
Shading Techniques
©Denbigh Starkey

1. Summary of shading techniques 2
2. Lambert (flat) shading 3
3. Smooth shading and vertex normals 4
4. Gouraud shading 6
5. Phong shading 8
6. Why do Gouraud and Phong make objects appear smooth 10
7. Comparative strengths and weaknesses of Gouraud and Phong 11
8. Computing interpolations efficiently 14

 2

1. Summary of Shading Techniques

Throughout these notes we’ll assume that we want to display a polygonal
object. There are two basic approaches, which might be mixed not only
within a scene, but also within an object, flat shading and smooth shading.
E.g., say that we want to display a can of pop, which is represented as a
series of polygons; in the figure below we have eight polygons, the two on
the top and bottom and the six round the outside. If we display this object
using flat shading we’ll see the object as it appears here with dramatic
jaggies and not much resemblance to a cylinder. If, however, we display it
with smooth shading, then the outside will appear cylindrical, with no
obvious vertical edges, and the top and bottom will appear flat.

There are three major shading techniques, one for flat shading and two for
smooth shading. The flat shading method, which is called Lambert shading,
is by far the fastest, and so it is used not only for polygonal objects which
should have flat surfaces, but also for smooth objects when we want to
render them faster e.g., in some animations, when the object is far away or
out of the main view, or when we are debugging. The two smooth methods
are much slower than Lambert shading. Phong shading produces better
output than Gouraud shading, but it takes much longer to render the images.

Bui-Tuong Phong has been very productive, and so his name is attached to
both the Phong illumination model and Phong shading, and so you have to
be careful to avoid confusion. These are completely different systems and it
is very possible, for example, that you will be using the Phong illumination
model with any of the three shading methods, Lambert, Gouraud, or Phong.

 3

2. Lambert (Flat) Shading

With Lambert shading each polygon is uniformly colored. Computationally
it is very simple and very fast. For each polygon in the scene we select one
point, use the Phong illumination model to compute its color, and then flood
fill that color through the polygon. In theory, it is best to use the center of
the polygon for the point that is selected for coloring, but in practice many
systems will just select one of the vertices since this isn’t a very high quality
rendering system and so computing the center of gravity of the vertices
might not be worth the tiny amount of extra effort.

 4

3. Smooth Shading and Vertex Normals

As we have discussed, there are two major smooth shading techniques,
Gouraud and Phong. While they differ in their final details, they are both
based on the concept of vertex normals, which we’ll describe in this section,
and on linear interpolation across the polygon. The difference, as we will
see, is that Gouraud only runs the illumination model to calculate intensities
(i.e., colors) at the vertices, and then linearly interpolates these intensities
across the polygon. By comparison, Phong interpolates the normals across
the polygon and then does an illumination calculation at every point in the
polygon that will project to a pixel on the screen.

The first thing that we need to define is a vertex normal. (For the
mathematically inclined this can be annoying, since the vertices are the only
place on a polygonal structure where the normals aren’t well defined.) Say
that we have the polygon P0, in bold, with four vertices Va, Vb, Vc, Vd, shown
below, which has the four adjacent polygons P1, P2, P3, and P4. Also
assume that the unit polygon normal for each polygon Pi is Ni, as shown.

Think of this figure with P0 higher than the other polygons, which slope
down the hill.

If we use Lambert shading, then the polygonal structure will be displayed.
Say, however, we want this to look like the smooth top of the hill, which
we’ve represented with polygons. This is where we will use Gouraud or
Phong shading. In both cases we first define the unit vertex normals as
being the average of the surrounding polygon normals that we want to
appear to be smoothly connected. In this case we will compute

P0

P4

P3

P2

P1

N0

V0

N3

N1

N2
N4

V0

Vb
Vc

Vd

Va

 5

 Na = (N0 + N1 + N2) / | N0 + N1 + N2 |,
 Nb = (N0 + N2 + N3) / | N0 + N2 + N3 |,
 Nc = (N0 + N3 + N4) / | N0 + N3 + N4 |, and
 Nd = (N0 + N1 + N4) / | N0 + N1 + N4 |,

where Na is the defined vertex normal at Va, etc.

Alternatively, say that we’d wanted a smooth saddle across polygons P4, P0,
and P2, with polygons P1 and P3 dropping off with an abrupt edge. Now
we’ll change the vertex normals for P0 so that they no longer average in P1
and P3. I.e., we’ll use the equations:

 Na = (N0 + N2) / | N0 + N2 |,
 Nb = (N0 + N2) / | N0 + N2 |,
 Nc = (N0 + N4) / | N0 + N4 |, and
 Nd = (N0 + N4) / | N0 + N4 |.

The difference between Gouraud and Phong shading, as we’ll see in more
detail in the sections below, is that Gouraud uses these normals to compute
color intensities at the vertices and then interpolates the intensities across the
polygon, while Phong interpolates the normals across the polygons and then
uses the interpolated normals to compute colors at each pixel.

 6

4. Gouraud Shading

Consider the polygon, P, shown below, where we have computed vertex
normals as shown by averaging against the smoothly surrounding polygons.

We will now use these vertices to compute intensities (colors) at the vertices,
usually by using the Phong illumination model with the vertex normal as the
normal at the point. This gives intensities Ia, Ib, Ic, and Id at the vertices as
shown below. Using the Gouraud method we now linearly interpolate these
intensities down all of the edges of the polygons and then across rows
giving, for example, the values shown in the figure in boxes.

Va

Vd

Vc Vb

Na

Nb
Nc

Nd

P

Ib

Ic

Ia
Id

0.5 Ia + 0.5 Ib 0.55 Ic + 0.45 Id

0.75(0.5 Ia + 0.5 Ib) + 0.25(0.55Ic + 0.45Id)

Va

Vd

Vc Vb

Na

Nb
Nc

Nd

P

 7

The approach, which we’ll look at in more detail in a later section on
efficiently computing linear interpolations, is that if, for example, we are

3

2
down an edge, then the intensity will be

3

2 of the intensity of the closest edge
vertex and

3

1 of the intensity of the farthest edge vertex. Then to get the
intensities of interior points we linearly interpolate across scan lines using
the edge intensities as the values on each end.

Gouraud Example:

Consider the triangle below, where the vertex coordinates and intensities are
shown:

Simple calculations say that the endpoints of the scanline through (10, 11)
are (7, 11) and (13, 11). (7, 11) is

3

1 down the left edge, so has intensity 8
(
3

2 0+
3

1 24) and (13, 11) is
2

1 down the right edge, so has intensity 2 (
2

1 0+
2

1 4).
The midpoint of this scanline is (10, 11), so its intensity is 5 (

2

1 8+
2

1 2).

What is the
intensity here
at (10, 11)?

(3, 3), I = 24

(17, 7), I = 4

(9, 15), I = 0

 8

What is the
intensity here
at (10, 11)?
Answer: 5

(3, 3), I = 24

(17, 7), I = 4

(9, 15), I = 0

(7, 11), I = 8

 (13, 11), I = 2

 9

5. Phong Shading

With Phong shading we interpolate the normals, instead of the intensities,
down the edges of the polygon. E.g., in the figure that we used for Gouraud,
the normal half way down the left edge will have the value 0.5 Na + 0.5 Nb,
which now needs to be normalized by dividing by its length. To stop the
figure becoming too messy, I’ve added a function N(vector) which returns
the normalized vector. I.e., N(vector) = vector / | vector |.

So apart from the fact that we are averaging vectors instead of intensities,
and that we need to ensure that all of our vectors are unit by normalizing
them as soon as they are created, the interpolation procedure is similar to the
procedure that we used for Gouraud.

Phong Example:

Things rapidly get messy as we interpolate vectors, so I have used very
simple vertex normals on the same figure that I used for the Gouraud
example in the figure below:

Va

Vd

Vc Vb

Na

Nb
Nc

Nd

P
N(0.5 Na + 0.5 Nb) N(0.55 Nc + 0.45 Nd)

N(0.75N(0.5 Na + 0.5 Nb) + 0.25N(0.55Nc + 0.45Nd))

 10

Before we do anything else, remember that the vertex normals need to be
unit vectors. Two of them are, but we need to normalize the vector at (3, 3)
to get (0.7071, 0.7071, 0) before we begin the interpolation.

The normal at (7, 11) is N(

3

2 (1, 0, 0) +
3

1 (0.7071, 0.7071, 0)), which is
N(0.9024, 0.2357, 0), or (0.9675, 0.2527, 0). The normal at (13, 11) is
N(

2

1 (1, 0, 0) +
2

1 (0, 0, 1)), which is N((
2

1 , 0,
2

1)), or (0.7071, 0, 0.7071).
The midpoint of the line between them has vector N(0.8373, 0.1264,
0.3536), which gives our solution vector (0.9127, 0.1378, 0.3854).

What is the vector here at
(10, 11)? Answer:
(0.9127, 0.1378, 0.3854)

(3, 3), N = (1,1,0)

(17, 7), N = (0,0,1)

(9, 15), N = (1,0,0)

(7, 11)

 (13, 11)

 11

6. Why do Gouraud and Phong Make the Object Appear Smooth?

To see why the two smooth shading techniques work well, look at the shared
edge between two polygons, after vertex normals have been computed.

The vertex normals, N1 and N2, will be the same for both polygons, and so
the intensities (directly for Gouraud or indirectly computed from normals for
Phong) will be the same at any point on the edge for both polygons. Given
any scan line that passes through the edge, the two polygons linearly
interpolate the intensities on either side of the point where the scanline
intersects the edge, and so values on either side of the edge are almost
identical. Since there are no color discontinuities at the edge, it doesn’t
show up. In fact the only change at the edge is that the rate of change of the
colors can change on opposite sides of the edge.

Polygon b Polygon a

N1

N2

 12

7. Comparative Strengths and Weaknesses of

Gouraud and Phong Shading

Both methods share a problem, which is that although they do a pretty good
job of smoothly shading the interior of the object, the silhouette of the object
will still have jaggies. E.g., consider the cylinder that we had at the
beginning of these notes. Even though it might appear to be smooth in its
interior, the bottom will still have the three straight edges shown in the
polygonal diagram. One solution to this is to use much smaller polygons
near the outside edge of an object than we use in the interior, but increasing
the number of polygons will, of course, increase the computational cost.

Another problem with both methods is that they aren’t invariant under
rotation. I.e., as you rotate a polygon the internal colors are not always the
same. Fortunately this usually isn’t obvious, and it takes a relatively
pathological case to demonstrate it. E.g., consider the two cases below,
where the second figure is a 90° rotation of the first. Assume that B is black
and W is white.

To see why this has happened, remember that we scan down the edges and
then across the scan lines. In the left figure the pixels on both ends of the
scan line are white, and so everything on the scanline is white. In the right
figure the scan line is interpolating from white to black, and so all pixels on
the scanline are grays, darkening from white to black across the scanline.

Gouraud’s only advantage over Phong and it is a very significant advantage,
is that it is much faster since (a) it only has to compute the illumination

B

B

W

W

W

W

W W

W W

Pixel is white Pixel is gray

 13

model once for each vertex, and Phong has to do it for every displayed pixel,
and (b) interpolating and normalizing the vectors is much more work than
interpolating the intensities.

One disadvantage of Gouraud compared to Phong is that it doesn’t deal well
with hot spots, in particular if the size of the hot spots are small relative to
the size of the polygon mesh which is defining the object. E.g., say that we
have the polygonal mesh shown below which has 81 polygons, bending
around in 3D, where the black circles are places where there are supposed to
be relatively small hot spots.

With Phong, the picture will look just as it is supposed to. However with
Gouraud the picture will look more like:

I.e., some hot spots will vanish completely, and others will lose their
definition and take on some of the shape of the surrounding polygons. This

 14

is because Gouraud is based on interpolating from the intensities at the
vertices. If the hotspot doesn’t cover at least one vertex, it can’t appear in
the averages over the vertex colors. Also, when it is on a vertex the intensity
will usually be very bright as compared to the other vertices, so its effects,
under interpolation, will be felt through most of the containing polygons. To
avoid these problems you need polygons that are small relative to hot spot
size, but that can be computationally expensive as it requires more polygons.

Gouraud can also have a problem with mach banding, which doesn’t show
up with Phong. This is an appearance of light parallel stripes in the image,
which can partially be blamed on the human visual system, which does a
very good job of enhancing very subtle changes in intensity across an edge.

 15

8. Computing Interpolations Efficiently

There are two kinds of interpolations that go on, in either Gouraud or Phong;
first we interpolate along all of the polygon edges, and then we interpolate
across scan lines. Since the scanlines are on the screen this means that we
are only interested in edge values that are also pixel locations on the screen.
So we will have some polygon with 3D vertices (x0, y0, z0), (x1, y1, z1), …,
which we will have to first project these vertices into screen pixel locations
(X0, Y0), (X1, Y1), …, and it is these values which will be used in the
interpolation. Throughout this section I will assume that we are using
Gouraud and interpolating intensities. This is just to simplify the notation.
Phong will follow exactly the same interpolation procedures. The figure
below shows a typical edge for the polygon:

We have an edge going from the 3D point (x0, y0, z0) to (x1, y1, z1), which
when projected onto the screen have the coordinates (X0, Y0) and (X1, Y1).
Since we are wanting endpoints for scanlines, we need to interpolate at each
integer Y value between Y0 and Y1, finding the appropriate X values and
intensities. We can do this with a simple loop like:

 sort (X0, Y0) and (X1, Y1) so that Y0 > Y1;

X = X0; Y = Y0; I = I0;
N = Y0 – Y1;
δX = (X1 – X0) / N; δI = (I1 – I0) / N;

 StorePixel(X, Y, I);
 while (Y > Y1) {
 Y--;
 X += δX;
 I += δI;
 StorePixel(round(X), Y, I);

(x0, y0, z0)
(X0, Y0)

(x1, y1, z1)
(X1, Y1)

I0

I1

 16

 }
The basic idea is that once we’ve computed the δX and δI by dividing the
changes in X’s and I’s by the difference in the Y’s, we can just add in these X
and intensity changes for each scanline (new Y). Unfortunately we still need
to compute round(X) to get the nearest integer X. (This can be improved on
by using Bresenham line drawing techniques to get the new X values without
any float operations.)

The function StorePixel will store scanline endpoints with corresponding
intensities for subsequent interpolation across the line. This interpolation is
much easier since the Y values are constant. Now N becomes the difference
in the X’s, δI is computed as before, and a simple while loop on the X’s adds
in δI each time to the latest intensity value.

