will start with an incomplete Simulink model and complete it by finishing one of
the model sheets.

Incomplete Design

32

1. Open the incomplete model mac_fir_tutorial. You will find this model in the
$MATLAB\toolbox\xilinx\examples\mac_fir directory. Four sheets will
open, plus a scope window.

File Edit “iew Simulation Format Tools

[osaa|yEa= = = &

[1zz00] dauble | 4 tap Fix_26_0 1ot dbl double
FIR

Signal From Din Dout
Miotesp ace FIR I:I

v s

UFix_16_0 doubl Seope
& Oin Dout [o=t plipt gy 22422
Systemn Crout kiAC

MAC Bazed FIR

Genergtor

Figure 5-1 MAC FIR Tutorial Screen

The inputs to the model are defined in the Simulink Signal From Workspace
(from the DSP Sources Blockset).

You will see there are two FIR filters in this model. The first is a single Xilinx block that
uses the Xilinx FIR core. The second is MAC-based FIR assembled from several Xilinx
blocks, and is incomplete.

2. When you open the model, you will also see that a set of coefficients has been set
(in the MATLAB console window). In MATLAB M-Code, you can convolve the
input signal (shown on the Simulink sheet as the input to the model) with these
coefficients.

3. Inthe MATLAB console window, type:
conv([1 2 3],coef)
and note the results. Note that coef(4)=0 , so you could really create this design

Xilinx Development System

Multiplier Accumulator

with a 3-tap FIR filter, but the MAC FIR design we are using assumes the number
of taps is a power of 2. This simplifies the addressing of memories.

) MATLAB Command Window

Eile Edit “iew MWindow Help
D i28 < | @885 = 2

3 5 7 a
conv{[1 2 3],coef}

ans =

Figure 5-2 MATLAB Command Window

4. Atthe top-level sheet, simulate the design (click on the “Start/Pause Simulation
button in the Simulink toolbar).

Note: The result of the Xilinx FIR (on the scope) matches the answer in the MATLAB
console.

The results appear after several cycles (period 4) because the Xilinx FIR contains a
pipeline. Since the MAC-based FIR is incomplete, its results are meaningless. Your
goal is to complete the MAC-based FIR so that its simulation results match those of
the Xilinx FIR.

#|Scope _ O] x|

Lle[o hiE -] &

FIR

Figure 5-3 Xilinx FIR on Scope

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Push into the “MAC Based FIR ” block. The subsequent sheet contains two
additional blocks to push into. Push into “MAC.” This is the block you must
complete.

Elmac_fir_tutorial/MAC Based FIR/MAC [O] =]
File Edit “iew Simulation Format Tools
O] & == e =
Replace the register with a MAC A
E .
-2 UFix_16_0
result
o d
UFix_16_0
q
o7t
Register
(5 UFix_1_0
ret =

Figure 5-4 Incomplete Block

Complete the Multiplier/Accumulator

34

5.

Replace the register (a temporary place-holder in the MAC block) with a
multiplier/accumulator (MAC). Requirements for the MAC are:

+ Two inputs (plus reset)
¢+ One output
¢+ Multiply the two inputs and put the result in an accumulator

+ Build the MAC such that there is zero latency between the inputs and the
output

Begin work on the MAC before you read the hints below. Don’t read the hints
before you have worked on the MAC!

Hints:

¢+ The MAC has three blocks (a multiplier, an adder, and a register).
¢ Use the Xilinx multiplier with latency of 0.

¢ Build the accumulator out of an adder and a register.

+ The output of the multiplier feeds one input of the adder.

+ For the accumulator, the output of the adder returns into the register and then

back into the second input of the adder.

+ Because of the adder’s feedback loop, you will get the error: “input port data

type mismatch” if you use the adder’s default of Full Precision. The loop of

causes the Full Precision setting to create mismatched port types. To get past

this error, in the adder’s configuration GUI you must select “User-Defined”
precision and set the adder’s output precision to the same precision as the
feedback loop input precision.

Xilinx Development System

Multiplier Accumulator

+ You may see the error: “sample periods at one or more inputs can’t be
determined.” Blocks in feedback loops need explicit sample periods. In the
adder’s configuration GUI, check the checkbox: “Use Explicit Sample Period”
and choose -1. This choice of -1 is a convention specific to Xilinx blocks. It
dictates that the block will inherit its first known input sample period. In this
case, the adder will inherit its period from the multiplier. You could also set
the period explicitly to 1, since that is in fact the cycle period at which this
particular MAC is to be run.

The answer (the complete project) is available in the same directory where you
found the tutorial, if you want to compare your answer. You will find the answer
in $MATLAB\toolbox\xilinx\examples\mac_finmac_fir_answer.

More Fun With the MAC

(Optional Section)

8.

If you need another challenge, set up the MAC so that the multiplier can be
pipelined in hardware. Just checking the check-box in the GUI is the easy part, but
you will then find that you need to add latency to the multiplier. This is a bit
tricky, as you have to adjust delays elsewhere to synch up.

+ Hint #1: You need to add delay to the reset signal before it is delivered to the
accumulator, and you also need to adjust the delay before the down sampler
at the MAC output. This latter delay element is used to synch the final sum
from the accumulator to the sample frame grabbed by the down sampler.

+ Hint #2: You need to add latency (a delay line) between the MAC and the
down sampler to compensate for the pipeline latency and still have the down
sampler read the correct data frame.

The two scopes that plot the comparison of the MAC-based FIR and the Xilinx FIR
may show the correct answer but not at the same time period.Why is that? How
can you figure this out by looking at the design?

(Answer: the two implementations have different latencies. They can be balanced
by adding a delay line to the output of the MAC FIR. To view the latencies, you
can look at the configuration GUIs for both the Xilinx FIR and the components of
the MAC FIR.)

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Chapter 6

The Costas Loop

This chapter introduces the Costas Loop, an example provided with the Xilinx System
Generator. There is a version of the model in the sysgen/examples/demos
directory under SMATLAB/toolbox/xilinx

Note: The Communications Toolbox (includes the Communications Blockset for
Simulink), required to run the example, is used within the Costas Loop.

Design Overview

The Costas loop is a portion of the communication system described below.

Modulator/Demodulator for
QAM/QPSK

i CLOCK T I
Am—

A—
i DIGITAL —, DIGITAL _.>< T
~mw | LOWPASS LOWPASS o
: nterpolate | == DAC T
5P *warpiNG Ly +
DIGITAL __ ‘DieTAL - —
““LOWPASS LOWPASS

Shape & Upsample % 0
INVANR T

A SRR o, S—
DIGITAL —y DIGTAL —p TG
T LOWPASS LOWPASS PLL

A Decimate DETECT

— iy A A
IF SIEE —. DIGITAL —~ DIGITAL — —p5 —
>< LOWPASS LOWPASS
, /"‘.\ I Ay Matched Filter
Nl LS ppos < CARRIER PLL

Costos Loop

Figure 6-1 Example of a Communication System Showing a Transmitter/Receiver

This system works as follows. A signal is presented to the transmitter, mapped into
symbols, fed through to a match filter and a polyphase interpolator in preparation for
up conversion to a digital IF. The values are then converted to analog form and sent
along the channel. When they get to the receiver, the samples are brought to baseband
by complex heterodyne, fed through a match filter and a polyphase decimator to
adjust the sample rate to the channel bandwidth. Finally, the values are presented to
the detector where the symbol decisions are made.

The communication system must run a carrier phase lock loop (PLL) in order to
generate a version of the local oscillator that is matched in both frequency and phase
to the oscillator employed in the transmitter. Typically, a PLL is implemented as a
Costas loop. Although both the transmitter and receiver can be implemented in a
Xilinx FPGA, for the purpose of this tutorial, we will focus only on the Costas loop.

36 Xilinx Development System

The Costas Loop

The Costas Loop design in System Generator

1. Open the Costas Loop model from the MATLAB console window. First, cd into the
directory
$MATLAB\toolbox\xilinx\sysgen\examples\demos

2. Type sysgenCostasLoop , which is the name of the Simulink model.

Format Tools

S om

Sample-time
eyve-diagram scatter

P
L

Complexto
Feal-lmag1

Interpolation Filtar Out

| S

Jﬂe(u)
“ymewy

Complex to
Real-lmag3

P
L

Donnsampler COMplexto Filter Qut
Real-lmag to Real-lmag
Comple:

Real-Imag to
Complex

Product

Cosine

Sample communication exampla:
Sine Real-lmag to Carrier recoveny using an extended Costas Loop.
Complexi

Figure 6-2 Top Level Sheet of Costas Loop

The system shown in the model is the simple transmitter and a Doppler shift to verify
the operation of the Costas Loop.

In practice, the Doppler shift is associated with movement between the transmit and
receive platforms, as might be the case with a cellular handset being used in a moving
car.

The top left section of this model generates a QPSK modulation stream. The bottom
left section is the introduction of channel impairment, i.e., Doppler shift.

Exploring the design

3. Explore the hierarchy of the model. In this model, the top level is composed of
Simulink blocks, with Xilinx blocks making up the second level in the subsystem
named Costas_Loop.

4. Simulation outputs scopes results in five output windows. Can you explain the
results and how they were obtained through the Xilinx Blockset elements as well as
the Simulink blocks in the design?

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

« Sample-time eye-diagram scatter | _{Of= |

Modulated Input

!
#Fiter 0wt =R
. XY Plot
; 15 1 / \
e - 1 P
R 15
WM e
05 .
0
15
i
1 \
i
15
e 95 4 05 0 05 1 14
15 1 05 0 05 1 15
W i J

Figure 6-3 Output Scope Windows

Note: The default simulation time is 500. To increase the simulation time to 3000,
which is required to see the output plots shown above, change “stop time” to 3000 in
the Simulation Parameters dialog. This dialog is opened from the Simulation
menu on your Simulink window.

Simulation results
Output scopes show the following:
* Constellation from the QPSK modulation stream

» Rotational nature of the constellation diagram, indicating that there is some
frequency offset introduced

» Rotated data after presentation to our simple receiver

38 Xilinx Development System

Filter

Chapter 7

Filter

This tutorial demonstrates the effects of applying a filter to a random signal. It also
shows how to set up your Simulink model and coefficients by using some MATLAB
console commands.

The model for this tutorial can be found in the sysgen/examples/filter
directory under your $SMATLAB/toolbox/xilinx directory.

SPTool Utility

This tutorial utilizes the SPTool interactive GUI. SPTool is available only with
MATLAB’s Signal Processing Toolbox, a collection of tools built on the MATLAB
numeric computing environment.

Design Overview

The design is a complex random source that is filtered and run into a 16-point FFT
used as a spectral analyzer, where the different frequency components can be
observed. The unfiltered signal is also run into another FFT so the outputs can be
compared.

S filtft =] B

File Edit %iew Simulation Format Tools

D=da|s=2a]s 2 = &

- 1F1;;p - cast el Mt e ipt dbl -
i i T T
Convert ®n_i H_i e fpt dhbl | |:|
Rand Complexto FIR
an9em peakimag —elreset done pelipt - dbl -
Source
N rid pe{fpt o dbl -
it 1 HE p| cast T [Filtered Scope
FIR
Convert1
FIRA
{01 Hhr I fpt dbl e
o {uen_i Hh_i pltpt dbl > D
o reset done o fpt dhbl -
System
Generator k=U| P in rid o TPt dbl I
Constant FFT1 Faw Scope

Figure 7-1 Filter ‘filtfft’

5. Open the Filter model from the MATLAB console window. First, “cd” into the
directory $MATLAB\toolbox\xilinx\sysgen\examples\filter

6. Type filtfft , the name of the Simulink model.

You can see that the design consists of a complex random signal source that is fed into
two identical FIR filters, the outputs of which are used as inputs to a 16-point FFT

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

40

(spectral analyzer). The FFT outputs are fed to a scope so you can see the frequency
components of the filtered signal.

Observe that in the beginning the filters are 1-tap. In this tutorial, you will make the
filters more interesting.

7. Simulate the model in Simulink. You will notice a Simulink error, saying that the

DA FIR filter core cannot accommodate a 1-tap filter. You will fix this error by
building better filters.

8. Cancel the error window, and observe in the scopes that the outputs of the filters

have the same frequency characteristics as the unfiltered versions.

FFT imag out

FFT imag out

Figure 7-2 Unfiltered Scope Output

9. Double-click on the FIR filter block in your Simulink model window. This will open

the FIR Filter mask GUI. Observe that the coefficients for this filter are defined by a
vector called h. This vector has been defined in the file filtInit.m . The file was
automatically loaded when you opened the Simulink model.

Preloading init Files

(Optional Information)

Note: This section contains instructions for preloading items (such as variables
defining coefficients) into your Simulink models.

Select the first FIR filter in your model and then type gcb in the MATLAB console.
(gcb means “get the full block path name of the current Simulink block.”)

>>gcb
You will see that “ans = filtfft/FIR ”

L1

You can get a handle to the top-level model by defining a variable as the “parent.
At the MATLAB console prompt, type

>> p=get_param(gch, parent’);
Now type
>> get_param(p,’PreloadFcn’)

and you will see that the M-code file filtInit.m will be loaded whenever the
model is opened. If this has not already been done for this model, you could set
the pre-loaded file by typing

>> set_param(p, PreloadFcn’, filtInit’);

This tells Simulink to load filtInit.m whenever you open this model.

Xilinx Development System

Filter

Using this technique, you can define filter coefficients once (perhaps by using SPTool
as you will do next), and then save them into a file and have them always loaded with
your model.

Using SPTool

Next, you will create a low-pass filter using SPTool.
10. In the MATLAB console, type
>> sptool

The SPTool start-up window will open.

#|5PTool: startup_spt
File Edit Help ‘“Window

Signals Filters Spectra
BB Lz [desiagn
Filp [imported]
FIRbp [design]

mitlkb
chirp [wector]
train [weactor]

chirpse [auta)
trainse [auto]

|| - [~
Rl=1 | i | Wiew |
MNew Design | Create |
Edit Design | Update |
Apply |

Figure 7-3 SPTool Start-up Window

11. In the SPTool start-up window, click on the “New Design” button. This pops up
the Filter Designer with a sample “Equiripple FIR” low-pass filter with a -20dB
stopband and the following settings:

+ Sampling frequency: 8192

+ Passband frequency: Fp = 409.6
¢+ Passband ripple: Rp =3

+ Stopband frequency: Fs = 614.4
+ Stopband ripple: Rs =20

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

42

+ Filter order = 22 (minimum order

| Filter Designer =] E3
File “Window
Filter Z | & || | WM rFanf £o3 5
Iﬁ Z00m Z00m 2000 Z00m Pass ey fubous H
fltt -t | ou-¥ | In¥ | Out | Band Zoom Help
Algarithm Sampling Frequency
™ &uto Design — Overlay Spectum... I
[Equipple FIF = | 8192
Specifications Meazurements
Frequency Response
Iv' Minimum Order
Order 22

Type IInwpass 'I
Pagsband ———— Passband
Fp I A09.6 o Actual Rp 3.937

=

= Weight 1

=
Rp | 3 =

fa7)

L
Stophbard——— [= Stopband
Fs I E14.4 Actual As 17.63

wieight 1.71

F|$|2U

Hewert | Appl |

1 2000 4000
Frequency

Figure 7-4 Filter Designer GUI

This will pop up the Export window.

#|Export from SPTool = (= =]
rExportList ———

: mtlh [vects]
chirp [vec
train [vec
LE3lp [des:

Filter:
Spectrum: mtlbse |
Spectrum: chirpse
Spectrum: trainse

KN [_>ILI
Show:lh

[T Export Filters as TF objects

Exportta Disk. . |

Exportto Warkspace |

Cancel |

Help |

Figure 7-5 SPTool Export Window
13. In the Export window, select Filter:filt1[design]

12. From the SPTool start-up window, choose File->export

from the File menu.

and click the Export to

Workspace button. You have now exported this new filter to the MATLAB console

workspace.

Xilinx Development System

Filter

14. Go back to the MATLAB console and type
>> filtl

Note: The whos command will display all the variables that you currently have in the
workspace. Typing whos at this point will show you the vector h, preloaded by the
model, as well as filtl , which you have just exported.

You can see that filtl is a structure.
filtl =

tf: [1x1 struct]
ssi]

zpk:[]

K|

imp:(]

step:[]

t[]

H:[]

Gl

f:[]

specs:[1x1 struct]
Fs: 8192

type: ‘design’
lineinfo:[]
SPTIdentifier:[1x1 struct]
label: filt1’

Its coefficients can be extracted and bound to the filters in our example model from
the transfer function. (As this is a FIR filter, the denominator is 1.)

15. Transfer the coefficients from filtl to our vector h by typing the following in
the MATLAB console:

>> h=filtl.tf.num;

Nowy, if you list the contents of the vector h (just type the variable name to see its
contents), you will see that h has 23 elements.

16. Return to your Simulink model window, and with your cursor in the window,
type Ctrl-D. This will recompile your Simulink model using the new vector h, and
thus importing 23 coefficients into your filters. Notice that the number of taps in
your FIR filters has changed to 23.

il

Eile Edit “iew Simulaton Format Tools

FNECE R EEI

vt

Randam
Soume

23 tap
FIR

FIR %

23 tap
FIR

cast

¥

¥

Convert

Complexto
Feal-lmag

cast

¥
¥

Convert1

FIR1

Figure 7-6 Changed Filter Window

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

17. Run the simulation again and observe that the filter is now greatly reducing the
high frequency components in the FFT frames.

4|Raw Scope [|O0]

5 22| e < &

FFT real out

I

4 |Filtered Scope

5 20| A=) | &)

FFT real out nag out

FFT imag out

0.5

Figure 7-7 Change in Filtered Scope Output

18. To view the results in more natural datawidths, use the
“Zoom X Axis” and “Zoom Y Axis” buttons on the scopes.
Using the “done” pulse as a width to observe, you can view
the data in sets of 16, which is more natural for FFT data
when N=16.

oy
I_

19. Continue to experiment with SPTool, designing other filters (not only lowpass)
and exporting the coefficients to the workspace, then importing them to your
model.

Help on SPTool
Typing
» help sptool
from the console causes MATLARB to display SPTool instructions.

44 Xilinx Development System

Image Enhancement

Chapter 8

Image Enhancement

This chapter of the tutorial shows you how to use the Xilinx blocks to implement a
simple image processing application. You will work with an image enhancement
algorithm in Simulink and generate an FPGA implementation that can be simulated
in an HDL simulator using test vectors created in Simulink by System Generator.

The tutorial uses the Image Processing Toolbox function imshow() to view images. If
you have not purchased this toolbox from The MathWorks, it is possible to work
through the tutorial, but you will have to view the image files some other way.

The input for this example is a medical image of a human heart. You will apply an
image enhancement algorithm to increase the contrast of the image. After simulating
the design in Simulink, you will generate a VHDL implementation in System
Generator, simulate the VHDL in the ModelSim HDL simulator from Model
Technology, synthesize the design for a Xilinx FPGA using the Synplify synthesis
compiler from Synplicity, and place and route the design using the Xilinx Alliance
Series software tools.

Note that although the Simulink simulation typically runs in several minutes, an HDL
simulation that operates at a much lower level of abstraction (i.e. largely mapped onto
gate-level primitives), may run for more than an hour. This is an indication of why
modeling an FPGA design in System Generator is so powerful. With quick
turnaround times, it is possible to increase dramatically the number of design
iterations while developing the algorithm.

The model for this tutorial can be found in the sysgen/examples/image_enhance
directory under your $SMATLAB/toolbox/xilinx directory.

Design Overview

The image enhancement design consists of a two-dimensional low-pass filter and a
mixer. The filter creates a blurred version of the original image, and the mixer is used
to create a weighted difference between the blurred and original images. In the
resultant image, the high-frequency components of the original have been amplified,
having the effect of enhancing the image.

The two dimensional filter is factored into two one dimensional filters, that are
sequentially applied to vertical and horizontal scan lines of the image in the enh/
Enhance/2D_LowPass/VFIR and enh/Enhance/2D_LowPass/HFIR subsystems.
In both subsystems, filter symmetry is exploited to halve the number of required
multipliers. The mixer subsystem enh/Enhance/Mixer boosts high frequency
components in the image by computing a weighted difference of the original image
and the low-pass filtered image.

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

>]enh = M=l =

File Edt Wiew Simulation Format Tool: Help
D|@E§|%E|9Q|EE®|} IINDlmaI "l
E!enha"Enhance!Hixer > 8] >

File Edit Wiew Simulation Format Toolz Help

arraya dbl fpt In1 Outl — D | E’N H @ | c'ﬁ‘ﬁ E | 9 Q | H [
Signal Frem Catensily -
Miotspace
(\' Enhance r\\
7] enh/Enhance * A =

File Edit Wiew Simulation Format Tools Help

D|@H§|%E|9Q|HE@|» lanrmaI "I

LPF] in1
it Erhanced
In1 aRIG e Outd
20 _LowF as=s Mizer
E!enh.’Enhance!ZD_anPass = =] E3

File Edit “iew Simulation Format Toolz Help

D|ﬁﬂ§|%ﬁ|fﬂﬁ|ﬁt}®|b lanrmaI 'l

Ot 1 [= cast
T it o - cast
Int Convert LFF
In1 Cormvert]
Out2
HFIR
WFIR . cast _p--z
ORIz
Copwert2
Ready [1002 | [[FiredStepDiscrete i

Figure 8-1 Image Enhancement Model in Simulink

Process the Design in Simulink
1. First, cd into the directory

$MATLAB\toolbox\xilinx\sysgen\examples\image_enhance

2. Run a preprocessing script that assigns the image to a MATLAB array, by typing
PreProc_heart
at the MATLAB console prompt. Notice that this script also displays the unfiltered
image of the heart for you to view, see Figure 8-2. The image can be found in the
file Heart.bmp in your project directory.

46 Xilinx Development System

Image Enhancement

> PreProc_heart

o
4 Figure No. 1 =] B3
Eile Edit Tools Window Help

DEeda/ "A 2/ P

Figure 8-2 Unfiltered Image

3. Open the Simulink model by typing enh in the MATLAB command window. The
top-level sheet will open.

4. Explore the hierarchy of the model to see how the design consists of a 2-D filter
and a mixer, and how the 2-D filter has been decomposed into two 1-D filters,

VFIR and HFIR.

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Zlenhs._ 72D_LowPass/HFIR = [_ O] =]

File Edt “iew Simulaton Format Tools Help

D|@E§|.¥nﬁ|9@|at}®|} llNarmaI "'l

[I 3
atb

In1 =i plb o1

Dealay? AddSub athb

b1
Lipe] =71 2 AddSuba
1 a+hb e 001345
B - -
Delay et B Lt 21 z'l a
a+hb—
Delayd AddSubd CMultt b

L] 21 B AddSub1z
1 a+hb 5]
Celayl -z b 1
a
Delayd AddSubz f— i
b1
-1
= a AddSubg i a
a+h |t 00556 a+bim{ 1)
] b o1 A W
Delay2 z z z Cut1

-
L
|
Ll
DelayiD AddSub3 T AddSub14
L] =1 P 2
1 a+h a2 00335
= | . - -
Delay3 Ll b 21 z1 4
+b —
Celayld RddSubsy Chiultd b Z-l?l
I »ls AddEubi0
ath el 0,110
ozt plt -1 -1 gab
[relayd =z == §|1+h—
Delay12 AddEUbS >t =
AddSub1z
z'1 o]
athb e
=1 b -1
Crelayd L~ =z 4
+ b —
Delayla AddSubs CMults A Z_.: b
=1 4 AddSuba
ath P 0057
b1 5
Delayd
AddSub? Chult?
Ready [100 [[|FiredStepDiscrete s

Figure 8-3 Low-Level HFIR Sheet

5. Run the system simulation in Simulink by selecting Start from the Simulation
pull-down menu. The simulation may take several minutes to complete. You can

reduce the simulation Stop time parameter, but doing so will reduce the image
enhancement.

A real-time system requires a processing rate of at least 30 frames per second.

48 Xilinx Development System

Image Enhancement

iZlenh [5 |
File Edit “iew Format Tools
b}
-2 = =3 w R
e]
Parameters... Ctl+E []
arraya dbl fpt In Ot 1 fpt dhbl enh_array
Signal Fram % atewuay In % atewway Clut Siond]
Wotspace To Wokspace
X Enhance
System
Genergtar
Start or Pause the Simulation [100% | | |FixedStepDiscrete 5

Figure 8-4 Start the Simulation

6. Return to the MATLAB console window and run a post-processing script by

typing

PostProc_heart

The original image, along with an enhanced image for comparison, will appear
side by side. View the enhanced image in the comparison window. See Figure 8-5.

2 Figure No. 3 =] E3

File Edit “iew Inget Toolz 'Window Help

Des@a|/ "A A/ ®p 0

Figure 8-5 Original Image and Enhanced Version

Generate VHDL and Testbench Vectors

(Optional Section)
7. From the top level, double click on the System Generator token.

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

8. Inthe System Generator block parameters dialog box, choose an output directory
and select “Create Testbench.” Click “Generate” to generate the VHDL code and
testbench vectors for this design.

Since you have chosen to create testbench vectors, Simulink will again run the same
simulation you ran earlier. This time, as it runs the simulation during the code-
generation stage, it will save all of the simulation inputs and outputs into testbench
vectors to be used in your VHDL and post-PAR simulation later.

Simulation and Implementation

50

(Optional Section)

If you like, you can simulate the design in an HDL simulator. The script files vcom.do
and vsim.do , as well as testbench vectors (.dat files) have been created in your
project output directory.

9. Open ModelSim and run vcom.do and vsim.do to verify the design’s generated
VHDL. Or, if you prefer to run the design using the Xilinx ISE Project Navigator,
you may open the .npl file that was generated by System Generator, and run the
pn_behavioral.do file through ModelSim from the Project Navigator
processes. (See tutorial Chapter 3 for details.)

Note: Running this simulation in ModelSim with the generated testbench files will
take several hours. However, since you already ran the simulation in Simulink, you
can be assured that your design is simulating properly. ModelSim simulation isn’t
necessary, since System Generator gives you bit-true results that you already saw in
Simulink.

Next, synthesize this design using Synplicity’s synthesis compiler, Synplify. System
Generator has created a Synplicity project for you: it is
<project_name>_synplify.prj

10. Open the design in Synplify, using the project file created already.
11. Run the design through Synplify. This may take up to a half hour.

12. An EDIF file is created by Synplify. It is by default written into a subdirectory
revl . You may want to copy this EDIF file into another directory that you will use
as the project directory for the Xilinx Implementation software tools.

13. Implement the EDIF file using the EDIF project capability of the ISE software
tools. To do this, open the Project Navigator and select File >> New Project
A new project properties dialog will open. Select EDIF as the design flow type.

New Project
Froject Mame: Froject Lacation:
Inew_edif_project ID:\,matIabFﬂ 2_Tywworkhnew_edif_proj | ., |

Project Dewvice Options:

Property Hame Value
Device Family Wirte
Device xovS0-Bhg256
Design Flow EDIF,.
23

Figure 8-6: EDIF design flow in Project Navigator

Xilinx Development System

Image Enhancement

14. Now you may add your EDIF files to the project as sources. From the Project
Navigator pulldown menu bar, choose Project>>Add Source , and then
browse to your EDIF files.

15. Target this design to a Virtex 600E part.

16. Translate, map, place & route your design using the Xilinx implementation tools.
You can use other accessories in the Xilinx design suite to examine your design or
to add attributes or constraints.

Related Information

For additional information about this particular design, see the paper: Issues on
Medical Image Enhancement by Reza, Schley, and Turney, which can be found on the

Xilinx website

http://www.xilinx.com/products/logicore/dsp/issues_enhanc_med_img.pdf

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Chapter 9

Combination Lock State Machine

In this example we design a state machine for a combination lock. We use the Xilinx
Mealy State Machine block which is part of the State Machine Reference Library. The
state machine is realized with block and distributed RAMs, resulting in a very fast and
efficient implementation. This example uses only a single block RAM and runs at
more than 150 MHz.

State Machine Library

The state machine library is available in the Xilinx Blockset.

When you start MATLAB and open the Simulink Library Browser, open the Xilinx
Blockset and the State Machine section. You should see the following:

A Simulink Library Browser M= E3
File Edit “iew Help
Mealy State Machine: The output of this state machinge is a function of the current state and its

input.
=- g Simulink A _
-8 Communications Blockset T Mealy State Machine
- @l Contral System Toolbox - aw
- T DSP Blockset e | Moore State Machine
- W Fixed-Point Blockset c_“_
& B Neural Netwark Blockset e | Fegistered Mealy State Machine
-8 S-function demos
- B Simulink Extras -:.-:: Fegistered Moore State Machine

=1~ B Kilinx Blockset
-] BasicElements
i 2 Communication
=] DsP

Figure 9-1 State Machine Library

Design Overview

We start by defining the combination lock state machine. It has one input X and two
outputs UNLOCKand HINT. The UNLOCkKoutput should be 1 if and only if X is 0 and
the sequence of inputs received on x in the preceding seven cycles was '0110111". The
HINT output should be 1 if and only if the current value of X is the correct one to move
the state machine closer to the unlocked state (with UNLOCK= 1).

The next state/output table for the state machine is shown below.

52 Xilinx Development System

Combination Lock State Machine

Meaning Current State Ifx =0 lfx=1
=een nothing] 1, M 0, oo
Seenl 1 1, 00 2,01
Seen 01 2 1, 00 3, o
Seen 011 3 4. M 0, ao
Seen 0110 4 1, 00 5, M
Seen 01101 5 1, 00 B, 01
Seen 011011 51 4. 00 7,01
Seen 0110111 7 1 11 0, o0
Next State/Output Table

Figure 9-2 Table of next states and corresponding outputs

Note: The contents of the columns named 'If x = 0" and 'If x = 1" are formatted in the
following way: Next State, UNLOCK HINT

The table shows the next state and outputs that result from the current state and input
X. For example, if the current state is 3 and X is 0, the next state is 4. The transition from
state 3 to 4 means we have seen the sequence '0110'. During this transition, the
UNLOCHKoutput is 0 and the HINT output is 1, indicating we are one step closer to the
unlocked state. The state machine moves on to the next state if we get the correct input
and returns to states 0 or 1 if we get an incorrect one. State 6 is an exception; if we get
the wrong input, i.e., '0', the previous three inputs might still turn out to be the
beginning of the required sequence. Consequently, we go back to state 4 instead of
state 1. In state 7, we have received the required sequence, so we set UNLOCKo 1 if x is
0. In each state, we set HINT to 1 for the value of x that moves the state machine closer
to state 7.

Implementation

From the above description we see that we must use a Mealy state machine to
implement the design, since the outputs depend on both the current state and input.
A block diagram of this type of state machine is shown below.

Inputs

¥

Mext-state State Output

Logic | Register Logic Qutputs

Figure 9-3 Block Diagram of Mealy State Machine

The block is configured with next state and output matrices obtained from the next
state/output table discussed above. These matrices are constructed as follows:

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

Simulation

54

=
=
ll

Meaning Current State Ifx =0

Seen nothing 0
Seenl 1
Seen 01 2
Seen 011 3
Seen 0110 4
Seen 01101 5
Seen 011011 5
Seen 0110111 7

DO~ MmO kO

— o= =3 fa -3 3
O -lmmo WO
o e Y I e
P s T |

i 0

Next State Matrix Cutput Matrix

Figure 9-4 Construction of the Next State and Output Matrices

Rows of the matrices correspond to the current state, and columns correspond to the
input value. The output of the state machine is an N-bit vector. (In this example N is
2.) An element of the output matrix is a decimal representation of the N-bit output
vector for a particular state. In this example, the outputs UNLOCKand HINT are
concatenated together to make the elements of the output matrix. For instance, when
the state is 7 and x = 1, both UNLOCKand HINT are 1, so the corresponding element of
the output matrix is 3 (the decimal representation of binary '11").

The next state logic and state register in this block are implemented with high speed
dedicated block RAM. The output logic is implemented using a distributed RAM
configured as a lookup table, and therefore has zero latency.

Open the Simulink model lock.mdl for this example. You will see the diagram shown
below.

Xilinx Development System

Combination Lock State Machine

-
Input X |
Current State
CurrentState : - fpt dbl T
0i011041100 dbl fpt Inputs Slice
Input Sequence X &P m ﬂuuu:ucvc UNLOCK
e aly State Machine S
| labl] [fot__obir
Sliced HINT
Simulation Resulis
i Mlealy State Mach
Meod StatedOutput Table:
SMem CamEarssTssssssrss
Generator It
Meaning Current State a 1 Mest State Matrizc Oudpat Matriz
Seer nothirg a 1M 0,00 [1 o [1 o
Seenl 1 1,00 zm 1 2 0 1
Seen 01 2 1,00 jcin | 1 3 o 1
Seen 011 3 4m 0,00 4 0 1 Lis
Seen 0110 4 1,00 5,01 interpreted as 1 5 o 1
Seen 01101 5 1,00 5,01 1 g, o 1
Seen 011011 [+ 4,00 . 4 T 0 1;
Seen 0110111 7 1,11 0,00 1 0] 3 L1]]

et State, UNLOCK HINT

Figure 9-5 Lock Simulink Model

The block’s parameters dialog box can be invoked by double-clicking on the Mealy
State Machine icon in the model. In this dialog, the next state and output matrices are
specified and the number of output bits is set to 2. Two slice blocks are used to extract
the UNLOCKand HINT bits from the output.

Block Param dealy State Machine

— Mealy State Machine [mazk] [link]

The output of thiz state machine iz a funchion of the curent ztate and its
inpLt,

— Parameters
Mext State b atris
10:12:13:40:1516:47:10

Clutput b atris

I[‘l 0:;01;071;10:01;01;01:30]

Mumber of Output Bits
B

Sample Period

f1
0k I Cancel Help Al

Figure 9-6 Mealy State Machine block parameters dialog box

Xilinx System Generator v2.1 Basic Tutorial

Xilinx System Generator v2.1

When the design is simulated using[00000000000101101110011001101
1 1] as the input vector, the sequence '0110111" is found at time offsets 20 and 31. The
simulation results are shown below.

2[5 2| a5 | &l

Input =

Current State

LNLOCEK,

Figure 9-7 Simulation Results

More Fun With the State Machine

References

56

A MATLARB function called calcLockMatrices is provided and can be used to create a
new next state and output matrix to detect a different sequence. To run the function,
change your working directory to
$MATLAB\toolbox\xilinx\sysgen\examples\state_machine and then type
[next, out] = calcLockMatrices('0110101101111")

The next state and output matrices should be specified in the state machine block GUI
as the values for 'Next State Matrix' and 'Output Matrix'. You can change the input of
the design by modifying the 'Input Sequence’ block. Resimulate the design and try to
detect the new sequence.

This example is based on the "combination lock” state machine presented on pages
399-402 in Digital Design Principles and Practices by John F. Wakerly, Prentice Hall, 1990.

Xilinx Development System

	Xilinx System Generator v2.1 for Simulink
	About the Tutorials
	Tutorials Contents
	Additional Resources

	Setting Up the Tools
	Software Dependencies
	Software Download
	Using the System Generator installer
	Uninstalling previous System Generator directories
	Recommended Documentation

	Compiling IP libraries for simulation
	ModelSim (PE or EE/SE)
	MXE libraries

	Introduction to Simulink and Xilinx Gateway Blocks
	Introduction to Simulink
	Precision and the Xilinx Gateways

	Software Overview
	Introduction
	Simulink Design Flow
	Opening the Design Example
	The Simulink Library Browser
	The Simulink Model Window

	Customizing the Xilinx Blockset Elements in a Design
	Gateway Blocks and Precision

	Simulation
	System Generator block
	Files Produced by System Generator Code Generation
	Testbench Generation
	Implementation within the Xilinx Design Environment
	Implementing your design

	Black Boxes
	A Black Box Example Model
	The Black Box Window

	Multiplier Accumulator
	Incomplete Design
	Complete the Multiplier/Accumulator
	More Fun With the MAC

	The Costas Loop
	Design Overview
	The Costas Loop design in System Generator
	Exploring the design
	Simulation results

	Filter
	SPTool Utility
	Design Overview
	Preloading init Files
	Using SPTool
	Help on SPTool

	Image Enhancement
	Design Overview
	Process the Design in Simulink
	Generate VHDL and Testbench Vectors
	Simulation and Implementation
	Related Information

	Combination Lock State Machine
	State Machine Library
	Design Overview
	Implementation
	Simulation
	More Fun With the State Machine
	References

