

Seventh International Workshop on
Data Management on New Hardware

(DaMoN 2011)

June 13, 2011

Athens, Greece

In conjunction with ACM SIGMOD/PODS Conference

Stavros Harizopoulos and Qiong Luo
(Editors)

 Industrial Sponsor

 i

FOREWARD

Objective
The aim of this one-day workshop is to bring together researchers who are interested in
optimizing database performance on modern computing infrastructure by designing new data
management techniques and tools.

Topics of Interest
The continued evolution of computing hardware and infrastructure imposes new challenges
and bottlenecks to program performance. As a result, traditional database architectures that
focus solely on I/O optimization increasingly fail to utilize hardware resources efficiently.
CPUs with superscalar out-of-order execution, simultaneous multi-threading, multi-level
memory hierarchies, and future storage hardware (such as flash drives) impose a great
challenge to optimizing database performance. Consequently, exploiting the characteristics of
modern hardware has become an important topic of database systems research.

The goal is to make database systems adapt automatically to the sophisticated hardware
characteristics, thus maximizing performance transparently to applications. To achieve this
goal, the data management community needs interdisciplinary collaboration with computer
architecture, compiler and operating systems researchers. This involves rethinking traditional
data structures, query processing algorithms, and database software architectures to adapt to
the advances in the underlying hardware infrastructure.

Workshop Co-Chairs
Stavros Harizopoulos, HP Labs (stavros@hp.com)
Qiong Luo (Hong Kong University of Science and Technology, luo@cse.ust.hk)

Program Committee
Peter Boncz (CWI Amsterdam)
Shimin Chen (Intel Research)
Goetz Graefe (HP Labs)
Ryan Johnson (University of Toronto)
Christian Lang (Acelot Inc.)
Kenneth A. Ross (Columbia University)
Jens Teubner (ETH Zurich)
Dimitris Tsirogiannis (Microsoft Research)

 ii

TABLE OF CONTENTS

Scalable Aggregation on Multicore Processors ... 1
Yang Ye (Columbia University)
Kenneth A. Ross (Columbia University)
Norases Vesdapunt (Columbia University)

Enhancing Recovery Using an SSD Buffer Pool Extension ...10
Bishwaranjan Bhattacharjee (IBM T. J. Watson Research Center)
Christian Lang (Acelot Inc.)
George Mihaila (Google Inc.)
Kenneth A. Ross (IBM T. J. Watson Research Center and Columbia University)
Mohammad Banikazemi (IBM T. J. Watson Research Center)

How to Efficiently Snapshot Transactional Data: Hardware or Software Controlled?........17
Henrik Mühe (Technische Universität München)
Alfons Kemper (Technische Universität München)
Thomas Neumann (Technische Universität München)

Towards Highly Parallel Event Processing through Reconfigurable Hardware27
Mohammad Sadoghi (University of Toronto)
Harsh Singh (University of Toronto)
Hans-Arno Jacobsen (University of Toronto)

Vectorization vs. Compilation in Query Execution ...33
Juliusz Sompolski (VectorWise B.V.)
Marcin Zukowski (VectorWise B.V.)
Peter Boncz (Vrije Universiteit Amsterdam)

QMD: Exploiting Flash for Energy Efficient Disk Arrays ..41
Sean Snyder (University of Pittsburgh)
Shimin Chen (Intel Labs)
Panos K. Chrysanthis (University of Pittsburgh)
Alexandros Labrinidis (University of Pittsburgh)

A Case for Micro-Cellstores: Energy-Efficient Data Management on Recycled
Smartphones ..50
Stavros Harizopoulos (HP Labs)
Spiros Papadimitriou (Google Research)

Scalable Aggregation on Multicore Processors

Yang Ye, Kenneth A. Ross∗, Norases Vesdapunt
Department of Computer Science, Columbia University, New York NY

(yeyang,kar)@cs.columbia.edu, nv2157@columbia.edu

ABSTRACT

In data-intensive and multi-threaded programming, the per-
formance bottleneck has shifted from I/O bandwidth to main
memory bandwidth. The availability, size, and other proper-
ties of on-chip cache strongly influence performance. A key
question is whether to allow different threads to work in-
dependently, or whether to coordinate the shared workload
among the threads. The independent approach avoids syn-
chronization overhead, but requires resources proportional
to the number of threads and thus is not scalable. On the
other hand, the shared method suffers from coordination
overhead and potential contention.

In this paper, we aim to provide a solution to performing
in-memory parallel aggregation on the Intel Nehalem archi-
tecture. We consider several previously proposed techniques
that were evaluated on other architectures, including a hy-
brid independent/shared method and a method that clones
data items automatically when contention is detected. We
also propose two algorithms: partition-and-aggregate and
PLAT. The PLAT and hybrid methods perform best overall,
utilizing the computational power of multiple threads with-
out needing memory proportional to the number of threads,
and avoiding much of the coordination overhead and con-
tention apparent in the shared table method.

1. INTRODUCTION
The number of transistors in microprocessors continues

to increase exponentially. Power considerations mean that
chip designers cannot increase clock frequencies. Instead,
chip designers have shifted the design paradigm to multiple
cores in a single processor chip. Application developers thus
face the challenge of efficiently utilizing the parallel resources
provided by these multi-core processors.

We consider data intensive computations such as aggrega-
tion, a central operation in database systems. The essential
question is whether such computations should be organized

∗This work was supported by the National Science Founda-
tion under awards IIS-0915956 and IIS-1049898.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Seventh International Workshop on Data Management

on New Hardware (DaMoN 2011), June 13, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

on multi-core processors as disjoint independent computa-
tions, or as coordinated shared computations. Independent
computations avoid coordination overhead and contention,
but require resources proportional to the number of threads.
Compared with shared computations, independent compu-
tations on n threads have effective use of only 1/nth of the
cache.

Shared computations allow multiple threads to use a com-
mon data structure, meaning that larger data sets can be
handled with the same amount of RAM or cache. This en-
hanced scalability comes with the burden of making sure
that threads do not interfere with each other, protecting
data using locks or atomic instructions. This coordination
has overheads, and can lead to contention hot-spots that
serialize execution.

1.1 Prior Work
Adaptive parallel aggregation has been investigated in the

context of shared-nothing parallelism [13]. On chip multi-
processors, previous papers have proposed a variety of meth-
ods for aggregating a large memory-resident data set [7, 4].
These papers focused on the Sun Niagara T1 and T2 archi-
tectures because they offered a particularly high degree of
parallelism on a single chip, 32 threads for the T1 and 64
threads for the T2. The high degree of parallelism made is-
sues such as contention particularly important. We examine
four previous hash-based algorithms. These proposals are:

Independent. Perform an independent hash-based aggre-
gation on disjoint subsets of the input, and combine
data from the tables at the end. Each active thread
has its own full-sized hash table.

Shared. Use a single common hash table for all threads,
and protect access to data elements by using atomic
instructions to update hash cell values.

Hybrid. In addition to a global hash table, each thread
has a small private local table that is consulted first.
If there is a match in the local table, then the up-
date happens there without atomic instructions. A
miss in the local table leads to an eviction of some
partial-aggregate element from the local table into the
global table, and the creation of a new aggregate for
the record in the local table.

Contention Detection. The programmer specifies a set of
basic operations to handle the initialization and com-
bination of aggregate values. The system automati-
cally detects contention on frequently accessed data

1

(a) Partition-then-Aggregation Method (b) PLAT

Figure 1: Illustration of Partition-and-Aggregate method and PLAT

items, and clones them so that fewer threads access
each copy, reducing contention. Infrequently accessed
items are not cloned. A “local” variant of this scheme
allows threads to make their own local clones when fac-
ing contention, while a “global” variant shares clones
across a balanced number of threads.

The contention detection method counts the number of
compare-and-swap attempts needed to update an item. Ap-
pendix A gives the code for an atomic add instruction that
also returns this number of attempts. If this number is
greater than a threshold (set to 1 by default), cloning is
triggered. Note that the contention detection method al-
lows computations more general than aggregation, and that
this generality comes with a performance overhead [4].

1.2 Contributions
In an effort to broaden prior results, we aim in this pa-

per to study aggregation on a more conventional architec-
ture, the Intel Nehalem processor. Compared with the Nia-
gara processors, the Nehalem processor has a higher effective
clock speed per thread, and fewer threads (8 per chip, 16 in
a dual-chip system).

We ported the code for the methods discussed above from
the Niagara to the Nehalem architecture and quantified their
performance. Some of the performance results are expected.
The independent method performs well, but cannot scale to
the largest data sets. The shared method performs poorly
for small group-by cardinalities. As on the Niagara ma-
chines, contention for a small number of hash cells severely
limits performance.

One unexpected result is that the contention detection
mechanism failed to ameliorate the contention for small group-
by cardinalities. Because there are fewer threads than on
the Niagara, and because each thread operates much faster,
observable contention (via a failed compare-and-swap) be-
comes relatively rare. As a result, clones are not generated
at a sufficiently rapid rate. We also measure several indirect
indicators of contention, including cache coherence overhead
and MOMC events.

In light of these observations, we consider two additional
aggregation methods that minimize thread sharing and par-
tition work without creating a global hash table for each

thread. These methods are illustrated in Figure 1.

Partition-and-Aggregate. First partition the input into
fragments based on the group-by value, and aggre-
gate each fragment on a single thread. Different frag-
ments can be processed in parallel.1 To avoid con-
tention when writing the partition output, the parti-
tion buffers are arranged in a grid-like manner.

PLAT. Extending the Partition-and-Aggregate method, each
thread is given a private local table in which to perform
aggregation. Once this table fills up, input records
that miss in the local table are partitioned as before.
The local table is particularly useful when there is a
small number of frequent group-by values. PLAT is
an acronym for “Partition with a Local Aggregation
Table.”

The best methods overall are the hybrid method and PLAT.
Both methods generally match the performance of the in-
dependent tables method for small group-by cardinalities,
while being able to scale to larger data sets. For some dis-
tributions with group-by cardinalities somewhat beyond the
L1 cache size, the hybrid method outperforms PLAT, be-
cause its local table adapts over time using dynamic evic-
tion. PLAT does not evict data from the local table. On
the other hand, PLAT outperforms hybrid when data can-
not fit in the L3 cache because the partitioning enhances the
locality in the second phase.

Our results show that on the Nehalem architecture, one
can achieve the performance of independent computation
without duplicating large hash tables across threads. As
more threads become available in future generations of ma-
chines, the importance of such scalability increases. The use
of a cache resident local table is a key element of achieving
scalability while retaining high performance.

Our results also show that, despite efforts to hide architec-
tural details, architecture matters. The contention detection
method that worked well on the Niagara T2 machine does
not work as well on the Nehalem processor because directly

1A version of the Partition-and-Aggregate method was pre-
viously evaluated on the Niagara architecture [12], but it did
not outperform direct aggregation using a large hash table.

2

Platform Sun T2
Intel Nehalem
Xeon E5620

Operating
Solaris 10

Ubuntu Linux
System 2.6.32.25-server

Processors 1 2

Cores/processor
8 (8) 4 (2)

(Threads/core)

RAM 32GB 48 GB

L1
8KB per core 32 KB per core

Data Cache
L1

16KB per core 32 KB per core
Inst. Cache

L2 Cache
4MB, 12-way

256 KB per core
Shared by 8 cores

L3 Cache N.A.
12MB, 16-way

Shared by 4 cores

Table 1: Experimental Platforms

measurable contention (via a failed compare-and-swap) is
rare. We show that a lock-based implementation of the con-
tention detection method does work well on the Nehalem
architecture because the lock attempt coincides with the
time-consuming cache load, making contention more easily
observable.

The remainder of the paper is organized as follow. Section
2 presents an overview of the architecture and its influence
on aggregation algorithms. Section 3 experimentally evalu-
ates the algorithms. Section 4 concludes this paper.

2. ARCHITECTURAL OVERVIEW
With large main memories, main memory access has taken

the role of I/O bandwidth as the new bottleneck in many
data-intensive applications, including database systems [1,
2]. Caches are designed to speed up memory access by
retaining frequently used data in smaller but faster mem-
ory units. There are multiple cache levels, each successively
larger but slower. The higher level caches are typically pri-
vate to a core, and the lowest level caches are typically
shared between cores on a chip. The specific cache con-
figurations of the Sun Niagara T2 and the Intel Nehalem
processors are given in Table 1.

On a multi-chip machine, the caches of the various chips
are kept consistent via a cache coherence protocol. Within a
chip, the private caches also communicate to make sure that
they store consistent results for items accessed by multiple
threads.

On the Intel Nehalem machine, if one thread is updating a
cache line and another thread wants to access the same cache
line, there is a potential memory order hazard. To avoid
potential out-of-order execution, the machine has to flush
the pipeline and restart it. This event is called a “Memory
Order Machine Clear” (MOMC) event. When an MOMC
event is triggered, it can induce more MOMC events because
of the delay caused by the first event. MOMC events can
be quite expensive, and can effectively serialize execution.
Previous research also discovered the influence of MOMC
events on Intel’s Pentium 4 SMT processor [3].

The L3 cache on the Nehalem, and the L2 cache on the
Niagara T2 are inclusive, meaning that data in the higher

level caches also reside in these caches. Thus the lowest-
level cache is the natural place to resolve accesses within
a chip. Accessing cache memory in another processor in
multi-processor system is more complicated. The Nehalem
uses the QuickPath Interconnect (QPI) to control the re-
quest to and from the memory of another processor. The
Nehalem processor implements the MESIF (Modified, Ex-
clusive, Shared, Invalid and Forwarding) protocol [5] to man-
age cache coherency of caches on the same chip and on other
chips via the QPI. Because of the different path lengths
to different kinds of memory, the Nehalem exhibits non-
uniform memory access (NUMA) time. Table 2 summarizes
the memory latencies of the Nehalem 5500 processor; this
data is taken from [10]. (Our experimental machine uses
5620-series processors, but the latencies are likely to be sim-
ilar.) Note that accessing L3-resident data becomes more
expensive if the data has been modified by threads on a
sibling processor.

Since the unit of transfer between levels of the memory
hierarchy is the cache line, it is possible for false sharing to
impact performance. False sharing occurs when two threads
access disjoint items that happen to reside in the same cache
line. Because of the performance pitfalls of modifying shared
cache lines, the Intel optimization manuals recommend that
sharing of data between threads be minimized [11]. Nev-
ertheless, our goal is to take advantage of shared data to
better utilize memory, and so some degree of sharing may
be necessary.

3. EXPERIMENTAL EVALUATION

3.1 Experiment Setup
We consider an aggregation workload (count, sum, and

sum squared) similar to that in [4, 7]. The query is

Q1: Select G, count(*), sum(V), sum(V*V)

From R

Group By G

where R is a two-column table consisting of a 64-bit group-by
integer value G and a 64-bit integer value V for aggregation.
The input size is 228

≈ 270 million records which fits in
4GB of RAM. We measure the throughput of aggregation as
our performance metric. We consider a variety of input key
distributions and vary the number of distinct group-by keys
in each distribution. We use the synthetic data generation
code from [7] (based on the work of Gray et al. [8]). The
distributions are: (1) uniform, (2) sorted, (3) heavy hitter,
(4) repeated runs, (5) Zipf, (6) self-similar, and (7) moving
cluster.

3.2 Independent Table Method
The performance of the independent table method is par-

ticularly good for small group-by cardinalities: over 1,000
million tuples per second as shown in Figure 2 for 8 concur-
rent threads. The downward steps in performance occur as
the group-by cardinality causes the active part of the hash
table to exceed successive cache sizes.

The independent table method does not scale well because
for 8 threads it needs 8 times the memory to accommodate
hash tables for all threads. For instance, if records with the
same key appear in the inputs of all threads, the threads all
need to store this key in their individual tables and merge

3

Access Type
Exclusive Modified Shared

RAM
L1 L2 L3 L1 L2 L3 L1 L2 L3

Local 4 10 38 4 10 38 4 10 38
195

On Chip 65 83 75 38 38
Across Chip 186 300 170 300

Table 2: Read Cache Latency for Different Access Types on the Nehalem 5500 Processor

Figure 2: Independent Tables on all Distributions,

8 Threads

the results at the end. In our experiment, when the group-
by cardinality is 226, the independent table method fails
because the memory required is 64GB, more than the 48GB
available on the machine.

3.3 Contention Detection and Shared Table
Figure 3(a) shows the performance of the contention de-

tection aggregation method using uniform input on the T2
platform with all 64 threads. The No-Detection curve is a
simple shared table with no cloning, which performs badly
(due to contention) for small group by cardinalities. On the
T2, both the local and global cloning methods are effective
at eliminating the poor performance at small group-by car-
dinalities.

Figure 3(b) shows the performance of the contention de-
tection aggregation on the Nehalem platform with 16 threads
enabled. (The results were similar for 4 or 8 threads, even
when all four threads were mapped to a single chip.) Con-
trary to our initial expectations, the contention detection
method does not achieve similar benefits on the Nehalem
platform as on the T2 platform. We kept track of the num-
ber of clones created. On the Nehalem processor, the cloning
methods create relatively few clones, often just 2 or 3 even
for very small group-by cardinalities with high levels of con-
tention.

To understand why cloning is rarely triggered, we created
a micro-benchmark in which a single shared variable is up-
dated using an atomic compare-and-swap operation by all
threads in parallel on both the T2 and Nehalem architec-
tures. On the T2, the average number of failed compare-
and-swaps was about 53, which seems reasonable given that
there are 64 threads. On the Nehalem, however, this number
was 0.1. This sharp difference is due to the smaller number

of much faster threads on the Nehalem platform. (We mea-
sured the single threaded performance of the Nehalem to be
seven times the single-threaded T2 speed for a simple scalar
aggregation.)

Figure 12 in Appendix B shows the performance coun-
ters for the number of MOMC events per record, and the
number of snoops hitting another cache in modified states
(HITM events) per record as measured using the Vtune per-
formance analysis tool [9]. The global method has higher
event numbers than the local method.

To understand whether clone triggering issues are the only
performance issues, we re-ran the contention detection meth-
ods for small group-by cardinalities with the contention thresh-
old set to zero, so that clones are always created. The perfor-
mance of these methods is also shown in Figure 3(b). While
the local method performance mirrored that of the T2, the
global method performs even worse than without always
cloning. After analyzing the code, we realized that the global
method allocates clones in contiguous memory. Since the
aggregate state is 24 bytes, smaller than a cache line, false
sharing was occurring between clones. When we padded the
aggregate state to be exactly 64 cache-line aligned bytes, the
global performance improved, as shown in Figure 3(b).

3.3.1 Locking vs. Atomic Operations

Cieslewicz et al. [4] suggested (but did not evaluate) an al-
ternative contention detection framework using locks rather
than atomic operations. A single mutex can protect all ag-
gregate operations for a given group. A failed attempt to
obtain a lock would indicate contention, analogously to a
failed compare-and-swap. We implemented this alternative
version of contention detection by using the try_lock sys-
tem call that returns control to the calling context if a lock
attempt is unsuccessful. Each failed try_lock adds to the
contention count.

On the Niagara architecture, locks are more expensive
than atomic operations; it takes six or more atomic opera-
tions before the lock-based implementation performs better
[7]. This observation remains true in our contention detec-
tion method: On the T2, the atomic operation based method
performs better (data not shown).

Figure 4 shows that for the Nehalem machine, the lock-
based methods were able to detect contention and perform
well even in cases where the original implementation failed
to detect contention. The critical difference between the
two methods is that the try_lock method induces a time-
consuming coherency-related cache-miss to load the cache
line containing the mutex and aggregate values. This delay
makes lock contention much more likely to be observed. In
contrast, the atomic operations decouple the initial cache
miss of the aggregate values from the compare-and-swap,
leading to the absence of observable contention as discussed
above.

4

(a) T2, 64 threads (b) Nehalem, 16 threads

Figure 3: Performance of Contention Detection on the T2 and Nehalem Processors, Uniform Distribution

Figure 4: Contention Detection Method using

try_lock

3.4 Partition-and-Aggregate
We first vary the fanout from 23 to 29-way partitioning

on all distributions to empirically determine the optimal
fanout. As shown in Figure 6, the performance difference
is noticeable when the group-by cardinality is 220 or larger:
the throughput difference is up to 50 million records per sec-
ond. Fewer partitions suffer from large partition size that
needs more hash buckets for each thread and thus yields
worse performance due to cache misses.

In our implementation, the size of the pointer is 8 bytes
and the size of the buffer head each pointer points to is 64
bytes. Therefore, when the fanout is 256, the size of all
buffer headers together is 16 KB (fanout times the header
size). The pointers also need space and thus to fit into the
L1 cache (32KB), 256-way partitioning is the largest fanout.
Furthermore, the Nehalem architecture in our experimental
setup has 2 levels of translation look-aside buffers for each
core [6]. The L1 DTLB has 64 entries and the L2 TLB (Data
and Instruction together) has 512 entries and thus 256-way
partitioning does not thrash the TLB. But 512-way (29) par-
titioning suffers from both L1 cache misses and TLB misses.
Beyond 512-way partitioning, larger partitioning fanout will

lead to further performance degradation.
Therefore, we use 256-way partitioning, which is the op-

timal fanout for our experimental setup: the partitioning
buffers fit into the L1 cache and the group-by cardinality in
each partition is reduced to enhance data locality. The per-
formance of the Partition-and-Aggregate method is stable
at 120-140 million tuples per second for all distributions, as
is shown in Figure 11 in Appendix B.

Figure 8 shows that the partition-and-aggregate method
outperforms the independent table method when the group-
by cardinality is larger than 215, which corresponds to the
L3 cache limit in the independent table method.

3.5 The PLAT Method

Figure 5: Varying the Fanout on PLAT, 8 Threads,

Uniform Distribution

We run PLAT on different number of partitions (fanout)
from 23 to 29. As shown in Figure 5, the results agree
with the results from the partition-and-aggregate algorithm
that the best fanout is 256. The performance difference is
noticeable when the group-by cardinality is around 220 or
larger: the throughput difference is up to about 80 million
records per second. When the group-by cardinality is very
large (larger than 224) there is no discernible difference in
performance with different fanouts. 512-way partitioning

5

(a) Uniform (b) Zipf

Figure 6: Varying the Fanout on Partition-and-Aggregate Method, 8 Threads

Figure 7: Impact of Local Table Size on PLAT and

Hybrid Methods, Uniform Distribution, 8 Threads

performs slightly worse than 256-way partitioning.
The size of the local table in PLAT was set at 215 to en-

sure L3-cache residence. Figure 7 shows that a smaller (L1-
resident or L2-resident) local table performs slightly better
for small group-by cardinality, but worse for cardinalities
between 8000 and 30000.

Figure 10 shows the performance of the PLAT aggregation
method. Figure 8 shows that, like partition-and-aggregate,
PLAT outperforms the independent method on large group-
by cardinalities by roughly a factor of 2, and scales to larger
group-by cardinalities due to lower memory consumption.

One potential optimization we considered was turning off
the local table if the hit rate to the local table is sufficiently
low. However, even when the hit rate is very low the lo-
cal table processing overhead was sufficiently small that no
performance gain was apparent.

When the data is skewed, PLAT is able to aggregate the
most frequent items in the local table in the first phase.
Without such pruning, the partition-and-aggregate method
will send all records with a frequent common key to one
thread; this thread will become the performance bottleneck.

Figure 8: Comparison of Independent Table,

Partition-and-Aggregate, and PLAT methods on

Uniform Distribution, 8 Threads

As shown in Figure 11 and Figure 10, the partition-and-
aggregate method performs worst on the heavy-hitter dis-
tribution whereas PLAT performs relatively well.

3.6 Hybrid Method
The Hybrid method [7] reduces sharing by making use of

a small local table for each thread. The table also adapts
to the input because it spills the oldest entry to the global
table when the bucket is full. Although it does not eliminate
sharing completely, it effectively reduces sharing so that it
has minimal impact on performance.

Figure 7 shows the impact of local table size on the perfor-
mance of the hybrid method using the uniform distribution.
An L1-resident local table can accommodate 29 entries, and
an L3-resident local table can accommodate 215 entries. The
trade-off is similar to that of PLAT, and we choose to size
the local table based on the L3-cache size.

We show the performance comparison of the hybrid method,
independent method and PLAT in Figure 9 for uniform and
moving-cluster distributions. (Comparisons for other distri-

6

(a) Uniform (b) Moving Cluster

Figure 9: Comparing Hybrid with PLAT and Independent methods

Figure 10: PLAT Method on all Distributions, 8

Threads

butions are shown in Figure 13 in Appendix B.)
The hybrid method does well at intermediate cardinalities

relative to PLAT for two reasons. First, PLAT needs to store
both a local table and partitioning data in cache, whereas
the Hybrid method can use all of the cache just for the
local table. Second, as is apparent for distributions with
changing locality such as the moving cluster distribution,
the local table in the hybrid method is able to adapt to the
changing reference pattern. PLAT is much more sensitive to
the initial data values, because it does not evict items from
the local table.

On the other hand, PLAT does better at high cardinalities
for distributions without locality. The investment of cache in
the first phase for partitioning pays off at the second phase
when aggregation has better locality.

3.7 Tuple Width
One subtle difference between the hybrid and PLAT caching

schemes is that PLAT passes down an input record when
there’s a miss, whereas the hybrid method passes down a
partially aggregated result. In the experiments above, an

input record is 16 bytes wide, while a partially aggregated
result is 32 bytes wide. In situations with poor locality, the
hybrid method will be copying twice as many bytes. In this
particular example, both kinds of record fit in one cache
line, and so the difference between the two kinds of copy-
ing is unlikely to be significant. However, one can imagine
more extreme examples in which (a) many aggregates are
computed from a few columns, or (b) a few aggregates are
computed based on many columns. Case (a) would favor
PLAT, whereas case (b) would favor the hybrid method.

4. CONCLUSIONS
We have investigated the performance of various aggrega-

tion methods on the Nehalem processor. Unlike the Niagara
processors previously studied, the Nehalem performance is
sensitive to data sharing. This difference is fundamentally
due to different memory models. The Niagara processor
does not enforce memory access order: it is the responsi-
bility of the programmer to insert suitable fence instruc-
tions if a particular order is required. For computations like
aggregation the order of operations is not important. In
contrast, the Nehalem processor includes hardware to de-
tect and resolve potential out-of-order execution. For gen-
eral purpose computing such out-of-order events are rare, as
long as threads do not modify each others’ data. For ag-
gregation, such considerations make sharing of data more
expensive than alternatives that do not share data.

We also showed that detecting contention can be challeng-
ing on the Nehalem processor. Explicit contention detection
via failed compare-and-swap operations is not sufficient. An
alternative implementation based on the try_lock primi-
tive was effective, illustrating that different architectures call
for different implementation primitives for optimal perfor-
mance.

It may be possible to further improve the performance
of the methods presented here. For example, using a staged
computation, prefetching can overlap the latency of multiple
cache misses [14].

As the number of cores continues to increase in future pro-
cessors, techniques such as the ones studied here will become
even more important for efficient machine utilization.

7

5. REFERENCES
[1] P. A. Boncz, S. Manegold, and M. L. Kersten.

Database architecture optimized for the new
bottleneck: Memory Access. In VLDB, 1999.

[2] A. Ailamaki, D. J. DeWitt, M. Hill, and D. A. Wood.
DBMSs on a modern processor: Where does time go?
In VLDB, 1999.

[3] J. Zhou et al. Improving database performance on
simultaneous multithreading processors. In VLDB,
2005.

[4] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye.
Automatic Contention Detection and Amelioration for
Data-Intensive Operations. In SIGMOD, 2010.

[5] D. Kanter. The Common System Interface: Intel’s
Future Interconnect.
http://www.realworldtech.com/page.cfm?
ArticleID=RWT082807020032&p=5

[6] D. Kanter. Inside Nehalem: Intel’s Future Processor
and System. http://www.realworldtech.com/page.cfm?
ArticleID=RWT040208182719&p=7

[7] J. Cieslewicz and Kenneth A. Ross. Adaptive
aggregation on chip multiprocessors. In VLDB, 2007.

[8] J. Gray et al. Quickly generating billion-record
synthetic databases. In SIGMOD, 1994.

[9] D.d Levinthal. Performance Analysis Guide for Intel
Core i7 Processor and Intel Xeon 5500 processors.
http:/software.intel.com/sites/products/collateral/hpc
/vtune/performance analysis guide.pdf.

[10] D. Molka, D. Hackenberg, R. Schone, and M.S.
Muller. Memory Performance and Cache Coherency
Effects on an Intel Nehalem Multiprocessor System. In
18th International Conference on Parallel

Architectures and Compilation Techniques, 2009.

[11] Intel 64 and IA-32 Architecture Optimization
Reference Manual.
www.intel.com/Assets/ja JP/PDF/manual/248966.pdf.

[12] J. Cieslewicz, and K. A. Ross. Data Partitioning on
Chip Multiprocessor In DaMoN, 2008.

[13] A. Shatdal and J. F. Naughton. Adaptive parallel
aggregation algorithms. In SIGMOD, 1995.

[14] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving Hash join performance through
prefetching. In Proc. Int. Conf. Data Eng., 2004

Figure 11: Partition-and-Aggregate Method on all

Distributions, 8 Threads, 256-way partitioning

APPENDIX

A. CONTENTION DETECTION DETAILS
The code for an atomic 64-bit add using the compare-

and-swap primitive is given below as a C intrinsic using x86
assembly language. The cmpxchg opcode is the compare-
and-swap instruction, and the lock prefix requires the in-
struction to be executed atomically.

inline void atomic_add_64(volatile uint64_t *des,

int64_t src)

{

__asm__ __volatile__("spi1:\tmovq %0, %%rax\n\t"

"movq %%rax, %%rdx\n\t"

"addq %1, %%rdx\n\t"

"lock\n\t"

"cmpxchg %%rdx, %0\n\t"

"jnz spi1\n\t"

:"=m"(*des)

:"r"(src),"m"(*des)

:"memory","%rax", "%rdx"

);

}

B. ADDITIONAL EXPERIMENTS
Figure 11 shows the performance of the partition-and-

aggregate method with 256-way partitioning. Figure 12
shows MOMC and HITM performance counter measure-
ments for all methods. Figure 13 shows the performance
of the various methods on a variety of distributions.

(a) MOMC events

(b) Cache HITM events

Figure 12: Performance counter events for all meth-

ods, 16 threads

8

(a) Self-similar (b) Sorted

(c) Heavy Hitter (d) Repeated Runs

(e) Zipf

Figure 13: Independent Tables, PLAT, and Hybrid, on various data distributions.

9

Enhancing Recovery Using an SSD Buffer Pool Extension
Bishwaranjan Bhattacharjee
IBM T.J.Watson Research

Center
bhatta@us.ibm.com

 Kenneth A Ross
 IBM T.J. Watson Research
 Center and
 Columbia University

 kar@cs.columbia.edu

 Christian Lang*
 Acelot Inc.

 clang@acelot.com

 George A Mihaila*
 Google Inc.

 gam@google.com

Mohammad Banikazemi

IBM T.J.Watson Research
Center

mb@us.ibm.com

ABSTRACT

Recent advances in solid state technology have led to the

introduction of solid state drives (SSDs). Today’s SSDs store

data persistently using NAND flash memory and support good

random IO performance. Current work in exploiting flash in

database systems has primarily focused on using its random IO

capability for second level bufferpools below main memory.

There has not been much emphasis on exploiting its persistence.

In this paper, we describe a mechanism extending our previous

work on a SSD Bufferpool on a DB2 LUW prototype, to exploit

the SSD persistence for recovery and normal restart. We

demonstrate significantly shorter recovery times, and improved

performance immediately after recovery completes. We quantify

the overhead of supporting recovery and show that the overhead

is minimal.

General Terms

Measurement, Performance, Design, Experimentation.

Keywords

Persistence, Solid State Storage, Database Engines, Recovery

1. INTRODUCTION
Workloads that require substantial random I/O are challenging

for database systems. Magnetic disk drives have high capacity,

but mechanical delays associated with head movement limit the

random I/O throughput that can be achieved. Newer persistent

memory technologies such as NAND flash [1] and Phase Change

Memory [2] remove those mechanical delays, enabling

substantially higher random I/O performance. Nevertheless,

devices based on these new technologies are more expensive

than magnetic disks when measured per gigabyte [15]. It is

therefore important for a system designer to create a balanced

system in which a relatively small amount of solid state storage

can be used to ameliorate a relatively large fraction of the

random I/O latency.

In recent years, flash has been exploited as a storage medium for

a second-level cache in a DBMS below main memory [3][7][13].

For example, multi-level caching using flash is discussed in [5].

There, various page flow schemes (inclusive, exclusive and lazy)

between the main memory bufferpool and the flash bufferpool

are compared both theoretically, using a cost model, and

experimentally.

Flash SSDs have also been used as a write-back cache and for

converting random writes to the HDD into sequential ones, like

in the HeteroDrive system [6]. Here, the SSD is used primarily

for buffering dirty pages on their way to the HDD, and only

secondarily as a read cache, which allows blocks to be written

sequentially to the SSD as well.

In the industrial space, Oracle’s Exadata Smart Flash Cache [7]

takes advantage of flash storage for caching frequently accessed

pages. The Flash Cache replacement policy avoids caching pages

read by certain operations such as scans, redos and backups, as

they are unlikely to be followed by reads of the same data. Still

in the industrial space, Sun’s ZFS enterprise file system uses a

flash resident second-level cache managed by the L2ARC

algorithm [1].

In recent work [3] [8], we have prototyped a system based on

IBM's DB2 LUW [4] database product that incorporates a solid

state disk (SSD) as an intermediate level in the memory

hierarchy between RAM and magnetic disk. This uses a

temperature aware cache replacement algorithm. Here, the SSD

can be thought of as an extension of the in-memory buffer pool

that allows more data to be cached. Performance improves

because (a) retrieving a random page from the SSD is much

faster than retrieving it from the disk, and (b) there exists some

locality of reference at a scale larger than the RAM-resident

buffer pool. The SSD buffer pool extension is a write-through

cache, meaning that it is always consistent with the state of the

disk. Figure 1 shows the system overview of the SSD

Bufferpools.

While most of the current work exploits the random access

characteristics of flash, there has not been much emphasis on

* Work done while authors were working at the IBM T.J. Watson Research Center

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Seventh International Workshop on Data Management
on New Hardware (DaMoN 2011), June 13, 2011, Athens, Greece.
�Copyright 2011 ACM 978-1-4503-0658-4...$10.00.

10

exploitation of its persistency. For example, in [3], the issue of

crash recovery was not considered. In fact, the system described

there provides limited benefits during crash recovery because the

SSD directory was kept in RAM. Upon a crash, that directory

would be lost, and the system would need to recover without the

benefit of the data on the SSD. As recovery progresses, and the

SSD bufferpool is populated, it would assist recovery by

providing fast access to frequently used pages. However, all the

data that was there in the SSD bufferpool before the crash would

not be tapped directly despite the fact that the SSD is persistent.

One could imagine a similar situation during a normal database

shutdown and restart where a warm bufferpool restart, based on

what is available in the SSD Bufferpool, would be useful.

 Figure 1: SSD Bufferpools without persistence exploitation

The present work extends [3] by supporting the use of the

persistence of the SSD buffer pool during and after recovery as

well as after a normal shutdown and restart. All further

discussions will be on the recovery aspect but is equally

applicable during normal shutdown and restart.

The use of the SSD persistence during recovery is motivated by

the observation that recovery is itself a random I/O intensive

process. The pages that need to be read and written during

recovery may be scattered over various parts of the disk. With a

valid SSD buffer pool, many reads can be satisfied without

magnetic disk I/O. Further, the recovery process usually affects

the most recently accessed pages (at least since the most recent

checkpoint). These pages are likely to be in the SSD buffer pool

at the time of the crash. We demonstrate significantly shorter

recovery times, and improved performance immediately after

recovery completes. We quantify the overhead of supporting

recovery and show that the overhead is minimal.

2. HOW RECOVERY WORKS
Crash recovery entails reading the logs and acting on their

contents to bring the system to a consistent state. Crash recovery

has two phases of operations, namely, the redo phase and the

undo phase. The redo phase focuses on work that is committed

and needs to be reconstructed. Here, the logs are read in time

order till end of log. The start point is the minimum of the oldest

active transaction that is not commited (lowtran) and the oldest

log sequence number not written to disk (minbuff). If lowtran is

greater than the minbuff, then we will start to read from minbuff

to end of log and the log records will be played. If lowtran is less

than minbuff, then between lowtran and minbuff, the log records

are read and the transaction table is reconstructed. Under this

condition, most of the log records are skipped and not played. In

the undo phase, log records are read in reverse order and

uncommitted changes are rolled back.

The work done in redo and undo would entail reading and

processing data and index pages referred there. While the log

record reads would be sequential, the reads of the data and

indexes could be random since they would originate from

different disconnected transactions and would mirror what

happens in the normal usage scenario. Thus any persistent

bufferpool mechanism which can preserve state beyond a crash

would be of use in reducing this random IO just like in a normal

usage scenario.

In database systems, although crashes are relatively rare, when

they happen the time until the system recovers is a critical

period. System unavailability can have a dramatic impact on an

organization in many scenarios. Database systems have thus

gone to length to try to reduce the time it takes to recover after a

crash. Another important consideration is the time taken to reach

a stable level of performance after a crash. A database system

might have many service level agreements in place with its users

and meeting these service guarantees is important.

3. IMPLEMENTING RECOVERY
We address crash recovery with two goals in mind. First, we

want to preserve the state of the SSD buffer pool so that it can be

used during crash recovery, potentially speeding up the recovery

process. Second, once the system recovers, it can operate with a

warm cache. Thus, it may be possible to reach a stable level of

performance sooner if the SSD contents are preserved.

In order to preserve the state of the SSD, we store some SSD

Bufferpool metadata on the persistent SSD storage. In particular,

the slot table that maps disk pages to slots in the SSD buffer pool

resides persistently on the SSD device. In the case of a crash, the

slot table allows the system to locate pages that were SSD-

resident at the time of the crash.

The slot directory is preserved by memory mapping it into a flash

resident file. This file is initialized and of fixed length. All

operations into the file are done using O_DIRECT which

circumvented the OS caching. In addition after a write, a sync

request is sent in to ensure all writes went through to the

persistent storage. Given that the slot directory size was dictated

by the number of slots in the SSD Bufferpool, the amount of

memory needed for it was static. It does not change during the

workload execution.

When an SSD-resident page is updated, such as when a dirty

page is evicted from the RAM-resident buffer pool, no

modifications of the slot table are required. On the other hand,

when a new page is admitted to the SSD buffer pool and an old

page is evicted, the slot table must be updated. Since these

updates require additional SSD I/O relative to the base system,

11

they represent a potential source of performance overhead for

supporting fast recovery. We quantify this overhead and

demonstrate that it is minimal. We also show that compared to

the size of the SSD bufferpool, the metadata table is very small

and could be placed in a storage area which is faster but costlier,

like a Phase Change Memory card.

 Figure 2: SSD Bufferpools with persistence exploitation

Figure 2 shows the system overview of the SSD Bufferpools with

the exploitation of persistence. The slot table updates must be

done carefully to ensure recoverability. In particular, the slot

must initially be invalidated on persistent storage. This is shown

in step 4.1 in Figure 2. After the data is written to both SSD and

disk, the slot is then updated with the new page-id. This is

shown in step 4.3 in Figure 2. Invalidation ensures that a

subsequent partial write to the slot won't be mistaken for valid

data. More subtly, invalidation allows the system to maintain the

invariant that the SSD cache is always consistent with the disk,

which can be critical for the correctness of recovery, as discussed

in Section 4.

In this implementation, a philosophy adopted was to try to ensure

we could recover a large chunk of the pages persistent in the

SSD bufferpool correctly. It was not felt necessary to try to

recovery all the pages that may be available there. The

invalidation and validation mechanism for metadata described

above would make it possible to have a valid page in the SSD

Bufferpool which may be marked as invalid for a short duration

of time. If the system were to crash during that period, the page

will not be recovered during recovery. However it was felt that

the chances of this happening was small and its overall impact on

the system would be small. Thus, this mechanism puts

correctness above complete recovery of all the pages in the SSD

Bufferpool.

In addition to the slot directory, we also store the region

temperature persistently, so that the SSD buffer pool can

function normally after a restart. Without the region temperature

information, all pages in the SSD bufferpool will look similar for

page replacement after a crash. By storing the region

temperature information and using it during recovery and

beyond, we are able to differentiate between pages and victimize

only the colder pages during page replacement.

4. CORRECTNESS
By explicitly writing slot array updates to persistent storage, we

avoid situations in which the SSD and hard disk contain different

versions of the data. It is tempting to avoid these steps in order to

reduce the overhead of normal processing. For example, one

possible scheme would involve skipping persistent slot array

updates altogether. At recovery time, the entire SSD could be

scanned, with the page-ids of the pages in each slot used to

rebuild the slot array. The overhead of such a scan would be a

few minutes for an entire 80GB FusionIO device, which may

seem like a reasonable cost to pay for reduced I/O during normal

processing.

However, this scheme has vulnerabilities. The rebuilt slot array

may point to SSD pages that are out of sync with the hard disk.

Consider a page write that goes to both the SSD and hard disk. If

the SSD write completes before the failure while the

corresponding hard disk write does not, then the SSD will

contain a more recent version of the page. The converse order

can happen too, in which case the SSD page may be older than

the page on the hard disk. Similarly, an SSD page that had been

marked for eviction but not actually overwritten with new data

when the system crashed may be older than the corresponding

page on the hard disk.

It may seem that having a few out-of-sync pages is only a minor

inconvenience, since the recovery process can bring older page

versions up to date with just a few extra I/Os. To see an example

of what could go wrong, imagine an Aries-style [9] recovery

mechanism in which the SSD is consulted for reads, without hard

disk I/O. Suppose that the SSD has a newer version of page P

than the hard disk. During recovery, the system reads P from the

SSD, and sees a relatively recent log sequence number, meaning

that updates from early in the log do not need to be applied.

Recovery proceeds, during which time the SSD decides to evict

page P to make way for warmer pages. Because the SSD is

designed assuming that resident pages reflect what is on disk, no

disk write of P happens on eviction. Recovery proceeds, and

when the recovery manager now gets to an update on P it will see

an old version of the page that is missing several updates from

earlier in the log.

The converse situation in which the SSD has an earlier version of

a page can potentially cause correctness violations as well.

Consider a page P that was written to the hard disk (but not the

SSD) just before the failure. The recovery process may read the

older page from the SSD and may proceed with recovery based

on the data in the older version of P, writing compensation log

records to the log, but keeping the dirty page in the RAM buffer

pool. Suppose that P is evicted from the SSD buffer pool, and

that there is then another crash. During the second round of

recovery, the system will attempt to reapply the compensation-

logged updates to an incorrect version of P.

5. EXPERIMENTAL RESULTS
To evaluate the effectiveness of the proposed technique, several

experiments are conducted using the industry standard TPC-C

[10] benchmark. TPC-C is a popular benchmark for comparing

online transaction processing (OLTP) performance on various

hardware and software configurations. TPC-C simulates a

complete computing environment where multiple users execute

12

transactions against a database. The benchmark is centered on

the principal activities (transactions) of an order entry

environment. These transactions include entering and delivering

orders, recording payments, checking the status of orders, and

monitoring the level of stock at the warehouses. The transactions

do update, insert, delete, and abort operations and numerous

primary and secondary key accesses.

While we have used the TPC-C benchmark workloads to

evaluate the effectiveness of the proposed technique, the results

presented are not audited or official results. The results are

shown for the sole purpose of providing relative comparisons

within the context of this paper and hence the tpmC scale is not

indicated in the figures provided.

Before discussing the main experiment results, we will describe

the hardware and software specifications used.

5.1 Hardware Specifications
The experiments were done on an IBM System x3650 Model

7979 machine [14] with a dual core AMD processor of 3GHz

running Fedora Linux OS. The machine had 8GB of DRAM. In

addition, it had a 80GB Fusionio SLC and a 320GB Fusionio

MLC PCI-e bus based card [11]. Table 1 shows the specs of

these cards.

The main hard disk based storage was provided by a DS4700

[12] with 16 SATA HDDs of 1TB each. This was connected to

the server via Fiber Channel connections. The hardware

experimental setup is depicted in Figure 3.

 Figure 3: Hardware Experimental Setup

 Table 1: Hardware specification of the SSDs

5.2 Software Specifications
In our experiments with TPC-C, the scaling factor was set to 500

Warehouses. With this scaling factor the database occupied a

total of 48 GB of disk space. In contrast, in the benchmark [17],

184K warehouses with 3.2TB of database space was used. So the

experiment used a comparatively small database. The database

was created on a tablespace striped across 16 disks of the

DS4700 with the logging done on the 320GB fusionIO card. A

standard TPC-C mixed workload with 16 clients was run on it.

The workload consisted of the TPC-C transaction types New

Orders 45%, Payment 43%, Order Status 4%, Delivery 4% and

Stock Level 4%.

The main memory DB2 bufferpool was kept at 2.0% of the

database size. This resulted in a main memory bufferpool hit

ratio in the range of typical customer scenarios. The SSD

bufferpool was created on the 80GB FusionIO card. Its size could

be varied as a multiple of the main memory bufferpool size. For

these experiments it was put at 3X of the main memory

bufferpool.

5.3 Impact of metadata writes
In the first experiment, we varied the location of the metadata

being persisted to determine the impact of the writing overhead.

We used the metadata being written to DRAM via a ramdisk as

the baseline. This was then compared against the metadata

being written to the 80GB SLC flash card and then the 320GB

MLC flash card.

The metadata file, at 23MB, was very small in comparison to the

1.2GB of the DRAM Bufferpool and the 3.6GB potential size of

the SSD Bufferpool. The size of the metadata is dictated by the

size of the SSD Bufferpool and the size of the database. The size

does not change during the running of the workload.

As figure 4 shows, there was no noticeable degradation in the

tpmC rate when the metadata was being written to flash in

comparison to the ramdisk. So the performance advantages of

persisting the metadata out weighs the processing and storage

costs.

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177

time in minutes

tp
m

C

fusionio 80GB SLC ramdisk fusionio 320GB MLC

Figure 4: Impact of metadata writes on tpmC for various

storage mediums

It should be noted that in this experimental setup, the workload

was IO intensive with the CPU having an IO wait component

13

associated with it. This is typical of customer scenarios. The

impact of the IO from the metadata is very small compared to the

IO and associated overhead from the disks and the SSD

Bufferpool. Thus, even though the random write pattern is not

an ideal one for SSDs [16], the volume of such I/O requests is

sufficiently small that the burden is hardly noticed.

5.4 Impact on logging
Since recovery time is so inherently tied to the logging process,

we studied the impact of the SSD Bufferpool on the amount of

logging that is done. There are two parameters which are

important. These are the number of log records and the number

of log pages that are written.

Figure 5 shows the number of log pages that were written for

three configurations in an experiment. These are the base DB2

LUW and our SSD Bufferpool prototype with and without

metadata. For a given time window of operation, the SSD

Bufferpool prototype executes a much higher number of

transactions compared to base. However, the number of log pages

that are written are significantly higher for the base in

comparison to the prototype. This is because the base which is

running a lower transaction rate has to flush the log buffer at a

lower fill factor. Thus the total number of log pages it wrote was

higher. For a given total number of transactions, the number of

log records would be the same although the number of log pages

could vary.

During recovery, the log needs to be read. Thus a larger size of

the log for base in comparison to the prototypes would mean

more IO. And it would impact the recovery time. However the

amount of time taken for the extra page reads does not account

for all the enhancements for recovery time that we are going to

demonstrate in the subsequent subsections. The improvement in

recovery time comes from the exploitation of the SSD

Bufferpools during recovery both explicitly by preserving the

state via persistent metadata and implicitly via use of the SSD

Bufferpool during recovery for caching hot pages.

 Figure 5: Amount of logging

5.5 Crash Recovery performance
To determine the effect of the SSD Bufferpool on the crash

recovery time, we ran the TPC-C workload on the prototype and

killed the database engine with a kill -9 after a predetermined

time interval. When the database engine was restarted and the

first connection to the database made, crash recovery kicked in.

During this time no transactions successfully executed. This was

reflected in the tpmC figure produced by the TPC-C scripts.

After crash recovery completed, the tpmC figures slowly picked

up and stabilized.

This experiment was done with and without the SSD Bufferpool.

For the case when the SSD Bufferpool was involved in crash

recovery, it was run with and without a warm restart by utilizing

the persisted metadata to jumpstart the SSD Bufferpool.

 Figure 6: tpmC after crash with prototype

Figure 6 shows the tpmC rate after crash and includes recovery.

With the exploitation of persistence, after 4 minutes, the

recovery finishes and the transaction rate starts climbing up. By

the 8th minute the transaction rate has stabilized. Without the

exploitation of persistence, recovery takes 5 minutes and the

transaction rate stabilizes after 10 minutes. Thus recovery and

transaction stability is 20% faster. It should be noted that in other

experiments, the base DB2 recovery was about 20% slower than

the prototype without persistent metadata exploitation.

0

10000

20000

30000

40000

50000

60000

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232

Time in 5 second interval

b
lo

c
k
s
 r

e
a
d

with persistence without persistence

 Figure 7: Reads from SSD Bufferpool after crash with

prototype

Figure 7 shows the reads that are happening from the SSD

Bufferpool during crash recovery and beyond. The crash recovery

for the persistence case is happening in the initial 50 reading.

Subsequent reads are from normal transaction processing. For

the non persistence case we see no reads from the SSD

14

Bufferpool for the first 75 readings. Then the read rate picks up

till it stabilizes to the level we see with persistence. The net

benefit of exploiting persistence is not only for crash recovery but

even beyond. We see the read rate peaking much faster than

without persistence.

0

10

20

30

40

50

60

70

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177

Time in 5 sec interval

C
P

U
 U

ti
li
z
a
ti
o
n

With persistence Without persistence

Figure 8: CPU utilization during crash recovery for

prototype

The ability to feed data faster during crash recovery and beyond

has a positive effect on CPU utilization as shown in Figure 8.

We see that for the persistence case, CPU usage peaks during

recovery and then stays higher than the non persistence case as

data is fed faster from the SSD Bufferpool.

5.6 Restart performance
We now evaluate the impact of persistence on normal database

shutdown and restart. In this case, we ran TPC-C for a fixed

amount of time and then shutdown the database engine. When

the engine was restarted, it was run with and without a warm

bufferpool restart from the persistent bufferpool which was on a

ramdisk.

Figure 9: tpmC comparison for restart on prototype

Figure 9 shows a comparison between the two cases. For warm

restart, we see the tpmC initially peaking and then falling down

to a stability level. The peak is for the period when the DRAM

Bufferpool is filling up from the SSD Bufferpool and there is no

dirty page cleaning to the HDDs. The subsequent drop is

attributed to the fact that the SSD Bufferpool is a write through

cache. Thus pages need to be updated to the HDD. In the cold

SSD cache case, the tpmC slowly climbs up and ultimately

reaches the rate of the warm SSD Bufferpool.

6. CONCLUSION
We presented our work on the exploitation of the persistence of

Solid State Disks in the context of enhancing recovery and restart

in a database engine. Most current work focuses on the

exploitation of the random access capability of Solid State Disks.

This includes our previous work on SSD Bufferpools. In this

paper we have described our extensions to that previous work for

supports the use of the persistence of the SSD bufferpool during

and after recovery and normal restart. We demonstrate

significantly shorter recovery times, and improved performance

immediately after recovery completes. We quantify the overhead

of supporting recovery and show that the overhead is minimal.

In future work we plan to look at other recovery mechanisms.

Our performance was limited by the write through nature of our

cache: cold reads and all writes still need to go to the hard disk.

A write back cache could potentially perform better in this

respect since the SSD cache is persistent and has additional I/O

capacity. A write back cache would need to carefully address

questions of consistency and recoverability. Some very recent

work [18] has examined such policies in the context of Microsoft

SQL Server 2008 R2, but recovery and restart times are not

explicitly described. Since recovery methods differ between

these two commercial systems (DB2 uses a fuzzy checkpoint,

whereas SQL Server uses a sharp checkpoint that flushes all

dirty pages to disk), the best way to employ SSDs may be

different.

7. REFERENCES
[1] A. Leventhal. Flash storage memory. Communications of

the ACM, 51(7):47–51, 2008.

[2] R. F. Freitas and W.W.Wilcke. Storage-class memory: The

next storage system technology. IBM Journal of Research

and Development, 52(4-5):439.448, 2008

[3] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and

C. A. Lang. SSD bufferpool extensions for database

systems. PVLDB, 3(2):1435.1446, 2010.

[4] DB2 for Linux, UNIX and Windows. http://www-

01.ibm.com/software/data/db2/linux-unix-windows

[5] I. Koltsidas and S. Viglas. The case for flash-aware multi

level caching. Internet Publication, 2009.

http://homepages.inf.ed.ac.uk/s0679010/mfcache-TR.pdf.

[6] S.-H. Kim, D. Jung, J.-S. Kim, , and S. Maeng.

HeteroDrive: Re-shaping the storage access pattern of oltp

workload using ssd. In Proceedings of 4th International

Workshop on Software Support for Portable Storage

(IWSSPS 2009), pages 13–17, October 2009.

[7] A technical overview of the Sun Oracle Exadata storage

server and database machine. Internet Publication,

September 2009.

http://www.oracle.com/technology/products/bi/db/exadata/p

df/Exadata_Smart_Flash_Cache_TWP_v5.pdf.

[8] B. Bhattacharjee, M. Canim, C. Lang, G. Mihaila and K.

Ross. Storage Class Memory Aware Data Management,

IEEE Data Engineering Bulletin, 2010

[9] C. Mohan: ARIES/KVL: A Key-Value Locking Method for

Concurrency Control of Multiaction Transactions Operating

on B-Tree Indexes. VLDB 1990:

15

[10] TPC-C, On-Line Transaction Processing Benchmark,

http://www.tpc.org/tpcc/.

[11] Fusionio drive specifications.

http://www.fusionio.com/load/media-

docsProduct/kcb62o/Fusion_Specsheet.pdf

[12] DS4700 specifications : http://www-

03.ibm.com/systems/storage/disk/ds4000/ds4700/

[13] B. Khessib, Using Solid State Drives As a Mid-Tier Cache

In Enterprise Database OLTP Applications, TPCTC 2010

[14] http://www.redbooks.ibm.com/xref/usxref.pdf

[15] J. Handy. Flash vs DRAM price projections - for SSD

buyers. www.storagesearch.com/ssd-ram-

flash%20pricing.html.

[16] R. Stoica, M. Athanassoulis, R. Johnson, A. Ailamaki.

Evaluating and Repairing Write Performance on Flash

Devices, DaMoN 2009.

[17] http://www.tpc.org/results/FDR/TPCC/IBM-x3850X5-DB2-

Linux-111610-TPCC-FDR

[18] J. Do et al. Turbocharging DBMS Buffer Pool Using SSDs,

SIGMOD 2011.

16

How to Efficiently Snapshot Transactional Data:
Hardware or Software Controlled?

Henrik Mühe
TU München

Boltzmannstr. 3
85748 Garching, Germany

muehe@in.tum.de

Alfons Kemper
TU München

Boltzmannstr. 3
85748 Garching, Germany

kemper@in.tum.de

Thomas Neumann
TU München

Boltzmannstr. 3
85748 Garching, Germany
neumann@in.tum.de

ABSTRACT
The quest for real-time business intelligence requires exe-
cuting mixed transaction and query processing workloads
on the same current database state. However, as Hari-
zopoulos et al. [6] showed for transactional processing, co-
execution using classical concurrency control techniques will
not yield the necessary performance – even in re-emerging
main memory database systems. Therefore, we designed
an in-memory database system that separates transaction
processing from OLAP query processing via periodically re-
freshed snapshots. Thus, OLAP queries can be executed
without any synchronization and OLTP transaction process-
ing follows the lock-free, mostly serial processing paradigm
of H-Store [8]. In this paper, we analyze different snapshot
mechanisms: Hardware-supported Page Shadowing, which
lazily copies memory pages when changed by transactions,
software controlled Tuple Shadowing, which generates a new
version when a tuple is modified, software controlled Twin
Tuple, which constantly maintains two versions of each tu-
ple and HotCold Shadowing, which effectively combines Tu-
ple Shadowing and hardware-supported Page Shadowing by
clustering update-intensive objects. We evaluate their per-
formance based on the mixed workload CH-BenCHmark
which combines the TPC-C and the TPC-H benchmarks on
the same database schema and state.

1. INTRODUCTION
Harizopoulos et al. [6] investigated the performance bot-

tlenecks of traditional database management systems and
found out that 31% of the time is spent on synchronization
and 35% on page and buffer management. Consequently,
a new generation of main memory DBMS has been engi-
neered to remove these bottlenecks. Overhead caused by
page and buffer management can be removed in in-memory
DBMS by relying entirely on virtual memory management
instead of devising costly software controlled mechanisms.
One of the most prominent examples of this generation of
in-memory database systems is VoltDB [15], a commercial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Seventh International Workshop on Data Management
on New Hardware (DaMoN 2011), June 13, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

product based on the H-Store research prototype [8]. There,
costly mechanisms like locking and latching for concurrency
control are avoided by executing all transactions sequen-
tially, therefore yielding serializability without overhead. In
order to increase the level of parallelism, the database can
be logically partitioned to accommodate one transaction per
partition [3].

Lockless, sequential execution has proven to be very ef-
ficient for OLTP workloads, specifically short transactions
that modify only a handful of tuples and terminate within
microseconds. With the need for “real-time business intel-
ligence” as advocated by Plattner of SAP [13] among oth-
ers, serial execution is bound to fail. Long-running OLAP
queries cannot be executed sequentially with short OLTP
transactions since transaction throughput would be severely
diminished every time a long-running query stops OLTP
transactions from being executed. To solve this dilemma,
we advocate the use of consistent snapshots for the execu-
tion of long-running OLAP queries which yields both: High
OLTP throughput by executing OLTP transactions sequen-
tially as well as a way of executing OLAP queries on a fresh,
transaction consistent state of the database, as sketched:

Tx-Consistent
Snapshot

Current database
state (in memory)Tx-Processing

OLAP-processing

on a recent snapshot

This mechanism has previously been demonstrated in our
research prototype, HyPer [9]. For this approach to work,
being able to efficiently maintain and create a consistent
snapshot of the database at short intervals of seconds is
paramount. In this work, we will examine different tech-
niques for maintaining a consistent snapshot of the database
without diminishing OLTP performance. We go beyond
what has been done in previous work, for instance by Lo-
rie [11] or Cao et al. [1]. First, we extend the mechanisms
to enable high performance query execution on snapshots
as their most important use – instead of just recovery as
previously suggested, e.g., by Molina et al. [5] or in [14].
Therefore, our approaches yield higher order snapshots for
query processing as opposed to those snapshots primarily
used for recovery. Second, we adapt the mechanisms for use
in main memory database systems: In case of Lorie’s shad-
owing approach, we show how the limitations when used
in on-disk database systems can completely be alleviated
in main memory. With Cao et al.’s twin objects approach
(called ZigZag approach in [1]), we extended the implemen-
tation for use in a general purpose database system instead

17

of a specialized application. Third, we offer a thorough eval-
uation of the different approaches taking both OLTP as well
as OLAP throughput into account.

The remainder of this paper is structured as follows: In
Section 2, we introduce the concept of virtual memory snap-
shots. In Section 3, we will reexamine different techniques
for maintaining a consistent snapshot of the database and
discuss our implementations and the improvements we added
to make them viable for OLAP query execution. Section 4
offers a classification of these snapshotting techniques. In
Section 5, all techniques are evaluated using a combina-
tion of the TPC-C and TPC-H benchmarks called the CH-
BenCHmark [4]. Section 6 concludes this paper.

2. HARDWARE SNAPSHOTTING
In this section, we will focus on hardware supported vir-

tual memory snapshotting as proposed in [9]. Purely
software-controlled as well as hybrid approaches will be de-
scribed in the next section.

tim
e

OLTP Requests /Tx

OLAP Session

a’
c

Virtual Memory

a’’
b

a’
b

a
b

Fork 1

Fork 2

c'
d

c
d

e
f OLAP Session

a’
b

Figure 1: Hardware Page Shadowing with multiple
snapshots taken at different transaction consistent
states of the database

Hardware Page Shadowing is a new snapshotting tech-
nique that we developed in our HyPer main memory database
system. It creates virtual memory snapshots by cloning
(forking) the process that owns the database. In essence, the
virtual memory snapshot mechanism constitutes an
OS/hardware supported shadow paging mechanism as pro-
posed by Lorie [11] decades ago for disk based database sys-
tems. However, the original proposal incurred severe costs as
it had to be software-controlled and it destroyed page clus-
tering on disk. Additionally, virtual memory is not replaced
by Lorie’s approach, but instead an additional layer of in-
direction is added, further decreasing performance. None
of these drawbacks occurs in virtual memory snapshotting
as clustering across RAM pages is not an issue – as we ex-
amined in microbenchmarks. Furthermore, the sharing of
pages (between OLTP and OLAP snapshots) and the nec-
essary copy-on-update is managed by the operating system,
efficiently supported by the MMU hardware (memory man-
agement unit). This way, translations between virtual and
physical addresses via the page table as well as page replica-
tion (copy-on-update) do not need to be implemented in the
database management system. Replicating a page is highly
efficient, taking only 2µs for a 4kb page as we measured in
a microbenchmark on a standard processor.

Virtual memory snapshots exploit the OS facilities for
memory management to create low-overhead memory snap-
shots. All modern operating systems and hardware support
and widely use virtual memory management. This means
that physical memory is not directly assigned to a process
that requests memory but is mapped through a layer of in-
direction called virtual memory. All memory accesses use
virtual addresses and do not need to know which physical
memory pages back a given virtual address. Translations
from virtual to physical addresses are done in hardware by
providing a lookup table to the memory management unit
of the CPU as per the specifications of the processor vendor.

In unix environments, new processes are created by cloning
an existing process using the fork system call. Since an
identical copy of an existing process has to be created, all
memory used by this process has to be copied as well. With
virtual memory, an eager copy of the memory pages used
by the process issuing the fork system call (parent process)
is not required, only the table used to translate virtual to
physical addresses used by the parent process needs to be
copied. Therefore, the physical pages backing both the par-
ent’s as well as the child’s virtual address space are shared at
first. All shared physical pages are marked as read-only dur-
ing the execution of the fork system call. When a read-only
page is modified by either process, a CPU trap is generated
causing the operating system to copy the page and change
the virtual memory mapping to point to the copy before
any modifications are applied. Effectively, this implements
a hardware controlled copy-on-write mechanism.

Applied to main memory database systems, we use the
fork to generate a lazy copy of the database system’s mem-
ory with little delay. In order for this snapshot to be consis-
tent, we execute the fork system call in between two serial
transactions. This is not strictly necessary though, since
undo information is also part of the memory copy. There-
fore it is possible to quiesce transaction execution without
waiting for transactions to end, execute the fork system call
and clean the action-consistent snapshot using the undo log.

The forked child process obtains an exact copy of the par-
ent processes’ address space, as exemplified in Figure 1 by
the overlaid page frame panel. This virtual memory snap-
shot will be used for executing a session of OLAP queries –
as indicated on the right hand side of Figure 1.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

Pagetable

.
c

c

OLTP Requests/Tx

Virtual Memory Management for
ka'

b
d

c'

OLAP-Session

 Read a

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Read a

Pagetable

Pagetable

Figure 2: The page table after invoking the fork

system call.

18

The snapshot stays in precisely the state that existed at
the time the fork took place. Fortunately, state-of-the-
art operating systems do not physically copy the memory
segments right away. Rather, they employ a lazy copy-on-
update strategy – as sketched out in Figure 2. Initially, par-
ent process (OLTP) and child process (OLAP) share the
same physical memory segments by translating either vir-
tual addresses (e.g., for object a) to the same physical main
memory location. The sharing of the memory segments is
highlighted in the graphics by the dotted frames. A dot-
ted frame represents a virtual memory page that was not
(yet) replicated. Only when an object, like data item a′, is
updated, the OS- and hardware-supported copy-on-update
mechanism initiates the replication of the virtual memory
page on which a′ resides as is illustrated in Figure 3. There-
after, there is a new state denoted a′′ accessible by the
OLTP-process that executes the transactions and the old
state denoted a′, that is accessible by an OLAP query ses-
sion. As shown in Figure 1, multiple snapshots representing
different consistent states of the database can be maintained
with low overhead. Here, an older snapshot is shown which
was taken before data item a was modified to a′. The page
on which data item a lies is a copy denoted by the solid
border of the page, most other pages are shared between all
snapshots.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

Pagetable

.
c

c

OLTP Requests/Tx

Virtual Memory Management Cop
y o

n
write

a''

b
d

c

OLAP-Session
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
 Update a'->a’'

 Read a
a'

b

Pagetable

Pagetable

Figure 3: The page table after a page was modified,
causing a page copy on update.

Unlike the figure suggests, the additional page is really
created for the OLTP process that initiated the page change
and the OLAP snapshot refers to the old page – this detail
is important for estimating the space consumption if several
such snapshots are created. It can be expected that most
pages and objects on those pages are of the nature of the
page inhabited by e and f . That is, they contain older, no
longer mutated objects.

3. SNAPSHOTTING IMPLEMENTATIONS
We implemented a total of four snapshot mechanisms,

each anchored deeply within the storage scheme of our main
memory database system prototype. All storage backends
integrate a mechanism which maintains a consistent snap-
shot that can be periodically refreshed within short intervals
of seconds to minutes.

3.1 Hardware Page Shadowing (VM-Fork)
In Figure 4, the backend implementation of the virtual

memory snapshotting approach is illustrated on a more de-
tailed level. Here, a relation spanning multiple pages as
well as SQL statements executed on this relation are shown.
Statement A) deletes a tuple which is deleted in-place in the
memory accessed by the OLTP process. Since the memory
used by OLAP queries is lazily shadow copied, the deletion
causes an actual copy of the modified page, denoted by the
gray memory used by OLAP queries in the background of
the figure. Statement B) modifies a tuple, again causing
the page that has previously been shared between OLTP
transactions and OLAP queries to be copied. Insertions –
as exemplified by statement C) – are performed at the end of
the vector which – contrary to the depiction in Figure 4 – is
not maintained in any specific order to allow for high OLTP
throughput without any added level of indirection for newly
inserted tuples. The architecture sketched here has been
successfully implemented in our main memory database re-
search prototype HyPer [9].

Fork

Memory is an actual copy

Memory is a shadow copy

Key: (assumes 2 tuples / page)

0

TID

1

2

3

4

5

6

7

8

A) delete from R where id = 6;

B) update R set Txt='abcd' where id = 19;

R(ID, Txt)
U

pdates/deletes in-place

9

C) insert into R values (22, 'efgh');

C)A)

B)

Index:

ID

1

2

4

Txt

.......

.......

.......

Deleted in-placeA)

18

19 abcdB)

20

21

22C) efghC)

select Txt from R; (run on snapshot)

Figure 4: Query execution when using hardware
page shadowing

3.2 Tuple Shadowing
Instead of shadowing on page level, shadow copies can

be created on tupel level, thus possibly lowering the mem-
ory overhead of keeping a consistent snapshot. To manage
per tuple shadow copies, we have to resort to software con-
trol. Thus, a more complex indirection has to be established
since for each access, the current version of the data being
used has to be determined on a per-tuple level. No hard-
ware mechanism can be specifically exploited to speed-up
tuple-shadowing, thus all indirection has to be dealt with in
software.

A straight forward implementation of tuple shadowing is
shown in Figure 5. There, a consistent snapshot was taken
after the insertion of the tuple with TID 7. When a tuple
with TID lower or equal to 7 is modified, modifications are
not done in-place but rather by copying the tuple to the end
of the relation and establishing a link between the original
and the shadow copy. Statement B) is an example of such an
update. Instead of changing the tuple with TID 5, the tuple
is copied to the end of the relation and modified there. The
original tuple is annotated with the TID of its shadow copy

19

.......

.......

.......

msch

.......

xyzq

.......

.......

In-place
updates

ID Txt ShadowPtr

1 --0

TID

2 --1

4 --2

6 -1A)3

18 --4

19 8B)5

20 --6

21 --7

19B) 5B)8

22C) --C)9
abcdB)

efghC)

A) delete from R where id = 6;

B) update R set Txt='abcd' where id = 19;

SLimit

R(ID, Txt)

Shadow
ed

updates

10

C) insert into R values (22, 'efgh');

C)

Index

select Txt from R; (run on snapshot)

Figure 5: Implementation of the Tuple Shadowing
approach.

to allow merging the two different version of the tuple at a
later time and to allow different readers to access the two
different versions. Since no index update is performed, all
accesses to both the new and the old version of the tuple go
through the original index entry, adding indirection. Dele-
tions of tuples – as exemplified by statement A) – are not
executed in place but rather accomplished by flagging the
tuple in question as deleted. Insertions – like statement C) –
are performed at the end of the relation without maintaining
a specific order.

All OLTP accesses have to be directed to the most re-
cent version of the tuple. Therefore, these accesses have to
consult the pointer saved in the ShadowPtr field to check
whether or not a more recent version of the data exists.
OLAP queries work on the consistent snapshot and thus
do not need to check the ShadowPtr for a more recent ver-
sion. Additionally, checking whether or not a tuple has been
flagged as deleted is not necessary for snapshot accesses,
since deletion flags only apply to the most recent version of
all tuples used by OLTP queries. Refreshing the snapshot
incurs substantial copy and merge costs.

3.3 Twin Tuples
To mitigate the overhead caused by periodically merging

the database as is necessary in Tuple Shadowing, a technique
referred to as the Twin Block approach or – when done on a
per tuple level – Twin Tuples approach can be employed [1].

In the Twin Tuples approach, two copies of every data
item exist as is illustrated in Figure 6. Two bitmaps indi-
cate which version of a tuple is valid for reads and writes
by OLTP transactions. Reads are performed on the tuple
denoted by the MR bit, the tuple that writes are performed
on is denoted by the MW bit. A consistent snapshot of the
data can be accessed by always reading the tuples that are
not modified as indicated by the negation of the MW bit.

Figure 6 shows that deletions like statement A) are per-
formed by flagging the tuple in question as deleted. Inser-
tions like statement C) are again performed at the end of
the storage vector without maintaining a specific order. Up-
dates on the other hand are now performed on one of the
two stored tuples. When the first update on a tuple is per-
formed, the MR flag is set to the value of the MW flag
and the update is performed on the tuple denoted by the
MW flag. Since MW is atomically toggled only when the
consistent snapshot is being refreshed, for the duration of
a snapshot the tuple denoted by ¬MW is never written to
and thus stays in a consistent state.

In-place
updates

ID Txt

10

TID

21

42

63

184

195

206

217

8 22C)

9

oldv

.......

msch

.......

abcdB)

.......

qwer

efghC)

A) delete from R where id = 6;

B) update R set Txt='abcd' where id = 19;

SLimit

R(ID, Txt)

Shadow
ed updates

10

C) insert into R values (22, 'efgh');

C)

Index

ID Txt

1

2

4

6

18

19

20

21

22C)

asdf

.......

.......

xyzq

.......

oldw

efghC)

Tuples 0 Tuples 1

MW

0

1

0

0

0

0

0

1

0C)

0

0

MR

1

0

1

1

1

0B)

1

1

1C)

1

1

D

0

0

0

1A)

0

0

0

0

0C)

0

0

select Txt from R; (run on snapshot)

Figure 6: Implementation of the Twin Tuples ap-
proach.

This behavior is exemplified by statement B) updating the
tuple with TID 5. Here, the original tuple is read from the
tuple denoted by MR, an update is performed and the result
is written to the twin location denoted by MW. Afterwards,
MR is set to MW.

OLAP queries read the tuples that have not been written,
that is, tuples in twin location ¬MW. Because the value of
the MW flag can vary for different tuples, scans are per-
formed in a zigzag pattern on the data array, potentially
causing diminished scan performance.

3.4 HotCold approach
With hardware page shadowing, an update to a single

value on a page causes the entire page to be copied. The
HotCold approach is intended to cluster update-intensive
tuples to the so called hot section in memory. Updates which
would modify a tuple which is not in the hot section are
copied to that section and marked as deleted in the cold
section. That way, modifications only takes place in the hot
part. The technique is a combination of Tuple Shadowing
and Hardware Page Shadowing as the update clustering is
software controlled whereas shadow copying is done using
the VM-Fork mechanism.

--

--

--

--

--

--

--

--

--

--

--

--

Fork
SLimit

Memory is an actual copy

Memory is a shadow copy

Key: (assumes 2 tuples / page)

H
O

T:
In-place
updates

0

TID

1

2

3

4

5

6

7

8

9

A) delete from R where id = 6;

B) update R set Txt='abcd' where id = 19;

R(ID, Txt)

C
O

LD
:

Shadow
ed

updates

10

C) insert into R values (22, 'efgh');

C)A)

B)

Index:

ID

1

2

4

6

18

19

20

21

19B)

22C)

Txt

.......

.......

.......

msch

.......

xyzq

.......

.......

abcdB)

efghC)

D

--

--

--

XA)

--

XB)

--

--

--B)

--C)

SLimit

select Txt from R; (run on snapshot)

Figure 7: Implementation of the HotCold approach.

In Figure 7, statement B) modifies a tuple with a TID
before the current SLimit, which makes the tuple a cold

20

tuple. Instead of modifying the tuple in place, a deletion
flag is set and the tuple is copied to a slot inside the hot
part of the store. There, modifications are applied in-place.

Statement C) in Figure 7 inserts tuples at the end of the
vector equally to the way tuples are inserted in Tuple Shad-
owing. This – on average – does not cause a page to be
copied since the vector is lazily backed with physical mem-
ory pages and areas that have not been backed yet are not
copied via the hardware page shadowing mechanism. Dele-
tions in the cold part of the store are performed by flagging
a tuple as deleted as can be seen with statement A).

3.5 Index structure synchronization
For approaches where index structures are used both for

OLTP transactions as well as for OLAP queries, we have
to take index synchronization into account. When index
structures are shared, updates to the index can conflict with
lookups. We examined four approaches to alleviate this
problem:

1. Abandon indexes for OLAP queries or creating OLAP
indexes on demand.

2. Eagerly copying indexes when a snapshot is created.

3. Employing hardware page shadowing to lazily main-
tain index snapshots after database snapshot creation.

4. Latching indexes to synchronize conflicting index op-
erations.

Approach 1) is interesting when all OLAP queries rely en-
tirely on table scans with no particular order. Since none
of our implementations guarantees any specific order on the
data, we assume that having indexes available on the snap-
shots is oftentimes required and thus do not further inves-
tigate this option. Additionally, 1) does not require any
specific implementation or synchronization considerations.

Approach 2) generates a separate copy of the indexes for
each snapshot by eagerly duplicating the index when a snap-
shot is created Therefore, no synchronization is necessary as
no indexes are shared but reorganization speed decreases.
Hardware page shadowing for indexes as done in approach
3) achieves the same result but does not create a complete
copy of the indexes. Rather, it copies only the page table of
the pages used to store index data and applies the copy-on-
update mechanism as introduced in Section 3.1. In the last
approach, 4), index data between OLTP transactions and
OLAP queries is shared making synchronization necessary.

For our Hardware Page Shadowing approach as well as for
the HotCold approach, sharing an index structure between
OLTP transactions and OLAP queries is implicit with the
process cloning/forking. Thus, index latching and shared
usage of the index is not applicable with these approaches.
Approaches 1), 2) and 3) are applicable.

4. CLASSIFICATION
The following section contains a classification of the dif-

ferent snapshotting techniques examined in this paper.

4.1 Snapshotting method
The techniques discussed in this work can be subdivided

by the method they use to achieve a consistent snapshot
while still allowing high throughput OLAP transactions on
the data. The HotCold approach as well as the plain hard-
ware page shadowing approach use a hardware supported
copy on write mechanism to create a snapshot. In contrast

to that, tuple shadowing as well as the twin object approach
use software mechanisms to keep a consistent snapshot of the
data intact while modifications are stored separately. This
is also displayed in Figure 8 where all techniques are classi-
fied by whether snapshot maintenance is done in software,
in hardware or both:

Replication
Granularityallpagetuple

Hardware/OS

Software

HW Page Shadowing (fork)
- No added indirection
- Multiple snapshots

Hot/Cold
- Indirection through bitvector
- Multiple snapshots

Tuple Shadowing
- Indirection through pointer
- Single snapshot, multiple
 snapshots hard to achieve

Twin Objects
- Indirection through bitvector
- With each additional snapshot,
 space consumption increases since
 all tuples have to be duplicated.

Control
exercised by...

Figure 8: Techniques classified by granularity and
control mechanism.

The snapshotting mechanism has a direct impact on the
amount of reorganization required when the snapshot needs
to be refreshed. The hardware supported page shadowing
approach requires no reorganization whatsoever, only the
OLTP process needs to be quiesced and the fork system
call needs to be executed. Since the HotCold approach relies
on the same mechanism to generate a consistent snapshot,
no reorganization is required either but an optional reorga-
nization can be performed. This saves memory by actually
removing tuples that have been flagged as deleted and it also
increases scan performance as a deletion flag checks become
unnecessary during scans.

With software based snapshotting approaches, reorganiza-
tion is mandatory on snapshot refresh. First, tuples flagged
as deleted need to be actually removed or at least marked
as unused so that they can be overwritten with new tuples
at a later point. In case of tuple shadowing, updates saved
in shadow copies have to be written back to the original ver-
sion to prevent a long chain of versions from forming which
would linearly increase the level of indirection when access-
ing tuples. Whereas the approaches based on hardware page
shadowing only required quiescing the OLTP process, soft-
ware based snapshotting techniques usually require the en-
tire database to quiesced incurring

To conclude, approaches maintaining a snapshot using
software mechanisms require a reorganization phase to re-
fresh that snapshot whereas approaches relying on hardware
page shadowing need no reorganization or at most an op-
tional reorganization phase.

4.2 Indirection
With hardware page shadowing, all indirection required is

handled by the operating system’s virtual memory mecha-
nisms. Since virtual memory is used by all approaches since
direct allocation of physical memory is neither useful nor
technically simple, no additional level of indirection is added
by hardware supported page shadowing.

Software based approaches introduce a level of indirection:
Tuple shadowing keeps a pointer to updated shadow copies

21

of each tuple forcing OLTP queries to check whether a newer
version exists or not. The twin object approach requires
a bitmap to be checked on each read access and thereby
introduces indirection on tuple access.

4.3 Memory overhead and granularity
As the name suggests, hardware supported page shad-

owing uses a page as its smallest granularity level causing
an entire page to be copied on modification. This is also
displayed in Figure 8 where all techniques are classified by
the granularity in which memory consumption grows due to
modification.

Since in hardware page shadowing all pages end up being
replicated in a worst case scenario, the memory used for
OLTP transaction processing is at most doubled to maintain
one consistent snapshot for OLAP processing. Because of
the page level granularity, not all tuples need to be modified
to cause worst-case memory consumption: If at least one bit
is modified on each page, all pages will end up being copied.

Compared to pure hardware page shadowing, the HotCold
approach lowers the rate at which memory consumption in-
creases. This is done by clustering updates in a designated
part of the memory called the hot area. In a worst case
scenario, memory consumption still doubles to maintain a
consistent snapshot, but every tuple has to be modified to
cause worst case behavior. Thus, the HotCold approach ef-
fectively decreases the speed at which memory is consumed
by OLTP transactions.

Tuple shadowing as well as twin objects work with a per-
tuple granularity. Tuple shadowing copies a tuple on mod-
ification thus increasing memory consumption linearly with
the number of modified tuples. Twin objects saves two ver-
sions of each tuple by default, thus exhibiting worst case
memory consumption right from the start – the approach
is mainly used to illustrate the varying degrees of overhead
introduced by reorganization.

4.4 Concurrency in indexes
A low cost snapshot of the database does not necessar-

ily allow for high performance query execution. One of the
reasons is that metadata like indexes are missing. In sec-
tion 3.5, we introduced four ways of dealing with indexes
which we will now revisit for a classification.

4.4.1 Abandoning indexes
The trivial solution of abandoning all index structures

consumes no additional memory and at the same time offers
no help when accessing data form OLAP queries. Required
indexes can be regenerated online incurring a runtime per-
formance overhead during query execution.

4.4.2 Eager index copy
Indexes can be duplicated eagerly when the snapshot is

taken. This results in an increase in memory consumption
but retains indexes for use in OLAP queries. Since OLTP as
well as OLAP queries need to be quiesced for index copies
to be generated in a consistent fashion, the additional time
spend while refreshing a snapshot decreases OLTP as well
as OLAP throughput. At transaction and query runtime,
no overhead is incurred.

4.4.3 Index fork
Equivalently to data, indexes can be copied using the

hardware snapshotting technique discussed in section 3.1.
In a worst case scenario, memory consumed by indexes du-
plicates over time as index entries are updated. When the
snapshot is created, the only delay incurred is the duration
of the fork system call which is short compared to eagerly
copying the entire index (see Figure 5.1). At runtime, pages
which are modified for the first time have to be copied. This
is done by the OS/MMU and takes only about 2 microsec-
onds for a 4 kilobyte page [9].

4.4.4 Index synchronization
For techniques where index sharing is possible, namely

Tuple Shadowing and Twin Objects, inconsistencies due to
concurrent access have to be prevented. This can be done by
latching index structures so that writers get exclusive access
to an index whereas multiple readers can access it concur-
rently. In this case, indexes do not have to be duplicated
but the latches incur a comparably small memory overhead.
Minimally, every index access has to pass at least one latch.
Thus the runtime overhead for this approach consists of the
time it takes to acquire a latch as well as possible wait-time
in case the latch is held by another process.

4.5 Classification summary

Backend
Snapshot

Indir. Gran.
Index

mechanism sharing
Fork hw VM only page n/a
Tuple sw VM + ptr tuple yes
Twin sw VM + bit all yes
HotCold hw/sw VM + bit tuple n/a

Figure 9: Classification overview between all pre-
sented techniques and index synchronization mech-
anisms.

5. EVALUATION
In this section, all proposed techniques for the hybrid ex-

ecution of OLTP transactions and read only OLAP queries
will be thoroughly evaluated.

5.1 Snapshotting performance
For all techniques, OLTP processing has to be quiesced

when the snapshot is refreshed. Since this directly impacts
OLTP transaction throughput, we measured the total time
it takes before OLTP processing can be restarted. For tech-
niques employing hardware page shadowing, the time re-
quired to finish the fork system call is measured. For soft-
ware based approaches, the time required for memory re-
organization is measured. When reorganization is optional,
the time required for the optional part of the reorganization
is given in braces.

Backend 4kb pages 2mb pages
VM-Fork 47ms 13ms
Tuple 500ms 483ms
Twin 94ms 85ms
HotCold 50ms 13ms

(2829ms) (2097ms)

Table 1: Reorganization time by backend, optional
reorganization runtime given in brackets.

22

Table 1 shows the time required to refresh a snapshot for
the different techniques. Reorganization took place after
loading the data of the TPC-C benchmark scaled to 5 ware-
houses and then running the TPC-C transaction mix un-
til a total of 100,000 transactions (roughly 44,000 neworder
transactions) were finished. A snapshot of the database con-
taining the data that was initially loaded was maintained
while executing the transactions.

5.2 Raw scan performance
In addition to the tests conducted during the execution

of the CH-BenCHmark, we measured scan performance in
a microbenchmark setting. First, we evaluated the time it
takes to determine which tuples inside the store are valid,
that is, time to find all valid TIDs. Second, we evaluated
the predicates min(4b) and min(50b) which determines the
lowest value for a 4 byte integer and for a 50 byte string,
respectively.

Backend
Valid 4kb pages 2mb pages

Tuples Min(4b) Min(50b) Min(4b) Min(50b)
VM-Fork 72ms 188ms 702ms 186ms 701ms
Tuple 72ms 216ms 715ms 212ms 708ms
Twin 74ms 242ms 813ms 250ms 796ms
HotCold 146ms 199ms 769ms 197ms 767ms

Table 2: Scan performance on snapshot after remov-
ing 1% and updating 2% of the tuples.

The two queries were run on a snapshot taken after 30
million tuples were loaded into the table being tested. Before
running the queries, OLTP transactions changing a total of
2% of the tuples inside the table and deleting another 1%
were run.

The time it takes to determine all valid TIDs is given as
the ‘Valid Tuples’ value. It is a baseline for table scan exe-
cution speed. ‘Valid Tuples’ performance is inferior on the
HotCold store. This stems from the fact that reorganiza-
tion of that store is optional and a snapshot can therefore
contain tuples which have been marked as deleted. If re-
organization was changed to be mandatory in the HotCold
approach, checking for deleted tuples would no longer be
necessary and the runtime would be in the same ballpark as
it is on the other stores.

When comparing the relative difference in speed of exe-
cution between the min(4b) query – which loads a 4 byte
int value per tuple – and the min(50b) query – which loads
50 bytes of data per tuple – we can observe that the domi-
nating factor in query execution is loading data. Differences
between the VM-Fork and other backends are caused by
added indirection in case of the HotCold approach or bigger
tuple size because of added metadata (e.g. the ShadowPtr)
resulting in higher memory pressure in the other approaches.

Both min-queries were run on memory backed by 4kb as
well as 2mb pages. Large pages reduce the number of TLB
misses since lookup information of larger chunks of memory
can be resolved using the entries inside the TLB. With ta-
ble scans, no significant improvement can be observed. We
sampled the number of TLB misses that occur during scan
operations both with 4kb as well as with 2mb pages1. In
both scenarios, the number of TLB misses is zero or close

1Samples were taken with oprofile [10] which periodically
acccesses CPU performance counters during execution.

to zero suggesting that TLB misses have no impact on scan
operations since misses are rare to begin with. It is assumed
that the low number of TLB misses is due to predictive ad-
dress resolution done by the CPU because of the sequential
access pattern of scan queries.

5.3 OLTP&OLAP CH-BenCHmark
To be able to measure the performance of a hybrid system

running OLTP transactions as well as OLAP queries in par-
allel, the CH-BenCHmark was developed [4, 2]. The bench-
mark extends the TPC-C schema so that TPC-C transac-
tions as well as queries semantically equivalent to TPC-H
queries can be executed on the same database state.

For the purpose of measuring the memory overhead in-
curred by different granularities in the tested snapshotting
techniques, we extended the transactional part of the bench-
mark to include a transaction implementing warranty and
return cases. This changes the access pattern of the TPC-C
on the orderline relation so that a small number of older
tuples (2% on average) is updated even after delivery.

OLTP

OLAP 1

OLAP 2

OLAP 3

Time

Delay

Snapshot refresh in
SW approaches

Snapshot refresh
requested

Delay

Snapshot refresh in
HW approaches

Figure 10: Schematic representation of the CH-
BenCHmark used to evaluate all storage backends.

The benchmark was run with one thread executing OLTP
transactions and 3 threads concurrently running OLAP
queries (specifically, queries 1 and 5 of the TPC-H) on a
snapshot. A snapshot refresh was triggered every 200,000
OLTP transactions. A schematic representation of the bench-
mark is shown in Figure 10. There, the difference between
snapshot refresh delays between Hardware Page Shadow-
ing and software controlled snapshotting mechanisms is dis-
played. When a hardware supported technique is used, only
OLTP execution has to be quiesced. With software con-
trolled mechanisms – like Tuple Shadowing – all threads
executing OLAP queries have to stopped as well which re-
duces throughput because queries have to be either aborted
or delayed.

When the snapshot renewal is requested and the delaying
strategy is employed, no new OLAP queries are admitted
in software controlled snapshotting techniques. As soon as
all existing OLAP queries have finished, OLTP processing is
quiesced and a the snapshot is refreshed. All OLAP threads
finished with their query inhibit a delay until the new snap-
shot is ready, thus reducing OLAP throughput. When a
hardware controlled snapshotting mechanism is used, the
snapshot can be renewed as soon as all OLTP transactions
have been quiesced. Here, the coexistence of multiple snap-
shots possible in the hardware-controlled mechanisms VM-

23

Fork and HotCold is beneficial, as the creation of a new
snapshot is independent of parallel query execution on old
snapshots.

5.3.1 OLTP/OLAP throughput
Table 3 shows the throughput for OLTP transactions as

well as OLAP queries. The OLTP transactions correspond
to the transactions of the TPC-C. The OLAP queries con-
sist of queries semantically equivalent to queries 1 and 5 of
the TPC-H. The two representative OLAP queries are re-
peatedly executed in an alternating pattern.

Backend
raw index fork index copy index share

OLTP OLTP OLAP OLTP OLAP OLTP OLAP

VM-Fork 85k 60k 10.3 59k 9.7 n/a n/a
Tuple 25k 22k 6.8 19k 5.9 24k 5.9
Twin 33k 29k 7.0 26k 5.9 27k 7.0
HotCold 84k 59k 9.6 59k 9.9 n/a n/a

Table 3: OLTP and OLAP throughput per second
in the CH-BenCHmark.

Looking at OLTP throughput, it can be observed that
techniques based on Hardware Page Shadowing yield higher
throughput. This has two major reasons: First, Hardware
Page Shadowing allows for faster reorganization than soft-
ware controlled mechanisms as we observed in Section 5.1.
Second, there is no indirection as opposed to Tuple Shadow-
ing where a shadow tuple has to be checked, or Twin Tuples
where the tuple to be read or written has to be found using
a bit flag (c.f. Appendix 4.2).

OLAP query performance is influenced less by the choice
of snapshotting mechanism. Compared to a 50% slowdown
as seen in OLTP throughput, OLAP queries run about 25%
slower when a software controlled snapshotting mechanism
is employed. Here, the slowdown is caused by two main fac-
tors: Reorganization time and the delay caused by quiescing
OLAP queries. All backends have been architected so that
OLAP query performance is as high as possible. This is
achieved by maintaining tuples included in the snapshot in
their original form and position and adding redirection only
for new, updated or deleted tuples which can only be seen
by OLTP transactions, not OLAP queries.

Throughput for both OLTP transactions as well as OLAP
queries varies with different index synchronization mecha-
nisms. For index copy, performance degradation is caused
by an increase in reorganization delay of about 1 second per
1000 megabytes index size. When indexes are shared be-
tween transactions and queries, reorganization time is unaf-
fected but instead a runtime overhead for acquiring latches is
incurred. For index fork – where indexes are shadow copied
with vm page granularity – the decrease in OLTP through-
put compared to the raw throughput given in Table 3 is the
result of both increased fork time as well as runtime over-
head. Here, the part of the page table used for index pages
needs to be copied as part of the fork causing a small delay in
the order of milliseconds per gigabyte index size. Addition-
ally, more significant delays occur whenever a physical page
has to be copied causing a significant performance decrease
compared to the raw OLTP throughput given. It should be
noted that the raw values shown in Table 3 were measured
without any index synchronization causing all indexes to be
inaccessible for OLAP query processing.

The benchmark was executed on both 4kb and 2mb pages.

Techniques involving the fork system call experience better
fork performance with larger pages. This is due to the fact
that the page table – which is copied eagerly on snapshot
refresh – is 512 times smaller when using 2mb pages instead
of 4kb pages (see 5.1). Apart from performance gains re-
lated to smaller delays caused by higher fork performance,
a measurable performance gain from bigger pages is expe-
rienced by OLTP transactions. There, the memory access
pattern is non sequential – as opposed to OLAP table scans.
On most architectures (see, for instance, [7]), the size of vir-
tual memory for which address resolution can be performed
in hardware using the TLB is significantly larger when us-
ing large pages than when small pages are used. Therefore,
TLB misses occur less frequently thus increasing transaction
throughput. In measurements we conducted for a TPC-C
workload, the number of TLB misses was reduced to about
50% when using large pages as opposed to small pages.

Absolute gains in OLTP performance are higher for ap-
proaches with a higher inclination to TLB misses. This is
the case for both the HotCold and the Tuple Shadowing
approach. Since shadow copies can not be easily located
close to the original tuple without high memory consump-
tion overhead or diminished OLTP performance, opportu-
nities for TLB misses during OLTP transactions effectively
double. Therefore, reducing the number of TLB misses by
roughly 50% results in higher absolute savings compared to,
for example, Twin Tuples.

OLAP processing does not significantly profit from using
large pages. As noted before, any gains from using large
pages are either due to shorter reorganization time or less
TLB misses. The effects of shorter reorganization time when
the fork system call is used are insignificant since the entire
delay caused by this operation does only account for about
1% of the total runtime of the benchmark. A throughput
increase due to a lower TLB miss rate as observed for OLTP
transactions can not be observed for queries because the ac-
cess pattern of OLAP queries is sequential, making prefetch-
ing possible. Therefore, the TLB miss rate in OLAP queries
can be assumed to be low and thus no significant perfor-
mance increase can be expected from reducing TLB misses.

5.3.2 Memory consumption
For the same CH-BenCHmark configuration as used in

Section 5.3.1, we measured the total memory usage. Fig-
ure 11 shows the absolute memory used by our prototypes
after executing a given number of OLTP transactions. Mem-
ory measurements were taken by monitoring total memory
consumption on the test hardware.

It can be observed that the memory curve of all approaches
is approximately linear. As the insertion-/update-rate of the
CH-BenCHmark is constant, this course was to be expected.
The fluctuations in memory consumption result from the
parallel execution of OLAP queries which require a certain
amount of memory for computations and intermediate re-
sults. With no OLAP processing in parallel, the deviation
from a linear shape of the curve is no longer visible given
the scale used in Figure 11.

The figure includes the four approaches discussed in this
paper as well as curves labeled ‘baseline’ and ‘Row w/o
OLAP’. ‘Baseline’ is the minimum amount of memory re-
quired to save the tuples without applying compression, its
value is calculated. ‘Row w/o OLAP’ is the memory re-
quired by a row store implementation without any snapshot

24

Figure 11: Memory consumed by the different snapshotting techniques over the course of a 6 million OLTP
transaction run of the CH-BenCHmark.

mechanism and was measured the same way memory con-
sumption was measured for our snapshot approaches.

The VM-Fork, Tuple Shadowing and HotCold approach
each consume roughly equivalent amounts of memory during
the benchmark. Compared to baseline memory consump-
tion, the three approaches require roughly 20 to 30% more
memory than what is necessary to save the raw data con-
tained in all tuples. The Twin Tuples approach requires
about twice as much memory compared to the baseline,
which is caused by constantly saving every tuple twice.

The difference in memory consumption between ‘Row w/o
OLAP’ and the approaches researched in this paper can be
explained by multiple factors: First, shadow copies consume
memory that would not be needed when updating in place.
Second, parallel OLAP processing requires memory for in-
termediate results. Third, more metadata like bitmaps or
page table copies need to be kept in memory.

In Figure 11, no clear savings from approaches with finer
shadowing granularity can be observed. We believe this is
caused by high locality of the TPC-C benchmark as well as
small tuple size of those tables which are actually updated.

6. CONCLUSION
Satisfying the emerging requirement for real-time busi-

ness intelligence demands to execute a mixed OLTP&OLAP
workload on the same database system state. In this pa-
per, we analyzed 4 different snapshotting techniques for in-
memory DBMS that allow to shield mission-critical OLTP
from the longer-running OLAP queries without any addi-
tional concurrency control overhead: VM-fork that creates
the snapshot by cloning the virtual memory of the database
process, Twin Tuples that keeps two copies of each tuple,
software-controlled Tuple Shadowing and the HotCold adap-
tation of the VM-fork. The clear winner in terms of OLTP
performance, OLAP query response times and memory con-
sumption is the VM-fork technique which exploits modern

multi-core architectures effectively as it allows to create an
arbitrary number of time-wise overlapping snapshots with
parallel query sessions. The snapshot maintenance is com-
pletely delegated to the MMU&OS as they detect and per-
form the necessary page replications (copy-on-write) ultra-
efficiently. Thus, the re-emergence of in-memory databases
and the progress in hardware supported virtual memory
management have led to a promising reincarnation of the
shadow paging of the early database days. Unlike the orig-
inal shadow page snapshots, the hardware controlled VM
snapshots are very well suited for processing OLAP queries
in a mixed OLTP&OLAP workload.

7. REFERENCES
[1] T. Cao, M. V. Salles, B. Sowell, Y. Yue, J. Gehrke,

A. Demers, and W. White. Fast Checkpoint Recovery
Algorithms for Frequently Consistent Applications. In
SIGMOD, 2011.

[2] R. Cole, F. Funke, L. Giakoumakis, W. Guy,
A. Kemper, S. Krompaß, H. Kuno, R. Nambiar,
T. Neumann, M. Poess, K.-U. Sattler, M. Seibold,
E. Simon, and F. Waas. The mixed workload
ch-benchmark. In DBTest, 2011.

[3] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden.
Schism: a Workload-Driven Approach to Database
Replication and Partitioning. PVLDB, 3(1):48–57,
2010.

[4] F. Funke, A. Kemper, and T. Neumann.
Benchmarking Hybrid OLTP&OLAP Database
Systems. In BTW, 2011.

[5] H. Garcia-Molina and K. Salem. Main Memory
Database Systems: An Overview. IEEE Trans. Knowl.
Data Eng., 4(6):509–516, 1992.

[6] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and
what we found there. In SIGMOD, pages 981–992,

25

2008.

[7] Intel. First the Tick, Now the Tock: Next Generation
Intel Microarchitecture (Nehalem).
http://www.intel.com/technology/

architecture-silicon/next-gen/whitepaper.pdf, 2008.

[8] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. B. Zdonik, E. P. C. Jones, S. Madden,
M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi.
H-store: a high-performance, distributed main
memory transaction processing system. PVLDB,
1(2):1496–1499, 2008.

[9] A. Kemper and T. Neumann. HyPer: A Hybrid
OLTP&OLAP Main Memory Database System Based
on Virtual Memory Snapshots. In ICDE, 2011.

[10] J. Levon. OProfile Manual. Victoria University of
Manchester, 2004.

[11] R. A. Lorie. Physical Integrity in a Large Segmented
Database. ACM Trans. Database Syst., 2(1):91–104,
1977.

[12] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. In VLDB, 2011.

[13] H. Plattner. A common database approach for OLTP
and OLAP using an in-memory column database. In
SIGMOD, pages 1–2, 2009.

[14] K. Salem and H. Garcia-Molina. Checkpointing
memory-resident databases. In ICDE, pages 452–462,
1989.

[15] VoltDB LLC. VoltDB Technical Overview.
http://voltdb.com/_pdf/

VoltDBTechnicalOverviewWhitePaper.pdf, 2010.

APPENDIX
A. HARD- AND SOFTWARE USED

All tests were conducted on a database server with two In-
tel Xeon X5570 quad-core CPUs at 2.93GHz. The machine
is equipped with 64 gigabytes of main memory and did not
swap during any of the tests. All code is written in C++
and compiled with g++ version 4.4 using -O3 optimization
settings. Transactions as well as queries are compiled to ma-
chine code using the LLVM 2.8 compiler infrastructure with
default optimization passes; see [12] for more information on
query compilation.

B. WORDLOAD USED
During the run of the CH-Benchmark, OLAP queries 1

and 5 were execute in an alternating sequence. The queries
roughly mimic queries 1 and 5 from the TPC-H benchmark.
The schema of the CH-Benchmark which is a combination
of the schemas of TPC-C and TPC-H is shown in Figure 12.
Further information can be found in the CH-Benchmark pa-
per [2].

B.1 Query 1
select ol_number ,

sum(ol_quantity) as sum_qty ,
sum(ol_amount) as sum_amount ,
avg(ol_quantity) as avg_qty ,
avg(ol_amount) as avg_amount ,
count (*) as count_order

from orderline
where ol_delivery_d >

timestamp ’2010 -01 -01 00:00:00 ’
group by ol_number order by ol_number

B.2 Query 5
select n_name , sum(ol_amount) as revenue
from customer , order , orderline ,

stock , supplier , nation , region
where

c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and ol_o_id = o_id
and ol_w_id = o_w_id
and ol_d_id=o_d_id
and ol_w_id = s_w_id
and ol_i_id = s_i_id

-- instead of FK :
and mod((s_w_id * s_i_id) ,10000) =

su_suppkey
and ascii(substr(c_state ,1,1)) =

su_nationkey
and su_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’Europa ’
and o_entry_d >=

timestamp ’2010 -01 -01 00:00:00 ’
group by

n_name
order by

revenue desc

Item (100k)

of

Stock (W ∗ 100k)

sup-by stored

in

in in

Warehouse (W)

available

Order-Line (W ∗ 300k)

New-Order (W ∗ 9k)

History (W ∗ 30k)

serves

Supplier (10k) Nation (62)

Region (5)

pending

contains

has

Order (W ∗ 30k)

issues

Customer (W ∗ 30k)

located-in

District (W ∗ 10)

(W,W)

(1, 1)

(1, 1)

(10W, 10W)

(3, 3)

(1, 1)

(1, 1)
(5, 15)

(1, 1)

(100k, 100k)

(10, 10) (1, 1)

(1, 1)

(3k, 3k)

(1, ∗)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(0, 1)

Figure 12: The schema of the CH-Benchmark.

B.3 OLTP Transactions
• New-Order

• Payment

• Delivery

• Order-Status

• Stock-Level

26

Towards Highly Parallel Event Processing through
Reconfigurable Hardware

Mohammad Sadoghi, Harsh Singh, Hans-Arno Jacobsen
Middleware Systems Research Group

Department of Electrical and Computer Engineering
University of Toronto, Canada

ABSTRACT

We present fpga-ToPSS (Toronto Publish/Subscribe System), an
efficient event processing platform to support high-frequency and
low-latency event matching. fpga-ToPSS is built over reconfig-
urable hardware—FPGAs—to achieve line-rate processing by ex-
ploring various degrees of parallelism. Furthermore, each of our
proposed FPGA-based designs is geared towards a unique appli-
cation requirement, such as flexibility, adaptability, scalability, or
pure performance, such that each solution is specifically optimized
to attain a high level of parallelism. Therefore, each solution is
formulated as a design trade-off between the degree of parallelism
versus the desired application requirement. Moreover, our event
processing engine supports Boolean expression matching with an
expressive predicate language applicable to a wide range of appli-
cations including real-time data analysis, algorithmic trading, tar-
geted advertisement, and (complex) event processing.

1. INTRODUCTION
Efficient event processing is an integral part of growing num-

ber of data management technologies such as real-time data anal-
ysis [27, 5, 29], algorithmic trading [26], intrusion detection sys-
tem [5, 8], location-based services [30], targeted advertisements [9,
25], and (complex) event processing [1, 7, 2, 6, 17, 3, 24, 25, 9].

A prominent application for event processing is algorithmic trad-
ing; a computer-based approach to execute buy and sell orders on
financial instruments such as securities. Financial brokers exer-
cise investment strategies (subscriptions) using autonomous high-
frequency algorithmic trading fueled by real-time market events.
Algorithmic trading is dominating financial markets and now ac-
counts for over 70% of all trading in equities [11]. Therefore, as
the computer-based trading race among major brokerage firms con-
tinues, it is crucial to optimize execution of buy or sell orders at
the microsecond level in response to market events, such as corpo-
rate news, recent stock price patterns, and fluctuations in currency
exchange rates, because every microsecond translates into oppor-
tunities and ultimately profit [11]. For instance, a simple classical
arbitrage strategy has an estimated annual profit of over $21 billion
according to TABB Group [12]. Moreover, every 1-millisecond

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DaMoN’11, June 13, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

Figure 1: Degrees of Offered Parallelism

reduction in response-time is estimated to generate the staggering
amount of over $100 million a year [19]; such requirements greatly
increases the burden placed on event processing platform.

Therefore, a scalable event processing platform must efficiently
determine all subscriptions that match incoming events at a high
rate, potentially up to a million events per second [4]. Similar re-
quirements are reported for event processing in network monitoring
services [27].

To achieve throughput at this scale, we propose and evaluate
a number of novel FPGA-based event processing designs (Field
Programmable Gate Array). An FPGA is an integrated circuit de-
signed to be reconfigurable to support custom-built applications in
hardware. Potential application-level parallelism can be directly
mapped to purpose-built processing units operating in parallel. Con-
figuration is done through encoding the application in a program-
ming language-style description language and synthesising a con-
figuration uploaded on the FPGA chip [14]. FPGA-based solutions
are increasingly being explored for data management tasks [20, 21,
22, 28, 26].

This promising outlook has a few caveats that make the acceler-
ation of any data processing with FPGAs a challenging undertak-
ing. First, current FPGAs (e.g., 800MHz Xilinx Virtex 6) are still
much slower compared to commodity CPUs (e.g. 3.2 GHz Intel
Core i7). Second, the accelerated application functionality has to be
amenable to parallel processing. Third, the on-/off-chip data rates
must keep up with chip processing speeds to realize a speedup by
keeping the custom-built processing pipeline busy. Finally, FPGAs
restrict the designer’s flexibility and the application’s dynamism1,
both of which are hardly a concern in standard software solutions.
However, the true success of FPGAs is rooted in three distinc-
tive features: hardware parallelism, hardware reconfigurability, and
substantially higher throughput rates.

1e.g., subscription insert and delete operations are not a given.

27

Thus, each of our solutions is formulated as a design trade-off
between the degree of exploitable parallelism (cf. Fig. 1) versus
the desired application-level requirements. Requirements consid-
ered are: the ease of the development and deployment cycle (flexi-
bility), the ability of updating a large subscription workload in real-
time (adaptability), the power of obtaining a remarkable degree of
parallelism through horizontal data partitioning on a moderately
sized subscription workload (scalability), and, finally, the power
of achieving the highest level of throughput by eliminating the use
of memory and by specialized encoding of subscriptions on FGPA
(performance).

We experiment with four novel system designs that exhibit dif-
ferent degrees of parallelism (cf. Fig. 1) and capture different ap-
plication requirements. In our application context, achievable per-
formance is driven by the degree of parallelism (in which FPGAs
dominate) and the chip operating frequency (in which CPUs dom-
inate). Therefore, our solution design space is as follows: a single
thread running on single CPU core (PC), a single thread on a single
soft-processor (flexibility) 2, up to four custom hardware match-
ing units (MUs) running in parallel in which the limiting factor is
off-chip memory bandwidth (adaptability), horizontally partition-
ing data across m matching units running in parallel in which the
limiting factor is the chip resources and the on-chip memory (scal-
ability), and, lastly, n (where n ≥ m) matching units running in
parallel (with no memory access because the data is also encoded
on the chip), in which the limiting factor is the amount of chip re-
sources, particularly, the required amount of wires (performance).

The ability of an FPGA to be re-configured on-demand into a
custom hardware circuit with a high degree of parallelism is key
to its advantage over commodity CPUs for data and event process-
ing. Using a powerful multi-core CPU system does not necessar-
ily increase processing rate (Amdahl’s Law) as it increases inter-
processor signaling and message passing overhead, often requir-
ing complex concurrency management techniques at the program
and OS level. In contrast, FPGAs allow us to get around these
limitations due to their intrinsic highly inter-connected architecture
and the ability to create custom logic on the fly to perform parallel
tasks. In our design, we exploit parallelism, owing to the nature
of the matching algorithm (Sec. 3), by creating multiple matching
units which work in parallel with multi-giga bit throughput rates
(Sec. 4), and we utilize reconfigurability by seamlessly adapting
relevant components as subscriptions evolve (Sec. 4).

2. RELATED WORK
FPGA An FPGA is a semiconductor device with programmable

lookup-tables (LUTs) that are used to implement truth tables for
logic circuits with a small number of inputs (on the order of 4 to
6 typically). FPGAs may also contain memory in the form of flip-
flops and block RAMs (BRAMs), which are small memories (a few
kilobits), that together provide small storage capacity but a large
bandwidth for circuits in the FPGA. Thousands of these building
blocks are connected with a programmable interconnect to imple-
ment larger-scale circuits.

Past work has shown that FPGAs are a viable solution for build-
ing custom accelerated components [20, 21, 22, 28, 26]. For in-
stance, [20] demonstrates a design for accelerated XML process-
ing, and [21] shows an FPGA solution for processing market feed
data. As opposed to these approaches, our work concentrates on
supporting a more general event processing platform specifically

2A soft-processor is a processor encoded like an application run-
ning on the FPGA. It supports compiled code written in a higher-
level language, like for example C without operating system over-
head.

designed to accelerate the event matching computation. Similarly,
[22] presents a data stream processing framework that uses FPGAs
to efficiently run hardware-encoded queries (without join). Lastly,
on the path toward supporting stream processing, a novel frame-
work on how to efficiently run hardware-encoded regular expres-
sion queries in parallel on an FPGA is proposed [28]; a key insight
was the realization that the deterministic finite automata (DFA),
although suitable for software solutions, results in explosion of
space; thereby, to bound the required space on the FPGA, a non-
deterministic finite automata (NFA) is utilized. Our approach dif-
fers from [28] as we primarily focus on supporting large scale con-
junctive Boolean queries.

On a different front, a recent body of work has emerged that in-
vestigates the use of new hardware architectures for data manage-
ment systems [10]; for instance, multi-core architectures were uti-
lized to improve the performance of database storage manager [13]
and to enhance the transaction and query processing [23].

Finally, the sketch of our initial proposal was presented in [26];
our current work not only delves into much more technical depth
which was omitted from [26], it also reformulates our FPGA-based
solutions based on the extent of parallelism in each design, a formu-
lation that permits a concrete performance comparison of various
designs accompanied by a comprehensive experimental analysis.
Most importantly, this work introduces key insights and novel sys-
tem designs through introducing an effective horizontal data par-
titioning to achieve an unprecedented degrees of parallelism on
moderate-size subscription workload.

Matching The matching is one of the main computation inten-
sive components of event processing which has been well studied
over the past decade (e.g., [1, 7, 2, 6, 17, 3, 9, 24, 25]). In general,
the matching algorithms are classified as (1) counting-based [7],
and (2) tree-based [1, 25]. The counting algorithm is based on the
observation that subscriptions tend to share many common predi-
cates; thus, the counting method minimizes the number of predi-
cate evaluations by constructing an inverted index over all unique
predicates. Similarly, the tree-based methods are designed to re-
duce predicate evaluations; in addition, they recursively cut through
space and eliminate subscriptions on the first encounter with an un-
satisfiable predicate. The counting- and tree-based approaches can
be further classified as either key-based (in which for each subscrip-
tion a set of predicates are chosen as identifiers [7]), or as non-key
method [1]. In general, the key-based methods reduce memory ac-
cess, improve memory locality, and increase parallelism, which are
essentials for a hardware implementation. One of the most promi-
nent counting-based matching algorithms are Propagation [7], a
key-based method while one of the most prominent tree-based ap-
proach, BE-Tree, which is also a key-based method [25].

3. EVENT PROCESSING MODEL
Subscription Language & Semantics The matching algorithm

takes as input an event (e.g., market event and user profile) and a set
of subscriptions (e.g., investment strategies and targeted advertise-
ment constraints) and returns matching subscriptions. The event is
modeled as a value assignment to attributes and the subscription is
modeled as a Boolean expression (i.e., as conjunction of Boolean
predicates). Each Boolean predicate is a triple of either [attributei,
operator, values] or [attributei, operator, attributej]. Formally, the
matching problem is defined as follows: given an event e and a set

of subscriptions s, find all subscriptions si ∈ s satisfied by e.
Matching Algorithm The Propagation algorithm is a state-of-

the-art key-based counting method that operates as follows [7].
First, each subscriptions is assigned a key (a set of predicates) based
on which the typical counting-based inverted index is replaced by a

28

Figure 2: Tunning for Flexibility Design

set of multi-attribute hashing schemes. The multi-attribute hash-
ing scheme uniquely assigns subscriptions into a set of disjoint
clusters. Second, keys are selected from a candidate pool using
a novel cost-based optimization tuned by the workload distribution
to minimize the matching cost [7]. The Propagation data structure
has three main strengths which makes it an ideal candidate for a
hardware-based implementation: (1) subscriptions are distributed
into a set of disjoint clusters which enables highly parallelizable
event matching through many specialized custom hardware match-
ing units (MUs), (2) within each cluster, subscriptions are stored
as contiguous blocks of memory which enables fast sequential ac-
cess and improves memory locality, and (3) the subscriptions are
arranged according to their number of predicates which enables
prefetching and reduces memory accesses and cache misses [7].

4. FPGA-BASED EVENT PROCESSING
Commodity servers are not quite capable of processing event

data at line-rate. The alternative is to acquire and maintain high
cost purpose-built event processing applications. In contrast, our
design uses an FPGA to significantly speed up event processing
computations involving event matching. FPGAs offer a cost ef-
fective event processing solutions, since custom hardware can be
altered and scaled to adapt to the prevailing load and throughput
demands. Hardware reconfigurability allows FPGAs to house soft-
processors—processors composed of programmable logic. A soft-
processor has several advantages: it is easier to program on it (e.g.,
using C as opposed to Verilogwhich requires specialized knowl-
edge and hardware development tools), it is portable to different
FPGAs, it can be customized, and it can be used to communi-
cate with other components and accelerators in the design. In this
project, the FPGA resides on a NetFPGA [18] network interface
card and communicates through DMA on a PCI interface to a host
computer. FPGAs have programmable I/O pins that in our case
provide a direct connection to memory banks and to the network
interfaces, which in a typical server, are only accessible through a
network interface card.

In this section, we describe our four implemented designs each of
which is optimized for a particular characteristic such as flexibility
in development and deployment process, adaptability in supporting
changes for a large workload size, scalability through horizontal
data partitioning for moderate workload size, and performance in
maximizing throughput for small workload size. Most notably, the
distinguishing feature among our proposed designs is the level of
parallelism that ranges from running all subscriptions on a single
processor (flexibility) to running every subscription on its own cus-
tom hardware unit (performance).

4.1 Tuning for Flexibility
Our first approach is the soft-processor(s)-based solution (cf. Fig.

2), which runs on a soft-processor that is implemented on the Net-
FPGA platform. This solution also runs the same C-based event
matching code that is run on the PC-based version (our baseline);

Figure 3: Tuning for Adaptability Design

thus, this design is the easiest to evolve as message formats and pro-
tocols change. In order to maximize throughput of our event pro-
cessing application, we chose NetThreads [15] as the baseline soft-
processor platform for the FPGA. NetThreads has two single-issue,
in-order, 5-stage, 4-way multi-threaded processors (cf. Fig. 2),
shown to deliver more throughput than simpler soft-processors [16].
In a single core, instructions from four hardware threads are issued
in a round-robin fashion to hide stalls in the processor pipeline and
execute computations even when waiting for memory. Such a soft-
processor system is particularly well-suited for event processing:
The soft-processors suffer no operating system overhead compared
to conventional computers, they can receive and process packets in
parallel with minimal computation cost, and they have access to a
high-resolution system clock (much higher than a PC) to manage
timeouts and scheduling operations. One benefit of not having an
operating system in NetThreads is that packets appear as character
buffers in a low latency memory and are available immediately after
being fully received by the soft-processor (rather than being copied
to a user-space application). Also, editing the source and destina-
tion IP addresses only requires changing a few memory locations,
rather than having to comply with the operating system’s internal
routing mechanisms. Because a simpler soft-processor usually ex-
ecutes one instruction per cycle, it suffers from a raw performance
drawback compared to custom logic circuits on FPGAs; a custom
circuit can execute many operations in parallel as discussed next.

4.2 Tuning for Adaptability
In order to utilize both hardware-acceleration while supporting

large dynamic subscriptions on both off-chip and on-chip mem-
ories, we propose a second scheme (cf. Fig. 3). Since FPGAs
are normally programmed in a low-level hardware-description lan-
guage, it would be complex to support a flexible communication
protocol. Instead, we instantiate a soft-processor (SP) to implement
the packet handling in software. After parsing incoming event data
packets, the soft-processor offloads the bulk of the event match-
ing to a dedicated custom hardware matching unit. Unlike the
subscription-encoded matching units used in the tuned for perfor-
mance design, these matching units use low-latency on-chip mem-
ories, Block RAMs (BRAMs) available on FPGAs, that can be
stitched together to form larger dedicated blocks of memory. The
FPGAon the NetFPGAplatform [18] has 232 18kbit BRAMs which
are partially utilized to cache a subset of subscriptions. Having an
on-chip subscription data cache allows event matching to be ini-
tiated even before the off-chip subscription data can be accessed.
However, our matching algorithm leverages data locality in the
storage of dynamic subscriptions, which may be updated during run
time, in contiguous array clusters thereby exploiting burst-oriented

29

Figure 4: Tuning for Scalability Design

data access feature of the DDR2 (or SDRAM), off-chip memory,
while fetching the subscription data clusters. Thus, having an on-
chip subscription cache partially masks the performance penalty
(latency) of fetching the subscriptions from the off-chip DDR2mem-
ory, which is the main throughput bottleneck of our FPGA-based
event processing solution. Therefore, the maximum amount of use-
ful parallelism in this design is limited by the memory bandwidth;
in particular, no more than four custom hardware matching units
can be sustained simultaneously; any additional matching units will
remain idle because only a limited amount of data can be transfered
from off-chip memory to on-chip memory in each clock cycle.

In our design tuned for adaptability, we employ a more gener-
alized design that enables the matching units to support a dynamic
and a larger subscription workload than can be supported in our de-
signs that tuned either for scalability or performance. Our adapt-
ability design employs the BRAM-based Matching Units (BMUs)
which allows a subset of subscriptions to be stored on the on-chip
dedicated low latency BRAMs; thus making the design less hard-
ware resource intensive compared to the our pure hardware im-
plementation (tuned for performance design). Furthermore, coa-
lescing dynamic subscription data into an off-chip memory image
is achieved using the Propagation algorithm. The resulting sub-
scription data image is downloaded to the off-chip main memory
(e.g DDR2 SDRAM) while loading FPGA configuration bitstream.
Nevertheless, any hardware performance advantage promised by a
FPGA-based design soon dwindles when the data must be accessed
from an off-chip memory. We adopt two approaches to reduce the
impact of off-chip memory data access latency on the overall sys-
tem throughput. Firstly, we take advantage of high degree of the
data locality inherent in Propagation’s data structure which helps
to minimize random access latency. Secondly, to achieve local-
ity subscriptions are grouped into non-overlapping clusters using
attribute-value pair as access keys. Therefore, this data structure
is optimized for storing large number of subscriptions in off-chip
memory. In addition, we incorporate a fast (single cycle latency)
but smaller capacity BRAMs for each matching unit to store subset
of subscriptions, which helps mask the initial handshaking setup
delay associated with off-chip main memory access, i.e., the event
matching can begin against these subscriptions as soon as the event
arrives; in the meantime the system prepares to setup data access
from the off-chip DDR2 main memory.

The stepwise operation of this design is depicted in Fig. 3. Upon
arrival of an event, the SP transfers (1) the data packets to the
input queue of the system. A custom hardware submodule, the
DISPATCHER unit, extracts subscription predicates-value pairs, whi-
ch are input to hash functions to generate cluster addresses. Cluster
addresses are used to look-up the memory locations (2) of the rel-
evant subscription clusters residing both in BMU BRAMs and in
off-chip main memory. The DISPATCHER then feeds the event (3)
and previously computed cluster addresses (4) on the MU DATA

BUS (common to all BMUs). Next, the MU DRIVER unit acti-

Figure 5: Tuning for Performance Design

vates all parallel BMUs to initiate matching (5) using on-chip static
subscriptions stored in each BMU, while simultaneously queuing
up read requests for the off-chip main memory. The transfer (6)
of dynamic subscription data between the BMUs is pipelined to
avoid stalling the matching units due to data exhaustion. Finally
the match results are pushed (7) into the output queue from which
the SP transfers the results to the network interface to be sent to the
intended host(s).

4.3 Tuning for Scalability
The key property of our proposed design tuned for scalability

is the horizontal data partitioning that maximizes parallelism (cf.
Fig. 4). This design offers the ability to adjust the required level
of parallelism (which directly translates into matching throughput)
by adjusting the degree of data partitioning for a moderate size
workload, yet without significantly compromising the feature of-
fered in our adaptability design. It achieves this by fully leverag-
ing the available on-chip (BRAM) memory to partition the global
Propagation’s data structure across BRAM blocks such that each
subset of BRAMs is dedicated to each matching unit, in which
the matching unit has an exclusive access to a chunk of the global
Propagation’s structure. Unlike our adaptability design in which
the degree of parallelism is quite restricted due to the off-chip mem-
ory’s access latency, resulting in several data starved or stalled match-
ing units, this design employs matching units (BMUs) (cf. Fig. 4)
that are each provisioned with a dedicated BRAMmemory in order
to keep them fully supplied with subscription data. Therefore, the
degree of parallelism achieved is simply a function of the number
of BMUs that can be supported by the underlying FPGA. Finally,
a non-performance critical soft-processor (SP) can be employed to
update the on-chip memory tables attached to each BMU in the
design; hence, supporting dynamic subscription workload.

The overall stepwise operation of our tuned for scalability de-
sign, depicted in Fig. 4, is similar to that which occurs in the tuned
for adaptability design for steps (1) to (5), with the difference being
in the absence of the off-chip main memory used for storing the dy-
namic subscriptions. The operation and logic of the DISPATCHER

and MU DRIVER submodule is further simplified as the off-chip
memory access arbitration and data dissemination to BMUs is elim-
inated. Every BMU consists of a four-state Finite State Machine,
that upon receiving the event data (3) initiates matching by sequen-
tially fetching one subscriptions every clock cycle from the dedi-
cated BRAM memory containing the cluster starting at the address
(4) that was dispensed by the DISPATCHER unit. Since all BMUs
are ran in parallel and in sync with each other, the DISPATCHER

must dispense the next cluster address only when all BMUs have
completed matching all subscriptions in the current cluster. In fi-
nal phase (6), once all BMUs finish matching all the subscriptions’
clusters corresponding to the predicates present in the incoming
event, the final result tallying phase is initiated where matched sub-
scriptions or number of matches found are placed on the match hit

30

Figure 6: Evaluation Testbed

vectors and consolidated as a final result value by the DISPATCHER

unit to be transfered to SP via the output queue.

4.4 Tuning for Performance
Our final approach (cf. Fig. 5) is a purely hardware solution:

custom hardware components perform necessary steps involving
event parsing and matching of event data against subscriptions.
This method provides near line-rate performance, but also involves
a higher level of complexity in integrating custom heterogeneous
accelerators in which both the performance-critical portion of the
event processing algorithm and the encoding of subscriptions are
incorporated within the design of the matching unit logic; thereby,
completely eliminating all on- and off-chip memory access laten-
cies. Essentially, each subscription is transformed into a self-contain-
ed custom hardware unit; this subscription encoding achieves the
highest level of parallelism in our design space because all sub-
scriptions are ran in parallel.

The performance design offers the highest rate at which incom-
ing events can be matched against subscriptions, which are encoded
in the SUBSCRIPTION ENCODED MATCHING UNIT (SEMU) logic
on the FPGA. This method avoids the latency of both on and off-
chip memory access, but significantly constraints the size of the
subscription base that can be supported. A diagram of this design
is shown in Fig. 5. This setup is massively parallelized and offers
event matching at extremely high rates (i.e. one per clock cycle).

The stepwise operation of the our tuned for performance design
is depicted in Fig. 5. In this design, the soft-processor (SP) only
serves to transfer (1) the received event data packets from the net-
work interface input buffer to the input queue of the our system.
Custom hardware submodule, the DISPATCHERmodule, parses (2)
the incoming events and feeds the current event data to all the
matching units while the MU DRIVERmodule generates all the nec-
essary control signals to run all SEMUS synchronously. Each unit
is able to match all encoded subscriptions against the current event
in one clock cycle. However, subsequent clock cycles are spent in
tallying the matches and preparing the final responses (e.g. forward
address look-up or consolidating system wide match counts) that is
eventually pushed (3) into the output queue. The SP then transfers
(4) the final result from the output queue to the network interface
to be sent to the intended host(s).

5. EXPERIMENTAL RESULTS
This section describes our evaluation setup including the hard-

ware used to implement our FPGA-based event processing system
and the measurement infrastructure.

Evaluation PlatformOur FPGAbased solutions are instantiated
on the NetFPGA 2.1 [18] platform, operating at 125MHz and have
access to four 1GigE Media Access Controllers (MACs) via high-
speed hardware FIFO queues (cf. Fig. 2) allowing a theoretical
8Gbps of concurrently incoming and outgoing traffic capacity. In
addition, a memory controller to access the 64 Mbytes of on-board
off-chip DDR2 SDRAM is added. The system is synthesized to
meet timing constraints with the Xilinx ISE 10.1.03 tool and targets
a Virtex II Pro 50 (speed grade 7ns). Our soft-processor and match-
ing units run at the frequency of the Ethernet MACs (125MHz).

1x MU 4x MUs 32x MUs 128x MUs

250 7.5 5.5 5.0 3.6

1K 9.3 6.1 4.3 4.3

10K 64.0 19.0 6.8 5.4

50K 223.5 59.9 12.3 7.3

Table 1: Latency (µs) vs. the # of MUs (Scalability Design)

Evaluation & Evaluation Setup For our experiments, we used
HP DL320 G5p servers (Quad Xeon 2.13GHz) equipped with an
HP NC326i PCIe dual-port gigabit network card running Linux
2.6.26. As shown in Fig. 6, we exercised our event processing so-
lutions from the server executing a modified Tcpreplay 3.4.0

that sends event packet traces at a programmable fixed rate. Packets
are timestamped and routed to either the FPGA-based designs or
PC-based design. Each FPGA-based design is configured as one of
the solutions described in Sec. 4 and PC-based is a baseline serving
as comparison only. The network propagation delays are similar
for all designs. Both FPGA-based or PC-based designs forward
market events on the same wire as incoming packets which allows
the Event Monitor (EM), cf. Fig. 6, to capture both incoming and
outgoing packets from these designs. The EM provides a 8ns reso-
lution on timestamps and exclusively serves for the measurements.

Evaluation Workload We generate a workload of tens of thou-
sands of subscriptions derived from investment strategies such as
arbitrage and buy-and-hold. In particular, we vary the workload
size from 250 subscriptions to over 100K subscriptions. In addi-
tion, we generate market events using the Financial Information
eXchange (FIX) Protocol with FAST encoding3 .

EvaluationMeasurementsWe characterize the system through-
put as the maximum sustainable input packet rate obtained through
a bisection search: the smallest fixed packet inter-arrival time where
the system drops no packets when monitored for five seconds—a
duration empirically found long enough to predict the absence of
future packet drops at the given input rate. The latency of our so-
lutions is the interval between the time an event packet leaves the
Event Monitor output queue to the time the first forwarded version
of the market event is received and is added to the output queue of
the Event Monitor.

5.1 FPGA Performance Benefits
Packet ProcessingMeasuring the baseline packet processing la-

tency of both PC and FPGA-based solutions is essential in order to
establish a basis for comparison. When processing packets using
the PC solution, we measured an average round-trip time of 49µs
with a standard deviation of 17µs. With the NetThreads processor
on the FPGA replying, we measure a latency of 5µswith a standard
deviation of 44ns. Because of the lack of operating system and
more deterministic execution, the FPGA-based solution provides
a much better bound on the expected packet processing latency;
hence, our FPGA-based solution outperformed the PC-based solu-
tion in baseline packet processing by orders of magnitude.

Event Processing Before we begin our detailed comparison of
various designs, we study the effect of the number of matching
units (MUs) on the matching latency for our scalability design,
Table 1. As expected, as we increase the number of MUs, moving
from 1 MU to 128 MUs, the latency is improved significantly es-
pecially for the larger subscriptions workload (with chip resources
permitting). This improvement is directly proportional to the de-
gree of parallelism obtained by using a larger number of MUs.

In Table 2, we demonstrate the system latency as the subscription
workload size changes from 250 to 100K. In summary, even though
our FPGA (125MHz Virtex II) is much slower than the latest FPGA

3
fixprotocol.org

31

PC Flexibility Adaptability Scalability Performance

250 53.9 71.0 6.4 3.6 3.2

1K 60.7 199.4 7.5 4.3 N/A

10K 150.0 1,617.8 87.8 5.4 N/A

100K 2,001.2 16,422.8 1,307.3 N/A N/A

Table 2: End-to-end System Latency (µs)

PC Flexibility Adaptability Scalability Performance

250 122,654 14,671 282,142 740,740 1,024,590

1K 66760 5,089 202,500 487,804 N/A

10K 9594 619 11,779 317,460 N/A

100K 511 60 766 N/A N/A

Table 3: System Throughput (market events/sec)

(800MHz Virtex 6) and significantly slower than our CPU (Quad
Xeon 2.13GHz), our deign tuned for adaptability is 8x faster than
the PC-based solution on workload sizes of less than 1K and con-
tinued to improve over the PC solution by up to a factor of two
on workload of sizes of 100K. Similarly, the design tuned for per-
formance, while currently feasible only for smaller workloads due
to lack of resources on the FPGA, is 21.2x faster. Most impor-
tantly, our design tuned for scalability takes advantage of both of
our adaptability and performance designs by finding the right bal-
ance between using the on-chip memory to scale the workload size
while using the highly parallel nature of the performance design to
scale the event processing power. Thus, the scalability design is
16.2x faster than our adaptability design and is 27.8x faster than
the PC design. In addition, a similar trend was also observed for
the system throughput experiment as shown in Table 3.

Therefore, the adaptability design is limited because of slower
off-chip memory bandwidth which greatly hinders the degree of
parallelism while the performance design is limited because en-
coding the subscriptions in the logic fabric of the chip consumes
much more area than storing them in BRAM or DDR2 provid-
ing much denser storage. Finally, contrary to general perspective
that software solution cannot be utilized in hardware, the success
of our scalability design (which adapts a software-based solution)
suggests that in order to scale our solution to large subscription
workloads, certain software data structures for data placement be-
come a viable solution in conjunction with hardware acceleration
and parallelism.

6. CONCLUSIONS & DISCUSSIONS
We observe that event processing is at the core of many data

management applications such as real-time network analysis and
algorithmic trading. Furthermore, to enable the high-frequency
and low-latency requirements of these applications, we presented
an efficient event processing platform over reconfigurable hardware
that exploits the high degrees of hardware parallelism for achieving
line-rate processing. In brief, the success of our fpga-ToPSS frame-
work is through the use of reconfigurable hardware (i.e., FPGAs)
that enables hardware acceleration using custom logic circuits and
elimination of OS layer latency through on-board event processing
together with hardware parallelism and novel horizontal data par-
titioning scheme. As a result, our design tuned for performance
outperformed the PC-based solution by a factor of 27x on small
size subscription sets while our design tuned for scalability out-
performed the PC-based solution by a factor of 16x even as the
workload size was increased; in fact, this gap further widens as
workload size increases due an increased opportunity to process a
larger amount of data in parallel.

7. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra. Matching events in a content-based
subscription system. In PODC’99.

[2] G. Ashayer, H. K. Y. Leung, and H.-A. Jacobsen. Predicate
matching and subscription matching in publish/subscribe
systems. ICDCSW’02.

[3] L. Brenna, A. Demers, J. Gehrke, M. Hong, Ossher, Panda,
Riedewald, Thatte, and White. Cayuga: high-performance
event processing engine. SIGMOD’07.

[4] J. Corrigan. Updated traffic projections. OPRA, March’07.
[5] C. Cranor, T. Johnson, and O. Spataschek. Gigascope: a

stream database for network applications. In SIGMOD’03.
[6] Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter: Efficient

and scalable filtering of XML documents. In ICDE’02.
[7] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,

and D. Shasha. Filtering algorithms and implementation for
fast pub/sub systems. SIGMOD’01.

[8] A. Farroukh, M. Sadoghi, and H.-A. Jacobsen. Towards
vulnerability-based intrusion detection with event
processing. In DEBS’11.

[9] M. Fontoura, S. Sadanandan, J. Shanmugasundaram,
S. Vassilvitski, E. Vee, S. Venkatesan, and J. Zien. Efficiently
evaluating complex boolean expressions. In SIGMOD’10.

[10] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and what
we found there. In SIGMOD’08.

[11] K. Heires. Budgeting for latency: If I shave a microsecond,
will I see a 10x profit? Securities Industry, 1/11/10.

[12] R. Iati. The real story of trading software espionage. TABB
Group Perspective, 10/07/09.

[13] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: a scalable storage manager for the
multicore era. In EDBT’09.

[14] I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey
and challenges. Found. Trends Electron. Des. Autom.’08.

[15] M. Labrecque et al. NetThreads: Programming NetFPGA
with threaded software. In NetFPGA Dev. Workshop’09.

[16] M. Labrecque and J. G. Steffan. Improving pipelined soft
processors with multithreading. In FPL’07.

[17] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to
routing, covering and merging in publish/subscribe systems
based on modified binary decision diagrams. ICDCS ’05.

[18] J. W. Lockwood et al. NetFPGA - an open platform for
gigabit-rate network switching and routing. InMSE’07.

[19] R. Martin. Wall street’s quest to process data at the speed of
light. Information Week, 4/21/07.

[20] A. Mitra et al. Boosting XML filtering with a scalable
FPGA-based architecture. CIDR’09.

[21] G. W. Morris et al. FPGA accelerated low-latency market
data feed processing. IEEE 17th HPI’09.

[22] R. Mueller, J. Teubner, and G. Alonso. Streams on wires: a
query compiler for FPGAs. VLDB’09.

[23] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. PVLDB’10.

[24] M. Sadoghi, I. Burcea, and H.-A. Jacobsen. GPX-Matcher: a
generic boolean predicate-based XPath expression matcher.
In EDBT’11.

[25] M. Sadoghi and H.-A. Jacobsen. BE-Tree: An index
structure to efficiently match boolean expressions over
high-dimensional discrete space. In SIGMOD’11.

[26] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and H.-A.
Jacobsen. Efficient event processing through reconfigurable
hardware for algorithmic trading. In VLDB ’10.

[27] D. Srivastava, L. Golab, R. Greer, T. Johnson, J. Seidel,
V. Shkapenyuk, O. Spatscheck, and J. Yates. Enabling real
time data analysis. PVLDB’10.

[28] L. Woods, J. Teubner, and G. Alonso. Complex event
detection at wire speed with FPGAs. PVLDB’10.

[29] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In SIGMOD’06.

[30] Z. Xu and H.-A. Jacobsen. Processing proximity relations in
road networks. SIGMOD ’10.

32

Vectorization vs. Compilation in Query Execution

Juliusz Sompolski1
VectorWise B.V.

julek@vectorwise.com

Marcin Zukowski
VectorWise B.V.

marcin@vectorwise.com

Peter Boncz2

Vrije Universiteit Amsterdam
p.a.boncz@vu.nl

ABSTRACT

Compiling database queries into executable (sub-) programs
provides substantial benefits comparing to traditional inter-
preted execution. Many of these benefits, such as reduced
interpretation overhead, better instruction code locality, and
providing opportunities to use SIMD instructions, have pre-
viously been provided by redesigning query processors to
use a vectorized execution model. In this paper, we try to
shed light on the question of how state-of-the-art compila-
tion strategies relate to vectorized execution for analytical
database workloads on modern CPUs. For this purpose, we
carefully investigate the behavior of vectorized and compiled
strategies inside the Ingres VectorWise database system in
three use cases: Project, Select and Hash Join. One of the
findings is that compilation should always be combined with
block-wise query execution. Another contribution is iden-
tifying three cases where “loop-compilation” strategies are
inferior to vectorized execution. As such, a careful merging
of these two strategies is proposed for optimal performance:
either by incorporating vectorized execution principles into
compiled query plans or using query compilation to create
building blocks for vectorized processing.

1. INTRODUCTION
Database systems provide many useful abstractions such

as data independence, ACID properties, and the possibil-
ity to pose declarative complex ad-hoc queries over large
amounts of data. This flexibility implies that a database
server has no advance knowledge of the queries until run-
time, which has traditionally led most systems to implement
their query evaluators using an interpretation engine. Such
an engine evaluates plans consisting of algebraic operators,
such as Scan, Join, Project, Aggregation and Select. The op-
erators internally include expressions, which can be boolean

1This work is part of a MSc thesis being written at Vrije
Universiteit Amsterdam.
2The author also remains affiliated with CWI Amsterdam.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Seventh International Workshop on Data Management

on New Hardware (DaMoN 2011), June 13, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

conditions used in Joins and Select, calculations used to in-
troduce new columns in Project, and functions like MIN,
MAX and SUM used in Aggregation. Most query inter-
preters follow the so-called iterator-model (as described in
Volcano [5]), in which each operator implements an API that
consists of open(), next() and close() methods. Each next()
call produces one new tuple, and query evaluation follows a
“pull” model in which next() is called recursively to traverse
the operator tree from the root downwards, with the result
tuples being pulled upwards.

It has been observed that the tuple-at-a-time model leads
to interpretation overhead: the situation that much more
time is spent in evaluating the query plan than in actually
calculating the query result. Additionally, this tuple-at-a-
time interpretation model particularly affects high perfor-
mance features introduced in modern CPUs [13]. For in-
stance, the fact that units of actual work are hidden in the
stream of interpreting code and function calls, prevents com-
pilers and modern CPUs from getting the benefits of deep
CPU pipelining and SIMD instructions, because for these
the work instructions should be adjacent in the instruction
stream and independent of each other.

Related Work: Vectorized execution. MonetDB [2]
reduced interpretation overhead by using bulk processing,
where each operator would fully process its input, and only
then invoking the next execution stage. This idea has been
further improved in the X100 project [1], later evolving into
VectorWise, with vectorized execution. It is a form of block-
oriented query processing [8], where the next() method rather
than a single tuple produces a block (typically 100-10000)
of tuples. In the vectorized model, data is represented as
small single-dimensional arrays (vectors), easily accessible
for CPUs. The effect is (i) that the percentage of instruc-
tions spent in interpretation logic is reduced by a factor
equal to the vector-size, and (ii) that the functions that per-
form work now typically process an array of values in a tight
loop. Such tight loops can be optimized well by compilers,
e.g. unrolled when beneficial, and enable compilers to gener-
ate SIMD instructions automatically. Modern CPUs also do
well on such loops, as function calls are eliminated, branches
get more predictable, and out-of-order execution in CPUs
often takes multiple loop iterations into execution concur-
rently, exploiting the deeply pipelined resources of modern
CPUs. It was shown that vectorized execution can improve
data-intensive (OLAP) queries by a factor 50.

Related Work: Loop-compilation. An alternative strat-
egy for eliminating the ill effects of interpretation is using
Just-In-Time (JIT) query compilation. On receiving a query

33

for the first time, the query processor compiles (part of) the
query into a routine that gets subsequently executed. In
Java engines, this can be done through the generation of
new Java classes that are loaded using reflection (and JIT
compiled by the virtual machine) [10]. In C or C++, source
code text is generated, compiled, dynamically loaded, and
executed. System R originally skipped compilation by gen-
erating assembly directly, but the non-portability of that
approach led to its abandonment [4]. Depending on the
compilation strategy, the generated code may either solve
the whole query (“holistic” compilation [7]) or only certain
performance-critical pieces. Other systems that are known
to use compilation are ParAccel [9] and the recently an-
nounced Hyper system [6]. We will generalise the current
state-of-the-art using the term“loop-compilation”strategies,
as these typically try to compile the core of the query into a
single loop that iterates over tuples. This can be contrasted
with vectorized execution, which decomposes operators in
multiple basic steps, and executes a separate loop for each
basic step (“multi-loop”).

Compilation removes interpretation overhead and can lead
to very concise and CPU-friendly code. In this paper, we
put compilation in its most favourable light by assuming
that compilation-time is negligible. This is often true in
OLAP queries which tend do be rather long-running, and
technologies such as JIT in Java and the LLVM framework
for C/C++ [12] nowadays provide low (milliseconds) laten-
cies for compiling and linking.

Roadmap: vectorization vs. compilation. Vectorized
expressions process one or more input arrays and store the
result in an output array. Even though systems like Vec-
torWise go through lengths to ensure that these arrays are
CPU cache-resident, this materialization constitutes extra
load/store work. Compilation can avoid this work by keep-
ing results in CPU registers as they flow from one expression
to the other. Also, compilation as a general technique is or-
thogonal to any execution strategy, and can only improve
performance. We used the VectorWise DBMS3 to inves-
tigate three interesting use cases that highlight the issues
around the relationship between compilation and vectoriza-
tion.

As our first case, Section 2 shows how in Project expres-
sion calculations loop-compilation tends to provide the best
results, but that this hinges on using block-oriented pro-
cessing. Thus, compiling expressions in a tuple-at-a-time
engine may improve some performance, but falls short of
the gains that are possible. In Section 3, our second case
is Select, where we show that branch mispredictions hurt
loop-compilation when evaluating conjunctive predicates. In
contrast, the vectorized approach avoids this problem as it
can transform control-dependencies into data-dependencies
for evaluating booleans (along [11]). The third case in Sec-
tion 4 concerns probing large hash-tables, using a HashJoin
as an example. Here, loop-compilation gets CPU cache miss
stalled while processing linked lists (i.e., hash bucket chains).
We show that a mixed approach that uses vectorization for
chain-following is fastest, and robust to the various parame-
ters of the key lookup problem. These findings lead to a set
of conclusions which we present in Section 5.

3See www.ingres.com/vectorwise. Data storage and query
evaluation in VectorWise is based on the X100 project [1].

Algorithm 1 Implementation of an example query using
vectorized and compiled modes. Map-primitives are stat-
ically compiled functions for combinations of operations
(OP), types (T) and input formats (col/val). Dynamically
compiled primitives, such as c000(), follow the same pat-
tern as pre-generated vectorized primitives, but may take
arbitrarily complex expressions as OP.

// General vec tor i z ed pr imi t i ve pat tern
map OP T col T col (idx n ,T∗ res ,T∗ col1 ,T∗ co l 2){

for (int i =0; i<n ; i++)
r e s [i]=OP(co l 1 [i] , c o l 2 [i]) ;

}

// The micro−benchmark uses data stored in :
const idx LEN=1024;
chr tmp1 [LEN] , tmp2 [LEN] , one = 100 ;
sht tmp3 [LEN] ;
int tmp4 [LEN] ; // f i n a l r e s u l t

// Vectorized code :
map add chr va l ch r co l (LEN, tmp1,&one , l d i s c o un t) ;
map sub ch r va l ch r co l (LEN, tmp2,&one , l t a x) ;
map mul ch r co l ch r co l (LEN, tmp3 , tmp1 , tmp2) ;
map mu l i n t c o l s h t c o l (LEN, tmp4 , l e x t p r i c e , tmp3) ;

// Compiled equ iva l en t of t h i s express ion :
c000 (idx n , int ∗ res , int ∗ col1 , chr∗ col2 , chr∗ co l 3){

for (idx i =0; i<n ; i++)
r e s [i]= co l 1 [i]∗((100− co l 2 [i])∗(100+ co l3 [i])) ;

}

2. CASE STUDY: PROJECT
Inspired by the expressions in Q1 of TPC-H we focus on

the following simple Scan-Project query as micro-benchmark:

SELECT l_extprice*(1-l_discount)*(1+l_tax) FROM lineitem

The scanned columns are all decimals with precision two.
VectorWise represents these internally as integers, using the
value multiplied by 100 in this case. After scanning and de-
compression it chooses the smallest integer type that, given
the actual value domain, can represent the numbers. The
same happens for calculation expressions, where the desti-
nation type is chosen to be the minimal-width integer type,
such that overflow is prevented. In the TPC-H case, the
price column is a 4-byte integer and the other two are single-
byte columns. The addition and subtraction produce again
single bytes, their multiplication a 2-byte integer. The fi-
nal multiplication multiplies a 4-byte with a 2-byte integer,
creating a 4-byte result.

Vectorized Execution. VectorWise executes functions
inside a Project as so-called map-primitives. Algorithm 1
shows the example code for a binary primitive. In this, chr,
sht, int and lng represent internal types for 1-, 2-, 4- and
8-byte integers and idx represents an internal type for rep-
resenting sizes, indexes or offsets within columns of data
(implemented as integer of required width). A val suffix in
the primitive name indicates a constant (non-columnar) pa-
rameter. VectorWise pre-generates primitives for all needed
combinations of operations, types and parameter modes. All
functions to support SQL fit in ca. 9000 lines of macro-
code, which expands into roughly 3000 different primitive
functions producing 200K LOC and a 5MB binary.

It is reasonable to expect that a compiler that claims sup-
port for SIMD should be able to vectorize the trivial loop in
the map_ functions. On x86 systems, gcc (we used 4.5.1) usu-
ally does so and the Intel compiler icc never fails to. With

34

1
2

5
1

0
2

0
5

0

Vector size

C
y
c
le

s
 p

e
r

tu
p

le
 (

lo
g

 s
c
a

le
)

1 2 4 8 32 128 512 2K 8K 32K 128K 1M 4M

Comp.

per tuple

Interpreted

Vectorized, SIMD

Compiled, SIMD

Vectorized, no−SIMD

Compiled, no−SIMD

Vectorized, SIMD−sht

Compiled, SIMD−sht

Figure 1: Project micro-benchmark: with and

without {compilation, vectorization, SIMD}. The

“SIMD-sht” lines work around the alignment sub-

optimality in icc SIMD code generation.

a single SSE instruction, modern x86 systems can add and
subtract 16 single-byte values, multiply 8 single-byte inte-
gers into a 2-byte result, or multiply four 4-byte integers.
Thus, 16 tuples in this expression could be processed with 8
SIMD instructions: one 8-bit addition, one 8-bit subtraction,
two 8-bit multiplications with 16-bit results, and four 32-bit
multiplications. All of these instructions store one result
and the first two operations load one input (with the other
parameter being a constant) while the other two load two
inputs. With these 22 (2*2+6*3) load/stores, we roughly
need 30 instructions – in reality some additional instruc-
tions for casts, padding and looping are required, such that
the total for processing 16 tuples is around 60. In compari-
son, without SIMD we would need 4 instructions (2 loads, 1
calculation, 1 store) per calculation such that a single tuple
requires 16 instructions, > 4 times more than with SIMD.

The vectorized “SIMD” and “no-SIMD” lines in Figure 1,
show an experiment in which expression results are calcu-
lated, using different vector-sizes. We used a 2.67GHz Ne-
halem core, on a 64-bits Linux machine with 12GB of RAM.
The no-SIMD vectorized code, produced by explicitly dis-
abling SIMD generation in the compiler (icc 11.04, here), is
indeed 4 times slower than SIMD. The general trend of de-
creasing interpretation overhead with increasing vector-size
until around one thousand, and performance deteriorating
due to cache misses if vectors start exceeding the L1 and L2
caches, has been described already in detail in [13, 1].

Compiled Execution. The lower part of Algorithm 1
shows the compiled code that a modified version of Vector-

4Compiler options are -O3 for gcc, supplemented for icc with
-xSSE4.2 -mp1 -unroll

Wise can now generate on-the-fly: it combines vectorization
with compilation. Such a combination in itself is not new
(“compound primitives” [1]), and the end result is similar
to what a holistic query compiler like HIQUE [7] generates
for this Scan-Project plan, though it would also add Scan
code. However, if we assume a HIQUE with a simple main-
memory storage system and take l_tax, etc. to be pointers
into a column-wise stored table, then c000() would be the
exact product of a “loop-compilation” strategy.

The main benefit of the compiled approach is the absence
of load/stores. The vectorized approach needs 22 load/s-
tores, but only the bottom three loads and top-level store
are needed by the compiled strategy. Comparing vectorized
with compiled, we are surprised to see that the vectorized
version is significantly faster (4 vs. 2 cycles/tuple). Close
investigation of the generated code revealed that icc chooses
in its SIMD generation to align all calculations on the widest
unit (here: 4-byte integers). Hence, the opportunities for 1-
byte and 2-byte SIMD operations are lost. Arguably, this is
a compiler bug or sub-optimality.

In order to show what compilation could achieve, we re-
tried the same, now assuming that l_extprice would fit into
a 2-byte integer; which are the “SIMD-sht” lines in in Fig-
ure 1. Here, we see compilation beating vectorized execu-
tion, as one would normally expect in Project tasks. A final
observation is that compiled map-primitives are less sensi-
tive to cache size (only to L2, not L1), such that a hybrid
vectorized/compiled engine can use large vector-sizes.

Tuple-at-a-time compilation. The black star and dia-
mond in Figure 1, correspond to situations where primitive
functions work tuple-at-a-time. The non-compiled strategy
is called “interpreted”, here. An engine like MySQL, whose
whole iterator interface is tuple-at-a-time, can only use such
functions as it has just one tuple to operate on at any mo-
ment in time. Tuple-at-a-time primitives are conceptually
very close to the functions in Algorithm 1 with vector-size
n=1, but lack the for-loop. We implemented them separately
for fairness, because these for-loops introduce loop-overhead.
This experiment shows that if one would contemplate intro-
ducing compilation in an engine like MySQL without break-
ing its tuple-at-a-time operator API, the gain in expression
calculation performance could be a factor 3 (23 vs 7 cycle/tu-
ple). The absolute performance is clearly below what block-
wise query processing offers (7 vs 1.2cycle/tuple), mainly
due to missed SIMD opportunities, but also because the
virtual method call for every tuple inhibits speculative exe-
cution across tuples in the CPU. Worse, in tuple-at-a-time
query evaluation function primitives in OLAP queries only
make up a small percentage (<5%) of overall time [1], be-
cause most effort goes into the tuple-at-a-time operator APIs.
The overall gain of using compilation without changing the
tuple-at-a-time nature of a query engine can therefore at
most be a few percent, making such an endeavour question-
able.

3. CASE STUDY: SELECT
We now turn our attention to a micro-benchmark that

tests conjunctive selections:

WHERE col1 < v1 AND col2 < v2 AND col3 < v3

Selection primitives shown in Algorithm 2 create vectors
of indexes for which the condition evaluates to true, called

35

Algorithm 2 Implementations of < selection primitives.
All algorithms return the number of selected items (re-
turn j). For mid selectivities, branching instructions lead
to branch mispredictions. In a vectorized implementation
such branching can be avoided. VectorWise dynamically se-
lects the best method depending on the observed selectivity,
but in the micro-benchmark we show the results for both
methods.

// Two vec tor i z ed implementations
// (1 .) medium s e l e c t i v i t y : non−branching code
idx s e l l t T c o l T v a l (idx n ,T∗ res ,T∗ col1 ,T∗val2 ,

idx∗ s e l){
i f (s e l== NULL) {

for (idx i =0, idx j =0; i<n ; i++) {
r e s [j] = i ; j += (co l 1 [i] < val2 [0]) ;

}
} else {

for (idx i =0, idx j =0; i<n ; i++) {
r e s [j] = s e l [i] ; j += (co l 1 [s e l [i]] < ∗ val2) ;

}
}
return j ;

}
// (2 .) e l s e : branching s e l e c t i on
idx s e l l t T c o l T v a l (idx n ,T∗ res ,T∗ col1 ,T∗val2 ,

idx∗ s e l){
i f (s e l==NULL) {

for (idx i =0, idx j =0; i<n ; i++)
i f (co l 1 [i] < ∗ val2) r e s [j++] = i ;

} else {
for (idx i =0, idx j =0; i<n ; i++)

i f (co l 1 [s e l [i]] < ∗ val2) r e s [j++] = s e l [i] ;
}
return j ;

}

// Vectorized conjunction implementation :
const idx LEN=1024;
idx s e l 1 [LEN] , s e l 2 [LEN] , r e s [LEN] , ret1 , ret2 , r e t3 ;
r e t1 = s e l l t T c o l t v a l (LEN, se l1 , co l1 ,&v1 ,NULL) ;
r e t2 = s e l l t T c o l t v a l (ret1 , s e l 2 , co l1 ,&v1 , s e l 1) ;
r e t3 = s e l l t T c o l t v a l (ret2 , res , co l1 ,&v1 , s e l 2) ;

selection vectors. Selection primitives can also take a selec-
tion vector as parameter, to evaluate the condition only on
elements of the vectors from the positions pointed to by the
selection vector 5. A vectorized conjunction is implemented
by chaining selection primitives with the output selection
vector of the previous one being the input selection vector
of the next one, working on a tightening subset of the origi-
nal vectors, evaluating this conjunction lazily only on those
elements for which the previous conditions passed.

Each condition may be evaluated with one of two imple-
mentations of selection primitive. The naive “branching”
implementation of selection evaluates conditions lazily and
branches out if any of the predicates fails. If the selectivity
of conditions is neither very low or high, CPU branch predic-
tors are unable to correctly guess the branch outcome. This
prevents the CPU from filling its pipelines with useful future
code and hinders performance. In [11] it was shown that a
branch (control-dependency) in the selection code can be
transformed into a data dependency for better performance.

The sel_lt functions in Algorithm 2 contain both ap-
proaches. The VectorWise implementation of selections uses
a mechanism that chooses either the branch or non-branch

5In fact, other primitives are also able to work with selection
vectors, but it was removed from code snippets where not
necessary for the discussed experiments.

Algorithm 3 Four compiled implementations of a con-
junctive selection. Branching cannot be avoided in loop-
compilation, which combines selection with other opera-
tions, without executing these operations eagerly. The four
implementations balance between branching and eager com-
putation.

// (1 .) a l l p red ica te s branching (” la zy ”)
idx c0001 (idx n ,T∗ res ,T∗ col1 ,T∗ col2 ,T∗ col3 ,

T∗ v1 , T∗ v2 , T∗ v3) {
idx i , j =0;
for (i =0; i<n ; i++)

i f (co l 1 [i]<∗v1 && co l2 [i]<∗v2 && co l3 [i]<∗v3)
r e s [j++] = i ;

return j ; // return number of s e l e c t e d items .
}

// (2 .) branching 1 ,2 , non−br . 3
idx c0002 (idx n ,T∗ res ,T∗ col1 ,T∗ col2 ,T∗ col3 ,

T∗ v1 , T∗ v2 , T∗ v3) {
idx i , j =0;
for (j =0; i<n ; i++)

i f (co l 1 [i]<∗v1 && co l2 [i] < ∗v2) {
r e s [j] = i ; j += co l3 [i] < ∗v3 ;

}
return j ;

}

// (3 .) branching 1 , non−br . 2 ,3
idx c0003 (idx n ,T∗ res ,T∗ col1 ,T∗ col2 ,T∗ col3 ,

T∗ v1 , T∗ v2 , T∗ v3) {
idx i , j =0;
for (i =0; i<n ; i++)

i f (co l 1 [i]<v1) {
r e s [j] = i ; j += co l2 [i]<∗v2 & co l3 [i]<∗v3

}
return j ;

}

// (4 .) non−branching 1 ,2 ,3 , (”compute−a l l ”)
idx c0004 (idx n ,T∗ res ,T∗ col1 ,T∗ col2 ,T∗ col3 ,

T∗ v1 , T∗ v2 , T∗ v3) {
idx i , j =0;
for (i =0; i<n ; i++) {

r e s [j] = i ;
j += (co l 1 [i]<∗v1 & co l2 [i]<∗v2 & co l3 [i]<∗v3)

}
return j ;

}

strategy depending on the observed selectivity 6. As such, its
performance achieves the minimum of the vectorized branch-
ing and non-branching lines in Figure 2.

In this experiment, each of the columns col1, col2, col3
is an integer column, and the values v1, v2 and v3 are con-
stants, adjusted to control the selectivity of each condition.
Here, we keep the selectivity of each branch equal, hence to
the cube root of the overall selectivity, which we vary from
0 to 1. We performed the experiment on 1K input tuples.

Figure 2 shows that compilation of conjunctive Select is
inferior to the pure vectorized approach. The lazy compiled
program does slightly outperform vectorized branching, but
for the medium selectivities branching is by far not the best
option. The gist of the problem is that the trick of (i) con-
verting all control dependencies in data dependencies while
still (ii) avoiding unnecessary evaluation, cannot be achieved
in a single loop. If one avoids all branches (the“compute-all”
approach in Algorithm 3), all conditions always get evalu-
ated, wasting resources if a prior condition already failed.

6It even re-orders dynamically the conjunctive predicates
such that the most selective is evaluated first.

36

0
5

1
0

1
5

2
0

2
5

C
y
c
le

s
 p

e
r

tu
p

le

Vectorized, branching

Vectorized, non−branching

Comp., if(1 && 2 && 3){} (lazy)

Comp., if(1 && 2) { 3 non−br }

Comp., if(1) { 2&3 non−br }

Comp., 1&2&3 non−br. (compute all)

0
2

0
0

4
0

0
6

0
0

8
0

0

Selectivity of each condition

T
o

ta
l
b

r.
 m

is
p
.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2: Conjunction of selection conditions: total

cycles and branch mispredictions vs. selectivity

One can try mixed approaches, branching on the first pred-
icates and using data dependency on the remaining ones.
They perform better in some selectivity ranges, but main-
tain the basic problems – their worst behavior is when the
selectivity after branching predicates is around 50%.

4. CASE STUDY: HASH JOIN
Our last micro-benchmark concerns Hash Joins:

SELECT build.col1, build.col2, build.col3
WHERE probe.key1 = build.key1 AND probe.key2 = build.key2
FROM probe, build

We focus on an equi-join condition involving keys consist-
ing of two (integer) columns, because such composite keys
are more challenging for vectorized executors. This discus-
sion assumes simple bucket-chaining, such as used in Vec-
torWise, presented in Figure 3. This means that keys are
hashed on buckets in an array B with size N which is a power
of two. Each bucket contains the offset of a tuple in a value
space V . This space can either be organized using DSM or
NSM layout; VectorWise supports both [14]. It contains the
values of the build relation, as well as a next-offset, which
implements the bucket chain. A bucket may have a chain
of length > 1 either due to hash collisions, or because there
are multiple tuples in the build relation with the same key.

Algorithm 4 Vectorized implementation of hash probing.

map hash T col (idx n , idx∗ res , T∗ co l 1){
for (idx i =0; i<n ; i++)

r e s [i] = HASH(co l 1 [i]) ;
}
map rehash idx co l T co l (idx n , idx∗ res ,

idx∗ col1 , T∗ co l 2) {
for (idx i =0; i<n ; i++)

r e s [i] = co l 1 [i] ˆ HASH(co l 2 [i]) ;
}
map f e t ch i dx co l T co l (idx n , T∗ res ,

idx∗ col1 , T∗ base , idx∗ s e l){
i f (s e l) {

for (idx i =0; i<n ; i++)
r e s [s e l [i]] = base [co l 1 [s e l [i]]] ;

} else {/∗ s e l == NULL, omitted ∗/}
}
map che ck T co l i dx c o l c o l T co l (idx n , chr∗ res ,

T∗ keys , T∗ base , idx∗ pos , idx∗ s e l) {
i f (s e l) {

for (idx i =0; i<n ; i++)
r e s [s e l [i]] =

(keys [s e l [i]] != base [pos [s e l [i]]]) ;
} else {/∗ s e l == NULL, omitted ∗/}

}
map r e ch e c k ch r c o l T co l i d x c o l T co l (idx n ,

chr∗ res , chr∗ col1 ,
T∗ keys , T∗ base , idx∗ pos , idx∗ s e l) {

i f (s e l) {
for (idx i =0; i<n ; i++)

r e s [s e l [i]] = co l 1 [s e l [i]] | |
(keys [s e l [i]] != base [pos [s e l [i]]]) ;

} else {/∗ s e l == NULL, omitted ∗/}
}
h t l o o k u p i n i t i a l (idx n , idx ∗pos , idx∗ match ,

idx∗ H, idx∗ B) {
for (idx i =0,k=0; i<n ; i++) {

// saving found chain head pos i t i on in HT
pos [i] = B[H[i]] ;
// saving to a s e l . vector i f non−zero
i f (pos [i]) { match [k++] = i ; }

}
}
ht lookup next (idx n , idx∗ pos , idx∗ match ,

idx∗ next) {
for (idx i =0,k=0; i<n ; i++) {

// advancing to next in chain
pos [match [i]] = next [pos [match [i]]] ;
// saving to a s e l . vec . i f non−empty
i f (pos [match [i]]) { match [k++] = match [i] ; }

}
}

procedure HTprobe(V, B[0..N − 1], ~K1..k(in), ~R1..v(out))
// Iterative hash-number computation
~H ← map hash(~K1)
for each remaining key vectors Ki do

~H ← map rehash(~H, ~Ki)
~H ← map bitwiseand(~H, N − 1)
// Initial lookup of candidate matches
~Pos, ~Match← ht lookup initial(H, B)

while ~Match not empty do
// Candidate value verification

~Check ← map check(~K1, Vkey1
, ~Pos, ~Match)

for each remaining key vector ~Ki do
~Check ← map recheck(~Check, ~Ki, Vkeyi

, ~Pos, ~Match)

~Match← sel nonzero(~Check, ~Match)
// Chain following
~Pos, ~Match← ht lookup next(~Pos, ~Match, Vnext)

~Hits← sel nonzero(~Pos)
// Fetching the non-key attributes

for each result vector ~Ri do
~Ri ← map fetch(~Pos, Vvaluei

, ~Hits)

37

key1 key2 val1 val2 val3

V (DSM)

H B next

hash value computation

hash
values

bucket
heads

v
3

0

w

x

x
0

Apr

Oct

Jan100

1003 46 May
1

2

3

4

0

2

3

4

0

1

2

3

0

1

xx

103

102

203

x

3

1002

2003

1000

x

0

73

736

124

x

0 a

2

Figure 3: Bucket-chain hash table as used in Vec-

torWise. The value space V presented in the figure

is in DSM format, with separate array for each at-

tribute. It can also be implemented in NSM, with

data stored tuple-wise.

Vectorized Hash Probing. For space reasons we only
discuss the probe phase in Algorithm 4, we show code for
the DSM data representation and we focus on the scenario
when there is at most one hit for each probe tuple (as is
common with relations joined with a foreign-key referen-
tial constraint). Probing starts by vectorized computation
of a hash number from a key in a column-by-column fash-
ion using map-primitives. A map_hash_T_col primitive first
hashes each key of type T onto a lng long integer. If the
key is composite, we iteratively refine the hash value using
a map_rehash_lng_col_T_col primitive, passing in the previ-
ously computed hash values and the next key column. A
bitwise-and map-primitive is used to compute a bucket num-
ber from the hash values: H&(N -1).

To read the positions of heads of chains for the calculated
buckets we use a special primitive ht_lookup_initial. It be-
haves like a selection primitive, creating a selection vector

~Match of positions in the bucket number vector H for which
a match was found. Also, it fills the ~Pos vector with posi-
tions of the candidate matching tuples in the hash table. If
the value (offset) in the bucket is 0, there is no key in the

hash table – these tuples store 0 in ~Pos and are not part of
~Match.
Having identified the indices of possible matching tuples,

the next task is to “check” if the key values actually match.
This is implemented using a specialized map primitive that
combines fetching a value by offset with testing for non-
equality: map_check. Similar to hashing, composite keys
are supported using a map_recheck primitive which gets the
boolean output of the previous check as an extra first pa-
rameter. The resulting booleans mark positions for which
the check failed. The positions can then be selected using a
select sel_nonzero primitive, overwriting the selection vector

~Match with positions for which probing should advance to
the“next”position in the chain. Advancing is done by a spe-
cial primitive ht_lookup_next, which for each probe tuple in

~Match fills ~Pos with the next position in the bucket-chain of

V . It also guards for ends of chain by reducing ~Match to its
subset for which the resulting position in ~Pos was non-zero.

The loop finishes when the ~Match selection vector be-
comes empty, either because of reaching end of chain (ele-

ment in ~Pos equals 0, a miss) or because checking succeeded

(element in ~Pos pointing to a position in V , a hit).

Hits can be found by selecting the elements of ~Pos which
ultimately produced a match with a sel_nonzero primitive.

Algorithm 5 Fully loop-compiled hash probing: for each
NSM tuple, read hash bucket from B, loop through a chain
in V, fetching results when the check produces a match

for (idx i =0, j =0; i<n ; i++) {
idx pos , hash = HASH(key1 [i]) ˆHASH(key2 [i]) ;
i f (pos = B[hash&(N−1)]) do {

i f (key1 [i]==V[pos] . key1 &&
key2 [i]==V[pos] . key2) {
r e s1 [i] = V[pos] . co l 1 ;
r e s2 [i] = V[pos] . co l 2 ;
r e s3 [i] = V[pos] . co l 3 ;
break ; // found match

}
} while (pos = V. next [pos]) ; // next

}

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

C
y
c
le

s
 p

e
r

tu
p

le

Vectorized DSM

Vectorized NSM

Compiled NSM

Compiled DSM

0
2

4
6

8
1

0

Number of fetched columns

T
L

B
 m

is
s
e

s
 p

e
r

tu
p

le

1 2 3 4 5 6 7 8 9 10

Figure 4: Fetching columns of data from a hash ta-

ble: cycles per tuple and total TLB misses

~Pos with selection vector ~Hits becomes a pivot vector for
fetching. This pivot is subsequently used to fetch (non-key)
result values from the build value area into the hash join
result vectors; using one fetch primitive for each result col-
umn.

Partial Compilation. There are three opportunities to
apply compilation to vectorized hashing. The first is to com-
pile the full sequence of hash/rehash/bitwise-and and bucket
fetch into a single primitive. The second combines the check
and iterative re-check (in case of composite keys) and the
select > 0 into a single select-primitive. Since the test for a
key in a well-tuned hash table has a selectivity around 75%,
we can restrict ourselves to a non-branching implementation.
These two opportunities re-iterate the compilation benefits
of Project and Select primitives, as discussed in the previous
sections, so we omit the code.

The third opportunity is in the fetch code. Here, we can
generate a composite fetch primitive that, given a vector of
positions, fetches multiple columns. The main benefit of this

38

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Varying hash table size

Hash table size (tuples)

C
y
c
le

s
 p

e
r

tu
p
le

4K 16K 64K 256K 1M 4M 16M 64M

Vectorized, DSM
Vectorized, NSM
Compiled, DSM
Compiled, NSM
Partial Compilation

828
890

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Varying selectivity on HT with 16M tuples

Selectivity of matching (fraction of matched tuples)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Varying number of buckets on HT with 16M tuples

Number of buckets / hash table size

2x 1x 1/2x 1/4x 1/8x 1/16x 1/32x

5293
4419

Figure 5: Hash table probing. Left: different sizes of the hash table value space V . Middle: different match

rates of the probe. Right: different sizes of the bucket array B w.r.t. value space V (different chain lengths).

is obtained in case of NSM organisation of the value space
V . Vectorization fetches values column-at-a-time, hence
passes over the NSM value space as many times as there
are result columns (here: 3), accessing random positions
from the value space on each pass. On efficient vector-sizes,
the amount of random accesses is surely larger than TLB
cache size and may even exceed the amount of cache lines,
such that TLB and cache trashing occurs, with pages and
cache lines from the previous pass being already evicted from
the caches before the next. The compiled fetch fetches all
columns from the same position at once, achieving more data
locality. Figure 4 shows that in normal vectorized hashing
performance of NSM and DSM is similar, but compilation
makes NSM clearly superior.

Full Compilation. It is possible to create a loop-compiled
version of the full join, like e.g. proposed in HIQUE [7]. Al-
gorithm 5 shows the hash probe section of such an algorithm,
which we also tested. It loops over probe keys, and for each
probe key fetches the corresponding bucket, then iterates
over the bucket-chain, checking the key for equality, and if
equal, fetches the needed result columns. We try to explain
in the following why this fully compiled algorithm is inferior
to the vectorized alternative with partial compilation.

Parallel Memory Access. Because memory latency is
not improving much (∼100ns), and cache line granularities
must remain limited (64bytes), memory bandwidth on mod-
ern hardware is no longer simply the division between these
two. A single Nehalem core can achieve a factor 10 more
than this 0.64GB/s, thanks to automatic CPU prefetching
on sequential access. Performance thus crucially depends on
having multiple outstanding memory requests at all times.

For random access, this is hard to achieve, but the deeply
pipelined out-of-order nature of modern CPUs does help.
That is, if a load stalls, the CPU might be able to speculate
ahead into upstream instructions and reach more loads. The
Intel Nehalem architecture can have four outstanding loads,
improving bandwidth by a factor four7. Success is not guar-
anteed, since the instruction speculation window of a CPU
is limited, depends on branch prediction, and only indepen-
dent upstream instructions can be taken into execution.

The Hard-To-Understand Part. The crux here is that
the vectorized fetch primitive trivially achieves whatever
maximum outstanding loads the CPU supports, as it is a
tight loop of independent loads. The same holds for the
partially compiled variants. The fully compiled hash probe,
however, can run aground while following the bucket chain.
Its performance is only good if the CPU can speculate ahead
across multiple probe tuples (execute concurrently instruc-
tions from multiple for-loop iterations on i). That depends
on the branch predictor predicting the while(pos..) to be
false, which will happen in join key distributions where there
are no collisions. If, however, there are collisions or if the
build relation has multiple identical keys, the CPU will stall
with a single outstanding memory request (V[pos]), because
the branch predictor will make it stay in the while-loop, and
it will be unable to proceed as the value of pos = V.next[pos]

is unknown because it depends on the current cache/TLB
miss. A similar effect has been described in the context of
using explicit prefetching instructions in hash-joins [3]. This

7Speculation-friendly code is thus more effective than man-
ual prefetching, which tends to give only minor improve-
ment, and is hard to tune/maintain for multiple platforms.

39

effect causes fully compiled hashing to be four times slower
than vectorized hashing in the worst case.

Experiments. Figure 5 shows experiments for hash prob-
ing using the vectorized, fully and partially compiled ap-
proaches, using both DSM and NSM as the hash table (V)
representation. We vary hash table size, selectivity (frac-
tion of probe keys that match something), and bucket chain
length; which have default values resp. 16M, 1.0 and 1. The
left part shows that when the hash table size grows, per-
formance deteriorates; it is well understood that cache and
TLB misses are to blame, and DSM achieves less locality
than NSM. The middle graph shows that with increasing hit
rate, the cost goes up, which mainly depends on increasing
fetch work for tuple generation. The compiled NSM fetch
alternatives perform best, as explained. The right graph
shows what happens with increasing chain length. As dis-
cussed above, the fully compiled (NSM) variant suffers most,
as it gets no parallel memory access. The overall best solu-
tion is partially compiled NSM, thanks to its efficient com-
piled multi-column fetching (and to a lesser extent efficient
checking/hashing, in case of composite keys) and its parallel
memory access, during lookup, fetching and chain-following.

5. CONCLUSIONS
For database architects seeking a way to increase the com-

putational performance of a database engine, there might
seem to be a choice between vectorizing the expression en-
gine versus introducing expression compilation. Vectoriza-
tion is a form of block-oriented processing, and if a system
already has an operator API that is tuple-at-a-time, there
will be many changes needed beyond expression calculation,
notably in all query operators as well as in the storage layer.
If high computational performance is the goal, such deep
changes cannot be avoided, as we have shown that if one
would keep adhering to a tuple-a-time operator API, expres-
sion compilation alone only provides marginal improvement.

Our main message is that one does not need to choose be-
tween compilation and vectorization, as we show that best
results are obtained if the two are combined. As to what this
combining entails, we have shown that ”loop-compilation”
techniques as have been proposed recently can be inferior
to plain vectorization, due to better (i) SIMD alignment,
(ii) ability to avoid branch mispredictions and (iii) parallel
memory accesses. Thus, in such cases, compilation should
better be split in multiple loops, materializing intermediate
vectorized results. Also, we have signaled cases where an in-
terpreted (but vectorized) evaluation strategy provides op-
timization opportunities which are very hard with compila-
tion, like dynamic selection of a predicate evaluation method
or predicate evaluation order.

Thus, a simple compilation strategy is not enough; state-
of-the art algorithmic methods may use certain complex
transformations of the problem at hand, sometimes require
run-time adaptivity, and always benefit from careful tun-
ing. To reach the same level of sophistication, compilation-
based query engines would require significant added com-
plexity, possibly even higher than that of interpreted en-
gines. Also, it shows that vectorized execution, which is an
evolution of the iterator model, thanks to enhancing it with
compilation further evolves into an even more efficient and
more flexible solution without making dramatic changes to
the DBMS architecture. It obtains very good performance

while maintaining clear modularization, simplified testing
and easy performance- and quality-tracking, which are key
properties of a software product.

6. REFERENCES
[1] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:

Hyper-Pipelining Query Execution. In Proc. CIDR,
Asilomar, CA, USA, 2005.

[2] P. A. Boncz. Monet: A Next-Generation DBMS

Kernel For Query-Intensive Applications. Ph.d. thesis,
Universiteit van Amsterdam, Amsterdam, The
Netherlands, May 2002.

[3] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving hash join performance through
prefetching. In Proc. ICDE, Boston, MA, USA, 2004.

[4] D. Chamberlin et al. A history and evaluation of
System R. Commun. ACM, 24(10):632–646, 1981.

[5] G. Graefe. Volcano - an extensible and parallel query
evaluation system. IEEE TKDE, 6(1):120–135, 1994.

[6] A. Kemper and T. Neumann. HyPer: Hybrid OLTP
and OLAP High Performance Database System.
Technical report, Technical Univ. Munich,
TUM-I1010, May 2010.

[7] K. Krikellas, S. Viglas, and M. Cintra. Generating
code for holistic query evaluation. In ICDE, pages
613–624, 2010.

[8] S. Padmanabhan, T. Malkemus, R. Agarwal, and
A. Jhingran. Block Oriented Processing of Relational
Database Operations in Modern Computer
Architectures. In Proc. ICDE, Heidelberg, Germany,
2001.

[9] ParAccel Inc. Whitepaper. The ParAcel Analytical

Database: A Technical Overview, Feb 2010.
http://www.paraccel.com.

[10] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman.
Compiled Query Execution Engine using JVM. In
Proc. ICDE, Atlanta, GA, USA, 2006.

[11] K. A. Ross. Conjunctive selection conditions in main
memory. In Proc. PODS, Washington, DC, USA, 2002.

[12] The LLVM Compiler Infrastructure .
http://llvm.org.

[13] M. Zukowski. Balancing Vectorized Query Execution

with Bandwidth-Optimized Storage. Ph.D. Thesis,
Universiteit van Amsterdam, Sep 2009.

[14] M. Zukowski, N. Nes, and P. Boncz. DSM vs. NSM:
CPU Performance Tradeoffs in Block-Oriented Query
Processing. 2008.

40

QMD: Exploiting Flash for Energy Efficient Disk Arrays

Sean M. Snyder† Shimin Chen? Panos K. Chrysanthis† Alexandros Labrinidis†

†University of Pittsburgh ?Intel Labs

ABSTRACT
Energy consumption for computing devices in general and for data
centers in particular is receiving increasingly high attention, both
because of the increasing ubiquity of computing and also because
of increasing energy prices. In this work, we propose QMD (Quasi
Mirrored Disks) that exploit flash as a write buffer to complement
RAID systems consisting of hard disks. QMD along with par-
tial on-line mirrors, are a first step towards energy proportionality
which is seen as the "holy grail" of energy-efficient system design.
QMD exhibits significant energy savings of up 31%, as per our
evaluation study using real workloads.

1. INTRODUCTION
A growing concern, energy consumption in data centers has been

the focus of numerous white papers, research studies, news reports,
and recent NSF workshops [4, 23, 10, 7, 1, 2]. According to a re-
port to U.S. congress [23], the total energy consumption by servers
and data centers in U.S. was about 61 billion kWh in 2006, and is
projected to nearly double by 2011 [23]. To make matters worse,
global electricity prices increased 56% between 2002 and 2006 [7].
The two trends of growing energy consumption and rising energy
prices lead to increasingly higher electricity bills for data centers.
Energy cost can become a dominant factor in the total cost of own-
ership of computing infrastructure [4], and the annual electricity
cost of data centers in U.S. in 2011 is projected to be $7.4 bil-
lion [23]. Among the components in data centers, it has been shown
that storage experienced the fastest annual growth (20% between
2000 and 2006) in energy consumption [23]. As hard disk drives
(HDDs) are the dominant technology for data storage today, we
are interested in improving energy efficiency for data storage that
consists of mainly HDDs.

A key goal in energy efficient system design is to achieve energy
proportionality [5], i.e., energy consumption being proportional to
the system utilization. Unlike solid state devices, such as micro-
processors, hard disk drives (HDDs) contain moving components,
making it difficult to achieve this goal. For example, for an en-
terprise class disk, the idle power for spinning the disk platters is
often about 60–80% of its active energy [20, 21]. While a disk
can be spun down to standby mode for saving most of this power,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Seventh International Workshop on Data Management
on New Hardware (DaMoN 2011), June 13, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

it takes on the order of 10 seconds to spin up a disk, potentially
incurring significant slowdowns in application response times.

Previous Approach: Exploit Redundancy and NVRAM. One
promising solution is to exploit the inherent redundancy in storage
systems for conserving energy [11, 24, 16]. Today, most storage
systems employ redundancy (e.g., RAID) to achieve high reliabil-
ity, high availability, and high performance requirements for many
important applications. For example, the TPC-E benchmark, which
models transaction processing in a financial brokerage house, re-
quires redundancy for the data and logs [22]. As seen by published
TPC-E reports on the TPC web site, this requirement is typically
achieved by the use of RAID disk arrays.

For saving energy, the idea is to keep only a single copy of the
data active and spin down disks containing redundant copies of the
data under low load. We call the disks containing the active copy of
data, the active disks, and the disks that are spun down, the standby
disks. Note that the approach must guarantee the same level of
reliability for write operations under low load (e.g., writing to two
non-volatile devices). To achieve this, previous studies [11, 24, 16]
propose to use NVRAM (i.e., battery-backed RAM) as non-volatile
write buffers. When the system is under low utilization, reads are
sent to the active disks, while writes are sent to both the active
disks and to the NVRAM buffers. When the system sees high load
or when the NVRAM buffers are full, the standby disks are spun
up and the buffered writes are applied. Depending on the RAID
organization, this approach may potentially save up to 50% energy
when the system is under low utilization.

Limitation of NVRAM-Based Approach. Besides concerns about
correlations between battery failure and power loss, battery-backed
RAM is expensive. The NVRAM write buffer size is often limited
to a few hundred MB for an entire RAID array. Typically, a server-
class disk can support about 100MB/s read/write bandwidth. Sup-
pose that under low load, a disk sees 1MB/s write traffic. Then, a
500MB NVRAM buffer will be filled up for the write traffic of a
single disk in less than 9 minutes. When the buffer is filled, the
standby disks must be spun up to apply the buffered writes. How-
ever, a disk supports only a limited number of spin-up/down op-
erations because they introduce wear to the motor and the heads
in a disk. In particular, server and desktop disks are often rated at
50,000 spin-up/down cycles (a.k.a. start-stop cycles) [19]. Given
a five-year lifetime, this puts a limitation of an average 1.1 spin-
up/down per hour. Therefore, the above example with a single
standby disk will significantly shorten the disk lifetime by about
6 times! Note that in real-world disk arrays, an NVRAM buffer in
a RAID controller often handles tens of disks, and thus the situation
could be an order of magnitude worse.

Our Solution: Exploiting Flash as Write Buffer. We propose to
exploit flash as the write buffer for addressing this problem. There
are several desirable properties of flash: (i) it is non-volatile; (ii)
flash is much cheaper with much larger capacity; and (iii) flash is

41

U

A

E

B

F

J

N

C

G

K

O

D

H

L

QM

I

R S T

A

C

D

A

B

C

D

EE

B H

P0

R
M
I
E

A

S
N
J
P1

B

T
O
P2
F

C

U
P3
K
G

D

P4
Q
L

(a) RAID 0 (striping) (b) RAID 1 (mirrored disks) (c) RAID 5 (striping with distributed parity)

Figure 1: Basic RAID schemes. (Capital letters represent data blocks; Px represents a parity block.)

energy efficient and supports energy proportionality well. More-
over, flash-based cache products with hundreds of GB capacity are
already available for storage systems [13]. One can utilize the same
flash for saving energy. This nicely shares the resource: the flash-
based cache improves I/O performance under high system load and
saves energy under low load.

In our design, we aim to achieve low spin-up/down counts while
preserving the performance of RAID under low utilization, under
high utilization, and during state transitions. We call the solution
in this paper, QMD (Quasi Mirrored Disks), as we mainly focus
on mirror-based RAID schemes (e.g., RAID 1 and RAID 10), and
we study partial on-line mirrors in order to achieve the ideal goal
of energy proportionality. We present preliminary evaluation of
our solution by simulating I/O traces of real-world applications.
Experimental results show that QMD can save 11%–31% energy,
and reduce the number of spin-up/downs by 80%.
Outline. Section 2 provides background on exploiting redundancy
for RAID arrays. Section 3 presents our solution, QMD, and dis-
cusses our research direction for achieving the energy proportion-
ality goal. Section 4 evaluates QMD using real-world I/O traces.
Section 5 describes related work. Section 6 concludes the paper.

2. EXPLOITING STORAGE REDUNDANCY
FOR SAVING ENERGY

We start by refreshing our memory of the common RAID schemes
in Section 2.1. Then, in Section 2.2, we describe the basic opera-
tions for exploiting RAID redundancy for saving energy.

2.1 Background: Common RAID Schemes
Figure 1 shows three basic RAID schemes [14]. They are widely

used and serve as building blocks for composite RAID schemes.
• RAID 0 (a.k.a. striping) places data blocks across disks in a

round robin fashion for high performance. RAID 0 does not
provide redundancy, and therefore is often combined with other
RAID schemes for reliability and availability.

• RAID 1 (a.k.a. mirrored disks) mirrors data blocks between two
(or more) disks. Every write is sent to both disks, while a read
can be served by either disk. Therefore, RAID 1 of two disks
achieves twice the read bandwidth of a single disk and 100%
data redundancy. It can tolerate one disk failure.

• RAID 5 (a.k.a. striping) stripes data across N (N ≥ 3) disks.
The N blocks at the same disk address form a stripe group. One
of them is a parity block, computed as the bit-wise XOR of the
other N−1 data blocks. RAID 5 places the parity blocks across
disks in a round robin fashion. Every write must modify both
the target data block and the associated parity block, requir-
ing two reads for fetching the two old blocks followed by two
writes. RAID 5 can tolerate a single disk failure. A data block
of the failed disk can be reconstructed as the bit-wise XOR of
the other N − 1 blocks in the same stripe group.

• Composite RAID Schemes: RAID 10 (i.e., 1+0) is a stripe of
mirrors, where every disk in RAID 0 (in Figure 1(a)) is replaced
with a pair of mirrored disks. A RAID 10 of 2N disks can
tolerate N disk failures (each in a disjoint mirror). Similarly,
RAID 50 replaces every disk in RAID 0 with a RAID 5.

Redundancy is achieved by either mirror-based schemes (e.g., RAID
10) or parity-based schemes (e.g., RAID 5). The main advantage of
the latter is that it saves disk capacity; RAID 5 of N disks utilizes
1 − 1

N
of the total capacity, while RAID 1 utilizes only 50%. In

other words, given the same individual disk capacity and the target
total capacity, RAID 5 uses fewer number of disks than RAID 10.
However, as disk capacity has been growing exponentially, total ca-
pacity is less of a concern today. The number of disks in RAID is
often determined by application performance requirements in terms
of throughput and IOs per seconds (IOPS), rather than total avail-
able capacity, as evidenced by many TPC results.

On the other hand, mirror-based schemes have higher write per-
formance than parity-based schemes during normal operations. More-
over, when a disk fails, mirror-based schemes can serve data di-
rectly from good disks, while parity-based schemes suffer from
large performance degradation due to the many I/Os for retrieving
blocks in the same stripe group to reconstruct a block on the failed
disk. As a result, mirror-based schemes become increasingly pop-
ular today. For example, many TPC-E benchmark results that store
data on disks use RAID 10 for reliability.1 We focus on mirror-
based schemes in this paper.

2.2 Basic Operations for Saving Energy
Previous studies [11, 24, 16] propose to exploit the RAID redun-

dancy for saving energy and uses NVRAM for achieving reliability
when the system is under low utilization. The basic operations are:

1. All Disks under High Utilization: The system performs normal
RAID operations with all disks running under high load.

2. Active Disks with NVRAM under Low Utilization: When the
system is under low utilization, a number of disks is spun down
to save energy. This number depends on the RAID scheme. In
mirror-based schemes, one disk in every mirror can be spun
down, thus potentially saving up to 50% energy. In parity-
based schemes (e.g., RAID 5 with N disks), one disk in ev-
ery parity group can be spun down (saving up to 1

N
energy in

RAID 5). Reads are handled by the active disks; parity-based
schemes require the costly XOR computation for reconstruct-
ing disk blocks on the standby disks. Writes are sent to both

1A few published TPC-E results (including the current Watts/Performance
lead, Fujitsu PRIMERGY RX300 S6 12x2.5) store data mainly on arrays of
flash-based SSDs for reducing energy consumption. In such configurations,
SSD capacity is a much more significant concern and therefore RAID 5
is often employed. However, the focus of this paper is on using a small
amount of flash for improving the energy efficiency of disk storage, which
is the dominant storage technology today.

42

FlashFlash
Flash

(a) Flash per mirror (b) Flash per RAID 10 volume

Flash

(c) Flash for all RAID 10 volumes

Figure 2: Flash-enhanced RAID 10 schemes.

the active disks and the NVRAM to guarantee reliability. Com-
paring mirror-based and parity-based schemes, it is clear that
the approach fits mirror-based schemes better.

3. Flushing NVRAM Data to Standby Disks: When the NVRAM
write buffer is full or when the system transitions from low uti-
lization back to high utilization, the data cached on NVRAM
must be flushed to bring the standby disks up to date.

There are two main problems of this approach. First, the capacity
of NVRAM is typically limited to a few hundred MB, potentially
incurring frequent flushing operations, as shown in the back-of-
envelope computation in the Introduction. Frequent flushing oper-
ations can both dramatically reduce disk lifetimes and reduce the
energy savings because the standby disks must be spun up for writ-
ing the buffered data. In this paper, we address this problem by
exploiting flash as a large-capacity nonvolatile write buffer.

Second, the energy savings are bounded by the RAID schemes,
leaving a big gap to reach the ideal goal of energy proportional-
ity. For example, when the system is under 1% load, RAID 10
still keeps 50% of the disks active. We discuss potential solutions
to this problem, which requires coordination between applications
and storage systems to avoid performance problems.

3. QUASI MIRRORED DISKS
We propose QMD (Quasi Mirrored Disks) that exploits flash for

removing the limitation of NVRAM in Section 3.1, and discuss
partial on-line mirrors as future research direction for achieving
the goal of energy proportionality in Section 3.2.

3.1 Flash-Based Write Cache
We analyze the access pattern of the write cache. Under low uti-

lization, block writes are appended to the write cache, resulting in
sequential writes. During flushing, the write cache must support
random reads for two reasons: (i) we would like to reorder and op-
timize the block writes to disks; and (ii) during the transition from
low utilization to high utilization mode, we want the write cache
to serve incoming I/O requests in order to minimize the impact of
flushing on front-end operations. As flash supports both the above
access patterns well, we propose to use flash as the write cache.

Figure 2 shows three ways to include flash-based write caches
in QMD, using RAID 10 as an example RAID scheme. In (a), we
enhance every pair of mirrored disks with a separate flash device.
In (b), we use a flash device for an entire RAID 10 volume that
stripes data across the mirror pairs. In (c), multiple RAID 10 vol-
umes share the same flash device. From (a) to (c), we reduce the
number of flash devices in the system. The benefits are two folds:
lowering the total cost and allowing dynamic sharing of the flash
capacity across disks. The latter is especially important for multi-
ple RAID 10 volumes because different volumes present separate

Data block Address block Space availableFlash

NVRAM

Mirror 1 Mirror N
Volume info1 1 0 0 0

Flash extent bitmap

Recent
address

buffer

E
x
t
e
n
t
s

Address root Address root Recent
address

buffer

Figure 3: QMD data structures.

I/O address spaces to software and typically store different files.
Therefore, they may see very different utilizations. For example,
some volumes may be under high utilization, while others under
low utilization. The volumes under low utilizations may see dif-
ferent write traffic and thus consume the write cache at different
speeds. Dynamic sharing can balance the spin-up/down (flushing)
frequencies across different volumes and achieve the same maxi-
mum flushing frequency with reduced total write cache size.

However, dynamic sharing introduces complexities in flash cache
management. For example, a naive design may employ a single
log-structured layout for the flash space. However, different vol-
umes may perform the flush operations at different times, leaving
many holes in the log. This either incurs random writes or requires
expensive garbage collection operations. In the following, we de-
scribe our proposal to efficiently address these complexities.

Flash Space Management. Figure 3 illustrates the data struc-
tures of QMD on flash and in NVRAM. Since most functions of
NVRAM (e.g., non-volatile write cache during both high and low
utilizations) can be satisfied by the flash cache, cost-effective stor-
age designs may reduce the size of NVRAM significantly (e.g., by
10X). Therefore, we use only a small amount of NVRAM in our
design mainly as a staging area to reduce wasteful flash writes.

The flash space is divided into fixed sized (e.g., 1GB) extents, as
shown in Figure 3. Extent is the unit of flash space allocation. A
bitmap in NVRAM keeps track of the availability of all extents. A
RAID 10 volume allocates a flash extent at a time. Writes to the
volume are appended to the current extent; only when the extent is
filled does the volume allocates a new extent. Let V be the number
of volumes, C the flash capacity, and E the extent size. We choose
E to satisfy C

E
>> V , i.e., the number of extents is much larger

43

1: Load address blocks of this mirror into memory and sort the address
entries in disk address order (let A[0..M−1] be the sorted array, where
M is the total number of entries);

2: Queue is the incoming request queue for this mirror;
3: ToWrite = M ; Last = −1; Direction = 1; Bound = M ;
4: while ToWrite > 0 do
5: while Queue.not_empty && Queue.head is a write do
6: R = Queue.dequeue();
7: Record R’s data in flash and R’s target address in NVRAM;
8: end while
9: if Queue.not_empty && Queue.head is a read then

10: R = Queue.dequeue();
11: Search R’s disk address in A[...], using binary search;
12: if there is a match then
13: Complete request R by reading the data block from flash;
14: else
15: Send R to the disk;
16: A[i] is immediately to the left of R;
17: if Last < i then
18: Direction = 1; Bound = M ; Last = i;
19: else
20: Direction = −1; Bound = −1; Last = i + 1;
21: end if
22: end if
23: end if
24: WriteBack = 0;
25: for (j = Last + Direction; (j ! = Bound) &&

(WriteBack < K); j = j + Direction) do
26: if A[j] is valid then
27: Process A[j]: read its data block from flash and send write

request to the disk;
28: Mark A[j] to be invalid;
29: WriteBack + +;
30: end if
31: end for
32: ToWrite = ToWrite−WriteBack; Last = j;
33: end while

Figure 4: Flush operation for a pair of mirrored disks.

than the number of volumes. In this way, the flash space can be
shared to effectively balance the needs of multiple volumes2.

For every volume, we keep a volume info structure in NVRAM.
This structure records all the extents that belong to the volume, the
next flash offset to write, and a 1MB sized staging area for flash
writes. The latter ensures that writes are performed in large sizes,
thereby avoiding the problems of small random flash writes.

Handling Writes under Low Utilization. A write request con-
sists of a data block and the target disk address. We append the
data block to the current flash extent, and generate an address en-
try: (target disk address, flash address of data). However, it
is wasteful to incur a (e.g., 4KB) flash write for the small sized
address entry. Instead, we store it in a recent address buffer in
NVRAM. When this buffer is full, we flush the buffer as an address
block to the current flash extent.

As shown in Figure 3, we use a two-level structure to keep track
of the data blocks. To facilitate the flushing operation for every
pair of mirrored disks, we maintain this structure for every mirror.
The first level is the address root in NVRAM, which records the
flash offsets of the address blocks for the mirror. The second level
consists of the address blocks, which in turn point to the data blocks
in flash extents.

Optimizing the Flushing Operation. The system decides to tran-
sition a RAID volume from low utilization to high utilization mode

2For example, if C = 100GB and V = 10, we can choose E = 1GB.
Then, the scheme can effectively handle even extreme cases such as one
volume seeing 90X write traffic than the other volumes.

of hot data
partial mirror

Flash

Figure 5: QMD partial on-line mirror. (Red/blue/green: ad-
dress range for hot data; gray: address range for cold data)

by monitoring the I/O activities. (The implementation will be de-
scribed in Section 4.) It spins up the standby disks and applies the
buffered writes to bring the disks up to date. We would like to opti-
mize the flushing operation for two goals: (i) efficiently writing the
buffered data blocks; and (ii) servicing incoming requests during
the transition. The key to achieve these goals is to reorder the disk
writes to avoid disk seeks.

Figure 4 shows the algorithm for the flushing operation. We can
run this algorithm for every pair of mirrored disks in parallel. The
algorithm assumes that the volatile DRAM in the storage controller
is large enough to hold all the address entries. At the beginning of
the algorithm (Line 1), it reads all the address blocks of the mir-
ror and sort the address entries. Sorting serves two purposes: (i)
we can easily search incoming read requests to see if there is a hit
(Line 11–13); (ii) schedule the write-backs in a disk friendly man-
ner. The algorithm goes into a loop (Line 4–33), which processes
K write backs in every iteration. (K is an algorithm parameter
that we determine experimentally in Section 4.2.) An iteration first
checks incoming requests. For incoming write requests, we sim-
ply cache them in the flash and NVRAM (Line 5–8). If there is an
incoming read request and it is not a hit, then we send the request
to the disk (Line 15). The algorithm remembers the last disk head
position, and the previous direction of head movement. It chooses
to schedule K write backs from the last head position following the
same head movement (Line 25–31).

Space Requirement. In NVRAM, we keep a 1MB sized buffer per
RAID volume, and a 4KB recent address buffer per mirror. Sup-
pose there are 10 volumes, and 1000 mirrored disk pairs. Then we
require 14MB NVRAM space, which is quite modest.

We also require volatile DRAM for the flushing operation. An
address entry consists of a disk block address, and an offset in the
flash extent. We can use a 32-bit integer for both addresses. For
4KB blocks, this is sufficient to support 16TB capacity. There-
fore, an address entry takes 8 bytes, a 1:512 size ratio to the block
size. Suppose the flash cache is 512GB large, then we require 1GB
DRAM for the flushing operation, which is reasonable for a large
disk array system.

3.2 Partial On-line Mirrors
By exploiting RAID redundancy, we can save at most 50% en-

ergy in mirror-based RAID schemes. (The savings in parity based
schemes are even smaller.) There is still a big gap to the energy
proportionality goal. In this subsection, we discuss our ideas for
closing this gap that we would like to explore in future research.

To further save energy, we have to spin down more disks. There-
fore, not all data can be available on the active disks. While storage
systems may guess the future access patterns based on block-level
access history, the penalty of wrong guesses (i.e., the spin-up delay)
is high especially for latency sensitive applications.

We propose to allow application software (e.g., database sys-
tem) and storage systems to collaborate on addressing this prob-
lem. Compared to a storage-only solution, application software has
higher-level knowledge about data accesses, has more flexibility to
schedule data accesses, and can also make end users aware of the

44

relationship of energy consumption, performance, and data place-
ment. We propose the following two interfaces between application
software and storage systems:

• Software can divide the address range of a RAID volume
into hot and cold address ranges, as shown in Figure 5. For
example, DBMS can create a hot and a cold table spaces.
It determines the temperature of database objects based on
high-level knowledge of user workloads, then stores them
in corresponding table spaces. DBMS may opt to expose
the choices to the end users (e.g., DBMS admin) showing
also the estimate energy costs and response times for query
workloads. The storage system guarantees that data in the
hot address range will always be available on active disks,
while it may take a spin-up delay to access the cold data.

• Software can use an interface to query the status of a cold
address range, i.e., whether a spin-up will be necessary to
access it. Software may use this information to intelligently
schedule its work. For example, if DBMS finds that a database
query must access both hot and cold data, DBMS can choose
to process the part of the query involving hot data first, and
postpone accessing the cold data to hide the spin-up delay as
much as possible.

Given the above collaboration, we can spin down disks based on
the system utilization. If the system is utilized 50% or more, then
we can exploit redundancy as described previously to spin down at
most one disk per pair of mirror. If the system utilization is below
50%, we will spin down both disks in some mirrors. However, we
must kept the hot data available on active disks.

As shown in Figure 5, we take advantage of the fact that disk ca-
pacity is often under utilized. In many important applications, such
as OLTP, the number of disks is determined mainly by the perfor-
mance requirement rather than capacity demands. Therefore, we
can copy the hot data to the active mirror, essentially creating a
mirrored copy of the hot data. In Figure 5, we plan to spin down
the first and second pairs of mirrored disks, and keep the third pair
active. Therefore, we copy their hot data to the third pairs of mir-
rored disks. We call this approach partial on-line mirrors.

This approach utilizes all disks under peak utilization, and is ca-
pable of spinning down almost all disks for saving energy for low
utilization. One major cost is the overhead for copying the hot data.
The copying may be improved in two ways. First, we can copy hot
data and spin down the mirrors one mirror at a time. For exam-
ple, in Figure 5, we can copy hot data from the first mirror then
spin down it, before copying hot data from the second mirror. This
saves energy during the copying process. Second, we may keep an
old version of the hot data on the third mirror. Then the copying
process needs to only update the old version, potentially avoiding
significant fractions of data copying.

4. EXPERIMENTAL EVALUATION
In this section, we present preliminary evaluation of our pro-

posed QMD solution. In Section 4.1, we perform trace-based simu-
lation study using real-world disk traces for quantifying the overall
benefits of our solution in terms of energy savings, reduced spin-
up/down cycles, and impact on I/O performance. In Section 4.2,
we perform real-machine experiments for understanding the bene-
fits of the proposed flushing operation.

4.1 Simulation Study
We implemented a trace driven RAID controller simulator to

evaluate the effectiveness of QMD. We used three real workload

Table 1: QMD default simulator parameters.
Parameter Default Parameter Default

value value
Disk block size 512B Flash read latency 65 us
RAID Stripe size 128KB Flash write latency 85 us
Power, under load 13.2W Flash read bandwidth 250MB/s
Power, spinning idle 7.7W Flash write bandwidth 70MB/s
Power, spun down 2.5W Epoch length 1 sec
Disk avg. seek time 3.5 ms Spin down utilization thld. 0.10
Disk avg rot. latency 2.0 ms Spin down time threshold 30 epochs
Disk transfer rate 120MB/s Spin up utilization threshold 0.25
Spin up time 10.9 sec Spin up time threshold 2 epochs
Spin down time 1.5 sec Flash buffer size 16GB

traces on RAID10 systems and find that (i) significant energy sav-
ings can be achieved with minimal impact on response times, and
(ii) increasing the non-volatile write buffer size can significantly
reduce the number of disk spin down cycles during a trace.

Simulator Implementation. Our simulator uses block level I/O
traces for its workloads. Traces must have four basic fields for each
request: arrival time at the controller, read or write, start address,
and size. For each request, the simulator progresses time up until
the arrival time of the request, then maps the request or pieces of
the request to appropriate disks and/or flash based on the current
state of the system. When time has progressed to the point that a
request at a disk (or flash) finishes, the controller is notified, and
response time is taken to be the finish time of the last piece of a
request minus the request’s arrival time.

The default parameters for the simulator are shown in Table 1.
The disk parameters are taken either from values measured in [16]
or from the Hitachi Ultrastar 15K600 300GB enterprise drive spec
sheet [8]. The flash parameters are taken from the Intel X-25M
spec sheet [9].

Disks are not modeled in detail; access time is estimated as av-
erage rotational latency plus average seek time plus data transfer
time. Sequential accesses are accounted for by removing rotational
latency and seek time for accesses following the initial one. Flash
access time is similarly modeled as flash read/write latency plus
read/write transfer time, with latency removed for sequential ac-
cesses. Controller processing time is not accounted for, but is as-
sumed to be insignificant.

Disk utilization is tracked in terms of epochs. Utilization is de-
fined as the amount of time during an epoch a disk spent servicing
requests, divided by the total length of the epoch. The threshold for
a mirrored pair to transition to or from the low utilization state is set
in terms of a utilization and a number of epochs. At the end of each
epoch, the state of the system is evaluated to see if any disks should
be transitioned to a different state. To transition to the low utiliza-
tion state, a pair must be below the utilization threshold for the set
number of epochs. A pair transitions to high utilization mode either
when the utilization of the active disk exceeds its threshold for the
set number of epochs, or the space used in the write buffer is above
the buffer fill threshold.

Energy used by a hard disk during a trace is computed from the
time spent in each of three states times the power used in each state.
The states are spinning and serving requests, spinning but idle, and
spun down. The energy used by the flash buffer is computed as
the time spent idle and active times the power used in each state
by the Intel X-25M. Energy savings for the whole system during
a trace is computed as the percent difference in energy used when
compared to a simulation with no energy savings enabled. The
costs due to thermal power (i.e., cooling) are not considered but it
is expected that spinning down disks will lead to additional energy
savings because of reduced demand for running fans.

45

Table 2: QMD overall energy savings potential.
Trace file Description Length Peak IO Energy

Rate Savings
cambridge-src1_1 enterprise server 7 days 3.5k/s 31%
cambridge-usr2 enterprise server 7 days 2.3k/s 28%

LiveMaps global web service 1 day 4.7k/s 11%

128MB

256MB

512MB

1GB

2GB

0

100

200

300

400

N
u

m
 s

p
in

 u
p

s

Buffer size

0

100

200

300

400

500

600

20 24 28 32

R
e

sp
o

n
se

 t
im

e
s

(m
s)

Number of disks

99.95%

99.9%

99.5%

Figure 6: Impact of number of disks on response time
(cambridge-src1_1)

128MB

256MB

512MB

1GB

2GB

0

100

200

300

400

N
u

m
 s

p
in

 u
p

s

Buffer size

0

100

200

300

400

500

600

20 24 28 32

R
e

sp
o

n
se

 t
im

e
s

(m
s)

Number of disks

99.95%

99.9%

99.5%

Figure 7: Number of spin ups over 7 days varying buffer size
(cambridge-src1_1)

Real-World Traces. We use three real-world traces in our evalua-
tion, as described in Table 2. The first two were recorded on servers
in Microsoft Research Cambridge’s enterprise data center, and we
refer to them as cambridge-src1_1 and cambridge-usr2. The two
traces were taken over seven days. They exhibit clear diurnal us-
age patterns, with peaks during the day and long low utilization
periods between them. (The two traces are described in more de-
tail in [12].) The third trace was taken from production Microsoft
LiveMaps backend servers over one day. As LiveMaps is a global
web service, the third trace shows no diurnal pattern and has very
spiky activity throughout the day with only very short low utiliza-
tion periods.

To evaluate QMD on a given trace, we first perform a range of
simulations varying the number of disks without QMD enabled to
determine the appropriate number of disks to use for this trace. The
number of disks is chosen as the point at which increasing the num-
ber further provides minimal response time improvements. This is
illustrated in Figure 6. The 99.5th percentile, 99.9th percentile, and
99.95th percentile response times are shown as the number of disks
increases for the trace cambridge-src1_1. For this trace, we chose
to use 28 disks for further experiments. We also use the simulation
without QMD enabled to obtain a baseline energy usage which we
use to determine the percent savings when QMD is enabled.

Overall Results. Our overall energy savings results for each trace
are shown in Table 2. The energy savings ranges from about 31%
in the best case to about 11% in the worst case. The cambridge-
src1_1 trace benefits the most from QMD due to its strong diurnal
usage pattern, and the cambridge-usr2 trace similarly has very long
periods of low utilization. The LiveMaps server’s trace has very

0

20

40

60

#
 R
e
q
u
es
ts
 (
x1
0
0
0
0
)

Writes TotalAccesses

12

16

20

24

28

D
is
ks
 S
p
in
n
in
g

Time (7 days total)

Figure 8: Cambridge-src1_1 - Total IO and writes above, aver-
age number of disks spinning below.

0

5

10

15

20

R
eq

u
es
ts
(x
1
0
0
0
0
)

Writes TotalAccesses

6
8
10
12
14
16
18

D
is
ks
 s
p
in
n
in
g

Time (7 days)

Figure 9: cambridge-usr2 - Total IO and writes above, average
number of disks spinning below.

0

20

40

60

80

#
 R
e
q
u
es
ts
 (
x1
0
0
0
0
)

Writes TotalAccesses

8
10
12
14
16
18
20
22

D
is
ks
 S
p
in
n
in
g

Time (1 day total)

Figure 10: LiveMaps - Total IO and writes above, average num-
ber of disks spinning below.

short low utilization periods, and therefore it is much more difficult
for QMD to be effective.

Figure 8, 9, and 10 compare I/O request arrival rates and the av-
erage number of active disks over the duration of the traces for the
three traces, cambridge-src1_1, cambridge-usr2, and LiveMaps, re-
spectively. The number of disks spinning ranges from 14 (half) dur-
ing low utilization to 28 (all) during the peak utilization’s. From the
figures, we see that the spikes of the number of active disks corre-
spond to the spikes in I/O arrival rates in Figure 8 and 9, indicating

46

0

10000000

20000000

30000000

40000000
Fr
eq

u
e
n
cy

No QMD thresh 0.4 thresh 0.6 thresh 0.8

<
5

<
2
5

<
7
5

<
1
2
5

<
1
7
5

<
2
2
5

<
2
7
5

<
3
5
0

<
5
0
0

<
7
5
0

<
1
2
5
0

<
2
0
0
0

<
3
0
0
0

<
4
0
0
0

<
7
5
0
0

>1
0
0
0
0

Response Time (ms)

No QMD thresh 0.4 thresh 0.6 thresh 0.8

40000

60000

en
cy

0

20000

Fr
eq

u

Response Time (ms)

Figure 11: Cambridge-src1_1 - Overall response time distribution left, close up of tail end of distribution right, both shown while
varying spin up utilization threshold.

0
2000000
4000000
6000000
8000000

10000000

Fr
e
q
u
e
n
cy

No QMD thresh 0.2 thresh 0.4 thresh 0.6

<
5

<
2
5

<
7
5

<
1
2
5

<
1
7
5

<
2
2
5

<
2
7
5

<
3
5
0

<
5
0
0

<
7
5
0

<
1
2
5
0

<
2
0
0
0

<
3
0
0
0

<
4
0
0
0

<
7
5
0
0

>
1
0
0
0
0

Response Time (ms)

No QMD thresh 0.2 thresh 0.4 thresh 0.6

40000

60000

en
cy

0

20000

Fr
eq

u

Response Time (ms)

Figure 12: Cambridge-usr2 - Overall response time distribution left, close up of tail end of distribution right, both shown while
varying spin up utilization threshold.

0

10000000

20000000

30000000

40000000

Fr
e
q
u
e
n
cy

No QMD thresh 0.2 thresh 0.4 thresh 0.6

<
5

<
2
5

<
7
5

<
1
2
5

<
1
7
5

<
2
2
5

<
2
7
5

<
3
5
0

<
5
0
0

<
7
5
0

<
1
2
5
0

<
2
0
0
0

<
3
0
0
0

<
4
0
0
0

<
7
5
0
0

>
1
0
0
0
0

Response Time (ms)

No QMD thresh 0.2 thresh 0.4 thresh 0.6

40000

60000

en
cy

0

20000

Fr
eq

u

Response Time (ms)

Figure 13: LiveMaps - Overall response time distribution left, close up of tail end of distribution right, both shown while varying
spin up utilization threshold.

the effectiveness of QMD for the long periods of low utilization. In
contrast, the LiveMaps trace sees bursty traffic with very short du-
rations of low utilization periods, making it challenging to maintain
response times and save energy at the same time.

Impact of Write Buffer Size on Spin-Up Cycles. Figure 7 shows
the benefit, in terms of disk spin down/up cycles, as the buffer
size increases for the trace cambridge-src1_1. epochs. At 128MB
buffer size, each disk is spun down an average of 360 times over the
seven day trace. As the buffer size is increased to 2GB the num-
ber of spin down cycles is reduced to 60 for 7 days, about an 83%
reduction. This meets our goal for a five year HDD lifespan.

Impact of QMD on I/O Response Times. Figures 11, 12, and 13
show the effect of QMD on the response time distributions for all
three traces. Each figure shows histograms of response time dis-
tributions. The horizontal axis is the upper end of response time
histogram buckets, and the vertical axis is the number of requests
in each bucket. Each figure shows the response time distribution
for the original case where QMD is not enabled, and three curves
for QMD while varying the spin up utilization threshold.

The left graphs show the overall response time distributions. We
see that there is almost no variation at this scale. This means that

QMD has little impact for the majority of I/O requests. The right
graphs examine more closely the tail end of the distributions. We
see that if the spin up utilization threshold is set too high, the
scheme can significantly increase the number of requests with very
high response times for some workloads (e.g. threshold 0.6 in Fig-
ure 13). When the spin up utilization threshold is too high, disks
wait too long to start spinning up as I/O arrival rate increases. The
active disks get overloaded, and there are deep queues by the time
the standby disks have been spun up. However, it is also clear
that we can conservatively choose the spin up utilization threshold
(which we did for Table 2) so that the response time distribution
with QMD enabled almost perfectly follows the distribution with
no QMD.

4.2 Opportunity Study for Flushing Operation
on Real Machine

Figure 14 shows the real machine experimental results on serv-
ing incoming requests while flushing buffered data blocks using the
flushing algorithm in Figure 4. We ran the experiments on a Dell
PowerEdge 1900 server equipped with two Quad-core 2.0GHz Intel
Xeon E5335 CPUs and 8GB memory running 64-bit Ubuntu 9.04

47

param_K elapsed num_written wIOPS num_read rIOPS

1 1814.910722 100000 55.1 100000 55.1

2 1173.968925 100000 85.2 50000 42.6

4 822.602708 100000 121.6 25000 30.4

6 689.065295 100000 145.1 16667 24.2

8 614.553248 100000 162.7 12500 20.3

10 569.986415 100000 175.4 10000 17.5

20 469.002187 100000 213.2 5000 10.7

40 411.420271 100000 243.1 2500 6.1

60 395.426863 100000 252.9 1667 4.2

80 386.87275 100000 258.5 1250 3.2

100 370.098366 100000 270.2 1000 2.7

200 354.17735 100000 282.3 500 1.4

400 332.957931 100000 300.3 250 0.8

600 323.856845 100000 308.8 167 0.5

800 325.814411 100000 306.9 125 0.4

1000 320.709871 100000 311.8 100 0.3

0
50

100
150
200
250
300
350

K
=
0

K
=
1

K
=
2

K
=
4

K
=
6

K
=
8

K
=
1
0

K
=
2
0

K
=
4
0

K
=
6
0

K
=
8
0

K
=
1
0
0

K
=
2
0
0

K
=
4
0
0

K
=
6
0
0

K
=
8
0
0

K
=
1
0
0
0

K
=
in
f.

IO
P
S

incoming read

write back

0%

20%

40%

60%

80%

100%

K
=
1

K
=
2

K
=
4

K
=
6

K
=
8

K
=
1
0

K
=
2
0

K
=
4
0

K
=
6
0

K
=
8
0

K
=
1
0
0

K
=
2
0
0

K
=
4
0
0

K
=
6
0
0

K
=
8
0
0

K
=
1
0
0
0

IO
P
S

incoming read write back

Figure 14: Opportunity study for serving incoming reads while
flushing buffered writes as in the flushing algorithm in Figure 4.

server with Linux 2.6.28-17 kernel. We used a dedicated Seagate
Barracuda ES.2 [21] enterprise-class drive (750GB, 7200 rpm) as
the target disk. To model the buffered data blocks, we randomly
generate 100,000 target addresses in the entire disk capacity range.
We modeled the worst case for incoming requests: Every iteration
in the algorithm processes an incoming read request. The read tar-
get addresses are randomly generated. All disk reads and writes are
8KB sized. Every experiment performed all the 100,000 writes.

We vary the number of write backs per iteration (i.e. parameter
K) on the X axis in Figure 14. On the Y axis, we report IOs per sec-
ond normalized to the read-only and write-back-only performance,
respectively. We see that as K increases, write-back performance
increases while read performance decreases gracefully. For exam-
ple, at K = 2, the algorithm achieve 54% of the peak read and 25%
of the peak write performance. At K = 10, the algorithm achieve
25% of the peak read, and 48% of the peak write performance. Our
algorithm schedules write backs whose target addresses are close
to every read request for reducing disk seek overhead. Using the
measurements, a storage system can choose a K that balances the
write-backs and incoming request handling for given targets of sys-
tem loads and write-back times.

5. RELATED WORK
Exploiting Redundancy for Saving Disk Energy. As described
in Section 1, several previous studies proposed to exploit redun-
dancy in data storage systems to save energy. EERAID [11] and
RIMAC [24] exploited redundancy in RAID arrays for saving en-
ergy. They focused on request scheduling and storage cache de-
signs. Diverted Access[16] exploited redundancy in a more general
form, where storage systems store (encoded) data in n fragments,
and every subset of m fragments can be used to reconstruct the
data. However, these previous proposals suffer from two problems:
(i) Limited NVRAM capacity forces disks to be frequently spun
up/down, which impacts their lifetimes; and (ii) there is still a sig-
nificant gap to achieve the ideal goal of energy proportionality. In
this paper, we exploited flash as a larger non-volatile write cache to
address (i). For (ii), we proposed partial online mirror and a collab-
oration interface between storage systems and upper-level software
for spinning down more disks while limiting performance impacts.

Migrating or Copying Data for Saving Disk Energy. MAID [6]
maintains a large number of disks in standby mode for archival
purpose. A disk is spun up on demand for serving a request. To
reduce the accesses to standby disks, MAID uses a small number
of disks to cache recently used data. PDC [15] migrates frequently
used data to a subset of all the disks so that other disks can be spun
down. In this paper, we exploit both redundancy and data migra-
tion for achieving energy proportionality. In addition, we propose
to expose energy state information to upper-level software (e.g.,
database systems) so that they can collaborate to hide the spin-up
delays for accessing the cold data.

Exploiting Flash as Write Buffers. Schindler et al. proposed to
use flash as a write cache to optimize storage access patterns that
consist of large sequential reads and random writes [17]. Chen et
al. exploited a flash-based cache for enabling online updates in
data warehouses [3]. While both studies maintain the efficiency of
sequential reads in face of random writes, their focuses are quite
different. Chen et al. developed a MaSM algorithm, for supporting
fine-grain database record updates, minimizing memory footprint
and flash writes, and supporting ACID properties [3]. On the other
hand, storage systems see only block-sized I/Os and do not require
ACID, which simplify the flash management in Schindler et al.’s
solution. Instead, they focus on efficiently migrating the cached
writes back to disks in the middle of large sequential read opera-
tions [17]. In this paper, we also exploit flash as a write cache, but
for a very different purpose: significantly increasing the size of the
non-volatile write cache for reducing the number of spin-up/down
cycles for disks in energy-efficient disk arrays.

Efficient Disk Access Patterns. Sequential accesses and random
accesses are the two access patterns that are studied most for disks.
Because of their mechanical properties, HDDs achieve peak band-
width for sequential access patterns but have poor performance for
random accesses. In between these two extremes, previous work
studied other efficient access patterns for modern disks. Schlosser
et al. exploited the semi-sequential pattern and short seeks for mul-
tidimensional data layout on disks [18]. On modern disks, short
seeks up to a certain number of disk tracks take similar time. A list
of disk blocks on different disk tracks satisfies the semi-sequential
pattern if the next block on the list can be accessed without ro-
tational delay after seeking from the previous block. Combining
these two features, Schlosser et al. identified that from any given
disk blocks, there is a set of disk blocks, called adjacent blocks, that
can be accessed with equally small cost. Then, they placed multidi-
mensional data using adjacent blocks for efficient accesses in every
dimension. Schindler et al. studied proximal I/Os for combining
random writes into large sequential reads [17]. Proximal I/Os are
a set of I/O requests with addresses close to one another. Modern
disks can handle these I/Os with minimal seek overhead. Similar to
both of the studies, we also aim to reduce disk seeks by scheduling
I/Os with close addresses, but for a quite different workload: flush-
ing a large number of buffered writes to disks while serving (ran-
dom) incoming requests. Our proposal balances the two activities,
and supports performance tuning based on a simple parameter, the
number of write backs performed between two incoming requests.

6. CONCLUSION
In this paper, we investigated energy efficiency for HDD-based

data storage in general and RAID systems in particular. We pro-
posed QMD (Quasi Mirrored Disks) to effectively leverage redun-
dancy in storage systems and flash to save significant energy. We
demonstrated this through simulation using real-world workloads,
including systems that experience long periods of low utilization,
i.e. due to diurnal usage patterns. With a sufficiently large non-
volatile write buffer, the number of spin down cycles for disks can
be kept within the average lifetime limit specified by manufactur-
ers. Moreover, we can choose conservative parameters (e.g., spin-
up utilization threshold) so that QMD can achieve the energy sav-
ings with negligible impact on I/O response times.

We find that exploiting redundancy alone still leaves a big gap to
the energy proportionality goal. As future research, we propose two
interfaces that allow applications and storage systems to collaborate
for further saving energy, and Partial On-line Mirrors for effectively
taking advantage of the interfaces.

48

7. ACKNOWLEDGMENTS
The QMD simulator was initially developed by Katlyn Daniluk

as part of her research experience for undergraduates. This work
was partially supported by National Science Foundation awards
IIS-0746696 and IIS-1050301.

8. REFERENCES
[1] NSF workshop on sustainable energy efficient data

management (SEEDM). http://seedm.org.
[2] NSF workshop on the science of power management.

http://www.cs.pitt.edu/ kirk/SciPM2.
[3] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and

R. Stoica. MaSM: Efficient online updates in data
warehouses. In SIGMOD, 2011.

[4] L. A. Barroso. The price of performance: An economic case
for chip multiprocessing. ACM Queue, pages 48–53, Sept
2005.

[5] L. A. Barroso and U. Holzle. The case for
energy-proportional computing. IEEE Computer, 40:33–37,
Dec 2007.

[6] D. Colarelli and D. Grunwald. Massive arrays of idle disks
for storage archives. In SC, 2002.

[7] Emerson Network Power. Energy logic: Reducing data
center energy consumption by creating savings that cascade
across systems. http://emersonnetworkpower.com/en-
US/Brands/Liebert/Documents/ White Papers/Energy
Logic_Reducing Data Center Energy Consumption by
Creating Savings that Cascade Across Systems.pdf.

[8] Hitachi Global Storage Technologies. Ultrastar 15k600 data
sheet, Sept 2009.

[9] Intel Corporation. X-25M SATA SSD 34nm product
specification.

[10] J. G. Koomey. Estimating total power consumption by
servers in the U.S. and the world.
http://enterprise.amd.com/Downloads/
svrpwrusecompletefinal.pdf.

[11] D. Li and J. Wang. EERAID: energy efficient redundant and
inexpensive disk array. In ACM SIGOPS European
Workshop, 2004.

[12] D. Narayanan, A. Donnelly, and A. I. T. Rowstron. Write
off-loading: Practical power management for enterprise
storage. In FAST, 2008.

[13] NetApp Corporation. Flash cache.
http://www.netapp.com/us/
products/storage-systems/flash-cache/flash-cache.html.

[14] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (RAID). In SIGMOD,
1988.

[15] E. Pinheiro and R. Bianchini. Energy conservation
techniques for disk array-based servers. In ICS, 2004.

[16] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploiting
redundancy to conserve energy in storage systems. In
SIGMETRICS, 2006.

[17] J. Schindler, S. Shete, and K. A. Smith. Improving
throughput for small disk requests with proximal I/O. FAST,
2011.

[18] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao,
A. Ailamaki, C. Faloutsos, and G. R. Ganger. On
multidimensional data and modern disks. In FAST, 2005.

[19] Seagate Technology LLC. Barracuda 7200.12 data sheet.
[20] Seagate Technology LLC. Cheetah 15K.4 SCSI product

manual, rev. d edition, May 2005. Publication number:
100220456.

[21] Seagate Technology LLC. Barracuda ES.2 data sheet, 2009.
[22] Transaction Processing Performance Council. TPC

benchmark E standard specification version 1.12.0.
[23] US Environmental Protection Agency. Report to congress on

server and data center energy efficiency: Public law 109-431.
[24] X. Yao and J. Wang. RIMAC: a novel redundancy-based

hierarchical cache architecture for energy efficient, high
performance storage systems. In EuroSys, 2006.

49

A Case for Micro-Cellstores: Energy-Efficient Data
Management on Recycled Smartphones∗

Stavros Harizopoulos
HP Labs

Palo Alto, CA, USA
stavros@hp.com

Spiros Papadimitriou
Google Research

Mountain View, CA, USA
spapadim@gmail.com

ABSTRACT
Increased energy costs and concerns for sustainability make
the following question more relevant than ever: can we turn
old or unused computing equipment into cost- and energy-
efficient modules that can be readily repurposed? We be-
lieve the answer is yes, and our proposal is to turn unused
smartphones into micro-data center composable modules. In
this paper, we introduce the concept of a Micro-Cellstore
(MCS), a stand-alone data-appliance housing dozens of re-
cycled smartphones. Through detailed power and perfor-
mance measurements on a Linux-based current-generation
smartphone, we assess the potential of MCSs as a data man-
agement platform. In this paper we focus on scan-based par-
titionable workloads. We show that smartphones are overall
more energy efficient than recently proposed low-power al-
ternatives, based on an initial evaluation over a wide range
of single-node database scan workloads, and that the gains
become more significant when operating on narrow tuples
(i.e., column-stores, or compressed row-stores). Our initial
results are very encouraging, showing efficiency gains of up
to 6×, and indicate several promising future directions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
Modern smartphones have the computational power of a

5-year-old PC, but at a fraction of the size and energy con-
sumption (110x smaller volume than a standard 1U server,
and 200x less peak power). More than 1 billion cellphones
are shipped yearly; in 2010, according to IDC, over 300 mil-
lion of those were smartphones (a 74.4% increase over 2009).
Smartphones have a typical consumer refresh cycle of two to
three years. Over the next few years, we expect a total of
one billion smartphones to become obsolete; the aggregate

∗The views contained herein are the authors’ only and do not
necessarily reflect the views of Hewlett-Packard or Google.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DaMoN 2011
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

computational power of these phones is similar to that of
all 500 top supercomputers in the world combined—but at
a fraction of their energy needs. How can this power be
harnessed?

A place where cost- and energy-efficient computing units
could be utilized at large numbers is a modern data center.
Data center operating costs are characterized by a continu-
ously growing energy cost component [5, 2]. Power and cool-
ing costs are soon expected to surpass the (amortized) cost of
purchasing servers. Demand for new and bigger data centers
is on the rise, fueled by both consumer and enterprise appli-
cations. However, could a significantly underpowered device
support applications that typically run on high-end servers?
In this paper, we argue that for certain classes of enterprise
data management problems, such as data warehousing and
analytics, there are several emerging trends that lend them-
selves to a micro-data center design based on underpowered
hardware (also known as“wimpy nodes”in the literature [3]).
These trends are (a) MPP-style processing (massively par-
allel processing), (b) column-oriented and compressed data
which ease pressure on the memory/network buses, and (c)
offering reliability through replication instead of expensive
hardware solutions.

Our proposal is to repurpose old or unused smartphones
and use them to assemble units, called Micro-Cellstores, that
contain dozens of interconnected smartphones which collec-
tively act as a data-appliance mini-cluster. A concept dia-

POWER SUPPLY

EXTERNAL STORAGE

ROUTER

MICRO-USB DOCK

SHIELD

POWER

 ETHERNET

 M C S U N I T

Figure 1: Micro-Cellstore Architecture.

50

gram of a Micro-Cellstore is shown in Figure 1. There are
several interesting questions around architecting and manu-
facturing Micro-Cellstores that are beyond the scope of this
paper, such as: What are viable methods for networking?
How can batteries and power management features be lever-
aged? What is the right ratio of phones, routers/hubs, and
external storage? Is cooling a problem?

Our focus in this paper is exploring the types of data
management workloads that can be efficiently supported by
MCS units, and compare the energy-efficiency of appliances
based on smartphones (ultra-wimpy nodes) against other
low-power alternatives. Our contributions are the following:

• Detailed power-profile characterization of a modern
smartphone (Nexus S, released in Q4 2010).

• Power efficiency measurements for partitionable, scan-
intensive database workloads on smartphones and two
types of wimpy platforms.

• Introducing the case for Micro-Cellstores (MCS).

The rest of the paper is organized as follows. In Section 2 we
cover related work, including recent proposals for “wimpy”
architectures. Section 3 motivates Micro-Cellstores and Sec-
tion 4 details the characteristics of modern smartphones.
Section 5 carries out our benchmarking and analysis of var-
ious single-node, scan-based database workloads. We con-
clude in Section 6.

2. RELATED WORK
Energy concerns are important enough to often dictate

where data centers are built. A growing number of efforts
to improve the energy efficiency of clusters and data centers
include holistic redesigns that treat a data center as a sin-
gle computer [4, 16], cluster workload consolidation to meet
power constraints and reduce energy requirements [15, 13,
12], and considerations of low-power architectures [3, 19]. In
this section we briefly discuss recent efforts in improving the
energy efficiency of database applications.

Energy efficiency in databases. Traditionally, database
systems have been optimized for performance, ignoring power-
related costs. However, the proliferation of scale-out archi-
tectures has forced data management systems to consider
energy as equally important to performance. Early research
studies argued for the redesign of several key components
such as the query optimizer, the workload manager, the
scheduler and the physical database design [7, 11, 9, 20].
Many of these suggestions assumed that, like cars, computer
systems had different optimal performance and energy effi-
ciency points. However, a subsequent detailed study on the
energy efficiency of a single database server [18] found that,
because of the start-up power draw, the highest perform-
ing configuration was also the most energy efficient. That
study did not consider multi-node configurations or low-
power hardware. In this paper, we investigate the latter.

Non-server architectures. In an effort to improve the en-
ergy efficiency of clusters, a number of studies have also
considered the use of low-power “wimpy” nodes consisting of
low-power storage (SSDs) and processors (mobile CPUs) [3,
19, 14, 17]. Primarily, these designs target computationally
“simple” data processing tasks that are extremely partition-
able, such as key-value workloads [3]. For such workloads,

wimpy clusters were shown to be more energy efficient com-
pared to traditional clusters built using more power-hungry
server nodes. However, this result may not hold in scenarios
such as database workloads which often exhibit sub-linear
scale-up characteristics, especially when full cluster cost is
considered [14].

Our work in this paper can be viewed as in the same cate-
gory as the above-mentioned wimpy-node architectures. To
our knowledge, we are the first to characterize the energy-
efficieny of modern smartphones when running database-
style tasks. Throughout this paper, we define energy effi-
ciency of a workload as the ratio of the query completion
rate (e.g., scans per hour) to the average power consumed
by the system.

3. A CASE FOR MICRO-CELLSTORES
There are three main emerging trends in enterprise data

management that lend themselves to a micro-data center
design based on underpowered hardware:

• Massively Parallel Processing (MPP): Parallel DBMSs
typically adopt the shared-nothing paradigm for scal-
ing out (rather than scaling up) to deal with increas-
ingly larger data volumes. For queries that scale lin-
early with the number of nodes in a cluster, an under-
powered cluster could reach acceptable performance
levels by using more nodes.

• Column-oriented and highly compressed data: Column-
stores have emerged as the prevalent architecture for
high-performance data management. Operating on
columnar, highly compressed data eases pressure on
the memory and network/IO buses (which are typi-
cally under-specced in a smartphone, due to concerns
over manufacturing cost).

• Reliability through replication: Modern systems in-
creasingly rely on replication for providing reliability,
rather than on expensive hardware-based solutions.
Such techniques are particularly suitable for smart-
phones which do not compare well to server-grade com-
ponents with respect to reliability.

Furthermore, recent work has demonstrated running MapRe-
duce jobs on a network of smartphones [6]. Micro-Cellstores
are inspired by the above observations, combined with the
expected abundance of used smartphones in the future (as
explained in the introduction).

In the concept of Figure 1, the proposed housing struc-
ture contains standardized micro-USB connectors and, pos-
sibly, WiFi routers for connectivity. We also expect that
there will be some form of storage directly connected to the
router/hub. Furthermore, batteries may be leveraged in in-
teresting ways, e.g., to provide uninterrupted operation even
under intermittent power availability, to charge during off-
peak hours at possibly cheaper rates, or to smooth out the
cluster’s power profile. Studying the tradeoffs between the
different types of networking, deciding the best use for ex-
ternal storage, and exploring ways to harness the batteries
are beyond the scope of this paper.

We expect MCSs based on cheaply acquired, used smart-
phones to be environmentally sustainable, minimizing total
exergy cost. While our primary metric for efficiency in this
paper is power consumption, it should be noted that cost-
efficiency may have a favorable impact on our proposal, since

51

Year Model CPU RAM Storage (int./ext.) WiFi
1996 Nokia 9000 33MHz AMD Elan x486 2MB 6MB –
2002 Sony P800 156MHz ARM9 ? 16MB –
Q2 2007 iPhone 412MHz1 ARM 128MB 4, 8, or 16GB b/g
Q4 2008 HTC Dream 528MHz MSM7201A (ARM11) 192MB 256MB / microSD b/g
Q2 2009 iPhone 3GS 600MHz2 S5PC100 (Cortex-A8) 256MB 8, 16, or 32GB b/g
Q4 2009 Motorola Droid 550MHz3 OMAP3430 (Cortex-A8) 256MB 512MB / microSD b/g
Q1 2010 Nexus One 1GHz QSD8250 (Snapdragon) 512MB 512MB / microSD b/g/n
Q2 2010 iPhone 4 1GHz4 Apple A4 (Cortex-A8) 512Mb 16 or 32GB b/g/n
Q4 2010 Nexus S 1GHz S5PC110 (Hummingbird) 512MB 16GB iNAND b/g/n
Q1 2011 HTC Thunderbolt 1GHz MSM8655 (Snapdragon) 768MB 8GB / microSD b/g/n
Q2 2011 Droid Bionic 1GHz dual-core Tegra 2 512MB 2GB / microSD b/g/n
Q2 2011 Galaxy S II 1GHz dual-core Exynos412 or Tegra 2 1GB 16 or 32GB a/b/g/n

Table 1: Smartphone model feature summary.

smartphones would be otherwise discarded. A broader goal
of this paper is to increase awareness of environmentally
sustainable solutions for computing infrastructures, and the
MCS concept is aimed towards that end. The rest of the
paper focuses on specific aspects of the suitability of MCSs
(which consist of ultra-wimpy nodes) for database work-
loads.

4. MODERN SMARTPHONES
Although the concept of what we today recognize as a

“smartphone” is almost two decades old [1], until very re-
cently the dominating characteristic of a “smartphone” was
the“phone.” Functionality was rather rudimentary and com-
puting power was limited. The fairly recent explosion in the
availability of reasonably fast wireless data networks has
spurred demand for more capable computing devices, and
vice versa, creating a virtuous cycle.

The current concept of a smartphone as an always-connected
computing device that runs sophisticated applications was
brought into the mainstream by the Apple iPhone, which
was released four years ago. Since then, new, more power-
ful models are constantly introduced. Table 1 summarizes
some key features of various smartphone models. Especially
during the past two years, the smartphone space has wit-
nessed exponential growth. Both CPU clock speeds and
RAM capacity have roughly doubled in that time. Figure 2
illustrates the clock and memory trends over time.

In 2011, several companies are expected to introduce smart-
phones with dual-core CPUs. Furthermore, this trend does
not show signs of slowing down. The ARM Cortex-A9 core
design, on which these planned devices are based, supports
up to four cores on the same chip and clock speeds up to
2GHz. Furthermore, since they are aimed at mobile devices,
these designs focus on maintaining power consumption char-
acteristics while increasing performance. Therefore, power
efficiency should increase even further over time.

4.1 Experimental methodology
We collected measurements on a Samsung/Google Nexus

S smartphone, running Android 2.3.3 (GRI40, with Linux
kernel 2.6.35). We wrote logging software that records the
following:

• Battery statistics, including battery level (%) and volt-
age, by listening for BATTERY_CHANGED broadcast events.

• CPU load statistics, by polling /proc/stat at a user
specified interval (by default 60 seconds).

Figure 2: Smartphone clock speed and RAM over
time.

• CPU frequency scaling statistics, by polling /sys/devi-

ces/.../time_in_state.

• Network connectivity changes, by listening for CONNEC-
TIVITY_ACTION broadcast events.

• Network traffic statistics per interface, by polling /proc-

/net/dev (120 second interval, by default).

• Screen usage statistics, by listening for SCREEN_ON and
SCREEN_OFF broadcast events.

Each logger is a separate component (Android service) that
can be turned off when not needed. For each experiment,
we only collect the statistics we need. Furthermore, we ran
the device with logging fully enabled and compared baseline
power consumption (see below) with logging fully disabled,
and saw no measurable effect.

Log events are queued in memory and flushed to phone
storage in batches (user parameter, typically 20 events).
Statistics collected through broadcast event receivers are
“pushed”only when something changes. For polled statistics
we used Android alarm APIs. We kept logging to the mini-
mum necessary and verified that it has no measurable effect
on power consumption by comparing battery level drop with
logging on and off, over a period of several hours.

During each experiment we acquired a partial wakelock,
which prevents the CPU from sleeping (otherwise the O/S
may power down the CPU when there is no user interaction,

52

even if processes are running). Beyond that, we kept the
screen off, disabled all radios (cellular, WiFi, Bluetooth, and
GPS) by setting the phone in airplane mode, and disabled
all background services. Finally, before each run we charged
the battery normally (i.e., no bump charging).

Since measuring battery capacity is difficult without spe-
cialized equipment, we used a fresh battery for our experi-
ments. We converted ampere-hours to watt-hours using av-
erage voltage (time-weighted) during each experiment, based
on battery voltage sensor values (typical range was 4 ±
0.03V). Android reports battery levels as integer percent-
ages of capacity. On the Nexus S, a 1% drop corresponds to
15mAh or about 60mWh. We ensured that each experiment
ran for at least one hour (much longer for idle power mea-
surements), which implies an error of at most 10% (typical
experiment power consumption was 0.7–1.2W).

The Hummingbird CPU in Nexus S uses dynamic fre-
quency scaling (DVFS), supporting clock rates of 100, 200,
400, 800MHz and 1GHz. Effective clock rates were esti-
mated by averaging frequencies, weighted by the fraction
of time spent at each frequency based on O/S statistics in
/sys. All experiments reported in this paper are with DVFS
turned on, using the ondemand governor. This configuration
is the most power-efficient overall. For CPU-bound work-
loads, the clock was indeed at or near its maximum. How-
ever, for disk-bound workloads, we observed that the O/S
successfully scaled the CPU down to the minimum frequency
that can handle the load (details ommited for space).

4.2 Characteristics
Table 2 summarizes some characteristic performance num-

bers for Nexus S. Sequential read bandwidths were mea-
sured by repeatedly reading a large enough array or file.
Peak CPU power consumption was estimated at full load
and 1GHz. Main memory and external storage bandwidths
(361 and 25 MiB/s) are comparable to those of a mid-grade
laptop (571 and 33 MiB/s; Intel SU9400 1.4GHz CPU and
500GB, 5400RPM drive). However, power consumption is
an order of magnitude smaller (SU9400 TDP is 10W).

Description Value
Memory read rate 361.9± 57.8 MiB/s
Storage read rate 24.8± 1.7 MiB/s
USB transfer rate 13.3± 0.8 MiB/s
CPU peak power 1090± 80 mW

Table 2: Nexus S characteristics.

We observed that CPU power consumption is effectively
proportional to clock frequency [21] over a wide range of
clock speeds. Figure 3 shows average power consumption
versus effective clock frequency, with everything except the
CPU turned off. Because the intercept is non-zero, power
efficiency (mW/MHz) increases with clock rate.

5. ANALYSIS
Our goal in this section is to explore which types of data

management workloads are best suited for MCS units, and
compare the power consumption of smartphones to that of
other, energy-efficient architectures, when running a range
of parameterized workloads.

In previous work [18] we showed that, for a single-node
DBMS server, the most energy-efficient configuration is typ-

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

m
W

at
t

MHz

Average power vs. average clock

Figure 3: Averge clock frequency vs. power con-
sumption.

ically the fastest one. In follow-up work-in-progress [10] we
found that the same holds for low-power non-server archi-
tectures, such as laptops and desktops, and that laptops
can be more energy efficient than servers for several types of
database engine operations, such as scans, sorts, and joins.
Therefore, for the purposes of this paper, we only compare
against two energy-efficient platforms: a mini-desktop and
a laptop with an Ultra Low Voltage (ULV) processor.

In Section 5.1 we discuss what data management work-
loads are a natural fit for MCS units; in Section 5.2 we
present the experimental setup and our results. We offer
implications of our results in the concluding section.

5.1 Workload suitability for MCS
Low-power (or “wimpy”) architectures trade single-node

computational speed for higher energy efficiency. Compared
to a server node, a task will run significantly slower on a
wimpy node, but it will also consume much less energy. To
make up for slower individual nodes, wimpy archictectures
are typically positioned to run scale-out software infrastruc-
ture, with many more nodes than a server-based installation.
For throughput-intensive tasks that can scale linearly with
node count, this strategy is a win. Using more wimpy nodes
increases total throughput, without changing energy effi-
ciency (power and performance increase at the same rate).
That result was also verified experimentally [19].

Recent work, however, pointed out that several complex
parallel DBMS workloads exhibit sub-linear scalability, and
therefore the energy efficiency of wimpy-node architectures
may degrade as node count increases [14]. That analysis
used total cost for purchasing and operating servers over a
period of several years and showed that server-based clusters
can be more cost-efficient than wimpy clusters, depending
on the complexity of the workload. In our context, the final
cost of an MCS unit is not clear, as it will depend on whether
recycled phones come with a price tag. Thus, we compare
only operating costs, i.e., energy efficiency.

The performance and power characterization of Nexus S
from the previous section pointed that, while smartphones
are extremely low-power devices, disk and network I/O speed
as well as RAM size can be up to two orders of magnitude
less than servers, or one order of magnitude less than pre-
viously proposed wimpy architectures. Therefore, we are
interested in workloads with the following properties:

• Partitionable across a large number of nodes.

• Minimal network transfer.

53

0

50

100

150

200

250

300
En

er
gy

 p
er

 G
B

 (
Jo

u
le

s)

Wide row-store scan Mac Mini
ULV Laptop
Nexus S - Disk

Figure 4: Energy consumption per GB (lower is bet-
ter), for a wide-tuple scan on four different configu-
rations (Nexus S always operates on disk data).

• Favor increased CPU processing cycles per byte read
from disk.

• Do not require large in-memory structures.

Workloads that have the above properties include database
scans that may be followed by additional (partitionable) op-
erations (such as filtering, projection, aggregation) and cer-
tain types of joins that can run in a single-pass and involve
small network transfers (e.g., when the inner table shuffled
across all nodes also includes a highly selective predicate).
In the rest of this paper, we focus on database scans with-
out network transfers, with varying tuple widths (covering
row/column-stores with lightweight compression), and with
varying degree of CPU processing per tuple.

5.2 Experimental setup and results
We used the database storage manager developed in [8]

to run a series of database scans. This is a block-iterator
engine that can operate on both row- and column-oriented
data. We ran the same C++ code on all three platforms.
On Android we used the Native Development Kit (NDK,
release R5b). We experimented with the LINEITEM table
from TPC-H, using the same simplifications as in [8].

We compare Nexus S to two low-power systems: a 2010
Apple Mac Mini and an HP Compaq 2710p Tablet lap-
top. The Mac Mini features an Intel Core 2 Duo processor,
whereas the HP Laptop features an Ultra Low Voltage ver-
sion of the same processor. Both systems have 2GB RAM
and relatively slow disks: a 40MB/sec SATAII HDD in the
Mac Mini and a 80 MB/sec PATA SSD in the HP Laptop (we
also report projected results based on faster disks). Table 3
summarizes configuration and power consumption details for
all three systems. “Idle” is the power consumption at zero
load. For the Mac Mini and the Laptop we used a Brand
Electronics 20-1850 CI to measure total system power. This
power meter has ±1.5% accuracy and collects readings once
a second. Each experiment was repeated multiple times to
get stable power measurements.

System CPU (cores) Power Disk
Mac Mini 2.4GHz (2) 7.1W – 26.8W 41MB/sec
Laptop 1.2GHz (2) 11.1W – 23.7W 78MB/sec
Nexus S 1GHz (1) 0.2W – 1.17W 25MB/sec

Table 3: CPU specs and idle/peak power consump-
tion of tested systems.

In our first experiment, we used all systems in an out-of-
the-box configuration, to scan LINEITEM from disk, using a

0

20

40

60

0 20 40 60

En
er

gy
 p

er
 G

B
 (

Jo
u

le
s)

Floating point ops per tuple (wide row-store)

Memory-resident workload,
variable CPU ops per tuple

Nexus S - Disk
ULV Laptop
Mac Mini
Nexus S

Figure 5: Energy consumption per GB (lower is bet-
ter), for increasingly compute-intensive scans.

row-store representation (tuple width is fixed at 144 bytes).
The results are in Figure 4 (leftmost part). This figure shows
energy per GByte of data read (lower is better) for four dif-
ferent configurations of the two Intel systems. The righmost
configuration corresponds to the same scan when the table
fits entirely in memory, whereas for the two middle config-
urations we recompute the consumed energy assuming two
faster disks: one with 250MB/sec bandwidth and one with
500MB/sec. For the Nexus S we always show the energy
consumption for disk-resident data.

Figure 4 shows that Nexus S consumes significantly less
energy than the wimpy platforms for a row-store wide-tuple
scan in an out-of-the-box configuration. The Mac Mini and
ULV Laptop perform very poorly because they have fairly
slow disks (thus running time is high) while paying a sub-
stantial up-front penalty for idle power (for example, the
Mac Mini operates at 9.9–11.4W out of a 7.1–26.8W range).
However, under more realistic assumptions about typical
disk configurations, the wimpy nodes become competitive.
When the wimpy platforms operate on memory-resident data,
they consume less energy than Nexus S reading from disk.

For the remaining experiments we always show main-mem-
ory measurements for the two Intel systems, as the best-case
scenario for those systems.

Next, we keep the tuple width the same, but experiment
with increased number of computations per tuple. Figure 5
shows energy per GByte of data read (lower is better) for
varying computation intensity. For this experiment we mod-
ified the code, by injecting a number of floating point oper-
ations to emulate worst-case processing for each tuple (e.g.,
complex analytic workloads). Data set size and tuple width
are fixed for all runs. For the Nexus S we show both disk-
and memory-resident performance.

As Figure 5 shows, the Nexus S consumes less energy than
the other two systems when operating on memory-resident
data. However, the gap closes when there are tens of float-
ing operations executed in-between tuple reads. The en-
ergy consumption of Nexus S on disk-resident data converges
slowly to the consumption with memory-resident data. In
this experiment we wanted to show a large range of possible
operations (typical per-tuple transformations correspond to
a few floating operations).

In our last experiment, we compare energy efficiency when
evaluating a single predicate using four different table stor-
age representations: wide row-store (144 bytes), narrow row-
store (32 bytes), wide column-store (8 bytes), and narrow
column-store (1 byte). In all cases we use data from LINEITEM

to create various projections of different width. The narrow

54

0

0.5

1

1.5

2
En

er
gy

 E
ff

ic
ie

n
cy

 Energy Efficiency (higher is better):
from wide rows to narrow columns

Mac Mini
ULV Laptop
Nexus S

Figure 6: Energy efficiency (higher is better) for
varying tuple widths and storage formats.

versions of the row and column tuples are also represen-
tative of compressed versions of the original tuples, as the
additional overhead of lightweight compression is small [8].
Because we do not know how memory capacities will evolve,
we compare the best-case scenario for the two Intel systems
(memory-resident data) with the worst-case scenario for the
Nexus S (disk-resident data); for memory-resident data, the
efficiency of the Nexus S increases further by 1.2–2.6×.

Figure 6 shows the results. This time we compute the
overall energy efficiency (higher is better) on the y-axis.
While the two Intel systems always operate close to maxi-
mum CPU utilization, the Nexus S starts as disk-bound (for
row-144) and becomes cpu-bound after row-32. For column-
store scans, the Nexus S is significantly more energy-efficient
than the other two systems—up to 6×, despite operating on
disk-resident data. In accordance to [18], all systems become
more efficient as they ran faster.

6. CONCLUSIONS
In this paper, we introduced the concept of a Micro-Cell-

store (MCS) unit, a data appliance consisting of recycled
smartphones. Through detailed power and performance mea-
surements on a Linux-based current-generation smartphone,
we assesed the potential of modern smartphones as a build-
ing unit for energy-efficient database appliances. Our results
confirm that smartphones are overall a more energy efficient
alternative, and further show that the gains become more
significant for narrow tuples (i.e., column-oriented stores, or
compressed row stores), achieving up to 6× improvement
even when compared against other low-power options.

Our intention with the ideas presented in this paper is
to motivate environmentally sustainable approaches, based
on reusing and repurposing computing equipment. Towards
this goal, there are several open questions around architect-
ing MCS units and developing purpose-built data manage-
ment software: How can total cost be competitive to that of
traditional data centers? What other workloads could pos-
sibly run on this platform? What are the limits of scaling
out data management tasks on wimpy or ultra-wimpy node
architectures? Is there any benefit in combining MCS units
with traditional servers to form hybrid data centers? If yes,
what software changes would be needed? We hope these
questions will motivate the research community to intensify
their efforts on energy-efficient solutions.

7. REFERENCES
[1] IBM Simon.

http://en.wikipedia.org/wiki/IBM_Simon.

[2] Report To Congress on Server and Data Center
Energy Efficiency. In U.S. EPA Tech. Report, 2007.

[3] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: a
fast array of wimpy nodes. In SOSP ’09, 2009.

[4] L. A. Barroso and U. Hölzle. The Case for
Energy-Proportional Computing. IEEE Computer,
40(12), 2007.

[5] C. Belady. In the Data Center, Power and Cooling
Costs More than the IT Equipment it Supports.
Electronics Cooling, 23(1), 2007.

[6] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen,
and V. H. Tuulos. Misco: A MapReduce framework
for mobile systems. In PETRA, 2010.

[7] G. Graefe. Database Servers Tailored to Improve
Energy Efficiency. In Software Engineering for
Tailor-made Data Management, 2008.

[8] S. Harizopoulos, V. Liang, D. J. Abadi, and
S. Madden. Performance tradeoffs in read-optimized
databases. In VLDB, 2006.

[9] S. Harizopoulos, M. A. Shah, J. Meza, and
P. Ranganathan. Energy Efficiency: The New Holy
Grail of Database Management Systems Research. In
CIDR, 2009.

[10] W. Lang, S. Harizopoulos, M. A. Shah, J. M. Patel,
and D. Tsirogiannis. Improving the Energy Efficiency
of a DBMS Cluster. In Submitted for publication, 2011.

[11] W. Lang and J. M. Patel. Towards Eco-friendly
Database Management Systems. In CIDR, 2009.

[12] W. Lang and J. M. Patel. Energy Management for
MapReduce Clsuters. In VLDB, 2010.

[13] W. Lang, J. M. Patel, and J. F. Naughton. On Energy
Management, Load Balancing and Replication. In
SIGMOD Record, 2009.

[14] W. Lang, J. M. Patel, and S. Shankar. Wimpy Node
Clusters: What About Non-Wimpy Workloads? In
DaMoN, 2010.

[15] J. Leverich and C. Kozyrakis. On the Energy
(In)efficiency of Hadoop Clusters. In HotPower, 2009.

[16] R. Raghavendra, P. Ranganathan, V. Talwar,
Z. Wang, and X. Zhu. No ”power” struggles:
coordinated multi-level power management for the
data center. SIGOPS Oper. Syst. Rev., 2008.

[17] A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and
A. White. Low-power amdahl-balanced blades for data
intensive computing. SIGOPS Oper. Syst. Rev., 2010.

[18] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the energy efficiency of a database server.
In SIGMOD ’10, 2010.

[19] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan,
J. Franklin, and I. Moraru. Energy-efficient cluster
computing with FAWN: workloads and implications.
In e-Energy ’10, 2010.

[20] Z. Xu, Y.-C. Tu, and X. Wang. Exploring
Power-Performance Tradeoffs in Database Systems. In
ICDE, 2010.

[21] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate online power
estimation and automatic battery behavior based
power model generation for smartphones. In
CODES+ISS, 2010.

55

	damon2011_frontmatter.pdf
	all-papers.pdf
	p1-ye.pdf
	p2-bhattacharjee.pdf
	p3-muehe.pdf
	p4-sadoghi.pdf
	p5-sompolski.pdf
	p6-snyder.pdf
	p7-harizopoulos.pdf

