
connect.linaro.org

SFO17-403: Optimizing the Design and Implementation of KVM/ARM
Christoffer Dall

ENGINEERS AND DEVICES

WORKING TOGETHER

–Popek and Golberg
[Formal requirements for virtualizable third generation architectures ’74]

““Efficient, isolated duplicate 
of the real machine””

ENGINEERS AND DEVICES

WORKING TOGETHER

Hardware

OS Kernel

App AppApp

Hardware

Hypervisor

VM

Kernel

App App

VM

Kernel

App App

Native Virtual Machines

Virtualization

ENGINEERS AND DEVICES

WORKING TOGETHER

Hypervisor Design

Hardware

Hypervisor

VM

Kernel

App App

VM

Kernel

App App

Type 1 (Standalone)

ENGINEERS AND DEVICES

WORKING TOGETHER

Hypervisor Design

Hardware

Hypervisor

VM

Kernel

App App

VM

Kernel

App App

Type 1 (Standalone)

Hardware

OS Kernel

VM

Kernel

App App

VM

Kernel

App App

Type 2 (Hosted)

Hypervisor

App

ENGINEERS AND DEVICES

WORKING TOGETHER

Hypervisor Design

Hardware

Xen

Dom0

Linux

App App

DomU

Linux

App App

Hardware

Linux

VM

Linux

App App

VM

Linux

App App

KVM

App

ENGINEERS AND DEVICES

WORKING TOGETHER

ARM Virtualization Extensions

Kernel

UserEL0

EL1

HypervisorEL2

ENGINEERS AND DEVICES

WORKING TOGETHER

ARM VE and Hypervisors

Xen

Dom0

Linux

App App

DomU

Linux

App AppEL0

EL1

EL2
?

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM

Host

Linux

AppApp

VM

Kernel

AppApp

KVM

KVM lowvisor

EL0

EL1

EL2
1. Hypercall

2. Return3. Hypercall

4. Return

switch
state

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM

Host

Linux

AppApp

VM

Kernel

AppApp

KVM

EL0

EL1

EL2
1. Hypercall 2. Return

ENGINEERS AND DEVICES

WORKING TOGETHER

ARMv8.1 VHE

• Virtualization Host Extensions

• Supports running unmodified
OSes in EL2 without using EL1

Linux

EL0

EL1

EL2

AppApp

ENGINEERS AND DEVICES

WORKING TOGETHER

VHE: Backwards Compatible

• HCR_EL2.E2H complete enables and disables VHE

• When disabled, completely backwards compatible with ARMv8.0

• Example: Xen disables VHE

ENGINEERS AND DEVICES

WORKING TOGETHER

VHE: Expands Functionality of EL2

• Expanded EL2 functionality

• New registers: TTBR1_EL2, CONTEXTIDR_EL2

• New virtual EL2 timer

ENGINEERS AND DEVICES

WORKING TOGETHER

VHE: Support Userspace in EL0

• TGE: Trap General Exceptions

• Routes all exceptions to EL2

• VHE no longer disables EL0 stage 1 MMU
Linux

EL0

EL1

EL2

AppApp

Exceptions

ENGINEERS AND DEVICES

WORKING TOGETHER

VHE: EL2&0 Translation Regime

• Same page table format as EL1

• Used in EL0 with TGE bit set

ENGINEERS AND DEVICES

WORKING TOGETHER

VHE: System Register Redirection

TCR_EL1

mrs x0, TCR_EL1

HCR_EL2.E2H == 0

TCR_EL2

ENGINEERS AND DEVICES

WORKING TOGETHER

VHE: System Register Redirection

TCR_EL1

mrs x0, TCR_EL1

TCR_EL2

HCR_EL2.E2H == 1

ENGINEERS AND DEVICES

WORKING TOGETHER

VHE Register Redirection

TCR_EL1mrs x0, TCR_EL12

ENGINEERS AND DEVICES

WORKING TOGETHER

More VHE Register Redirection

• Some registers change bit position to be similar between EL1 and EL2

• Example: CNTHTCL_EL2 changes layout to match CNTKCTL_EL1 with extra
bits

ENGINEERS AND DEVICES

WORKING TOGETHER

Legacy KVM/ARM without VHE

HypervisorLinux

EL2

EL1
KVM

Lowvisor

Trap

Run VM

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM with VHE

HypervisorLinux

EL2

KVM

Lowvisor

Function  
Call

Run VM

ENGINEERS AND DEVICES

WORKING TOGETHER

Experimental Setup

• AMD Seattle B0

• 64-bit ARMv8-A

• 2.0 GHz AMD A1100 CPU

• 8-way SMP

• 16 GB RAM

• 10 GB Ethernet (passthrough)

*Measurements obtained using Linux in EL2. See BKK16 talk.

ENGINEERS AND DEVICES

WORKING TOGETHER

VHE Performance at First Glance

CPU Clock Cycles non-VHE VHE*

Hypercall 3.181 3.045

*Measurements obtained using Linux in EL2. See BKK16 talk.

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM Optimization #1
VM

Kernel

AppAppEL0

EL1

EL2

Host

AppApp

Linux KVM

• Avoid saving/restoring
EL1 register state

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM Optimization #2
VM

Kernel

AppAppEL0

EL1

EL2

Host

AppApp

Linux KVM

• Legacy KVM/ARM design
enabled/disabled virtualization
features on every transition

• Virtual/Physical interrupts

• Stage 2 memory translation KVM Lowvisor

Disable traps

Enable traps

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM Optimization #2
VM

Kernel

AppAppEL0

EL1

EL2

Host

AppApp

Linux KVM

• Leave virtualization
features enabled

• Host EL2 never uses
stage 2 translations
and always has full
hardware access.

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM Optimization #3

• Don’t context switch
the timer on every exit
from the VM

• Completely reworks the
timer code

• 20 patches on list

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM Optimization #4
• Reduce run loop work

• Do work in vcpu_load and vcpu_put instead

• Called when entering/exiting run-loop

• Called when preempted/scheduled

• Requires VHE

vcpu_load

vcpu_put

vcpu run
loop

ENGINEERS AND DEVICES

WORKING TOGETHER

KVM/ARM Optimization #5

• Rewrite the world
switch code

kvm_arch_vcpu_ioctl_run
{
 ...
 while (1) {
 ...
 if (has_vhe() /* static key */
 ret = kvm_vcpu_vhe_run(vcpu);
 else
 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 ...
 }
 ...
}

ENGINEERS AND DEVICES

WORKING TOGETHER

Microbenchmark Results

CPU Clock Cycles non-VHE VHE OPT * x86

Hypercall 3.181 752 1.437

I/O Kernel 3.992 1.604 2.565

I/O User 6.665 7.630 6.732

Virtual IPI 14.155 2.526 3.102

*Measurements obtained using Linux in EL2. See BKK16 talk.

Application Workloads
Application Description

Kernbench Kernel compile

Hackbench Scheduler stress

Netperf Network performance

Apache Web server stress

Memcached Key-Value store

ENGINEERS AND DEVICES

WORKING TOGETHER

Application Workloads

0.00

0.50

1.00

1.50

2.00

Kernbench
Hackbench

TCP_STREAM

TCP_MAERTS
TCP_RR

Apache

Memcached

non-VHE VHE OPT*

*Measurements obtained using Linux in EL2. See BKK16 talk.

Normalized overhead
(lower is better)

ENGINEERS AND DEVICES

WORKING TOGETHER

Conclusions
• Optimize and redesign KVM/ARM for VHE

• Reduce hypercall overhead by more than 75%

• Better cycle counts than x86 for key hypervisor operations

• Network benchmark overhead reduced by 50%

• Key-value store workload overhead reduced by more than 80%

ENGINEERS AND DEVICES

WORKING TOGETHER

Upstream Status

• Timer patches on list

• Core optimization patches coming soon

