
Xilinx System Generator v2.1 Basic Tutorial Printed in U.S.A.

Xilinx System
Generator v2.1 for
Simulink

Introductory Tutorials

Setting up the Tools

Introduction to Simulink and the
Xilinx Gateway

Software Overview

Black Box

Multiplier Accumulator

The Costas Loop

Filter

Image Enhancement Example

Combination Lock State Machine

Xilinx System Generator v2.1

2 Xilinx Development System

Preface

About the Tutorials

This set of tutorials is a beginner’s guide for designers unfamiliar with the features of

the Xilinx System Generator software, v2.1 and later. These tutorials show the features

and capabilities of the System Generator tools, using simple designs and examples.

Tutorials Contents
This set of tutorials contains the following chapters.

• Chapter 1, Setting up the Tools, gives instructions for installing the software and

lists software dependencies.

• Chapter 2, Introduction to Simulink and the Xilinx Gateway, provides a simple intro-

duction to Simulink which will ensure correct installation of the tools, and

provides basic information on the gateways for using the Xilinx Blockset.

• Chapter 3, Software Overview, walks you through a simple integrator sample

model and exhibits some of the behavior of the Xilinx Blockset. This chapter also

gives a very basic flow through the downstream Xilinx tools, using the

Foundation ISE Project Navigator.

• Chapter 4, Black Box, shows you how the System Generator lets you create your

own blocks and have them included in the generated code.

• Chapter 5, Multiplier Accumulator, gives directions and some hints for creating a

new model using the Xilinx Blockset.

• Chapter 6, The Costas Loop, is another example project provided with the System

Generator. If time allows, you may want to run the Costas Loop simulations and

look at a larger design that uses elements from the Xilinx Blockset as well as

Simulink blocks.

• Chapter 7, Filter, demonstrates the effects of applying a filter to a random signal.

You will run MATLAB console commands to set up your design to automatically

preload coefficients and use the MATLAB “SPTool” utility to define filter coeffi-

cients.

• Chapter 8, Image Enhancement Example, demonstrates an image run through a

filter, also showing the benefits of simulating the entire system, including the

Xilinx blocks, in Simulink.

• Chapter 9, Combination Lock State Machine, demonstrates how to design a state

machine for a combination lock using the Xilinx Mealy State Machine block.

Additional Resources
For additional information, see the System Generator Reference Guide and Quickstart
Guide, supplied with your installation of the System Generator. These files are

installed, by default, into $MATLAB/toolbox/xilinx/sysgen/help .

About the Tutorials

Xilinx System Generator v2.1 Basic Tutorial 3

Contents

Chapter 1 Setting up the Tools.. 4

Software Dependencies

Using the System Generator installer

Compiling IP libraries for simulation

Chapter 2 Introduction to Simulink and the Xilinx Gateways........................... 8

Chapter 3 Software Overview...16

Simulink Design Flow

Customizing the Xilinx Blockset Elements in a Design

Simulation

System Generator Block

Files Produced by System Generator Code Generation

Testbench Generation

Implementation within the Xilinx Design Environment

Chapter 4 Black Boxes... 30

Chapter 5 Multiplier Accumulator... 32

Incomplete Design

Complete the Multiplier/Accumulator

Chapter 6 The Costas Loop... 36

Design Overview

Chapter 7 Filter... 39

SPTool Utility

Design Overview

Chapter 8 Image Enhancement... 45

Design Overview

Process the Design in Simulink

Generate VHDL and Testbench Vectors

Simulation and Implementation

Chapter 9 Combination Lock State Machine... 52

State Machine Library

Design Overview

Implementation

Simulation

Xilinx System Generator v2.1

4 Xilinx Development System

Chapter 1

Setting Up the Tools

This chapter describes the software dependencies, setup, and installation process of

the Xilinx System Generator.

Software Dependencies
This section describes the product dependencies for the System Generator. You must

have the following software installed on your computer before you install the System

Generator.

• R12 or R12.1 of The MathWorks tools, including:

♦ R12: MATLAB v6.0 and Simulink v4.0

♦ R12.1: MATLAB v6.1 and Simulink v4.1

• Xilinx ISE v4.1i software, including

♦ Xilinx CORE Generator (comes standard with Foundation and Alliance ISE

software tools)

♦ Software Service Pack 1

♦ 4.x IP Update #1

♦ The environment variable XILINX must be set and must point to your Xilinx

ISE 4.1i software installation directory.

The correct Service Pack and IP Update may be downloaded from the appropriate

sections of the 4.1i Software Updates Center:

Setting Up the Tools

Xilinx System Generator v2.1 Basic Tutorial 5

http://support.xilinx.com/support/software/install_info.htm

Figure 1-1 Service Packs and Updates on Xilinx Web Site

To simulate, synthesize, and implement the VHDL and cores generated from the

System Generator, you must also have

• a VHDL (behavioral) simulator, such as

♦ MXE (Modelsim Xilinx Edition) 4.1i, available with the Xilinx Foundation ISE

4.1i software tools

♦ ModelSim PE or SE v5.5 or similar version from Model Technology

• a synthesis compiler, such as

♦ XST (Xilinx Synthesis Technology), available in the Xilinx Foundation ISE 4.1i

software tools

♦ Synplicity: Synplify Pro v6.2.4 or v7.0.1

♦ Exemplar: LeonardoSpectrum v2000.1b

• the Xilinx implementation tools, available in the Xilinx Foundation or Alliance ISE

4.1i software tools

Software Download
The System Generator v2.1 is available only via download from a Xilinx web page.

You may purchase, register, and download the System Generator software from the

Xilinx System Generator v2.1

6 Xilinx Development System

site at: http://www.xilinx.com/products/software/sysgen.htm

On this web page, you will see the following sequence of steps:

Figure 1-2 Interface for Downloading System Generator

After you have purchased and registered your copy of the System Generator, you will

be given a user ID and password. These will allow you to log in and download the

System Generator software from Step 3 .

Using the System Generator installer
The System Generator installer is now contained in a single MATLAB file:

setup.dll.

Download SysgenInstall_v2_1.exe from the Xilinx web site and execute it. This

extracts setup.dll and README.txt to a temporary directory. Since setup.dll is

a MATLAB file, you will need to install the software from within MATLAB. Open the

MATLAB console, then change directories (cd) to the temporary directory where you

extracted setup.dll . Type:

>> setup

at the MATLAB console prompt. This will launch the System Generator installer.

Uninstalling previous System Generator directories
If you have previously installed the System Generator tools, the installer will ask if

you wish to install System Generator v2.1 to the same location. If so, it will warn you

that your old copy will be removed. If you have opened any System Generator

designs in your current MATLAB session, you must close and re-open MATLAB

before uninstalling can proceed.

Note that the System Generator will remove everything in your previously installed

System Generator directory and subdirectories. If you have added any files to the

http://www.xilinx.com/products/software/sysgen.htm

Setting Up the Tools

Xilinx System Generator v2.1 Basic Tutorial 7

installed System Generator area, they will be removed. We suggest that you back up

your System Generator designs into another directory, such as the $MATLAB/work
directory.

If you wish to uninstall System Generator v2.1 or previous versions by hand, you may

manually remove the entire directory, starting at the top level of the System Generator

installed area. This is located by default at $MATLAB/toolbox/xilinx .

Recommended Documentation
The System Generator Reference Guide is included with your installation and contains a

comprehensive description of System Generator blocks, interfaces, and design

methodology.

To use the System Generator project flow from design through FPGA implementation,

you should be familiar with Xilinx and The MathWorks tools. It is recommended that

you refer to the manuals Using Simulink from The MathWorks, and ISE 4.1i User’s
Guide from Xilinx. These manuals explain the Simulink environment, as well as the

Xilinx implementation tools.

Compiling IP libraries for simulation
You must compile your IP (cores) libraries with ModelSim before you can simulate.

ModelSim (PE or EE/SE)
To compile your IP with ModelSim (PE or EE/SE) you will need to download a TCL/

TK script from the Xilinx web site, and run it to compile these libraries:

Xilinx Simprim

Unisim

XilinxCoreLib

Xilinx supplies two sets of instructions for compiling your IP libraries using TCL/TK

scripts. The instructions can be found at the following locations:

http://support.xilinx.com/techdocs/2561.htm

http://support.xilinx.com/techdocs/8066.htm

MXE libraries
If you plan to use ModelSim XE (Xilinx Edition), download the MXE pre-compiled

libraries from the Xilinx web site. You may find the latest libraries at:

http://support.xilinx.com/support/software/install_info.htm

Unzip these MXE libraries into your MXE installed directory (usually $MXE/xilinx/
vhdl/xilinxcorelib). This is the location where MXE expects to find your Xilinx

compiled libraries, so you do not need to make any changes to your modelsim.ini
file. This file should point to the correct installed location.

Xilinx System Generator v2.1

8 Xilinx Development System

Chapter 2

Introduction to Simulink and Xilinx Gateway Blocks

The purpose of this chapter is to introduce Simulink and the Xilinx Gateway blocks.

Introduction to Simulink
Simulink, which runs in MATLAB, is an interactive tool for modeling, simulating, and

analyzing dynamical systems. The Xilinx System Generator, a high-performance

design tool, runs as part of Simulink. The System Generator elements bundled as the

Xilinx Blockset, appear in the Simulink library browser.

This section provides steps to implement a sample model using Simulink blocks.

1. Open the MATLAB command window by double-clicking on the

MATLAB icon on your desktop, or by launching it from the Start

menu on your PC.

2. You may navigate to product directories by typing a cd command

in the MATLAB command window. Type ls to see directory

contents. Many UNIX shell commands work from the MATLAB command

window. cd to the examples directory installed with the System Generator. (This

is generally $MATLAB/toolbox/xilinx/sysgen/examples .)

3. Launch Simulink by typing simulink at the MATLAB command prompt, or

bring up the Simulink library browser by clicking on the corresponding button on

the MATLAB toolbar.

Figure 2-1 Simulink button, available on MATLAB console toolbar

4. Look at the blocks available in the Simulink library browser. The following

elements should appear, among others:

♦ Simulink (sources and sinks)

♦ DSP Blockset

♦ Xilinx Blockset

Introduction to Simulink and Xilinx Gateway Blocks

Xilinx System Generator v2.1 Basic Tutorial 9

Figure 2-2 Simulink Library Browser window, showing Xilinx Blockset

5. Right-mouse-click on any block in the library browser and choose help from the

MATLAB menu. This brings up details about the block. This also works on the

Xilinx Blockset elements.

Figure 2-3 Opening a Help window on any block

Xilinx System Generator v2.1

10 Xilinx Development System

6. Create a blank sheet "new model" using the button on the Simulink library

browser.

Figure 2-4 Create a new Simulink model via button on Simulink Browser window

7. Add the following 2 blocks to your project sheet. From Simulink Sources, add a

sine wave. From Simulink Sinks, add a scope block. Drag and drop the blocks

from the Simulink Library Browser into your new model. Draw a wire from the

sine wave to the scope block.

Figure 2-5 Sine wave block wired to Scope output block

8. Double click on the sine wave block. A Block parameters dialog box will open.

Change the frequency to pi/150.

Figure 2-6 Frequency option on the Sine Wave block parameters dialog

9. From your project sheet, pull down the Format menu, and select port data
types . Now, on your Simulink sheet, you can see that the signal is double

precision.

10. From your project sheet, pull down the Simulation menu and select

Simulation parameters . From the Simulation Parameters dialog box, change

the stop time to inf. This will allow your simulation to run to infinity (until you

manually stop the simulation).

Figure 2-7 Modifying simulation parameters

Introduction to Simulink and Xilinx Gateway Blocks

Xilinx System Generator v2.1 Basic Tutorial

11. Double click on the scope block. The scope display will open. Click on the Scope

Parameters button. In the Scope Parameters box, set the time range to 500. This is

the range that will now be displayed in the scope.

Figure 2-8 Modifying the Scope display parameters

12. Run the simulation. From your Simulink project sheet,

click on the Start simulation button (or you can

pull down the Simulation menu and select start).

13. On the scope display, click the autoscale button so the

output will fit into the scope. The autoscale button looks

like a pair of binoculars.

14. Look at the scope output. A smooth sine wave should fit into your scope window.

This is what you would expect, since you are running a double-precision software

simulation.

15. Stop the simulation.

Precision and the Xilinx Gateways
Now that you have seen some of the inputs (sources) and outputs (sinks) available in

Simulink, you will create your first design using System Generator blocks. All

System Generator designs start with the Xilinx Gateway Blocks. The Xilinx Gateway

In and Gateway Out blocks provide an interface to the Xilinx Blockset in Simulink. If

you want to add an FPGA design to your Simulink model, the Xilinx Gateway In

block represents an input port into the FPGA. The Gateway Out block is an output

port from the FPGA.

Figure 2-9 The Xilinx Gateway blocks

MATLAB uses double-precision floating-point and the Xilinx portion of the design

uses fixed-point precision. Xilinx Gateway blocks handle the type conversions. In the

following manual exercises, you will consider the number of bits necessary to

represent fractional numbers through the Gateway In block:

Xilinx System Generator v2.1

12 Xilinx Development System

Precision exercises

1. The System Generator uses a Fix notation which shows the total number of bits

in a number, followed by the position of the binary point. Using this notation,

define the format of the following 2’s Complement binary fraction and calculate

the value it represents:

Format <Fix_ _ >
Value =

2. Represent 8.4375 as a 2’s Complement binary fraction in the box below. You must

also show the position of the binary point:

3. Represent the following useful coefficient in <Ufix_8_8 > format.

4. Now determine the next size format that will provide greater precision for the

number above.

The answers to the precision exercises 1-4 are below.

ANSWERS to precision exercises:

1. Format <Fix_13_6 >. Value = (-1853/64) = -28.640625

2.

Introduction to Simulink and Xilinx Gateway Blocks

Xilinx System Generator v2.1 Basic Tutorial

3.

4.

Add Xilinx Gateways to Sine Wave example

Now, considering the means for representing different precision within the fixed-

point data type, follow the steps to modify your previous sine-wave design by

sending the signal through Xilinx Gateway blocks.

1. From the Xilinx Blockset (in the Simulink library browser), go to MATLAB I/O

and drag the Gateway In block onto your sheet. Drop it on the connection

between the sine wave and the output scope. It will automatically insert itself.

2. Also from MATLAB I/O, drag a Gateway Out block onto the sheet, and drop it

between the Gateway In block and the output scope block.

3. We would like to compare the double-precision sine wave with the fixed-point

sine wave that has gone through the Xilinx Gateways. To see both of these plots

on the same scope, we will combine the outputs through a Simulink MUX block.

From the Simulink Signals & Systems block set, drag a MUX and drop it between

the Gateway Out and the scope.

4. Now add an additional net between the sine wave and the MUX. This way the

scope will display both the double-precision sine wave and the sine wave that has

gone into and back out of the Xilinx Gateways.

Figure 2-10 Sine wave example with Xilinx Gateway blocks inserted

181/256 = 0.70703125 gives 0.01% error.

11585/16384 = 0.70709228515 gives 0.002% error. The format must increase

to <Ufix_14_14 > before any improvement is gained.

Xilinx System Generator v2.1

14 Xilinx Development System

5. To view the number of signals in the MUX, select

the options under the Format menu:

6. Go to the Edit menu and select Update
Diagram . Now look at your port types. See that the

Gateway In block has changed the signals from

double precision to fixed point types. Fixed point

looks like Fix_8_2 in this case.

7. Double click on the Gateway In block. A block parameters dialog box will open.

Keep this box open for the rest of this lab; we will examine the effects of changing

some of the parameters.

8. Run the simulation (click the go button). You will see a jagged sine wave next to

the smooth sine wave that is not going through the Xilinx blocks. You are seeing

quantization effects (the difference between the double precision floating point of

MATLAB and the fixed point Fix_8_2 of the Xilinx block).

Figure 2-11 Quantization effects of double precision vs fixed point

9. Now change the Gateway block input to Unsigned (instead of 2's
complement). Click Apply on the Gateway In dialog box. Notice the output

scope now displays unsigned results. (After you click Apply you may need to

click the Autoscale button on the output scope again.)

10. Now that the value is unsigned, you have some overflow (the negative part of the

sine wave). Since Overflow is set to Wrap on the Gateway In dialog, you can see

that the negative portion is wrapping on your output scope.

11. Change the Overflow option to Saturate and click Apply . See the different

results on the output scope. The negative part of the sine wave is saturated to 0.

Figure 2-12 An effect of changing overflow option on Gateway In block

12. Change the input back to 2's complement and click Apply .

13. Change the quantization to Round and click Apply . You'll see the sine wave is

rounded up to the peak value.

14. Finally, change the quantization to Truncate and click Apply . Now instead of

rounding up, the effect of quantization error is to truncate the peak value.

15. Remove some of the quantization error by changing the binary point. Instead of 2,

increase the binary point to 6 and click Apply . Now you will see a smoother sine

Introduction to Simulink and Xilinx Gateway Blocks

Xilinx System Generator v2.1 Basic Tutorial

wave, since more of the quantization error has been removed. The number of

fractional bits was increased from 2 to 6.

16. Stop the simulation.

17. Now we will examine the effects of the Sample Period box. Instead of a sample

period of 1, change it to 5 and click Apply .

18. Restart the simulation. Since it is sampling fewer times, you will see more

quantization error.

19. Stop the simulation.

20. Go to your Simulink sheet and remove the sine wave.

Replace it with a Ramp function from the Simulink

Sources menu.

21. Open the Simulation Parameters dialog box.

22. Change the stop time to 100.

23. Change the binary point to 0 and the sample period to 10, in the Gateway In block

parameters dialog box.

24. Start the simulation. See that it is only sampling the ramp input every 10th clock

period.

25. Now change the sample period to 1 in the Gateway In block parameters dialog.

26. Start the simulation. Notice that the ramp is smoother since you are sampling the

block every clock period.

27. Stop the simulation.

At this point, you should be able to create a new System Generator design in

Simulink. You know how to interface between the Xilinx Gateway blocks and

Simulink blocks. The next step is to place Xilinx Blockset blocks within the Gateways

and thus create the FPGA portion of your design. The remaining tutorials installed

with the System Generator consist of designs created with the Xilinx Blockset, within

these Gateway blocks.

Xilinx System Generator v2.1

16 Xilinx Development System

Chapter 3

Software Overview

This chapter tells how to use Simulink for modeling a system design with the System

Generator. It also tells us how to simulate and implement the design using Xilinx

implementation tools.

This chapter contains the following sections.

• Introduction

• Basic Simulink Functionality

• Customizing the Xilinx Blockset elements in a design

• Simulation

• System Generator Token

• Files produced by System Generator code generation

• Testbench Generation

• Implementation within Xilinx design environment

Introduction
This tutorial uses a simple design to illustrate the basics of the System Generator.

This tutorial walks you step-by-step through the design flow to illustrate the basics of

System Generator. The primary goal is to provide enough information that you can

quickly begin using System Generator on your own. A secondary goal is to give you

an overview of the capabilities of the Xilinx tools.

The design example consists of a simple digital integrator, implemented using

elements of the Xilinx Blockset, with test bench consisting of other Simulink blocks.

As can be seen in the figure below, the input to the integrator is a scaled sinusoid,

modified by additive noise and a linear ramp.

The integrator acts as a simple low-pass filter, which smooths the additive noise. The

modulated input signal is further scaled for viewing in the Signal scope block, which

also shows the integrator output, and the quantization error at the integrator output.

Software Overview

Xilinx System Generator v2.1 Basic Tutorial

The example design, as seen in Simulink, is shown below.

Figure 3-1 Example Design as seen in Simulink

Simulink Design Flow

Opening the Design Example
The default directory location of the example designs is:

$MATLAB\toolbox\xilinx\sysgen\examples . The design example for this

tutorial is in the directory: integrate .

1. To bring up the tutorial design, start MATLAB by double-clicking on

the desktop MATLAB icon (as shown on the right), or by launching

it from the Start menu on your PC.

Xilinx System Generator v2.1

18 Xilinx Development System

The MATLAB console window will open.

Figure 3-2 The MATLAB Command Window

2. Now you need to launch Simulink. This can be done in two ways:

♦ Type simulink at the MATLAB console prompt, or

♦ Click the Simulink Library Browser
button on the MATLAB toolbar

3. From the Simulink Library Browser, you can

browse to the example design from the Open
File button. You also can launch the design directly.

♦ Open the design from the MATLAB console by navigating to it. For example,

if you have installed the tools to the default location:

♦ >> cd C:\MATLAB\toolbox\xilinx\sysgen\examples\integrate
>> ls (this will show you the contents of the design directory)

>> integrate (this will launch the integrate.mdl file)

♦ You can also browse to the design from the File>Open menu

choice, or from the Open File button on the MATLAB

console.

Software Overview

Xilinx System Generator v2.1 Basic Tutorial

The Simulink Library Browser
The Simulink Library Browser is shown below. Depending on which Simulink

blocksets you have installed, your library may contain different blocksets than those

shown here.

Figure 3-3 The Simulink Library Browser

The Simulink Library Browser contains the blocks necessary for you to create a

Simulink subsystem.

In the figure above, note that the Xilinx Blockset Basic Elements library is selected. The

blocks available in the Basic Elements library are therefore viewable in the pane on the

right side.

4. You can expand the different categories of blocksets and see which individual

elements are available, both in the Xilinx Blockset and in the other Simulink

blocksets.

You will also be interested in the Simulink>Sources blocks, which contain sources

you can use in your simulation models. The integrator example design uses the

Sine Wave , Random Number , and Ramp blocks from this library.

Xilinx System Generator v2.1

20 Xilinx Development System

5. A description of each Simulink block is available by right-clicking on the library

element and selecting Help from the resulting menu.

Figure 3-4 Selecting Help for any Simulink block

The Simulink Model Window
6. When you open the integrator example design, it will come up in the Simulink

model window.

Figure 3-5 Integrator Example Design

You can drag or copy blocks into the Simulink model window from the Library

Browser. You can wire them together as you would in a block editor.

The design example consists of a simple digital integrator, implemented using

elements of the Xilinx Blockset, with test bench consisting of other Simulink blocks.

The input to the integrator is a scaled sinusoid, modified by additive noise and a

linear ramp.

Software Overview

Xilinx System Generator v2.1 Basic Tutorial

The integrator acts as a simple low-pass filter, which smooths the additive noise. The

modulated input signal is further scaled for viewing in the Signal scope block, which

also shows the integrator output, and the quantization error at the integrator output.

The design uses input and output blocks from Simulink, with the remaining blocks all

from the Xilinx Blockset. Each Xilinx block can be recognized by its Xilinx shadow X
pattern. The Xilinx blocks can be translated into VHDL, targeting FPGA hardware.

Customizing the Xilinx Blockset Elements in a Design
7. Like any Simulink block, each Xilinx block can be customized through the Block

Parameters window that opens when you double-click on the block. For

example, click on the Adder “Add2” and view its block parameters dialog box.

Figure 3-6 Adder block parameters dialog box

In this example, you may set Full or User Defined precision. User Defined
precision expands the window to include all the precision options shown here.

8. Double-click on some of the other Xilinx blocks on the Simulink model. View the

options available in their block parameters boxes.

Xilinx System Generator v2.1

22 Xilinx Development System

9. Each block’s parameters can be viewed by putting the pointer over the top of the

block. A pop-up window shows what parameters have been set. For example, for

the adder block just shown, the pop-up window is shown:

Figure 3-7 Viewing a Block’s Parameters

10. The Simulink model window has several options available under its Format
menu. For example, choosing the Port Data Types menu item will display the

precision of each element’s ports on the design sheet.

Figure 3-8 Format Menu Options

Gateway Blocks and Precision
The fundamental scalar data type used in Simulink is double precision floating point,

which won’t be translated into FPGA hardware. To bring part of the Simulink model

into the FPGA world, signals pass through Gateway blocks that convert double

precision floating point into a Xilinx fixed-point.

11. Note the port precision for the Wave Gateway block in the design.

Figure 3-9 Input/Output Precision on Gateway Block

The Fix_11_9 indicates this bus is a signed fixed-point number of 11 bits with binary

point 9 bits from the right.

The Xilinx fixed-point type supports quantization (truncation or rounding to positive

or negative infinity) and overflow (saturation or wrapping).

In the integrate example, the Gateway-In blocks control the initial precision. The

first adder and multiplier produce full precision outputs. The integrator’s output

Software Overview

Xilinx System Generator v2.1 Basic Tutorial

precision allows only five signed bits, with saturation on overflow. The register

inherits its precision from the block that drives it.

Simulation
The design also has three output scopes in the Results box. Results opens in its

own window.

Output scopes can be dragged into your

Simulink model from the

Simulink>Sinks section of the

Simulink Library Browser.

12. To simulate the design and view the

results in the scopes, click on the

Start/Pause Simulation button in the

Simulink model window toolbar.

13. To scale the waveforms for easier

viewing in each scope block, click on

the Autoscale button in the scope

block’s toolbar:

The Signal scope shows the sine wave

plus random noise, multiplied by a ramp

signal. The Integrated Signal shows

the signal after having run through the

low-pass filter. The third scope shows the quantization error. (Every Xilinx signal has

an associated double-precision floating point value that can be observed via the

quantization error block, in the MATLAB IO section of the Xilinx Blockset.)

Figure 3-10 Output Scopes

Xilinx System Generator v2.1

24 Xilinx Development System

14. The design is set up to simulate from time 0 to 400. To simulate for a longer time,

change the parameters in the Simulation menu pulldown in the Simulink

model window.

Figure 3-11 Changing Simulation Parameters

15. You can also change the scope display properties by clicking on the Properties

button in the scope window toolbox.

Figure 3-12 Displaying Properties

Simulation past time 400 shows increased quantization error as the integrated signal

begins to overflow. (Remember to click on the Autoscale button to scale signals.)

Figure 3-13 Quantization Error

You can see a 90-degree phase shift (the integral of a sine is a cosine) as the additive

noise has been filtered out. The design is initially configured so the accumulator’s

adder will “wrap” on overflow.

Software Overview

Xilinx System Generator v2.1 Basic Tutorial

16. Change the accumulator’s adder to “saturate” and run the simulation again.

Observe the difference in the overflow integrated signal and in the quantization

error. (To change to “saturate” on overflow, double-click on the Add2 block,

change the Overflow pulldown, and Apply the change.)

17. Experiment with changing the precision and overflow on other blocks. Try to

predict the simulation outputs.

System Generator block
After you have finished modeling the system, you are ready to generate

VHDL and cores for a Xilinx FPGA. We do this with the System Generator

token from the Xilinx blockset.

If your design has hierarchy, drag the System Generator block to the

highest level for which you want to generate hardware files. (For

examples of designs with hierarchy, see the demonstration designs in the examples/
demos directory.)

18. To generate VHDL and cores, double-click on the System Generator icon. This

opens its parameters dialog box..

Figure 3-14 System Generator block parameters dialog box

Here you can choose

♦ FPGA target device family

♦ target directory in which all generated files will be written

♦ whether to generate testbench vectors

♦ where to use double-precision values in lieu of fixed point (this option applies

only to simulation of the model within Simulink)

♦ whether to generate cores with the Xilinx CORE Generator (for your final

implementation, you will want to invoke the CORE Generator; however,

Xilinx System Generator v2.1

26 Xilinx Development System

when debugging, you may not want to spend the time needed by the CORE

Generator)

♦ you can also specify a system clock period and global CLK or global CLR for

constraining your design

The Apply button will save your selections and leave the window visible. The OK
button will save your selections and close the window. Invoking the Generate
button generates your VHDL and cores.

Files Produced by System Generator Code Generation
19. From the System Generator block parameters dialog, choose a target directory,

choose the Virtex device, make sure the Create Testbench box is checked, and

click the Generate button. You will see taskbars showing the System Generator,

then the Xilinx CORE Generator running.

20. Now (in Windows Explorer or another file browser) view the files that have been

written to your target directory. You will see the following files (among others):

♦ integrate.vhd - the top level VHDL file for your project. There are

additional VHDL files included when your design has more hierarchy.

♦ integrate_xlmult_core1 - files associated with the generated multiplier

core, such as the behavioral simulation models and EDIF file.

♦ corework - subdirectory containing the CORE Generator log file.

♦ integrate.npl - project file for opening the design in Xilinx ISE 4.1i Project

Navigator, using the XST synthesis compiler and ModelSim simulator.

♦ integrate_testbench.vhd - the top level VHDL testbench file, associated

with the top level VHDL source file in the project.

♦ integrate_<gateways>.dat - stimulus files for inputs to testbenches, or

predicted outputs of testbenches. The .dat files are generated by Simulink

simulation and saved for running in Xilinx testbenches to verify design

behavior. In this example, <gateways> refers to the names of the Xilinx

gateway blocks, which collect and save the data.

♦ integrate_synplicity.prj - a project file for running this design in

Synplify (synthesis tools from Synplicity).

♦ integrate_leon.tcl - a project file for running this design in Leonardo

Spectrum (synthesis tools from Exemplar).

For a complete description of all of the files produced during code generation,

please see Chapter 4 of the System Generator Reference Guide.

Testbench Generation
Testbench files were generated if you chose Create Testbench on the System

Generator parameters dialog.

The testbench VHDL file, integrate_testbench.vhd , is a wrapper for your top

level. The System Generator also generates .dat files. These contain test vectors

representing inputs and expected outputs, as generated and observed in the Simulink

simulation.

21. View the integrate_testbench.vhd file, and you will see references to the

.dat files.

Software Overview

Xilinx System Generator v2.1 Basic Tutorial

Implementation within the Xilinx Design Environment
After code generation, you are ready to simulate your design in a behavioral

simulator, then synthesize it using any of the synthesis compilers that support Xilinx

devices. In this tutorial, we will use MXE (Modelsim Xilinx Edition) simulation and

XST (Xilinx Synthesis Technology) synthesis through the Xilinx Foundation ISE 4.1i

Project Navigator tool.

The System Generator has created a basic Foundation ISE project file for you. By

opening this project file, you can import your System Generator design into the ISE

Project Navigator, and from there, you can continue to work on the design in the

Xilinx 4.1i software tools environment.

22. Double-click on the integrate.npl file that was created. The ISE Project

Navigator environment will open and will read in your System Generator project.

When first opening your System Generator project, you will receive a warning

indicating that you have not set up a device package. This is because System

Generator did not require that you enter a device package before generating VHDL.

23. You may now configure the rest of your Xilinx design by opening the Project

Navigator properties dialog. Right-click on the device and default package at the

top of the module view, and select Properties .

Figure 3-15 Opening Project Navigator properties on your design

From within the Properties dialog, you can choose other device families, speed

grades, packages, and VHDL compilers. For now, we will use the defaults that have

been set up already.

Behavioral Simulation
The System Generator project is already set up to run your behavioral simulation with

the ModelSim simulator from the Project Navigator. It will use a custom “do” file

called pn_behavioral.do. This file was produced by System Generator and has been

associated with your behavioral simulation for this project in the ISE Project

Navigator.

Xilinx System Generator v2.1

28 Xilinx Development System

24. Select the integrate_testbench.vhd file in the Project Navigator sources

module view. When you select the testbench, you will see that the processes

window changed to show available simulation processes. Double-click on

Simulate Behavioral VHDL Model .

Figure 3-16 Simulation processes associated with integrate_testbench.vhd

25. The ModelSim console will open, and the pn_behavioral.do file (created by

System Generator) will run. It will compile and run the same System Generator

simulation that you ran in Simulink. To examine the results graphically, you will

look at the ModelSim debug windows. (You may view all of the debug windows

by choosing View All from the console pulldown menu. Further instruction on

the ModelSim environment can be found in the Xilinx Foundation ISE 4.1i
documentation.) After verifying your behavioral simulation, you may close

ModelSim.

Implementing your design
You have many options within Project Navigator for working on your project. You

can open any of the Xilinx software tools such as the Floorplanner, Constraints Editor,

report viewers, etc. To implement your design, you can simply instruct Project

Navigator to run your design all the way from synthesis to bitstream.

Software Overview

Xilinx System Generator v2.1 Basic Tutorial

26. In the Sources window, select the top-level VHDL module in your design. Now

you will notice that the Process window shows you all available processes that

can be run on the top-level VHDL module.

Figure 3-17 Processes available to run on top-level integrate.vhd

27. In the Process window, right-click on Generate Programming File and select

Run. You are instructing Project Navigator to run through whatever processes are

necessary to produce a programming file (FPGA bitstream) from the selected

VHDL source. In the messages console window, you will see that Project

Navigator is synthesizing, translating, mapping, routing, and generating a

bitstream for your design.

Now that you have generated a bitstream for your design, you have access to all the

files that were produced on the way to bitstream creation.

28. For example, if you wish to see how your design was placed on the Xilinx FPGA,

select the FloorPlanner view underneath the Place & Route option in the Process

window. The Floorplanner window will open, showing your implemented

design. .

Figure 3-18 Click to run Floorplanner view on implemented design

Xilinx System Generator v2.1

30 Xilinx Development System

Chapter 4

Black Boxes

This chapter tells how to use black boxes in System Generator. Sometimes a design

must include subsystems that cannot be realized with Xilinx blocks. For example, the

design might require a FIR filter whose capabilities differ from those in the filter

supplied in the Xilinx Blockset. Black boxes provide a way to include such subsystems

in designs otherwise built from Xilinx blocks. To add a black box to a design, do the

following:

• Implement the subsystem (your black box) in Simulink. The subsystem can

contain any combination of Xilinx and non-Xilinx blocks.

• Place the Xilinx Black Box token at the top level sheet of the subsystem. This

indicates to System Generator that the user will provide the VHDL or Verilog

HDL necessary to implement that subsystem.

• Double-click on the token to open the Black Box block parameters dialog box.

Enter the information that describes the black box.

• You must manually enter your VHDL or Verilog HDL black box files into your

downstream software tools project after you run the System Generator code-

generation step.

A Black Box Example Model
The directory: /xilinx/sysgen/examples/black_box , ordinarily stored in

$MATLAB/toolbox , contains an example showing how to use black boxes.

1. For this example to run correctly, you must change your directory (cd within the

MATLAB console window) to this directory before launching the example model.

The files contained in this directory are:

• black_box.mdl - the Simulink model with an example black box

• bit_reverse.m - a MATLAB function for reversing bit order

• bit_reverse.vhd - VHDL code for reversing bit order. This file is the actual

black box that must be passed to the Xilinx implementation tools. It imitates the

behavior of the MATLAB function.

2. Open the design example by typing black_box .

The example project displays three windows:

• The top-level model (a model with black box instantiated in it),

• The black box (a new Simulink model), and

• The output simulation scopes.

Black Boxes

Xilinx System Generator v2.1 Basic Tutorial

3. Run the simulation from the top-level model, and you can see the bits reverse in

the output scope. This simulation is running the MATLAB function

bit_reverse.

Figure 4-1 “Bit-Reverse” Black Box Simulation

The Black Box Window
The Xilinx Black Box token identifies the top level of your black box.

4. Double-clicking on this token brings up a window that allows you to

configure the black box.

5. Open the file bit_reverse.vhd in an editor and view the code. You

will see the name of the component (bit_reverse) is the same name that you

assigned in the Black Box configuration window. The user-defined generic

(n_bits) is defined there as well. The others are default generics that correspond

to the ports (DIN and BRN) on the black box. You must make sure the VHDL code

you write has component and generic names matching those entered in the

configuration window.

Notice the

main : process (DIN)
section near the bottom of the VHDL file. This is where the actual bit-reversing

functionality takes place.

Xilinx System Generator v2.1

32 Xilinx Development System

Chapter 5

Multiplier Accumulator

This tutorial shows how to create a multiplier/accumulator and use it as a block

within a FIR filter created out of Xilinx blocks.

You will start with an incomplete Simulink model and complete it by finishing one of

the model sheets.

Incomplete Design
1. Open the incomplete model mac_fir_tutorial. You will find this model in the

$MATLAB\toolbox\xilinx\examples\mac_fir directory. Four sheets will

open, plus a scope window.

The inputs to the model are defined in the Simulink Signal From Workspace
(from the DSP Sources Blockset).

You will see there are two FIR filters in this model. The first is a single Xilinx block that

uses the Xilinx FIR core. The second is MAC-based FIR assembled from several Xilinx

blocks, and is incomplete.

2. When you open the model, you will also see that a set of coefficients has been set

(in the MATLAB console window). In MATLAB M-Code, you can convolve the

input signal (shown on the Simulink sheet as the input to the model) with these

coefficients.

3. In the MATLAB console window, type:

conv([1 2 3],coef)
and note the results. Note that coef(4)=0 , so you could really create this design

Figure 5-1 MAC FIR Tutorial Screen

Multiplier Accumulator

Xilinx System Generator v2.1 Basic Tutorial

with a 3-tap FIR filter, but the MAC FIR design we are using assumes the number

of taps is a power of 2. This simplifies the addressing of memories.

Figure 5-2 MATLAB Command Window

4. At the top-level sheet, simulate the design (click on the “Start/Pause Simulation”

button in the Simulink toolbar).

Note: The result of the Xilinx FIR (on the scope) matches the answer in the MATLAB

console.

The results appear after several cycles (period 4) because the Xilinx FIR contains a

pipeline. Since the MAC-based FIR is incomplete, its results are meaningless. Your

goal is to complete the MAC-based FIR so that its simulation results match those of

the Xilinx FIR.

Figure 5-3 Xilinx FIR on Scope

Xilinx System Generator v2.1

34 Xilinx Development System

• Push into the “MAC Based FIR ” block. The subsequent sheet contains two

additional blocks to push into. Push into “MAC.” This is the block you must

complete.

Figure 5-4 Incomplete Block

Complete the Multiplier/Accumulator
5. Replace the register (a temporary place-holder in the MAC block) with a

multiplier/accumulator (MAC). Requirements for the MAC are:

♦ Two inputs (plus reset)

♦ One output

♦ Multiply the two inputs and put the result in an accumulator

♦ Build the MAC such that there is zero latency between the inputs and the

output

6. Begin work on the MAC before you read the hints below. Don’t read the hints

before you have worked on the MAC!

• Hints:

♦ The MAC has three blocks (a multiplier, an adder, and a register).

♦ Use the Xilinx multiplier with latency of 0.

♦ Build the accumulator out of an adder and a register.

♦ The output of the multiplier feeds one input of the adder.

♦ For the accumulator, the output of the adder returns into the register and then

back into the second input of the adder.

♦ Because of the adder’s feedback loop, you will get the error: “input port data

type mismatch” if you use the adder’s default of Full Precision. The loop of

causes the Full Precision setting to create mismatched port types. To get past

this error, in the adder’s configuration GUI you must select “User-Defined”

precision and set the adder’s output precision to the same precision as the

feedback loop input precision.

Multiplier Accumulator

Xilinx System Generator v2.1 Basic Tutorial

♦ You may see the error: “sample periods at one or more inputs can’t be

determined.” Blocks in feedback loops need explicit sample periods. In the

adder’s configuration GUI, check the checkbox: “Use Explicit Sample Period”

and choose -1. This choice of -1 is a convention specific to Xilinx blocks. It

dictates that the block will inherit its first known input sample period. In this

case, the adder will inherit its period from the multiplier. You could also set

the period explicitly to 1, since that is in fact the cycle period at which this

particular MAC is to be run.

7. The answer (the complete project) is available in the same directory where you

found the tutorial, if you want to compare your answer. You will find the answer

in $MATLAB\toolbox\xilinx\examples\mac_fir\mac_fir_answer.

More Fun With the MAC
(Optional Section)

8. If you need another challenge, set up the MAC so that the multiplier can be

pipelined in hardware. Just checking the check-box in the GUI is the easy part, but

you will then find that you need to add latency to the multiplier. This is a bit

tricky, as you have to adjust delays elsewhere to synch up.

♦ Hint #1: You need to add delay to the reset signal before it is delivered to the

accumulator, and you also need to adjust the delay before the down sampler

at the MAC output. This latter delay element is used to synch the final sum

from the accumulator to the sample frame grabbed by the down sampler.

♦ Hint #2: You need to add latency (a delay line) between the MAC and the

down sampler to compensate for the pipeline latency and still have the down

sampler read the correct data frame.

9. The two scopes that plot the comparison of the MAC-based FIR and the Xilinx FIR

may show the correct answer but not at the same time period.Why is that? How

can you figure this out by looking at the design?

(Answer: the two implementations have different latencies. They can be balanced

by adding a delay line to the output of the MAC FIR. To view the latencies, you

can look at the configuration GUIs for both the Xilinx FIR and the components of

the MAC FIR.)

Xilinx System Generator v2.1

36 Xilinx Development System

Chapter 6

The Costas Loop

This chapter introduces the Costas Loop, an example provided with the Xilinx System

Generator. There is a version of the model in the sysgen/examples/demos
directory under $MATLAB/toolbox/xilinx .

Note: The Communications Toolbox (includes the Communications Blockset for

Simulink), required to run the example, is used within the Costas Loop.

Design Overview
The Costas loop is a portion of the communication system described below.

Figure 6-1 Example of a Communication System Showing a Transmitter/Receiver

This system works as follows. A signal is presented to the transmitter, mapped into

symbols, fed through to a match filter and a polyphase interpolator in preparation for

up conversion to a digital IF. The values are then converted to analog form and sent

along the channel. When they get to the receiver, the samples are brought to baseband

by complex heterodyne, fed through a match filter and a polyphase decimator to

adjust the sample rate to the channel bandwidth. Finally, the values are presented to

the detector where the symbol decisions are made.

The communication system must run a carrier phase lock loop (PLL) in order to

generate a version of the local oscillator that is matched in both frequency and phase

to the oscillator employed in the transmitter. Typically, a PLL is implemented as a

Costas loop. Although both the transmitter and receiver can be implemented in a

Xilinx FPGA, for the purpose of this tutorial, we will focus only on the Costas loop.

The Costas Loop

Xilinx System Generator v2.1 Basic Tutorial

The Costas Loop design in System Generator
1. Open the Costas Loop model from the MATLAB console window. First, cd into the

directory

$MATLAB\toolbox\xilinx\sysgen\examples\demos

2. Type sysgenCostasLoop , which is the name of the Simulink model.

Figure 6-2 Top Level Sheet of Costas Loop

The system shown in the model is the simple transmitter and a Doppler shift to verify

the operation of the Costas Loop.

In practice, the Doppler shift is associated with movement between the transmit and

receive platforms, as might be the case with a cellular handset being used in a moving

car.

The top left section of this model generates a QPSK modulation stream. The bottom

left section is the introduction of channel impairment, i.e., Doppler shift.

Exploring the design
3. Explore the hierarchy of the model. In this model, the top level is composed of

Simulink blocks, with Xilinx blocks making up the second level in the subsystem

named Costas_Loop.

4. Simulation outputs scopes results in five output windows. Can you explain the

results and how they were obtained through the Xilinx Blockset elements as well as

the Simulink blocks in the design?

Xilinx System Generator v2.1

38 Xilinx Development System

Figure 6-3 Output Scope Windows

Note: The default simulation time is 500. To increase the simulation time to 3000,

which is required to see the output plots shown above, change “stop time” to 3000 in

the Simulation Parameters dialog. This dialog is opened from the Simulation
menu on your Simulink window.

Simulation results
Output scopes show the following:

• Constellation from the QPSK modulation stream

• Rotational nature of the constellation diagram, indicating that there is some

frequency offset introduced

• Rotated data after presentation to our simple receiver

Filter

Xilinx System Generator v2.1 Basic Tutorial

Chapter 7

Filter

This tutorial demonstrates the effects of applying a filter to a random signal. It also

shows how to set up your Simulink model and coefficients by using some MATLAB

console commands.

The model for this tutorial can be found in the sysgen/examples/filter
directory under your $MATLAB/toolbox/xilinx directory.

SPTool Utility
This tutorial utilizes the SPTool interactive GUI. SPTool is available only with

MATLAB’s Signal Processing Toolbox, a collection of tools built on the MATLAB

numeric computing environment.

Design Overview
The design is a complex random source that is filtered and run into a 16-point FFT

used as a spectral analyzer, where the different frequency components can be

observed. The unfiltered signal is also run into another FFT so the outputs can be

compared.

Figure 7-1 Filter ‘filtfft’

5. Open the Filter model from the MATLAB console window. First, “cd ” into the

directory $MATLAB\toolbox\xilinx\sysgen\examples\filter .

6. Type filtfft , the name of the Simulink model.

You can see that the design consists of a complex random signal source that is fed into

two identical FIR filters, the outputs of which are used as inputs to a 16-point FFT

Xilinx System Generator v2.1

40 Xilinx Development System

(spectral analyzer). The FFT outputs are fed to a scope so you can see the frequency

components of the filtered signal.

Observe that in the beginning the filters are 1-tap. In this tutorial, you will make the

filters more interesting.

7. Simulate the model in Simulink. You will notice a Simulink error, saying that the

DA FIR filter core cannot accommodate a 1-tap filter. You will fix this error by

building better filters.

8. Cancel the error window, and observe in the scopes that the outputs of the filters

have the same frequency characteristics as the unfiltered versions.

Figure 7-2 Unfiltered Scope Output

9. Double-click on the FIR filter block in your Simulink model window. This will open

the FIR Filter mask GUI. Observe that the coefficients for this filter are defined by a

vector called h. This vector has been defined in the file filtInit.m . The file was

automatically loaded when you opened the Simulink model.

Preloading init Files
(Optional Information)

Note: This section contains instructions for preloading items (such as variables

defining coefficients) into your Simulink models.

• Select the first FIR filter in your model and then type gcb in the MATLAB console.

(gcb means “get the full block path name of the current Simulink block.”)

>> gcb

You will see that “ans = filtfft/FIR ”

• You can get a handle to the top-level model by defining a variable as the “parent.”

At the MATLAB console prompt, type

>> p=get_param(gcb,’parent’);

• Now type

>> get_param(p,’PreloadFcn’)

and you will see that the M-code file filtInit.m will be loaded whenever the

model is opened. If this has not already been done for this model, you could set

the pre-loaded file by typing

>> set_param(p,’PreloadFcn’,’filtInit’);

This tells Simulink to load filtInit.m whenever you open this model.

Filter

Xilinx System Generator v2.1 Basic Tutorial

Using this technique, you can define filter coefficients once (perhaps by using SPTool

as you will do next), and then save them into a file and have them always loaded with

your model.

Using SPTool
Next, you will create a low-pass filter using SPTool.

10. In the MATLAB console, type

>> sptool

The SPTool start-up window will open.

Figure 7-3 SPTool Start-up Window

11. In the SPTool start-up window, click on the “New Design” button. This pops up

the Filter Designer with a sample “Equiripple FIR” low-pass filter with a -20dB

stopband and the following settings:

♦ Sampling frequency: 8192

♦ Passband frequency: Fp = 409.6

♦ Passband ripple: Rp = 3

♦ Stopband frequency: Fs = 614.4

♦ Stopband ripple: Rs = 20

Xilinx System Generator v2.1

42 Xilinx Development System

♦ Filter order = 22 (minimum order

Figure 7-4 Filter Designer GUI

12. From the SPTool start-up window, choose File->export from the File menu.

This will pop up the Export window.

Figure 7-5 SPTool Export Window

13. In the Export window, select Filter:filt1[design] and click the Export to
Workspace button. You have now exported this new filter to the MATLAB console

workspace.

Filter

Xilinx System Generator v2.1 Basic Tutorial

14. Go back to the MATLAB console and type

>> filt1

Note: The whos command will display all the variables that you currently have in the

workspace. Typing whos at this point will show you the vector h, preloaded by the

model, as well as filt1 , which you have just exported.

You can see that filt1 is a structure.

filt1 =

tf: [1x1 struct]
ss:[]
zpk:[]
sos:[]
imp:[]
step:[]
t:[]
H:[]
G:[]
f:[]
specs:[1x1 struct]
Fs: 8192
type: ‘design’
lineinfo:[]
SPTIdentifier:[1x1 struct]
label: ‘filt1’

Its coefficients can be extracted and bound to the filters in our example model from

the transfer function. (As this is a FIR filter, the denominator is 1.)

15. Transfer the coefficients from filt1 to our vector h by typing the following in

the MATLAB console:

>> h=filt1.tf.num;

Now, if you list the contents of the vector h (just type the variable name to see its

contents), you will see that h has 23 elements.

16. Return to your Simulink model window, and with your cursor in the window,

type Ctrl-D. This will recompile your Simulink model using the new vector h, and

thus importing 23 coefficients into your filters. Notice that the number of taps in

your FIR filters has changed to 23.

Figure 7-6 Changed Filter Window

Xilinx System Generator v2.1

44 Xilinx Development System

17. Run the simulation again and observe that the filter is now greatly reducing the

high frequency components in the FFT frames.

Figure 7-7 Change in Filtered Scope Output

18. To view the results in more natural datawidths, use the

“Zoom X Axis” and “Zoom Y Axis” buttons on the scopes.

Using the “done” pulse as a width to observe, you can view

the data in sets of 16, which is more natural for FFT data

when N=16.

19. Continue to experiment with SPTool, designing other filters (not only lowpass)

and exporting the coefficients to the workspace, then importing them to your

model.

Help on SPTool
Typing

» help sptool
from the console causes MATLAB to display SPTool instructions.

Image Enhancement

Xilinx System Generator v2.1 Basic Tutorial

Chapter 8

Image Enhancement

This chapter of the tutorial shows you how to use the Xilinx blocks to implement a

simple image processing application. You will work with an image enhancement

algorithm in Simulink and generate an FPGA implementation that can be simulated

in an HDL simulator using test vectors created in Simulink by System Generator.

The tutorial uses the Image Processing Toolbox function imshow() to view images. If

you have not purchased this toolbox from The MathWorks, it is possible to work

through the tutorial, but you will have to view the image files some other way.

The input for this example is a medical image of a human heart. You will apply an

image enhancement algorithm to increase the contrast of the image. After simulating

the design in Simulink, you will generate a VHDL implementation in System

Generator, simulate the VHDL in the ModelSim HDL simulator from Model

Technology, synthesize the design for a Xilinx FPGA using the Synplify synthesis

compiler from Synplicity, and place and route the design using the Xilinx Alliance

Series software tools.

Note that although the Simulink simulation typically runs in several minutes, an HDL

simulation that operates at a much lower level of abstraction (i.e. largely mapped onto

gate-level primitives), may run for more than an hour. This is an indication of why

modeling an FPGA design in System Generator is so powerful. With quick

turnaround times, it is possible to increase dramatically the number of design

iterations while developing the algorithm.

The model for this tutorial can be found in the sysgen/examples/image_enhance
directory under your $MATLAB/toolbox/xilinx directory.

Design Overview
The image enhancement design consists of a two-dimensional low-pass filter and a

mixer. The filter creates a blurred version of the original image, and the mixer is used

to create a weighted difference between the blurred and original images. In the

resultant image, the high-frequency components of the original have been amplified,

having the effect of enhancing the image.

The two dimensional filter is factored into two one dimensional filters, that are

sequentially applied to vertical and horizontal scan lines of the image in the enh/
Enhance/2D_LowPass/VFIR and enh/Enhance/2D_LowPass/HFIR subsystems.

In both subsystems, filter symmetry is exploited to halve the number of required

multipliers. The mixer subsystem enh/Enhance/Mixer boosts high frequency

components in the image by computing a weighted difference of the original image

and the low-pass filtered image.

Xilinx System Generator v2.1

46 Xilinx Development System

Figure 8-1 Image Enhancement Model in Simulink

Process the Design in Simulink
1. First, cd into the directory

$MATLAB\toolbox\xilinx\sysgen\examples\image_enhance .

2. Run a preprocessing script that assigns the image to a MATLAB array, by typing

PreProc_heart
at the MATLAB console prompt. Notice that this script also displays the unfiltered

image of the heart for you to view, see Figure 8-2. The image can be found in the

file Heart.bmp in your project directory.

Image Enhancement

Xilinx System Generator v2.1 Basic Tutorial

Figure 8-2 Unfiltered Image

3. Open the Simulink model by typing enh in the MATLAB command window. The

top-level sheet will open.

4. Explore the hierarchy of the model to see how the design consists of a 2-D filter

and a mixer, and how the 2-D filter has been decomposed into two 1-D filters,

VFIR and HFIR.

Xilinx System Generator v2.1

48 Xilinx Development System

Figure 8-3 Low-Level HFIR Sheet

5. Run the system simulation in Simulink by selecting Start from the Simulation

pull-down menu. The simulation may take several minutes to complete. You can

reduce the simulation Stop time parameter, but doing so will reduce the image

enhancement.

A real-time system requires a processing rate of at least 30 frames per second.

Image Enhancement

Xilinx System Generator v2.1 Basic Tutorial

Figure 8-4 Start the Simulation

6. Return to the MATLAB console window and run a post-processing script by

typing

PostProc_heart
The original image, along with an enhanced image for comparison, will appear

side by side. View the enhanced image in the comparison window. See Figure 8-5.

Generate VHDL and Testbench Vectors
(Optional Section)

7. From the top level, double click on the System Generator token.

Figure 8-5 Original Image and Enhanced Version

Xilinx System Generator v2.1

50 Xilinx Development System

8. In the System Generator block parameters dialog box, choose an output directory

and select “Create Testbench.” Click “Generate” to generate the VHDL code and

testbench vectors for this design.

Since you have chosen to create testbench vectors, Simulink will again run the same

simulation you ran earlier. This time, as it runs the simulation during the code-

generation stage, it will save all of the simulation inputs and outputs into testbench

vectors to be used in your VHDL and post-PAR simulation later.

Simulation and Implementation
(Optional Section)

If you like, you can simulate the design in an HDL simulator. The script files vcom.do
and vsim.do , as well as testbench vectors (.dat files) have been created in your

project output directory.

9. Open ModelSim and run vcom.do and vsim.do to verify the design’s generated

VHDL. Or, if you prefer to run the design using the Xilinx ISE Project Navigator,

you may open the .npl file that was generated by System Generator, and run the

pn_behavioral.do file through ModelSim from the Project Navigator

processes. (See tutorial Chapter 3 for details.)

Note: Running this simulation in ModelSim with the generated testbench files will

take several hours. However, since you already ran the simulation in Simulink, you

can be assured that your design is simulating properly. ModelSim simulation isn’t

necessary, since System Generator gives you bit-true results that you already saw in

Simulink.

Next, synthesize this design using Synplicity’s synthesis compiler, Synplify. System

Generator has created a Synplicity project for you: it is

<project_name>_synplify.prj .

10. Open the design in Synplify, using the project file created already.

11. Run the design through Synplify. This may take up to a half hour.

12. An EDIF file is created by Synplify. It is by default written into a subdirectory

rev1 . You may want to copy this EDIF file into another directory that you will use

as the project directory for the Xilinx Implementation software tools.

13. Implement the EDIF file using the EDIF project capability of the ISE software

tools. To do this, open the Project Navigator and select File >> New Project .

A new project properties dialog will open. Select EDIF as the design flow type.

Figure 8-6: EDIF design flow in Project Navigator

Image Enhancement

Xilinx System Generator v2.1 Basic Tutorial

14. Now you may add your EDIF files to the project as sources. From the Project

Navigator pulldown menu bar, choose Project>>Add Source , and then

browse to your EDIF files.

15. Target this design to a Virtex 600E part.

16. Translate, map, place & route your design using the Xilinx implementation tools.

You can use other accessories in the Xilinx design suite to examine your design or

to add attributes or constraints.

Related Information
For additional information about this particular design, see the paper: Issues on
Medical Image Enhancement by Reza, Schley, and Turney, which can be found on the

Xilinx website

http://www.xilinx.com/products/logicore/dsp/issues_enhanc_med_img.pdf

Xilinx System Generator v2.1

52 Xilinx Development System

Chapter 9

Combination Lock State Machine

In this example we design a state machine for a combination lock. We use the Xilinx

Mealy State Machine block which is part of the State Machine Reference Library. The

state machine is realized with block and distributed RAMs, resulting in a very fast and

efficient implementation. This example uses only a single block RAM and runs at

more than 150 MHz.

State Machine Library
The state machine library is available in the Xilinx Blockset.

When you start MATLAB and open the Simulink Library Browser, open the Xilinx

Blockset and the State Machine section. You should see the following:

Figure 9-1 State Machine Library

Design Overview
We start by defining the combination lock state machine. It has one input X and two

outputs UNLOCK and HINT. The UNLOCK output should be 1 if and only if X is 0 and

the sequence of inputs received on X in the preceding seven cycles was '0110111'. The

HINT output should be 1 if and only if the current value of X is the correct one to move

the state machine closer to the unlocked state (with UNLOCK = 1).

The next state/output table for the state machine is shown below.

Combination Lock State Machine

Xilinx System Generator v2.1 Basic Tutorial

Figure 9-2 Table of next states and corresponding outputs

Note: The contents of the columns named 'If X = 0' and 'If X = 1' are formatted in the

following way: Next State, UNLOCK HINT.

The table shows the next state and outputs that result from the current state and input

X. For example, if the current state is 3 and X is 0, the next state is 4. The transition from

state 3 to 4 means we have seen the sequence '0110'. During this transition, the

UNLOCK output is 0 and the HINT output is 1, indicating we are one step closer to the

unlocked state. The state machine moves on to the next state if we get the correct input

and returns to states 0 or 1 if we get an incorrect one. State 6 is an exception; if we get

the wrong input, i.e., '0', the previous three inputs might still turn out to be the

beginning of the required sequence. Consequently, we go back to state 4 instead of

state 1. In state 7, we have received the required sequence, so we set UNLOCKto 1 if X is

0. In each state, we set HINT to 1 for the value of X that moves the state machine closer

to state 7.

Implementation
From the above description we see that we must use a Mealy state machine to

implement the design, since the outputs depend on both the current state and input.

A block diagram of this type of state machine is shown below.

Figure 9-3 Block Diagram of Mealy State Machine

The block is configured with next state and output matrices obtained from the next

state/output table discussed above. These matrices are constructed as follows:

Xilinx System Generator v2.1

54 Xilinx Development System

Figure 9-4 Construction of the Next State and Output Matrices

Rows of the matrices correspond to the current state, and columns correspond to the

input value. The output of the state machine is an N-bit vector. (In this example N is

2.) An element of the output matrix is a decimal representation of the N-bit output

vector for a particular state. In this example, the outputs UNLOCK and HINT are

concatenated together to make the elements of the output matrix. For instance, when

the state is 7 and X = 1, both UNLOCKand HINT are 1, so the corresponding element of

the output matrix is 3 (the decimal representation of binary '11').

The next state logic and state register in this block are implemented with high speed

dedicated block RAM. The output logic is implemented using a distributed RAM

configured as a lookup table, and therefore has zero latency.

Simulation
Open the Simulink model lock.mdl for this example. You will see the diagram shown

below.

Combination Lock State Machine

Xilinx System Generator v2.1 Basic Tutorial

Figure 9-5 Lock Simulink Model

The block’s parameters dialog box can be invoked by double-clicking on the Mealy

State Machine icon in the model. In this dialog, the next state and output matrices are

specified and the number of output bits is set to 2. Two slice blocks are used to extract

the UNLOCK and HINT bits from the output.

Figure 9-6 Mealy State Machine block parameters dialog box

Xilinx System Generator v2.1

56 Xilinx Development System

When the design is simulated using [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1

1 1] as the input vector, the sequence '0110111' is found at time offsets 20 and 31. The

simulation results are shown below.

Figure 9-7 Simulation Results

More Fun With the State Machine
A MATLAB function called calcLockMatrices is provided and can be used to create a

new next state and output matrix to detect a different sequence. To run the function,

change your working directory to

$MATLAB\toolbox\xilinx\sysgen\examples\state_machine and then type

[next, out] = calcLockMatrices('0110101101111')

The next state and output matrices should be specified in the state machine block GUI

as the values for 'Next State Matrix' and 'Output Matrix'. You can change the input of

the design by modifying the 'Input Sequence' block. Resimulate the design and try to

detect the new sequence.

References
This example is based on the "combination lock" state machine presented on pages

399-402 in Digital Design Principles and Practices by John F. Wakerly, Prentice Hall, 1990.

	Xilinx System Generator v2.1 for Simulink
	About the Tutorials
	Tutorials Contents
	Additional Resources

	Setting Up the Tools
	Software Dependencies
	Software Download
	Using the System Generator installer
	Uninstalling previous System Generator directories
	Recommended Documentation

	Compiling IP libraries for simulation
	ModelSim (PE or EE/SE)
	MXE libraries

	Introduction to Simulink and Xilinx Gateway Blocks
	Introduction to Simulink
	Precision and the Xilinx Gateways

	Software Overview
	Introduction
	Simulink Design Flow
	Opening the Design Example
	The Simulink Library Browser
	The Simulink Model Window

	Customizing the Xilinx Blockset Elements in a Design
	Gateway Blocks and Precision

	Simulation
	System Generator block
	Files Produced by System Generator Code Generation
	Testbench Generation
	Implementation within the Xilinx Design Environment
	Implementing your design

	Black Boxes
	A Black Box Example Model
	The Black Box Window

	Multiplier Accumulator
	Incomplete Design
	Complete the Multiplier/Accumulator
	More Fun With the MAC

	The Costas Loop
	Design Overview
	The Costas Loop design in System Generator
	Exploring the design
	Simulation results

	Filter
	SPTool Utility
	Design Overview
	Preloading init Files
	Using SPTool
	Help on SPTool

	Image Enhancement
	Design Overview
	Process the Design in Simulink
	Generate VHDL and Testbench Vectors
	Simulation and Implementation
	Related Information

	Combination Lock State Machine
	State Machine Library
	Design Overview
	Implementation
	Simulation
	More Fun With the State Machine
	References

