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ENGINEERS AND DEVICES

WORKING TOGETHER

–Popek and Golberg 
[Formal requirements for virtualizable third generation architectures ’74]

““Efficient, isolated duplicate 
of the real machine”” 
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ARMv8.1 VHE

• Virtualization Host Extensions


• Supports running unmodified 
OSes in EL2 without using EL1
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VHE: Backwards Compatible

• HCR_EL2.E2H complete enables and disables VHE


• When disabled, completely backwards compatible with ARMv8.0


• Example: Xen disables VHE
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VHE: Expands Functionality of EL2

• Expanded EL2 functionality


• New registers: TTBR1_EL2, CONTEXTIDR_EL2 


• New virtual EL2 timer
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VHE: Support Userspace in EL0

• TGE: Trap General Exceptions


• Routes all exceptions to EL2


• VHE no longer disables EL0 stage 1 MMU
Linux
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VHE: EL2&0 Translation Regime

• Same page table format as EL1


• Used in EL0 with TGE bit set
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VHE: System Register Redirection
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VHE Register Redirection

TCR_EL1mrs x0, TCR_EL12
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More VHE Register Redirection

• Some registers change bit position to be similar between EL1 and EL2


• Example: CNTHTCL_EL2 changes layout to match CNTKCTL_EL1 with extra 
bits
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Legacy KVM/ARM without VHE
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Experimental Setup

• AMD Seattle B0 

• 64-bit ARMv8-A 

• 2.0 GHz AMD A1100 CPU 

• 8-way SMP 

• 16 GB RAM 

• 10 GB Ethernet (passthrough)

*Measurements obtained using Linux in EL2.  See BKK16 talk.
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VHE Performance at First Glance

CPU Clock Cycles non-VHE VHE*

Hypercall 3.181 3.045

*Measurements obtained using Linux in EL2.  See BKK16 talk.
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KVM/ARM Optimization #1
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KVM/ARM Optimization #2
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• Legacy KVM/ARM design 
enabled/disabled virtualization 
features on every transition


• Virtual/Physical interrupts
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KVM/ARM Optimization #2
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• Leave virtualization 
features enabled


• Host EL2 never uses 
stage 2 translations 
and always has full 
hardware access.
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KVM/ARM Optimization #3

• Don’t context switch 
the timer on every exit 
from the VM


• Completely reworks the 
timer code


• 20 patches on list
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KVM/ARM Optimization #4
• Reduce run loop work


• Do work in vcpu_load and vcpu_put instead


• Called when entering/exiting run-loop


• Called when preempted/scheduled


• Requires VHE

vcpu_load

vcpu_put

vcpu run 
loop
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KVM/ARM Optimization #5

• Rewrite the world 
switch code

kvm_arch_vcpu_ioctl_run 
{ 
  ... 
  while (1) { 
    ... 
    if (has_vhe() /* static key */ 
      ret = kvm_vcpu_vhe_run(vcpu); 
    else 
      ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); 
    ... 
  } 
  ... 
}



ENGINEERS AND DEVICES

WORKING TOGETHER

Microbenchmark Results

CPU Clock Cycles non-VHE VHE OPT * x86

Hypercall 3.181 752 1.437

I/O Kernel 3.992 1.604 2.565

I/O User 6.665 7.630 6.732

Virtual IPI 14.155 2.526 3.102

*Measurements obtained using Linux in EL2.  See BKK16 talk.



Application Workloads
Application Description

Kernbench Kernel compile

Hackbench Scheduler stress

Netperf Network performance

Apache Web server stress

Memcached Key-Value store
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Application Workloads
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Conclusions
• Optimize and redesign KVM/ARM for VHE


• Reduce hypercall overhead by more than 75%


• Better cycle counts than x86 for key hypervisor operations


• Network benchmark overhead reduced by 50%


• Key-value store workload overhead reduced by more than 80%
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Upstream Status

• Timer patches on list


• Core optimization patches coming soon


