
JPMorgan Chase Software Engineering Virtual Experience

Setting up your dev
environment for the
program!
Module 1 - Interface with a stock price data feed

Setting up your dev environment for the program!

We know your first time using
Python, or setting up a web
development environment at work,
might be daunting.

Or feel like it uses technologies you haven’t used before, or might
feel like it takes too long.

Setting up your dev environment for the program!

Setting up your dev environment for the program!

So to help you out we’ve created this
step-by-step guide to setting up your
computer for this task.

A lot of the things you do here, you will also do when you set
yourself up at an in-office internship too. Look like an amazing hire
when you breeze through dev environment setup!

With this guide, the approximate time to get a development
environment working for you is 10 minutes.

Setting up your dev environment for the program!

Setting up your dev environment for the program!

To start, choose the application environment based on
your device & current skill level

REPL
(best if you have not set up a dev

environment before)

(Mac)
Setting up your dev environment for task

1

(Windows)
Setting up your dev environment for task

1

(Linux)
Setting up your dev environment for task

1

Setting up your dev environment for the program!

JPMorgan Chase Software Engineering Virtual Experience

Using Repl.it, an in browser code
editor and compiler to do the
JPMorgan Chase program
Module 1 - Interface with a stock price data feed.

Approximately 3 minutes.

Setting up your dev environment for the program!

Using REPL
● REPL is an online coding platform that developers can use to run simulated

applications / tests without having to worry about installing dependencies on
their local machines

● For “Module 1 - Interface with a stock price data feed”, we’ve set up two
REPL environments: Python2 Env and Python3 Env (click on the link of the
environment you want to use and you should end up on a page like the one
shown in the next slide)

https://repl.it/@JoeFerrer/JPM-MODULE-1-REPL
https://repl.it/@JoeFerrer/JPM-MODULE1-PY3-REPL

Setting up your dev environment for the program!

● To get started, read thru the “Instructions” file in the REPL by clicking on the
“Instructions” file on the left hand side of the screen

● To make the files show, you must click the “File” icon. (also boxed in red)

JPMorgan Chase Software Engineering Virtual Experience

Setting up your Mac for the
JPMorgan Chase program
Module 1 - Interface with a stock price data feed

Setting up your dev environment for the program!

Local Setup (Mac)
● Use this method if you chose not to use the REPL method.

If your machine is running on Mac, follow this setup guide to get started.

● First you must have git installed in your system. Git is used by most
programmers today to collaborate with code/software projects. To install git,
follow this quick guide. You know you have installed successfully when you
get a version output on your terminal by typing `git --version`:

https://www.atlassian.com/git/tutorials/install-git#mac-os-x

Setting up your dev environment for the program!

Local Setup (Mac)
● Once you have git installed, you need a copy of the application code you’ll be

working with on your machine. To do this, you must execute the following
commands on your terminal:

git clone https://github.com/insidesherpa/JPMC-tech-task-1.git
git clone https://github.com/insidesherpa/JPMC-tech-task-1-py3.git

● This command will download the code repositories from github to your
machine in the current working directory of the terminal you executed the
command in. Downloading the 2 repositories above will give you options later

https://github.com/insidesherpa/JPMC-tech-task-1.git
https://github.com/insidesherpa/JPMC-tech-task-1-py3.git

Setting up your dev environment for the program!

Local Setup (Mac)
● You’ll know you cloned successfully if you have the copy of the application

code on your machine:

note: the image above and in the next slide just does not contain the
other repository but it should if you did the previous slides and execute
the ls command. `ls` just lists the files/folders in the current directory

Setting up your dev environment for the program!

Local Setup (Mac)
● To access the files inside from the terminal, just change directory by typing

the following commands:

cd JPMC-tech-task-1

ls

note: If you choose to work using python3 and your system has version python3
or above instead of python2.7.x, then choose to go into the other repository
you downloaded instead. (otherwise, use the other repo above)

cd JPMC-tech-task-1-py3

note: `cd` means change directory. `ls` lists contents in the current
directory. Check this for more info on cd

https://www.macworld.com/article/2042378/master-the-command-line-navigating-files-and-folders.html

Setting up your dev environment for the program!

Local Setup (Mac)
● To clarify, you’re only supposed to work on one of the repositories you cloned

/ downloaded into your system. It all depends on what Python version you
primarily use.

● Python is just a scripting / programming language we developers use quite
often in the field. This application you’ll be working on uses it.

● We’ll discuss checking / installing Python in your system in the following
slides

Setting up your dev environment for the program!

Local Setup (Mac)
● Next, you’ll need to have Python 2.7 or Python 3 installed on your machine.

Follow the instructions here(python 2.7) or here (python 3) You can verify this
on your terminal if you get a result like:

(any python 2.7.x > = 2.7.16 should suffice but the latest
2.7.x is recommended (2.7.17);
any python 3.x >= 3.6is fine, latest is recommended (3.8.0))

Execute the command below to verify what
version you have:

python --version

Note: the image here is only of 2.7 but it
should be similar if you check for python3

Sometimes your system might have it as

python3 --version

https://docs.python-guide.org/starting/install/osx/
https://programwithus.com/learn-to-code/install-python3-mac/

Setting up your dev environment for the program!

Local Setup (Mac)
● Once you have Python 2.7 or Python3 installed, all you have to do get the

application up and running is to start the server and client scripts in two
separate terminals.

Setting up your dev environment for the program!

Local Setup (Mac)
● (note: just choose to run one server and one client; either the python 2 or python 3 version of server

and client applications. Run the commands below on separate terminals, starting with the server
and then the client. The commands will vary depending on your primary python version)

// If python --version = 2.7+, you must be in the JPMC-tech-task-1
// If python --version = 3+ , you must be in JPMC-tech-task-1-py3 directory
python server.py
python client.py

// If your system makes the distinction of python3 as `python3`,
// you must be in JPMC-tech-task-1-py3 directory
python3 server3.py
python3 client3.py

If ever you encounter an error when starting the server application, see troubleshooting in this slide

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Mac)
● If you did not encounter any issues, your setup is finished. From here on, you

can make changes to the code (see another guide in the module page for this) and
eventually arrive at the desired output.

● If you did encounter issues, check if the commonly encountered issues listed
in the next few slides will solve your problem:

○ dateutil dependency
○ Socket unavailable

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Mac)
● In some cases, dependency issues might arise like when you run `server.py`:

In this case, you must install pip first. pip is python’s package manager for
installing python dependencies. Make sure you install pip for the right Python
version you’re working with in this project. You can check your pip version by
pip --version and it will tell which python version it maps too

https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Mac)
● Installing pip nowadays usually involves downloading the get-pip.py script. If

you followed the instructions in the last slide, it usually involves using the
command:
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

If you don’t have curl, just install it in your system. For mac, it’s this way
Then just run the script using python:
//if python --version = 2.7+ this will install pip for python2
//if python --version = 3+ this will install pip for python3
python get-pip.py

//if your system makes the distinction of python3 as `python3` then
//doing the command below will install pip for python3
python3 get-pip.py

https://bootstrap.pypa.io/get-pip.py
http://macappstore.org/curl/

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Mac)
● Then afterwards, you can run the following command on your terminal to

install the dependency:

pip install python-dateutil

Afterwards, you can rerun the server and then rerun the client

Note: For the command above, whatever python version your pip corresponds to (i.e. the output
of pip --version, that is the python version that will have the dependency installed). So if you’re
pip corresponds to python2.7.x then doing the command above will install python-dateutil for
python2.7.x

https://pypi.org/project/python-dateutil/

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Mac)
● In other cases, you might encounter problems running the server app
CASE A:

This is most likely because you have a firewall open preventing you from accessing 8080. You can try the
following workarounds:

- Temporarily turn off your firewall
- Using any text editor, open the server.py or server3.py in the repository using your code editor and look

for the line where it says port = 8080. change that to port = 8085
- Similarly, open the client.py or client3.py and change the line where it has 8080 to 8085

note: the example here is from windows but a similar error might appear for mac

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Mac)
CASE B:

In this case make sure you're only running one instance of the server.py because it hooks itself to port 8080,
and once that port is used nothing else can use it. If you want to free that up, terminate the old server.py
you're running from one of your terminals by hitting cmd+c. Alternatively you can kill the process listening on
a port (i.e. in this case 8080) by following this guide

https://superuser.com/questions/609794/kill-what-ever-is-running-on-port-8080

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Mac)
● If you did encounter any other issues, please post your issue/inquiry here:

https://github.com/insidesherpa/JPMC-tech-task-1/issues or
https://github.com/insidesherpa/JPMC-tech-task-1-py3/issues depending on
what repository you chose to work in. When submitting a query, please don’t
forget to provide as much context as possible, i.e. your OS, what you’ve done,
what your errors is/are, etc (screenshots would help too)

● You can also submit your query in the module page’s support modal that pops
out when you click the floating element on the page (see image below)

https://github.com/insidesherpa/JPMC-tech-task-1/issues
https://github.com/insidesherpa/JPMC-tech-task-1-py3/issues
https://www.insidesherpa.com/modules/R5iK7HMxJGBgaSbvk/gtAhtcvke9AFCzqME

JPMorgan Chase Software Engineering Virtual Experience

Setting up your Windows for
the JPMorgan Chase program
Module 1 - Interface with a stock price data feed

Setting up your dev environment for the program!

Local Setup (Windows)
● Use this method if you chose not to use the REPL method.

If your machine is running on Windows, follow this setup guide to get started
(the examples here are on Windows X but it should be relatively similar for
other versions)

● First you must have git installed in your system. Git is used by most
programmers today to collaborate with code/software projects.To install git,
follow this quick guide. You know you have installed successfully when you
get this output on your command line (cmd). (any git version should suffice but the
latest is recommended)

https://www.atlassian.com/git/tutorials/install-git#windows

Setting up your dev environment for the program!

Local Setup (Windows)
● Once you have git installed, you need a copy of the application code you’ll be

working with on your machine. To do this, you must execute the following
command on your terminal:

git clone https://github.com/insidesherpa/JPMC-tech-task-1.git
git clone https://github.com/insidesherpa/JPMC-tech-task-1-py3.git

● This command will download the code repositories from github to your
machine in the current working directory of the terminal you executed the
command in. Downloading the 2 repositories above will give you options later

https://github.com/insidesherpa/JPMC-tech-task-1.git
https://github.com/insidesherpa/JPMC-tech-task-1-py3.git

Setting up your dev environment for the program!

Local Setup (Windows)
● You’ll know you cloned successfully if you have the copy of the application

code on your machine:

note: the image above just does not contain the other repository but it
should if you did the previous slides and execute the dir command. `dir`
will list the contents of the current directory

Setting up your dev environment for the program!

Local Setup (Windows)
● To access the files inside from the terminal, just change directory by typing:

cd JPMC-tech-task-1 note: The image on this slide
just does not contain the other
repository but it should if you
did the previous slides and
execute the dir command.

note: If you choose to work using
python3 and your system has
version python3 or above instead
of python2.7.x, then choose to go
into the other repository you
downloaded instead. (otherwise,
use the other repo above)

cd JPMC-tech-task-1-py3 note: `cd` means change directory (more on cd)

https://ss64.com/nt/cd.html

Setting up your dev environment for the program!

Local Setup (Windows)
● To clarify, you’re only supposed to work on one of the repositories you cloned

/ downloaded into your system. It all depends on what Python version you
primarily use.

● Python is just a scripting / programming language we developers use quite
often in the field. This application you’ll be working on uses it.

● We’ll discuss checking / installing Python in your system in the following
slides

Setting up your dev environment for the program!

Local Setup (Windows)
● Next, you’ll need to have Python 2.7 or Python3 installed on your machine.

Follow the instructions here (for python2), or here (for python3) You can verify
this on your command line (cmd) if you get a result like:

(any python 2.7.x > = 2.7.16 should suffice but the latest
2.7.x is recommended (2.7.17);
any python 3.x >= 3.6is fine, latest is recommended (3.8.0))

Execute the command below to
verify what version you have:

python --version

Note: the image here is only of
2.7 but it should be similar if you
check for python3

Sometimes your system might
have it as

python3 --version

https://www.howtogeek.com/197947/how-to-install-python-on-windows/
https://phoenixnap.com/kb/how-to-install-python-3-windows

Setting up your dev environment for the program!

Local Setup (Windows)
● Once you have Python 2.7 or Python3 installed, all you have to do get the

application up and running is to start the server and client scripts in two
separate cmds (see image in the next slide). Ensure that the command line
wherein you run python server.py is on Administrator mode:

Setting up your dev environment for the program!

Local Setup (Windows)

Setting up your dev environment for the program!

Local Setup (Windows)
● When you open the cmd in admin mode, you’ll notice that its current directory

starts from C:\Windows\System32. Assuming you cloned the repository in
your home directory you need to use the cd command to get there. For
instance if I cloned it in C:\Users\insidesherpa, then I should do something
like:

cd \Users\insidesherpa\JPMC-tech-task-1
Or
cd \Users\insidesherpa\JPMC-tech-task-1-py3

note: the example above isn’t what you’re going to type on your system.
You have a different user account in \Users where you probably cloned
the repo. Use that instead...

Setting up your dev environment for the program!

Local Setup (Windows)
● (note: just choose to run one server and one client; either the python 2 or python 3 version of server

and client applications. Run the commands below on separate command lines, starting with the
server and then the client. The commands will vary depending on your primary python version)

// If python --version = 2.7+, you must be in the JPMC-tech-task-1
// If python --version = 3+ , you must be in JPMC-tech-task-1-py3 directory
python server.py
python client.py

// If your system makes the distinction of python3 as `python3`,
// you must be in JPMC-tech-task-1-py3 directory
python3 server3.py
python3 client3.py

If ever you encounter an error when starting the server application, see troubleshooting in this slide

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Windows)
● If you did not encounter any issues, your setup is finished. From here on, you

can make changes to the code (see another guide in the module page for this) and
eventually arrive at the desired output.

● If you did encounter issues, check if the commonly encountered issues listed
in the next few slides will solve your problem:

○ dateutil dependency
○ python not recognized or not returning in your command line
○ Socket unavailable

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Windows)
● In some cases, dependency issues might arise like when you run `server.py`:

In this case, you must install pip first. pip is python’s package manager for
installing python dependencies. Make sure you install pip for the right Python
version you’re working with in this project. You can check your pip version by
pip --version and it will tell which python version it maps too

https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Windows)
● Installing pip nowadays usually involves downloading the get-pip.py script. If

you followed the instructions in the last slide, it usually involves using the
command:
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

If you don’t have curl, just install it in your system. For mac, it’s this way
Then just run the script using python:
//if python --version = 2.7+ this will install pip for python2
//if python --version = 3+ this will install pip for python3
python get-pip.py

//if your system makes the distinction of python3 as `python3` then
//doing the command below will install pip for python3
python3 get-pip.py

https://bootstrap.pypa.io/get-pip.py
http://macappstore.org/curl/

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Windows)
● After that, for pip to be a recognizable command in your terminal/command line,

you need to add it in your system’s path environment variable
○ On Windows, for Python2.7 it’s usually in C:\\Python27\Scripts. It would also be similar for

Python3.x if you followed the installation guide for Python earlier (e.g. C:\\Python3X\Scripts)

○ Make sure you open a new command line too and use that instead after doing this

● To edit your system path environment variable it’s similar to the slides here.
● Alternatively you can access it doing something like:

○ C:\\Python27\Scripts\pip.exe <parameters> (similar for python3x if it was installed in C:\\)
○ <parameters> could be something like C:\\Python27\Scripts\pip.exe install python-dateutil
○ Take note though, this assumes that you have your python installed in drive C:\\

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Windows)
● Then afterwards, you can run the following command on your terminal to

install the dependency:

pip install python-dateutil

Afterwards, you can rerun the server and then rerun the client

Note: For the command above, whatever python version your pip corresponds to (i.e. the output
of pip --version, that is the python version that will have the dependency installed). So if you’re
pip corresponds to python2.7.x then doing the command above will install python-dateutil for
python2.7.x

https://pypi.org/project/python-dateutil/

Setting up your dev environment for the program!

● There are some cases when you tried
installing python e.g. through the usual
installation process or via other software
like anaconda, and when you open your
command line and try executing any
python command like python or python
--version nothing returns.The problem
here is usually because python isn’t
properly set in your system environment’s
path variable properly. To do this go to
your start menu,search “edit the system
environment” and you should be able to
see something like the image on the right

Local Setup: Troubleshooting (Windows)

Setting up your dev environment for the program!

● Click that and click “Environment Variables” in the
next window (image on left side)

● You should then come up with the image below:

Local Setup: Troubleshooting (Windows)

You want to edit the Path
under System variables

Setting up your dev environment for the program!

● You should end up with a window like this after the steps from the previous slide:
Local Setup: Troubleshooting (Windows)

You want to make sure the directory where the Python
executable/application you want to use is in is included
in the list of paths.

If you followed how to install Python2.7.x in the earlier
slides, you should have it in C:\\Python27. Make sure
to include that in your path.

Same goes for Python3.x if you want to enable it. But
make sure to remove your Python2.7.x path first .

If you installed python using other means, e.g.
anaconda, its python executable is located elsewhere
but same method of putting the path applies

Don’t forget to restart your command line after setting
a new path to reflect the changes...

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Windows)
● In other cases, you might encounter problems running the server app
CASE A:

This is most likely because you have a firewall open preventing you from accessing 8080. You can try the
following workarounds:

- Temporarily turn off your firewall
- Using any text editor, open the server.py or server3.py in the repository using your code editor and look

for the line where it says port = 8080. change that to port = 8085
- Similarly, open the client.py or client3.py and change the line where it has 8080 to 8085

note: the example here is from windows but a similar error might appear for mac

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Windows)
CASE B:

In this case make sure you're only running one instance of the server.py because it hooks itself to port 8080,
and once that port is used nothing else can use it. If you want to free that up, terminate the old server.py
you're running from one of your terminals by hitting cmd+c. Alternatively you can kill the process listening on
a port (i.e. in this case 8080) by following this guide

https://superuser.com/questions/609794/kill-what-ever-is-running-on-port-8080

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Windows)
● If you did encounter any other issues, please post your issue/inquiry here:

https://github.com/insidesherpa/JPMC-tech-task-1/issues or
https://github.com/insidesherpa/JPMC-tech-task-1-py3/issues depending on
what repository you chose to work in. When submitting a query, please don’t
forget to provide as much context as possible, i.e. your OS, what you’ve done,
what your errors is/are, etc (screenshots would help too)

● You can also submit your query in the module page’s support modal that pops
out when you click the floating element on the page (see image below)

https://github.com/insidesherpa/JPMC-tech-task-1/issues
https://github.com/insidesherpa/JPMC-tech-task-1-py3/issues
https://www.insidesherpa.com/modules/R5iK7HMxJGBgaSbvk/gtAhtcvke9AFCzqME

JPMorgan Chase Software Engineering Virtual Experience

Setting up your Linux for the
JPMorgan Chase program
Module 1 - Interface with a stock price data feed

Setting up your dev environment for the program!

Local Setup (Linux)
● Use this method if you chose not to use the REPL method.

If your machine is running on any flavor of linux, follow this setup guide to get
started

● First you must have git installed in your system.Git is used by most
programmers today to collaborate with code/software projects.You can install
git by simply running the command below in your terminal (ctrl+alt+t):

● You’ll know you have git if you get a similar result on your terminal:

Setting up your dev environment for the program!

Local Setup (Linux)
● Once you have git installed, you need a copy of the application code you’ll be

working with on your machine. To do this, you must execute the following
command on your terminal:

git clone https://github.com/insidesherpa/JPMC-tech-task-1.git
git clone https://github.com/insidesherpa/JPMC-tech-task-1-py3.git

● This command will download the code repositories from github to your
machine in the current working directory of the terminal you executed the
command in. Downloading the 2 repositories above will give you options later

https://github.com/insidesherpa/JPMC-tech-task-1.git
https://github.com/insidesherpa/JPMC-tech-task-1-py3.git

Setting up your dev environment for the program!

Local Setup (Linux)
● You’ll know you cloned successfully if you have the copy of the application

code on your machine:

note: the image above just does not contain the other repository but it
should if you did the previous slides and execute the ls command. `ls`
just lists the contents in the current directory

Setting up your dev environment for the program!

Local Setup (Linux)
● To access the files inside from the terminal, just change directory by typing:

cd JPMC-tech-task-1

note: If you choose to work using python3 and your system has version
python3 or above instead of python2.7.x, then choose to go into the other
repository you downloaded instead. (otherwise, use the other repo above).

cd JPMC-tech-task-1-py3

note: `cd` means change directory. Check this for more info on how to use cd

https://linuxize.com/post/linux-cd-command/

Setting up your dev environment for the program!

Local Setup (Linux)
● To clarify, you’re only supposed to work on one of the repositories you cloned

/ downloaded into your system. It all depends on what Python version you
primarily use

● Python is just a scripting / programming language we developers use quite
often in the field. This application you’ll be working on uses it.

● We’ll discuss checking / installing Python in your system in the following
slides

Setting up your dev environment for the program!

Local Setup (Linux)
● Next, you’ll need to have Python 2.7 or Python 3 installed on your machine.

Follow the instructions here. (python2) or here (python3) For most cases,
Linux environments already have Python 2.7 or Python3. You can verify this
on your terminal if you get a result like:

(any python 2.7.x > = 2.7.16 should suffice
but the latest 2.7.x is recommended (2.7.17);
any python 3.x >= 3.6is fine, latest is recommended (3.8.0))

Execute the command below to
verify what version you have:

python --version

Note: the image here is only of
2.7 but it should be similar if you
check for python3

Sometimes your system might
have it as

python3 --version

https://tecadmin.net/install-python-2-7-on-ubuntu-and-linuxmint/
https://docs.python-guide.org/starting/install3/linux/

Setting up your dev environment for the program!

Local Setup (Linux)
● Once you have Python 2.7 or Python3 installed, all you have to do get the

application up and running is to start the server and client scripts in two
separate terminals.

Setting up your dev environment for the program!

Local Setup (Linux)
● (note: just choose to run one server and one client; either the python 2 or python 3 version of server

and client applications. Run the commands below on separate terminals, starting with the server
and then the client. The commands will vary depending on your primary python version)

// If python --version = 2.7+, you must be in the JPMC-tech-task-1
// If python --version = 3+ , you must be in JPMC-tech-task-1-py3 directory
python server.py
python client.py

// If your system makes the distinction of python3 as `python3`,
// you must be in JPMC-tech-task-1-py3 directory
python3 server3.py
python3 client3.py

If ever you encounter an error when starting the server application, see troubleshooting in this slide

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Linux)
● If you did not encounter any issues, your setup is finished. From here on, you

can make changes to the code (see another guide in the module page for this) and
eventually arrive at the desired output.

● If you did encounter issues, check if the commonly encountered issues listed
in the next few slides will solve your problem:

○ dateutil dependency
○ Socket unavailable

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Linux)
● In some cases, dependency issues might arise like when you run `server.py`:

In this case, you must install pip first. pip is python’s package manager for
installing python dependencies. Make sure you install pip for the right Python
version you’re working with in this project. You can check your pip version by
pip --version and it will tell which python version it maps too

https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Linux)
● Installing pip nowadays usually involves downloading the get-pip.py script. If

you followed the instructions in the last slide, it usually involves using the
command:
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

If you don’t have curl, just install it in your system. For mac, it’s this way
Then just run the script using python:
//if python --version = 2.7+ this will install pip for python2
//if python --version = 3+ this will install pip for python3
python get-pip.py

//if your system makes the distinction of python3 as `python3` then
//doing the command below will install pip for python3
python3 get-pip.py

https://bootstrap.pypa.io/get-pip.py
http://macappstore.org/curl/

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Linux)
● Then afterwards, you can run the following command on your terminal to

install the dependency:

pip install python-dateutil

Afterwards, you can rerun the server and then rerun the client

Note: For the command above, whatever python version your pip corresponds to (i.e. the output
of pip --version, that is the python version that will have the dependency installed). So if you’re
pip corresponds to python2.7.x then doing the command above will install python-dateutil for
python2.7.x

https://pypi.org/project/python-dateutil/

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Linux)
● In other cases, you might encounter problems running the server app
CASE A:

This is most likely because you have a firewall open preventing you from accessing 8080. You can try the
following workarounds:

- Temporarily turn off your firewall
- Using any text editor, open the server.py or server3.py in the repository using your code editor and look

for the line where it says port = 8080. change that to port = 8085
- Similarly, open the client.py or client3.py and change the line where it has 8080 to 8085

note: the example here is from windows but a similar error might appear for mac

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Linux)
CASE B:

In this case make sure you're only running one instance of the server.py because it hooks itself to port 8080,
and once that port is used nothing else can use it. If you want to free that up, terminate the old server.py
you're running from one of your terminals by hitting cmd+c. Alternatively you can kill the process listening on
a port (i.e. in this case 8080) by following this guide

https://superuser.com/questions/609794/kill-what-ever-is-running-on-port-8080

Setting up your dev environment for the program!

Local Setup: Troubleshooting (Linux)
● If you did encounter any other issues, please post your issue/inquiry here:

https://github.com/insidesherpa/JPMC-tech-task-1/issues or
https://github.com/insidesherpa/JPMC-tech-task-1-py3/issues depending on
what repository you chose to work in. When submitting a query, please don’t
forget to provide as much context as possible, i.e. your OS, what you’ve done,
what your errors is/are, etc (screenshots would help too)

● You can also submit your query in the module page’s support modal that pops
out when you click the floating element on the page (see image below)

https://github.com/insidesherpa/JPMC-tech-task-1/issues
https://github.com/insidesherpa/JPMC-tech-task-1-py3/issues
https://www.insidesherpa.com/modules/R5iK7HMxJGBgaSbvk/gtAhtcvke9AFCzqME

