
Journal of Computer Graphics Techniques Vol. 2, No. 2, 2013 http://jcgt.org

Shader-Based Antialiased,
Dashed, Stroked Polylines

Nicolas P. Rougier
INRIA, Université de Bordeaux

Figure 1. These dashed stroked paths are computed in the fragment shader and do not require
extra tessellation. This enables changing line width, line joins, dash pattern, and dash phase
at no extra cost.

Abstract

Dashed stroked paths are a widely-used feature found in the vast majority of vector-drawing
software and libraries. They enable, for example, the highlighting of a given path, such as
the current selection, in drawing software or distinguishing curves, in the case of a scientific
plotting package. This paper introduces a shader-based method for rendering arbitrary dash
patterns along any continuous polyline (smooth or broken). The proposed method does not
tessellate individual dash patterns and allows for fast and nearly accurate rendering of any
user-defined dash pattern and caps. Benchmarks indicate a slowdown ratio between 1.1 and
2.1 with an increased memory consumption between 3 and 6. Furthermore, the method can be
used for solid thick polylines with correct caps and joins with only a slowdown factor of 1.1.

105 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

1. Introduction

During the past decade, a lot of progress has been made in GPU-accelerated resolution-
independent 2D graphics (aka vector graphics) and methods have been provided for
antialiased lines ([Chan and Durand 2005]), Bézier curves, glyph rendering, vector,
and more recently, generic path rendering ([Kilgard and Bolz 2012]). However, to the
best of our knowledge, little emphasis has been given to dashed strokes, even though
it is a widely-used feature found in vector drawing software and libraries. Dashed
strokes were also present in the first OpenGL API specifications through the line stip-
ple functionality which has since been deprecated. Several alternatives have been
provided such as sketchy strokes ([Markosian et al. 1997]), stylized lines ([Bénard
et al. 2010; Cole and Finkelstein 2010]), or approximated dashes, but only the path-
rendering approach seems to offer correct dashing according to the definition of the
standard vector graphic format (SVG 1.1). Implementation details have been given
sparingly, but [Kilgard 2011] seems to indicate that dashed strokes are first converted
into segment sequences (six triangles per dash), which is usually done in most vector
libraries. Consequently, this approach requires a pre-processing stage on the CPU
each time a new dash pattern is used (if the dash period is different) or if the dash
phase changes. The resulting number of triangles is linearly correlated with the num-
ber of visible dashes. Even if the number of triangles remains relatively low compared
to the capability of modern graphic cards, the pre-processing stage is cumbersome if
one wants to animate the dash pattern, as is done in most drawing software where the
active selection is animated in order to make it salient.

This paper introduces a new method for rendering dash-stroked antialiased poly-
lines using the GPU, a very light pre-processing stage, and without extra tessellation.
The specific contributions are:

• A dash atlas for efficient texture-based storage of dash patterns

• A shader-based rendering algorithm for dash patterns along a polyline

Since a solid line is a singular case of dashing, the method is valid for rendering thick
solid antialiased polylines with correct caps and joins without the need to tessellate
the joins.

2. Dashes

A dash pattern is defined as a cyclic sequence of successive on (dash) and off (gap)
segments of variable lengths as illustrated in Figure 2. The period ω of a dash pattern
is defined as the sum of all the on and off segments. The dash phase φ corresponds
to the length by which the dash is shifted at the start. On segments have caps at their
start and end, overlapping the off segment if necessary. If the off segment is not large

106

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

A B

φ (phase) ω (period)

on (or dash) off (or gap)

Figure 2. A thick dashed line between points A and B, with round caps (light blue areas) and
a non-null dash phase.

enough, start and end caps may overlap (the user has to take care of this when defining
a dash pattern).

3. Antialiased Solid Lines

Before diving into dash-line rendering, we need to consider the rendering of an-
tialiased thick solid lines since the dash-rendering techniques relies on it. Chan and
Durand introduced an antialiasing technique for lines [Chan and Durand 2005]; their
results are hardware-independent and ensure consistent line antialiasing across dif-
ferent GPUs, while keeping implementations both fast and easy. Since their work,
several variants have been proposed, but the main idea remains the same. We use
a slightly different technique that differs mainly in the way a line is parameterized.
Let us consider a thick line between a point A and a point B with thickness w, and a
desired filter radius of size r as illustrated in Figure 3.

T
O

w

A

A0

A1

B

B0

B1

r

u

v

f ragment

Figure 3. A thick line between A and B with round caps, thickness w, and filter radius r. Using
d = ceil(w+2.5r), the domain of the (u,v) parameterization is given by −d ≤ u≤ ‖AB‖+d

and −d ≤ v≤+d.

3.1. Body

The line is tessellated as two triangles (A0,A1,B0) and (A1,B1,B0) with texture co-
ordinates (u,v) that represent the point coordinates in the Cartesian coordinate sys-

107

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

tem {A,T,O}. The hardware rasterizer must generate all the fragments associated
with a wide line. [Chan and Durand 2005] proposed to use an actual thickness equal
to ceil(w+ 2r)

√
2, which may be excessively large; instead, we use ceil(w+ 2.5r).

When line thickness is below one pixel, the actual thickness is kept to one pixel while
the alpha component of the color is decreased accordingly to simulate thickness be-
low one. The distance of any fragment to the actual line is given by the absolute value
of the v texture coordinate.

3.2. Caps

Knowing the segment length l = ‖AB‖ and using the (u,v) parameterization, it is easy
to find to which part the fragment belongs:

• if u < 0, the fragment is situated in the start cap area;

• if u > l, the fragment is situated in the end cap area;

• if 0≤ u≤ l, the fragment is situated in the body area.

Using dx = |min(u,u− l)|, dy = |v| when u < 0 or u > l, the shape of the cap can be
controlled using the formulas given in Table 1.

None d =+∞ (no cap)

Butt d = max(dx+w/2−2r,dy)

Square d = max(dx,dy)

Round d =
√

dx2 +dy2

Triangle out d = dx+dy

Triangle in d = max(dy,w/2− r+dx−dy)

Table 1. Line caps and their corresponding formulas.

The computed distance d is then used to decide if a fragment belongs to the seg-
ment (d ≤ w

2) or not (d > w
2) while for the actual segment body, we use the distance

d = |v| as explained earlier.

4. Dash Atlas

To draw dashes inside the segment body, we need to know if a given fragment (u,v)
belongs to a dash cap area (start or end), to the dash body, or is in a gap area. Then,
it is easy to decide if a fragment needs to be rendered or discarded, using tests similar
to the ones for the start/end line segment caps and body. The idea is thus to find the
reference point u∗ to which to compute the distance.

108

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

u
v

A B

u∗2 u∗0 u∗1 u∗2

s1 s2 s3 s4 s5 s6

Figure 4. A thick dashed line between point A and B showing the reference points.

Consider Figure 4 and the (u,v)-coordinate of a fragment. Since the dash pattern is
cyclic, with a dash period ω, we can immediately compute the quantity u = u mod ω.
If u lies between the start and end of the same dash, then we consider the reference
point to be u. Otherwise, we consider the reference point to be the nearest dash end
or start. For example in Figure 4, all fragments such that u ∈ s2 use u∗0 as reference
point, while all fragments such that u ∈ s3 use themselves as reference points. Such a
function can easily be stored in a single texture row that indicates where the reference
point is according to the normalized u coordinate as illustrated in Figure 5.

u∗

uω

ω

2,2,1,1,1,1

2 2 1 1 1 1

u∗

uω

ω

2 2 0 2

2,2,0,2

Figure 5. Examples of functions encoding the dash reference point u∗ as a function of u for a
given dash pattern.

However, this information is not sufficient to render a dash, because we also need
to know if a given reference point u∗ refers to a cap start, a cap end, or to the dash
body. We could use the sign of the information to distinguish between cap start and
cap end and use the null value to indicate a dash body (since in this case, we can use
the u value), but we’ll see later that the start and the end points of the current dash
need to be stored as well (for broken polylines as opposed to smooth polylines, even
though both are continuous). We will use a two-dimensional RGBA floating-point
texture in order to store information relative to a dash pattern using the following
structure:

• R - Reference point (u∗)

• G - Dash subtype (start cap, body, or end cap)

• B - Dash start

• A - Dash end

109

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

A dash pattern can thus be stored as a row in this two-dimensional texture. This
allows an arbitrary large number of dash patterns stored in a single texture that can be
re-used for any dashed stroke.

5. Rendering

5.1. 2D Line Segment

Rendering a line segment requires distinguishing between all the following cases as
illustrated in Figure 6. The corresponding fragment shader is given in Listing 1; the
cap function, shown in Listing 2, is a direct translation of Table 1.

1. The fragment belongs to a dash that ends before a line start;

2. The fragment belongs to a dash that starts after a line stop;

3. The fragment is before a line start and the dash extends across a line start;

4. The fragment is after a line stop and the dash extends across a line stop;

5. The fragment belongs to a dash cap start;

6. The fragment belongs to a dash cap stop;

7. The fragment belongs to a dash body.

A Bu∗−1 u∗0 u∗1 u∗2 u∗3 u∗4
1

5

7

6 4

Figure 6. A dashed pattern between points A and B. The corresponding triangulation is shown
as dashed lines and some fragment positions have been marked whose corresponding tests can
be found in Listing 1. Not all tests are displayed, because the displayed dash pattern does not
need tests 2 and 3. The lighter blue thick dashed line corresponds to the uncorrected dash
pattern, i.e., if the line was infinite in both directions.

uniform sampler2D dash_atlas;

uniform float dash_index, dash_phase, dash_period;

uniform float linelength, linewidth, antialias;

uniform vec2 caps, texcoord;

uniform vec4 color;

int main() {

float w = linewidth;

110

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

float freq = w*dash_period;

float u = texcoord.x;

float v = texcoord.y;

float u_ = mod(u + w*dash_phase, freq);

vec4 dash = texture2D(dash_atlas, vec2(u_/freq, dash_index));

float dash_ref = dash.x;

float dash_type = dash.y;

float dash_start = (u - u_) + w * dash.z;

float dash_stop = (u - u_) + w * dash.w;

float line_start = 0.0;

float line_stop = linelength;

bool cross_start = (dash_start <= line_start) &&

(dash_stop >= line_start);

bool cross_stop = (dash_stop >= line_stop) &&

(dash_start <= line_stop);

float t = linewidth/2.0 - antialias;

// Default distance to the line body (7)

float d = abs(v);

// Dash stop is before line start

if(dash_stop <= line_start)

discard;

// Dash start is beyond line stop

else if(dash_start >= line_stop)

discard;

// Dash is across line start and fragment before line start (1)

else if((u <= line_start) && (cross_start))

d = cap(caps.x, u, v, t);

// Dash is across line stop and fragment after line stop (4)

else if((u >= line_stop) && (cross_stop))

d = cap(caps.y, u - line_stop, v, t);

// Dash cap start (5)

else if(dash_type < 0.0)

d = cap(caps.y, u-dash_ref, v, t);

// Dash cap stop (6)

else if(dash_type > 0.0)

d = cap(caps.x, dash_ref-u, v, t);

// Antialias test

d -= t;

if(d < 0.0) {

gl_FragColor = color;

} else {

d /= antialias;

gl_FragColor = vec4(color.rgb, exp(-d*d)*color.a);

}

}

Listing 1. Line fragment code.

111

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

// t = linewidth/2.0 - antialias;

float cap(float type, float u, float v, float t)

{

// None

if (type < 0.5) discard;

// Round

else if (abs(type - 1.0) < 0.5) return sqrt(u*u+v*v);

// Triangle out

else if (abs(type - 2.0) < 0.5) return max(abs(v),(t+u-abs(v)));

// Triangle in

else if (abs(type - 3.0) < 0.5) return (u+abs(v));

// Square

else if (abs(type - 4.0) < 0.5) return max(u,v);

// Butt

else if (abs(type - 5.0) < 0.5) return max(u+t,v);

discard;

}

Listing 2. Cap function.

5.2. 2D Polylines without Folding

Rendering a polyline without folding, i.e., no self-intersection between consecutive
segments, requires considering the angle between two consecutive line segments in
order to decide whether they are considered continuous or broken. Let us consider a
set of n points {Pi}i∈[1,n]. An open path O is described by the set of line segments

Pi−1 Pi

Pi+1

αi

Pi−1 Pi

P0
i−1

P1
i−1 P1

i

P0
i

Pi−1 Pi

Pi+1

Pi−1 Pi

P0
i−1

P1
i−1

P0
i

P1
i

Figure 7. Connecting two thick line segments with overlap when αi≥αlim (top) or no overlap
(bottom).

112

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

{PiPi+1}i∈[1,n−1]. A closed path C is described by the set of line segments O∪PnP1.
To tessellate the path into a thick stroke, for each segment Pi−1Pi, we have to consider
respective angles αi−1 = ∠Pi−2Pi−1Pi and αi = ∠Pi−1PiPi+1. If the path is closed,
we set α0 = 0 and αn = 0; if the path is open, we have α0 = ∠PnP0P1 and αn =

∠Pn−1PnP0. Depending on whether angle αi is greater or smaller than an arbitrary
chosen angle αlim > 0 (that has been set to 10◦ in the supplemental material), P0

i and
P1

i must be set accordingly as illustrated in Figure 7. The value αlim represents de
facto the limit under which we consider the curve to be C1 continuous even though,
mathematically, it is not.

If two consecutive lines are continuous, so is the dash pattern. If two consecutive
line segments are broken, we stop and restart the dash pattern accordingly. The dif-
ficulty in using this approach is to keep the overall dash pattern consistent across all
the segments as illustrated in Figure 8.

We thus need to make sure that:

• a new dash pattern does not start beyond the current segment end (case A in
Figure 8),

• a dash pattern does not end before the actual segment start (case B in Figure 8).

AB

Figure 8. For broken angles, one has to take care not to start a dash pattern before the start of
the current line segment (A) or beyond the end of the current line segment (B) or unaesthetic
artifacts will result.

For any dash, we have to know at any time, where it starts and where it ends.
Fortunately, this information is in the dash atlas (in the blue and alpha channel re-
spectively). The corresponding shaders can be found in the supplemental materials.
The full dash shader code takes into account the type of join (round, miter, bevel) and
renders it without any extra tessellation as shown on figure 9.

5.3. 2D Polylines with Folding

The case of folded thick polylines can be solved by first unfolding the polyline (see
Figure 10) using the algorithm introduced in [Asente 2010] and then applying the
previous cases.

113

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

Figure 9. Broken polylines with different joins, dash patterns, and periods.

Folded Unfolded

Figure 10. In some cases, folded thick polylines can be unfolded. The thick polyline can then
be considered continuous and the previous case applies.

5.4. 3D Polylines without Folding

The 3D case is very similar to the 2D case if we consider a line as always facing the
camera. That is, we consider a line segment in the 3D space to be defined as two
points and a line thickness. This is different from, for example, a thick and flat ribbon
that would have an orientation in space. Using line impostors, we can easily compute
the 4 vertices that constitute the line. Figure 11 shows dashed 3D line segments while

114

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

Figure 11. Left: The Stanford bunny rendered with dashed line segments; Right: Icosahedron
rendered with dashed hidden line segments.

Figure 1 shows the case of a continuous polyline around a sphere. Note the different
apparent thickness of the lines depending on perspective.

6. Benchmarks

Benchmarks were performed on a Macbook Pro Retina 15-inch (early 2013), with
2.7Ghz Intel Core i7, 16GB 1600 MHz DDR3, NVIDIA GeForce GT 650M (1024
Mo) using OSX 10.9 (Mavericks) and a modified GLUT1 version to take HiDPI into
account.

6.1. Speed

Rendering speed was measured using the total time to render 10,000 line segments
of apparent width of one pixel for a total of 1,000 frames. The cost of rendering
these frames with no lines was subtracted and divided by the number of frames. The
reference time corresponds to the raw method that builds thick line segments using
two triangles with no caps and no antialiasing. The solid method corresponds to a
dedicated shader that handles only solid lines with caps, joins, and antialiasing. The
dash solid method corresponds to the shader program that handles dashed or solid
lines with caps, joins, and antialiasing. However, in this case, the rendering benefits
from some internal optimizations due to the solid nature of the line. The dash dotted
method corresponds to the full shader program, but the line is rendered using a dot
pattern that slows down rendering.

1Available from http://iihm.imag.fr/blanch/software/glut-macosx/.

115

http://jcgt.org
http://iihm.imag.fr/blanch/software/glut-macosx/

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

Method Total time Average time Slowdown factor
No rendering 0.671 (s)
Raw 18.427 (s) 17.756 (ms) ×1.00
Solid 20.338 (s) 19.667 (ms) ×1.10
Dash solid 20.387 (s) 19.716 (ms) ×1.10
Dash dotted 37.872 (s) 37.201 (ms) ×2.10

Table 2. Speed benchmarks for the three main rendering methods (code is available from the
supplemental materials) for an apparent line thickness of 1.

Finally, we measured how the technique scales with the actual line width. Ren-
dering speed was measured using the total time to render 1,000 line segments with a
varying line width between 1 and 51 for a total of 1,000 frames. The cost of rendering
these frames with no lines was subtracted and Figure 12 shows a linear correlation
between the line width and the rendering time.

0 10 20 30 40 50
Line width in pixel

0

5

10

15

20

25

T
im

e
 (

m
s)

Time to render 1000 line segments with varying linewidth

Raw
Solid
Dash-Solid
Dash-Dotted

Figure 12. The time to render line segments is linearly correlated with the line width in pixels.

6.2. Memory

In a polyline of n points, the minimum number of vertices to render a thick polyline
is 2n using a triangle strip structure. In our case, we cannot use such a structure, since
we need to parameterize vertices depending on their relative position in the current
segment (start or end position). For example, if we consider three points A, B, and C,
we need to handle the case where B is the end of segment AB as well as the case where
B is the start of segment BC. A polyline is thus rendered using triangles resulting in
4n− 4 vertices. Furthermore, a vertex needs to be augmented with several types of
data in order to render dashes, joins, and caps as shown in Listing 3.

Compared to a raw thick polyline rendering where only the vertex position and

116

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

typedef struct {

vec2 position; // vertex position

vec2 segment; // vertex curvilinear coordinates

vec2 angles; // angles with previous and next segment

vec4 tangents; // tangents with previous and next vertex

vec2 texcoord; // Texture coordinates

} vtype;

Listing 3. Vertex type.

texture coordinate are needed (four floats), this represents a ×3 increase in memory
consumption. The overall increase in memory consumption, taking into account the
number of vertices and the memory size of a vertex is then of a factor × 6 compared
to the raw line rendering.

6.3. Dynamic Lines

As explained previously, a vertex needs to be constructed using various information;
then, a polyline can be modified in a number of ways that do not require any extra
computation or tessellation, as illustrated in Table 3. The partial update is needed if a
single point of a polyline is changed; this only requires updating

1. vertices’ information related to these points (4 vertices);

2. immediate neighbors’ tangents and angles information (4 vertices);

3. segment information for all subsequent vertices.

The only case where all information for all vertices needs to be computed is when all
the points are changed at once.

Property CPU dash GPU dash
Rotation X X
Zoom X X
Line caps X X
Line thickness × X
Join type × X
Dash pattern × (period-dependent) X
Dash phase × X
Dash caps X X
Point modification × × (partial update)

Table 3. Table summarizing which properties can be changed without the need for a new
tessellation depending on the technique used.

117

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

7. Conclusion

Our method suffers from several errors and limitations. First, dash caps are curved
to follow the contour instead of being rendered independently of the curvature. The
Open XML Paper Specification defines four types of caps: flat, square, round, and
triangle. In all four cases, the boundaries of the caps

... are not curved to follow the contour, but are transformed using the
effective render transform.

As illustrated in Figure 13, this means that there exist paths where the caps are not
fully contained within the envelope of the stroked path.

Our method does not follow this specification; instead dash caps are rendered as
illustrated on the right side of Figure 13. This is not noticeable for straight lines,
hardly noticeable for thin lines, but becomes visible for thick lines, especially in the
vicinity of high curvature. It is thus wrong according to the Open XML specification.

A second and more serious problem is that broken polylines create self-intersection
areas, which result in artifacts when the stroke is painted using a transparent color.
This can be partially fixed using the stencil buffer, but this also creates new artifacts
when antialiasing the line. This could also be fixed directly from within the fragment
shader (by considering which segment is responsible for actually painting the join
section), but we suspect this would add considerable complexity to the shader and we
did not test it. A third problem is that the dash pattern period cannot exceed the width
of the dash atlas texture—this would bring severe imprecision during the rendering
stage. Most common dash pattern periods are generally below 10 or 20 times the line
width, and a texture width of 1024 pixels ensures more than enough precision. If one
needs a very long dash period, it would become necessary to interpolate the texture
over two or more consecutive lines.

Last, a fully antialiased, correctly joined, dashed line is roughly two times slower
than a raw thick line. However, given the quality of the output and considering the fact
that dash patterns are generally used scarcely in a given scene, the versatility and the

Figure 13. Left: Square dash caps rendered following the Open XML specification. Note that
caps are not fully contained within the stroke envelope. Right: Approximated square dash
caps that are fully contained within the stroke envelope and follow the contour curvature.

118

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

ease of use may be worth considered as an alternative solution: line width, line caps,
joins types, dash pattern, dash caps, and dash phase can be all changed at no extra
cost. Finally, the proposed implementation (see the supplemental material) does not
use geometry shaders, which are not available in OpenGL ES 3.0 or WebGL 1.0, even
if the baking process could be made entirely on a geometry shader, hence offering a
modern way of replacing the deprecated stipple GL feature without the need for any
extract code on the CPU side.

References

ASENTE, P. J. 2010. Folding avoidance in skeletal strokes. In Proceedings of the Sev-
enth Sketch-Based Interfaces and Modeling Symposium, Eurographics Association, Aire-
la-Ville, Switzerland, SBIM ’10, 33–40. 113

BÉNARD, P., COLE, F., GOLOVINSKIY, A., AND FINKELSTEIN, A. 2010. Self-similar
texture for coherent line stylization. In Proceedings of the 8th International Symposium on
Non-Photorealistic Animation and Rendering, ACM, New York, 91–97. 106

CHAN, E., AND DURAND, F. 2005. GPU Gems II: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-Wesley Professional,
Reading, MA, ch. 22. Fast Prefiltered Lines, 345–369. 106, 107, 108

COLE, F., AND FINKELSTEIN, A. 2010. Two fast methods for high-quality line visibility.
IEEE Transactions on Visualization and Computer Graphics 16, 5, 707–717. 106

KILGARD, M., AND BOLZ, J. 2012. GPU-accelerated path rendering. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia 2012) 31, 6. 106

KILGARD, M., 2011. Conversion of Dashed Strokes into Quadratic Bézier Segment Se-
quences. Patent application number: 20110285723. 106

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D., GOLDSTEIN,
D., AND HUGHES, J. F. 1997. Real-time nonphotorealistic rendering. In SIGGRAPH 97
Conference Proceedings, ACM, New York, 415–420. 106

Index of Supplemental Materials

Supplied Code and Screenshots

The supplied Python code demonstrates various dash lines in 2D and 3D. It requires the numpy
library available from: http://numpy.scipy.org and the OpenGL python bindings
available from: http://pyopengl.sourceforge.net All of the screenshots from
the article (see Figure 14) are available from the demo executable scripts. The code is BSD
licensed and the README file explains each file.

119

http://jcgt.org
http://numpy.scipy.org
http://pyopengl.sourceforge.net

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

Figure 14. Top left: Stars using broken polylines; Top right: Spirals using a single continuous
polyline; Bottom: Tiger using dashed Bézier paths.

Movies

The following animated results are available in the supplemental files:

• sphere.mov

• stars.mov

• tiger.mov

• icosahedron.mov

120

http://jcgt.org

Journal of Computer Graphics Techniques
Shader-Based Antialiased, Dashed, Stroked Polylines

Vol. 2, No. 2, 2013
http://jcgt.org

Author Contact Information

Nicolas P. Rougier
Mnemosyne, INRIA Bordeaux - Sud Ouest
LaBRI, UMR 5800 CNRS, Bordeaux University
Institute of Neurodegenerative Diseases, UMR 5293
351, Cours de la Libération
33405 Talence Cedex, France
Nicolas.Rougier@inria.fr
http://www.loria.fr/~rougier

Nicolas P. Rougier, Shader-Based Antialiased, Dashed, Stroked Polylines, Journal of Com-
puter Graphics Techniques (JCGT), vol. 2, no. 2, 105–121, 2013
http://jcgt.org/published/0002/02/08/

Received: 2013-09-07
Recommended: 2013-10-19 Corresponding Editor: Patrick Cozzi
Published: 2013-12-06 Editor-in-Chief: Morgan McGuire

c© 2013 Nicolas P. Rougier (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

121

http://jcgt.org
mailto:Nicolas.Rougier@inria.fr
http://www.loria.fr/~rougier
http://jcgt.org/published/0002/02/08/
http://creativecommons.org/licenses/by-nd/3.0/

