
UT DALLAS Erik%Jonsson%School%of%Engineering%&%Computer%Science

FEARLESS engineering

SGX BigMatrix
A Practical Encrypted Data Analytic Framework with Trusted

Processors

Fahad Shaon Murat Kantarcioglu Zhiqiang Lin
Latifur Khan

The University of Texas at Dallas

FEARLESS engineering 1 / 49

Problem - Secure Data Analytics on Cloud

Result

Code & Data

I We want to utilize cloud environment for data analytics

I Service provider can observe the data

I Problematic for sensitive data (e.g., medical, financial data)

FEARLESS engineering 2 / 49

Problem - Secure Data Analytics on Cloud

Encrypted Result

Encrypted Code & Data

I We outsource encrypted sensitive data

I However, encrypted data is difficult to analyze

FEARLESS engineering 3 / 49

Problem - Secure Data Analytics - Approaches

Homomorphic Encryption

I Theoretically robust and
provides highest level of
security

I High computational cost

I Impractical for large data
processing

Trusted Hardware

I Cost effective

I Provides reasonable security

I Intel SGX is available in all
new processors

I Needs careful consideration
of side channel attacks

FEARLESS engineering 4 / 49

Objective of the work

Create a data analytics platform utilizing trusted
processor, which is - secure, practical, general
purpose, and scalable.

FEARLESS engineering 5 / 49

State of the Art

ObliVM (Liu et al., 2015)

I Provides a language and covert the logic into circuit

I Difficult to perform analysis on large data set

Oblivious Multi-party ML (Ohrimenko et al., 2016)

I Performs important machine learning algorithms using SGX

I Specific for set of algorithms

Opaque (Zheng et al., 2017)

I Oblivious and encrypted distributed analytics platform using
Apache Spark and Intel SGX (mainly focused on supporting
SQL)

FEARLESS engineering 6 / 49

Background - Intel SGX

I SGX stands for Software Guard Extensions

I SGX is new Intel instruction set

I Allows us to create secure compartment inside processor,
called Enclave

I Privileged softwares, such as, OS, Hypervisor, can’t directly
observe data and computation inside enclave

FEARLESS engineering 7 / 49

Background - Intel SGX - Attack Surface

I SGX essentially reduce the attack surface to processor and
enclave code

OS

VMM

Hardware

App App App

Attack Surface

Attack surface of traditional
computation system

OS

VMM

App App App

Hardware

Attack Surface

Attack surface with SGX

FEARLESS engineering 8 / 49

Background - Intel SGX - Attack Surface

I SGX essentially reduce the attack surface to processor and
enclave code

OS

VMM

Hardware

App App App

Attack Surface

Attack surface of traditional
computation system

OS

VMM

App App App

Hardware

Attack Surface

Attack surface with SGX

FEARLESS engineering 8 / 49

Background - Intel SGX Application

Untrusted Part

of App

Trusted Part

of App

I We only trust the processor and the code inside the
enclave (Intel, 2015)

FEARLESS engineering 9 / 49

Background - Intel SGX Impact

SGX Server

Encrypted Result

Encrypted Code & Data

I We can outsource computation securely

I No need to trust the cloud provider (i.e. Hypervisor, OS,
Cloud administrators)

FEARLESS engineering 10 / 49

Threat Model

Server

Memory Processor

Enclave

Disk

Code & Data

Result

I Adversary can control OS (i.e. memory, disk, networking)

I Adversary can not temper with enclave code

I Adversary can not observe CPU register content

FEARLESS engineering 11 / 49

Challenges - Obliviousness

Challenge: Access Pattern Leakage

I SGX uses system memory, which is controlled by the adversary

I Adversary can observe memory accesses

I Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)

Solution

I To reduce information leakage we ensure Data Obliviousness

FEARLESS engineering 12 / 49

Challenges - Obliviousness

Challenge: Access Pattern Leakage

I SGX uses system memory, which is controlled by the adversary

I Adversary can observe memory accesses

I Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)

Solution

I To reduce information leakage we ensure Data Obliviousness

FEARLESS engineering 12 / 49

Data Obliviousness - Example

I Program executes same path for all input of same size

Example: Non-Oblivious swap method of Bitonic sort

if (dir == (arr[i] > arr[j])) {

int h = arr[i];

arr[i] = arr[j];

arr[j] = h;

}

FEARLESS engineering 13 / 49

Data Obliviousness - Example

I Program executes same path for all input of same size

Example: Non-Oblivious swap method of Bitonic sort

if (dir == (arr[i] > arr[j])) {

int h = arr[i];

arr[i] = arr[j];

arr[j] = h;

}

FEARLESS engineering 13 / 49

Data Obliviousness - Example (Cont.)

Example: Oblivious swap method of Bitonic sort

int x = arr[i];

int y = arr[j];

_asm{

...

mov eax , x

mov ebx , y

mov ecx , dir

cmp ebx , eax

setg dl

xor edx , ecx

mov eax , x

mov ecx , y

mov ebx , y

mov edx , x

cmovz eax , ecx

cmovz ebx , edx

mov [x], eax

mov [y], ebx

}

FEARLESS engineering 14 / 49

Data Obliviousness - Challenges

Challenge

I Building data obliviousness solution is non-trivial

I Requires a lot of time and effort

Solution

I We provide our own python (NumPy, Pandas) inspired
language that ensures data obliviousness

FEARLESS engineering 15 / 49

Data Obliviousness - Challenges

Challenge

I Building data obliviousness solution is non-trivial

I Requires a lot of time and effort

Solution

I We provide our own python (NumPy, Pandas) inspired
language that ensures data obliviousness

FEARLESS engineering 15 / 49

Data Oblivious - Vectorization

I We removed if and emphasis on vectorization

Example: Compute average income of people with age >= 50

sum = 0, count = 0

for i = 0 to Person.length:

if Person.age >= 50:

count++

sum += P.income

print sum / count

FEARLESS engineering 16 / 49

Data Oblivious - Example

Example: Compute average income of people with age >= 50

S = where(Person , "Person[‘age ’] >= 50")

print (S .* Person[‘income ’]) / sum(S)

FEARLESS engineering 17 / 49

Challenge - Memory constraint

Challenge

I Current version of SGX (v1) allows only 90MB of memory
allocation

Solution

I We build flexible data blocking mechanism with efficient
and secure caching

I We build matrix manipulation library that supports blocking
and we call the abstraction BigMatrix

FEARLESS engineering 18 / 49

Challenge - Memory constraint

Challenge

I Current version of SGX (v1) allows only 90MB of memory
allocation

Solution

I We build flexible data blocking mechanism with efficient
and secure caching

I We build matrix manipulation library that supports blocking
and we call the abstraction BigMatrix

FEARLESS engineering 18 / 49

Security Properties - Summary

I Individual operations in our system is data oblivious

I Combination of oblivious operations is also oblivious

I Compiler warns user about potential leakage

I We perform optimization based on publicly known
information, e.g. data size

FEARLESS engineering 19 / 49

System Overview - SGX BigMatrix

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix

FEARLESS engineering 20 / 49

BigMatrix Library

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix - BigMatrix Library

FEARLESS engineering 21 / 49

BigMatrix Library

Operations in BigMatrix Library

I Data access operations - load, publish, get row, etc.

I Matrix Operations - inverse, multiply, element wise,
transpose, etc.

I Relational Algebra Operations - where, sort, join, etc.

I Data generation operations - rand, zeros, etc.

I Statistical Operations - norm, var

FEARLESS engineering 22 / 49

BigMatrix Library - Security Properties

I All the operations are data oblivious

I All the operations supports blocking

I We proved that combination of data oblivious operations is
also data oblivious (in Section 4)

I Data oblivious and blocking aware implementation details in
Appendix A

FEARLESS engineering 23 / 49

BigMatrix Library - Trace

I Each operation has fixed trace

I Trace is the information disclosed to adversary during
execution

I For example: operation type, input and output data size

Example: Trace of Matrix Multiplication C = A ∗B
I Instruction type (i.e. multiplication)

I Input Matrices size (i.e., A.rows,A.cols, B.rows,B.cols)

I Output Matrix size (i.e., C.rows,C.cols)

I Block size

I Oblivious memory read and write sequences, which does not
depend on data content

FEARLESS engineering 24 / 49

BigMatrix Library - Trace

I Each operation has fixed trace

I Trace is the information disclosed to adversary during
execution

I For example: operation type, input and output data size

Example: Trace of Matrix Multiplication C = A ∗B
I Instruction type (i.e. multiplication)

I Input Matrices size (i.e., A.rows,A.cols, B.rows,B.cols)

I Output Matrix size (i.e., C.rows,C.cols)

I Block size

I Oblivious memory read and write sequences, which does not
depend on data content

FEARLESS engineering 24 / 49

Exec. Engine & Block Cache

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix - Execution Engine and Block Cache

FEARLESS engineering 25 / 49

Exec. Engine & Block Cache

Execution Engine

I Execute BigMatrix library operations

I Parse instruction in the form of

Var ASSIGN Operation (Var, Var, ...)

I Process sequence of instructions

I Maintain intermediate states required to execute complex
program, such as, variable to BigMatrix assignments

Block Cache

I Help with the decision when to remove a block from memory
based on next sequence of instructions

FEARLESS engineering 26 / 49

Exec. Engine & Block Cache - Security Properties

I Execution Engine and Block Cache is also data oblivious
given the input program is data oblivious

I Compiler warns about potential data leakage

I Adversary can not infer anything more about data, apart from
the trace of all the operations

FEARLESS engineering 27 / 49

Compiler

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix - Compiler

FEARLESS engineering 28 / 49

Compiler

I Compiles our python inspired language into basic command

I It ensures data obliviousness by removing support for if

I We emphasis on operation vectorization

Input: Linear Regression

x = l o a d (‘ path / to / X Matr ix ’)
y = l o a d (‘ path / to / Y Matr ix ’)
x t = t r a n s p o s e (x)
t h e t a = i n v e r s e (x t ∗ x) ∗ x t ∗ y
p u b l i s h (t h e t a)

FEARLESS engineering 29 / 49

Compiler - Output

Output: Linear Regression

x = l o a d (X M a t r i x I D)
y = l o a d (Y M a t r i x I D)
x t = t r a n s p o s e (x)
t1 = m u l t i p l y (xt , x)
u n s e t (x)
t2 = i n v e r s e (t1)
u n s e t (t1)
t3 = m u l t i p l y (t2 , x t)
u n s e t (x t)
u n s e t (t2)
t h e t a = m u l t i p l y (t3 , y)
u n s e t (y)
u n s e t (t3)
p u b l i s h (t h e t a)

FEARLESS engineering 30 / 49

Compiler - Track data leakage

I We report against accidental data leakage through trace

I We check if any sensitive data is used in trace of any operation

I In our system, sensitive data - content of any BigMatrix,
content of intermediate variables

Example

X = load(‘path/to/X_Matrix ‘)

s = count(where(X[1] >= 0))

Y = zeros(s, 1)

publish(Y)

We report that zeros operation revealing sensitive data s

FEARLESS engineering 31 / 49

SQL Support

I We also support basic SQL

Input

I = sql(‘SELECT *

FROM person p

JOIN person_income pi (1)

ON p.id = pi.id

WHERE p.age > 50

AND pi.income > 100000 ’)

FEARLESS engineering 32 / 49

SQL Support (Cont.)

Output

t1 = where(person , ’C:3;V:50;O:=’)

person.age is in column 3

t2 = zeros(person.rows , 2)

set_column(t2, 0, t3)

t3 = get_column(person , 0)

person.id is in column 0

set_column(t2, 1, t1)

t4 = where(person_income , ’C:1;V:100000;O:=’)

t5 = zeros(person_income.rows , 2)

set_column(t5, 0, t6)

t6 = get_column(person_income , 0)

person_income.id is in column 0

set_column(t5, 1, t4)

A = join(t3, t5, ’c:t1.0;c:t2.0;O:=’, 1)

...
FEARLESS engineering 33 / 49

Block Size Optimizer

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix - Block Size Optimizer

FEARLESS engineering 34 / 49

Block Size Optimizer - Intro & Design Decisions

I We observed that input block size has impact on
performances of the system

I Adversary doesn’t gain any knowledge about data based on
block size

I So, we find optimum block size for each instruction before
executing a program

I We explicitly do not want to perform optimization inside
enclave because

I Optimization libraries are large and complex, which can
introduce unintended security flaws

I Any efficient optimization algorithm will reveal information
about data

I So we only perform optimization on trace data, nothing else

FEARLESS engineering 35 / 49

Block Size Optimizer - Overview

I We generate DAG of execution graph
I Internal nodes represent operations
I Edges represent block conversions

I We know cost for each operation for different matrix and
block size

I Given input matrix sizes we can find optimized block size

I We can convert one block configuration to another and know
the cost of conversion

FEARLESS engineering 36 / 49

Block Size Optimizer - Example - Linear Regression

I Execution graph (DAG) of Θ = (XTX)−1XTY in liner
regression training phase

FEARLESS engineering 37 / 49

Block Size Optimizer - Example - LR Cost Function

Cost = Convert(X, (brX , bcX), (x0, x1))

+ OP Cost(′Transpose′, X, (x0, x1))

+ Convert(XT , (x1, x0), (x2, x3))

+ Convert(X, (brX , bcX), (x4, x5))

+ OP Cost(′Multiply′, [XT , X], [(x2, x3), (x4, x5)])

+ ...

We convert this into integer programming and solve it for all the
xn variables.

FEARLESS engineering 38 / 49

Experimental Evaluations

We implemented a prototype using Intel SGX SDK and observe
performance of different operations

Setup

I Processor Intel Core i7 6700

I Memory 64GB

I OS Windows 7

I SGX SDK Version 1.0

I Number of Machine 1

FEARLESS engineering 39 / 49

Performance Impact - Matrix Size

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 0

 5
x10

6

 1
x10

7

 1
.5

x10
7

 2
x10

7

 2
.5

x10
7

M
at

ri
x

 M
u

lt
ip

li
ca

ti
o

n
 T

im
e

(m
s)

Matrix Elements

Unencrypted
Encrypted

Matrix Multiplication
(e.g. C = A ∗B)

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 6
00000

 6
50000

 7
00000

 7
50000

 8
00000

 8
50000

 9
00000

 9
50000

 1
x10

6

Jo
in

 t
im

e
(m

s)

Matrix Elements

Unencrypted
Encrypted

Oblivious Join

FEARLESS engineering 40 / 49

Performance Impact - Matrix Size - Summary

I We observe similar trends for all matrix operations

I We observe minimal overhead for encrypted computation

I However, the overhead depends on operation type

I More experimental evaluations in Section 5

FEARLESS engineering 41 / 49

Performance Impact - Block Size

Execution Time

 100
 200

 300
 400

 500
 100

 200

 300

 400

 500

 140

 145

 150

 155

 160

S
ca

la
r

O
p
er

at
io

n
 T

im
e

(m
s)

Scalar Multiplication

Execution Time

 100
 200

 300
 400

 500
 100

 200

 300

 400

 500

 18000

 18400

 18800

 19200

 19600

 20000

M
at

ri
x
 M

u
lt

ip
li

ca
ti

o
n
 T

im
e

(m
s)

Matrix Multiplication

FEARLESS engineering 42 / 49

Performance Impact - Block Size - Summary

I We observe execution time increases with block size

I Also, very small block size increases execution time, due to
blocking overhead

I As a result, we performed optimization

FEARLESS engineering 43 / 49

Comparison with ObliVM

I We compare performance of SGX-BigMatrix with ObliVM for
two-party matrix multiplication

I We observe that SGX-BigMatrix is magnitude faster because
we are utilizing hardware and do not require expensive over
the network communication

Matrix ObliVM BigMatrix BigMatrix
Dimension SGX Enc. SGX Unenc.

100 28s 660ms 10ms 10ms
250 7m 0s 90ms 93ms 88ms
500 53m 48s 910ms 706.66ms 675.66ms
750 2h 59m 40s 990ms 2s 310ms 2s 260ms

1,000 6h 34m 17s 900ms 10s 450ms 10s 330ms

Table: Two-party matrix multiplication time in ObliVM vs BigMatrix

FEARLESS engineering 44 / 49

Case Studies - Page Rank

I Performed Page Rank on three popular datasets

I Each dataset contains directed graph

Data Set Nodes BigMatrix Encrypted

Wiki-Vote 7,115 97s 560ms
Astro-Physics 18,772 6m 41s 200ms
Enron Email 36,692 23m 19s 700ms

Table: Page Rank on real datasets

FEARLESS engineering 45 / 49

Conclusion

I We propose a practical data analytics framework with SGX

I We present BigMatrix abstraction to handle large matrices in
constrained environment

I We proposed a programming abstraction for secure data
analytics

I We applied our system to solve real world problems

FEARLESS engineering 46 / 49

Thank You

Questions / Comments

I Fahad Shaon - fahad.shaon@utdallas.edu

I Murat Kantarcioglu - muratk@utdallas.edu

I Zhiqiang Lin - zhiqiang.lin@utdallas.edu

I Latifur Khan - lkhan@utdallas.edu

FEARLESS engineering 47 / 49

fahad.shaon@utdallas.edu
muratk@utdallas.edu
zhiqiang.lin@utdallas.edu
lkhan@utdallas.edu

References I

Intel (2015). Presentation for Intel SGX: ISCA 2015. url: https:
//software.intel.com/sites/default/files/332680-

002.pdf.
Islam, Mohammad Saiful, Mehmet Kuzu, and Murat Kantarcioglu

(2012). “Access Pattern disclosure on Searchable Encryption:
Ramification, Attack and Mitigation.” In: NDSS. Vol. 20, p. 12.

Liu, Chang et al. (2015). “Oblivm: A programming framework for
secure computation”. In: Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, pp. 359–376.

Naveed, Muhammad, Seny Kamara, and Charles V Wright (2015).
“Inference attacks on property-preserving encrypted databases”.
In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, pp. 644–655.

FEARLESS engineering 48 / 49

https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf

References II

Ohrimenko, Olga et al. (2016). “Oblivious Multi-Party Machine
Learning on Trusted Processors”. In: 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX
Association, pp. 619–636. isbn: 978-1-931971-32-4. url:
https://www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/ohrimenko.
Zheng, Wenting et al. (2017). “Opaque: A Data Analytics

Platform with Strong Security”. In: 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association. url:
https://www.usenix.org/conference/nsdi17/technical-

sessions/presentation/zheng.

FEARLESS engineering 49 / 49

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

