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Shadow Removal by a Lightness-Guided Network
With Training on Unpaired Data

Zhihao Liu , Hui Yin , Yang Mi , Mengyang Pu , and Song Wang , Senior Member, IEEE

Abstract— Shadow removal can significantly improve the
image visual quality and has many applications in computer
vision. Deep learning methods based on CNNs have become
the most effective approach for shadow removal by training
on either paired data, where both the shadow and underlying
shadow-free versions of an image are known, or unpaired
data, where shadow and shadow-free training images are totally
different with no correspondence. In practice, CNN training on
unpaired data is more preferred given the easiness of training
data collection. In this paper, we present a new Lightness-Guided
Shadow Removal Network (LG-ShadowNet) for shadow removal
by training on unpaired data. In this method, we first train a CNN
module to compensate for the lightness and then train a second
CNN module with the guidance of lightness information from the
first CNN module for final shadow removal. We also introduce a
loss function to further utilise the colour prior of existing data.
Extensive experiments on widely used ISTD, adjusted ISTD and
USR datasets demonstrate that the proposed method outperforms
the state-of-the-art methods with training on unpaired data.

Index Terms— Shadow removal, lightness guidance, unpaired
data, GANs.

I. INTRODUCTION

A SHADOW is a common natural phenomenon and it
occurs in regions where the light is blocked. Shadow

regions are usually darker with insufficient illumination and
bring further complexities and difficulties to many computer
vision tasks such as semantic segmentation, object detection,
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and object tracking [1]–[4]. These complexities and difficulties
introduce more disturbances and uncertainties, which may
bring more challenges when deploying some generic tech-
nologies to robotic systems [5], [6]. Although many shadow
removal methods have been developed to recover the illumi-
nation in shadow regions, their performance is compromised
given the difficulty to distinguish shadows and some darker
non-shadow regions.

Compared with traditional methods [7]–[10], deep learning
methods based on convolutional neural networks (CNNs) have
been shown to be much more effective for shadow removal
by training on annotated data. One popular approach is to
use paired data, i.e., both the shadow and shadow-free ver-
sions of an image, to train CNNs [11]–[14]. However, it is
difficult and time-consuming to collect such image pairs –
it usually requires a highly-controlled setting of the lighting
sources, occluding objects, and cameras, as well as a strictly
static scene. Data collected in such a controlled setting lacks
diversity and the trained CNNs may not perform well with
general images of different scenes, which may further affect
the system stability in deployment.

In [15], Mask-ShadowGAN is proposed for shadow removal
by training CNNs on unpaired data, where the shadow images
and shadow-free images used for training have no correspon-
dence, i.e., they may be taken at different scenes. Its basic idea
is to transform shadow removal to image-to-image translation,
based on adversarial learning and cycle-consistency. Clearly,
we can collect large-scale, diverse unpaired data easily, which
can train CNNs with better generalisation capability for
shadow removal. However, the performance of this method is
still inferior to the CNNs trained on paired data, when testing
on several well-known benchmark datasets. One reason lies
in that Mask-ShadowGAN is directly trained over all colour
channels in a single Cycle-GAN network [16], leading to a
large number of parameters: this increases the difficulty of
network training and optimisation.

In this paper we aim to improve the performance of Mask-
ShadowGAN [15] by developing a new lightness-guided net-
work with training on unpaired data. The basic idea of our
method is to simplify the unpaired-data learning into two
steps: first learn a part of simple and obvious knowledge
of shadow, and then use it to guide the whole knowledge
learning of shadow. In natural scenes, natural light is the
main source of illumination, which plays a key role in shadow
removal [7], [17] and shadow modellings [18], [19]. In most
cases, shadow regions show similar chromaticity to but lower
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Fig. 1. An illustration of the proposed idea of training the shadow removal
model with the guidance of lightness information. The first CNN module
(Module I) is trained in the first step for lightness features, which are then
connected to the second CNN module (Module II) in the second step for
guiding the learning of shadow removal (red arrows), by further considering
all colour information. Only the inference part of each module is shown.

lightness than non-shadow regions [20], [21]. Therefore, light-
ness is a very important cue of shadow regions. Following
the above two-step idea, we propose to learn obvious but
important shadow knowledge first and then use it to guide the
full learning for shadow removal. This way, the difficulty of
training gradually increases, as in [22], and the parameters in
each step are learned separately, resulting in improved training
and testing performance. We explore the lightness at feature
levels instead of the input level to better represent the shadow
knowledge for distinguishing the shadow regions and the dark
albedo material regions that also show lower lightness and can
be easily confused with shadows [23].

More specifically, by representing the input image in the
Lab colour space [24], where L channel reflects the image
lightness, we first train a CNN module (Module I) to com-
pensate for the lightness in the L channel. As illustrated
in Fig. 1, we propose to use the learned CNN features of
lightness to help train a second CNN module (Module II) for
shadow removal by considering all Lab channels. The first
CNN module is connected to the second CNN module through
multiplicative connections [25] to form a Lightness-Guided
Shadow Removal Network (LG-ShadowNet). The multiplica-
tive connection can combine the features of one stream with
the features of the other stream, i.e., combine the lightness
features from Module I with the features of Module II, leading
to a two-stream-like lightness-guided architecture.

Furthermore, we introduce a new loss function to further
utilise the colour prior of existing data. This loss is a vari-
ant of the colour loss used for image enhancement [26],
which encourages the learning of colour consistency between
the generated data and the input data. Considering the per-
formance and computational efficiency, we keep the num-
ber of parameters of LG-ShadowNet roughly the same as
Mask-ShadowGAN [15] by following the strategies used for
SqueezeNet [27]. In the experiments, we also discuss the use
of value channel in HSV colour space for lightness feature
learning given its similarity to the lightness channel in Lab
colour space.

In short, there are two CNN modules in LG-ShadowNet
and each module aims to obtain a shadow-free generator. In
addition, there are three extra networks – a shadow generator,
a shadow discriminator, and a shadow-free discriminator –
in each module only for training the shadow-free generator

adversarially [28] using cycle-consistency constraints [16].
The final shadow removal result of LG-ShadowNet is
produced by the combined shadow-free generator that is
formed by connecting the shadow-free generators of the two
trained CNN modules.

The main contributions of this work are:
• A new lightness-guided method is proposed for shadow

removal by training on unpaired data. It fully explores the
important lightness information by first training a CNN
module only for lightness before considering other colour
information.

• An LG-ShadowNet is proposed to integrate the light-
ness and colour information for shadow removal through
multiplicative connections. We also explore various alter-
natives for these connections and introduce a new loss
function based on colour priors to further improve the
shadow removal performance.

• Extensive experiments are conducted on widely used
ISTD [14], adjusted ISTD [18] and USR [15] datasets
to validate the proposed method as well as justifying
its main components. Experimental results demonstrate
that the proposed method outperforms the state-of-the-art
methods with training on unpaired data.1

II. RELATED WORK

In this section, we briefly review the related work on shadow
removal, two-stream CNN networks, and image in-painting.

A. Shadow Removal

Traditional shadow removal methods use gradient [29],
illumination [10], [19], [30], and region [8], [31] information
to remove shadows. In recent years, deep learning methods
based on CNNs have been developed for shadow removal with
significantly better performance than the traditional methods.
Most of them rely on paired data for supervised training.
In [13], a multi-context architecture is explored to embed
information from three different perspectives for shadow
removal, including global localisation, appearance, and seman-
tics. In [14], a stacked conditional generative adversarial
network is developed for joint shadow detection and shadow
removal. In [12], direction information is further considered
to improve shadow detection and removal. In [11], an atten-
tive recurrent generative adversarial network is proposed to
detect and remove shadows by dividing the task into multiple
progressive steps. In [18], a shadow image decomposition
model is proposed for shadow removal, which uses two deep
networks to predict unknown shadow parameters and then
obtain the shadow-free image according to their decomposition
model. In [32], a document image shadow removal method
is developed by estimating global background colour and
attention map for better recovering the shadow-free image.
However, document images are quite different from natural
images in terms of the variety of colours, textures and back-
ground – it might not be feasible to estimate such a consistent
global background colour in natural images. To remove the

1All codes and results are available at https://github.com/hhqweasd/LG-
ShadowNet.
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reliance on paired data, a Mask-ShadowGAN framework [15]
is proposed based on the cycle-consistent adversarial network
of CycleGAN [16]. By introducing the generated shadow
masks into CycleGAN, Mask-ShadowGAN uses unpaired data
to learn the underlying mapping between the shadow and
shadow-free domains. However, these CNN-based methods
process all information (or all channels) of the input images
together, and none of them takes out the lightness infor-
mation from the input images for a separate training. In
this paper, we train a CNN module exclusively for lightness
before considering other colour information and the proposed
LG-ShadowNet trained on unpaired data can achieve compa-
rable performance to the state-of-the-art CNN methods trained
on paired data.

B. Two-Stream Architecture

Our lightness-guided architecture are derived from
two-stream architectures which have been successfully used
for solving many computer vision and pattern recognition
tasks [25], [33]–[40]. In [35], a two-stream processing
technique is proposed to fuse the acoustic features and
semantics of the conversation for emotion recognition.
In [33], [38], two-stream CNN architectures are developed to
combine the spatial and temporal information for video-based
action recognition. In [37], a two-stream framework is
proposed to combine the first-order and the second-order
information of skeleton data for action recognition. In [34],
a two-stream network is developed to extract garment and 3D
body features, which are fused for 3D cloth draping. In [25],
the motion gating is employed to the residual connections
in a two-stream CNN, which can benefit action recognition.
While the lightness-guided architecture of the proposed
LG-ShadowNet is structurally similar to the one used in [25],
they solve completely different problems: shadow removal
in this paper and action recognition in [25]. Furthermore,
in our LG-ShadowNet, the two modules work like a teacher
(Module I) and a student (Module II) for lightness guidance
and shadow removal respectively, while the two streams
in [25] work simply like teammates with the same goal.

C. Image in-Painting

Our proposed method restores the illumination of the
shadow region in an image, thus is also related to the long
line of previous works on image in-painting. Early works
[41]–[44] used hand-crafted features to fill in missing regions
for image in-painting. The robustness of these works is limited
on large-scale images. In recent years, deep-learning-based
methods have significantly improved the performance of
image in-painting. In [45], context encoders are developed
to learn appearance and semantics of visual structures for
image in-painting. In [46], a two-discriminator architecture is
explored to enforce the visual plausibility of both the global
appearance and local appearance. In [47], contextual attention
is proposed to capture long-range spatial dependencies during
in-painting which can find pixels from distant locations to
help restore the missing regions. In [48], a foreground-aware
image in-painting system is developed for better inferring

the structures and completing the image content. In [49],
a contextual residual aggregation mechanism is proposed to
produce high-frequency residuals for missing contents. All
these works need context information to restore the lost or
destroyed regions, while our shadow removal method aims to
restore the illumination of a shadow region where the original
contents, e.g., texture and edge, still exist in the shadow region.

III. METHODOLOGY

In this section, we first give an overview about our method.
We then elaborate on the proposed LG-ShadowNet and loss
function, as well as the network details of LG-ShadowNet.
After that, we describe the details of multiplicative connec-
tions. Finally, we analyse the convergence of LG-ShadowNet.

A. Overview

The pipeline of the proposed LG-ShadowNet is shown
in Fig. 2. There are two modules in LG-ShadowNet and
each module aims to obtain a shadow-free generator, denoted
as GL

f and GLab
f in Module I and Module II, respectively.

There are also three extra networks – a shadow generator,
a shadow discriminator, and a shadow-free discriminator –
in each module only for training the shadow-free generator,
denoted as GL

s , DL
s , DL

f and GLab
s , DLab

s , DLab
f in Module I

and Module II, respectively.
The inputs of LG-ShadowNet are selected from shadow

image dataset and shadow-free image dataset. Each image in
the datasets is represented in Lab colour space [24] and has
three channels: L channel, a channel, and b channel. Module I
only uses the L channel of each image as input, and the
shadow and shadow-free inputs are denoted as I L

s and I L
f ,

respectively. Module II uses all Lab channels of each image
as input, and the shadow and shadow-free inputs are denoted
as I Lab

s and I Lab
f , respectively.

The training of LG-ShadowNet contains two steps.
In the first step, we train Module I individually using
cycle-consistency loss [16], identity loss [50], and adversarial
loss [28]. In the second step, we train Module II with the
guidance of Module I using the above three losses and the
proposed colour loss. Both Modules I and II are involved
in the second training step, and the inputs are shadow data
Is =(I L

s , I Lab
s ) and shadow-free data I f =(I L

f , I Lab
f ).

In the testing stage, we only use the shadow-free generators
of Modules I and II in LG-ShadowNet, as shown in the
inference part of Fig. 2. The input is shadow data Is =
(I L

s , I Lab
s ) and the output is a generated shadow-free image.

B. Proposed Network

We first train Module I as shown in the top of Fig. 2 for
lightness compensation, which learns a mapping between the
shadow domain and the shadow-free domain on the L channel
of Lab images.

In Module I, generator GL
f maps shadow data I L

s to

shadow-free data Î L
f , which is further mapped to shadow

data Ĩ L
s by generator GL

s , as illustrated in the top-left of
Fig. 2. Generator GL

s maps shadow-free data I L
f to shadow
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Fig. 2. An overview of the proposed LG-ShadowNet. From top to bottom show its two CNN modules, and left and right illustrate the learning from the
shadow data and the shadow-free data, respectively. The generators of two modules are connected through multiplicative connections (red arrows with �).
We highlight the training inputs and the testing output in the green and orange boxes, respectively. The inference part in this figure is detailed in Fig. 1.

data Î L
s , which is further mapped to shadow-free data Ĩ L

f
by generator GL

f , as illustrated in the top-right of Fig. 2.
In these processes, masks M L

g and M L
r are used to guide

the shadow generation and are computed by following [15].
Note that M L

r is a randomly selected mask from the previous
computed M L

g . Discriminators DL
s and DL

f are introduced to

distinguish Î L
s and Î L

f from I L
s and I L

f , respectively. GL
f also

maps shadow-free data I L
f to shadow-free data I

L
f , and GL

s

also maps shadow data I L
s to shadow data I

L
s with the guide

of all-zero-element shadow-free mask M0.
The training of Module I is the same as the training of

Mask-ShadowGAN [15]. When the training is finished, we fix
its parameters and move on to the learning of Module II,
as shown in the bottom of Fig. 2. The parameters of generators
of Module II are initialised with the parameters of Module I
except for the input and output layers. Module II is connected
with the Module I by multiplicative connections, resulting in
the overall architecture of LG-ShadowNet. Module II takes all
Lab channels as input and performs the shadow removal.

Actually, after connecting GL
f to GLab

f , we get a new
combined generator G f . Similarly, the connection of GL

s and
GLab

s also leads to a new combined generator Gs . When
learning from shadow data as shown in the left of Fig. 2,
G f converts shadow data Is = (I L

s , I Lab
s ) to the shadow-free

data Î f = ( Î L
f , Î Lab

f ). Gs converts the shadow-free data Î f

to a generated Lab shadow image Ĩ Lab
s with the guide of the

shadow mask pair Mg = (M L
g , MLab

g ) that are computed from
Modules I and II, respectively. This whole learning process
can be summarised as

Ĩ Lab
s = Gs(G f (Is), Mg). (1)

The discriminator DLab
f is introduced to distinguish Î Lab

f from

I Lab
f . Gs maps Is to I

Lab
s with the guide of shadow-free

mask M0.

When learning from shadow-free data as shown in the
right of Fig. 2, one of the inputs is shadow-free data
I f = (I L

f , I Lab
f ). Gs converts I f to a shadow data Îs =

( Î L
s , Î Lab

s ) with the guide of the other input: mask pair Mr =
(M L

r , MLab
r ), which are randomly selected from the previous

obtained Mg . G f converts Îs to a generated Lab shadow-free
image Ĩ Lab

f :

Ĩ Lab
f = G f (Gs(I f , Mr )). (2)

Discriminator DLab
s is utilised to distinguish Î Lab

s from I Lab
s

and G f maps I f to I s .
In short, the training of LG-ShadowNet can be briefly

described as two steps: first train Module I and then train
Module II with the guidance of Module I. Note that the
Module I and Module II are individually trained. Previous
works [51], [52] have proved that using L channel to adjust
the lightness of the shadow region is effective, although it
cannot adjust all colours of the shadow region perfectly. While
in our method, Module I provides the lightness information
to guide the learning of Module II, and only the latter
performs shadow removal. The effectiveness of the lightness
information is verified in our ablation experiments. In addition,
if Module I and Module II are jointly trained, the performance
of LG-ShadowNet slightly drops and we discuss these results
in our experiments.

C. Loss Function

Following [15], we combined four losses: identity loss
Lident it y [50], cycle-consistency loss Lcycle [16], adversarial
loss LG AN [28], and colour loss for training the proposed
network, i.e.,

L(G f , Gs , DLab
f , DLab

s )

= ω1 Lident it y + ω2 Lcycle + ω3 LG AN + ω4 Lcolour . (3)

The weights are experimental hyper-parameters and control
the relative importance of each loss. Since we use Mask-
ShadowGAN [15] as the baseline model to build our own
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model, we simply follow its weight setup by setting the first
three weights ω1, ω2, and ω3 to be 5, 10, and 1, respectively.
We empirically set ω4 to be 10 based on two considerations.
First, the weight ω4 of the colour loss plays a similar role as
the weight ω2 of the cycle loss because both of them encourage
Ĩ Lab
s and Ĩ Lab

f to be the same as I Lab
s and I Lab

f , respectively.
Second, as detailed in the later experiments, we try different
values of ω4 to train the proposed LG-ShadowNet and ω4 =10
leads to the best performance. The generators and discrimina-
tors are obtained by solving the mini-max game

arg min
G f ,Gs

max
DLab

f ,DLab
s

L(G f , Gs , DLab
f , DLab

s ). (4)

We define the four losses in Eq. (3) as follows.
Identity loss encourages I

Lab
s and I

Lab
f to be the same as

I Lab
s and I Lab

f , respectively:
Lident it y(Gs , G f ) = Ls

ident it y(Gs) + L f
ident it y(G f )

= EIs ∼p(Is )

[ ∥∥∥Gs(Is , M0), I Lab
s

∥∥∥
1

]

+ EI f ∼p(I f )

[ ∥∥∥G f (I f ), I Lab
f

∥∥∥
1

]
, (5)

where �.�1 represents the L1 loss, p denotes the data dis-
tribution, Is ∼ p(Is) indicates Is is selected from the data
distribution p over the shadow image dataset, and I f ∼ p(I f )
indicates I f is selected from the data distribution p over the
shadow-free image dataset. In theory, the data distribution is
an empirical distribution [16], [28].

Cycle-consistency loss encourages Ĩ Lab
s and Ĩ Lab

f to be the
same as I Lab

s and I Lab
f , respectively:

Lcycle = Ls
cycle(G f , Gs) + L f

cycle(Gs , G f )

= EIs ∼p(Is )

[ ∥∥∥Gs(G f (Is), Mg), I Lab
s

∥∥∥
1

]

+ EI f ∼p(I f )

[ ∥∥∥G f (Gs(I f , Mr )), I Lab
f

∥∥∥
1

]
. (6)

Adversarial loss matches the data distribution over real
Lab images and the data distribution over the generated Lab
images:

LG AN (Gs , G f , DLab
s , DLab

f )

= Ls
G AN (Gs, DLab

s ) + L f
G AN (G f , DLab

f )

= EI Lab
s ∼p(Is )

[log(DLab
s (I Lab

s ))]
+ EI f ∼p(I f )[log(1 − DLab

s (Gs(I f , Mr ))]
+ EI Lab

f ∼p(I f )
[log(DLab

f (I Lab
f ))]

+ EIs∼p(Is )[log(1 − DLab
f (G f (Is))]. (7)

Colour loss encourages the colour in Ĩ Lab
s and Ĩ Lab

f to be
the same as I Lab

s and I Lab
f , respectively:

Lcolour = Ls
colour (G f , Gs) + L f

colour (Gs, G f )

=
∑

p

(J − cos < (Gs(G f (Is), Mg))p, (I Lab
s )p >)

+
∑

p

(J − cos < (G f (Gs(I f , Mr )))p, (I Lab
f )p >),

(8)

Fig. 3. An illustration of the multiplicative connections between the two
modules.

where ()p represents a pixel, J denotes an all-ones matrix with
the same size as the input image, and cos <,> represents
the angle cosine between vectors. Each pixel of the generated
image or input image is regarded as a 3D vector that represents
the Lab colour. The angle cosine between two colour vectors
equals to 1 when the vectors have the same direction. The only
difference between our loss and the colour loss formulated
in [26] is the latter calculates the angle rather than the angle
cosine of each pixel, in which the angle between two colour
vectors equals to 0 when the vectors have the same direction.
We choose this colour loss by following [26], which shows
that the use of angle cosines in the loss can effectively enhance
under-exposed images.

D. Network Details

The architectures of Module I and II are based on Mask-
ShadowGAN [15], which has two generators and two discrim-
inators. Each generator contains three convolutional layers for
input and down-sampling operations, followed by nine residual
blocks with the stride-two convolutions and another three
convolutional layers for up-sampling and output operations.
The residual blocks [53] are derived from [54] following
the architecture of [55], which has been successfully used
for style transfer and super-resolution tasks. Discriminators
are based on PatchGAN [56]. Instance normalisation [57] is
used after each convolution layer. While the general structure
of the backbone network is the same as Mask-ShadowGAN,
the number of parameters is different. The original architecture
of Mask-ShadowGAN is drawn from CycleGAN [16], which
is designed for general image-to-image translation instead of
specifically for shadow removal. In our backbone network,
we follow the principle of SqueezeNet [27] to reduce the
channels of Mask-ShadowGAN by half to consider both
performance and efficiency.

E. Multiplicative Connections

Figure 3 shows the details of multiplicative connections
used for lightness guidance between the residual blocks of
two modules, in which the feature maps from Module I are
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connected with the feature maps of Module II by element-wise
multiplication and then sent to the weight layer of next residual
block. The multiplicative connections do not affect the identity
mapping x Lab

k and its calculation can be written as:
xLab

k+1 = xLab
k + F(xLab

k � x L
m, W Lab

k ), (9)

where xLab
k is the input of the k-th layer of Module II,

the function F represents the residual mapping to be learned,
� represents the element-wise multiplication, x L

m is the input
of the m-th layer of Module I and also the input of the k-th
layer of Module II, and W Lab

k denotes the weights of the k-th
layer residual unit in Module II.

F. Convergence Analysis

The training of LG-ShadowNet consists of two steps, and
we start from the first step, i.e., the training of Module I.
In Module I, if the generator GL

f and the discriminator
DL

f have enough capacity, the distribution over generated
shadow-free data p( Ĩ L

f ) shall converge to the distribution over
real shadow-free data p(I L

f ) according to the convergence of
GANs [28].

In the second step, GL
f provides the lightness informa-

tion to Module II, which only brings signal changes to the
feature maps of Module II (as shown in Eq. (9)). G f in
LG-ShadowNet is still trained to match the distribution over
the real shadow-free data. Assuming we obtain the optimal
generator G f and discriminator D f in LG-ShadowNet, since
Ĩ Lab

f ∼ G f ( Ĩ Lab
f |I f ), when I f is applied to G f , we get Ĩ Lab

f
which has the same distribution as the real shadow-free data
I Lab

f , and the distribution over the generated shadow-free data
p( Ĩ Lab

f ) converges to the distribution over the real shadow-free
data p(I Lab

f ).
Likewise, the distribution of the data generated by Gs

converges to the distribution of real shadow data p(I Lab
s ), and

the distributions of data generated by LG-ShadowNet converge
to the distributions of the real shadow and shadow-free data,
respectively. In practice, if Module I provides appropriate
lightness information in LG-ShadowNet, the model will con-
verge better; on the contrary, if the lightness information
provided by Module I does not guide well the learning of
shadow removal, the model will converge worse.

IV. EXPERIMENTS

A. Datasets and Metrics

In this section, we validate our approach on three widely
used shadow removal datasets:

1) ISTD [14]: It contains 1,870 image triplets with
1,330 triplets for training and 540 for testing, where a triplet
consists of a shadow image, a shadow mask, and a shadow-free
image. ISTD shows good variety in terms of illumination,
shape, and scene;

2) Adjusted ISTD (AISTD, [14], [18]): In [18], orig-
inal shadow-free images in ISTD are transformed to
colour-adjusted shadow-free images via a linear regression
method [18] to mitigate the colour inconsistency between
the shadow and shadow-free image pairs. In this adjusted

dataset, the illumination noises in the original shadow-free
images are significantly reduced, e.g., the Root-Mean-Square
Error (RMSE) for the whole testing set of ISTD is reduced
from 6.8 to 2.6 [18], and the methods trained on the adjusted
ISTD dataset can also perform better with much lower RMSE.
We regard this dataset as a new dataset in the following
experiments. AISTD has the same shadow images, shadow
masks, and training/testing data splits as ISTD;

3) USR [15]: It contains 2,445 shadow images with
1,956 images for training and 489 for testing. It also contains
1,770 shadow-free images for training. This is an unpaired
dataset that covers a thousand different scenes with great
diversity. There is no corresponding shadow-free image for
the shadow images.

Evaluation Metrics: On the ISTD and AISTD datasets,
we use the Root-Mean-Square Error (RMSE), Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity (SSIM) as
the evaluation metrics. Following recent works [12]–[15], [18],
we compute the RMSE between the ground truth images and
generated shadow removal results in Lab colour space, at the
original scale 480×640. Note that we compute RMSE on each
image and then average the score over all images on shadow
and non-shadow regions for emphasising more the quality of
each image. This is more consistent with other metrics such
as PSNR and SSIM.

On the unpaired dataset USR, we use several blind image
quality assessment metrics and conduct the user study to
evaluate the visual quality of shadow removal results, because
this dataset has no ground truth for computing RMSE [15].
Specifically, we adopt the broadly used SSEQ [58], NIQE [59],
and DBCNN [60] as blind image quality assessment metrics
and compute each metric on each shadow removal result and
then average the scores over all the results. For the user
study, we recruited five participants with average age of 26.
When comparing two methods, we randomly select 30 test
images for each participant. For each image, he/she compares
the shadow-removal results from the two methods and then
votes for the better one. We then count the proportion of the
150 votes that are received by each of the two methods as their
relative performance: the higher the proportion, the better its
shadow-removal quality. The following experimental results
achieved by our method on different datasets are trained on
corresponding datasets respectively.

B. Implementation Details

Our model is initialised following a zero-mean Gaussian
distribution with a standard deviation of 0.02. The model is
trained by using Adam optimiser [61] and a mini-batch size is
set to 1. Each sample in the training dataset is resized to 448×
448 and a random crop of 400×400 is used for training which
prevents the model from learning spatial priors that potentially
exist in the dataset [62].

For Module I of our method, we empirically set the training
epochs to 200, 200, and 100 for ISTD, AISTD, and USR,
respectively. For Module II and the variants to be discussed
in later experiments, we empirically set the training epochs to
100 on all datasets. Since we use Mask-ShadowGAN [15] as
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Fig. 4. Variants of the multiplicative connections between two modules. We
show the nine residual blocks (R1-R9) of the generator where the convolu-
tional layers are not shown for simplicity. The multiplicative connections are
highlighted in red arrows.

the baseline model to build our own model, we simply follow
its learning rate setup for all the models in our experiments.
The basic learning rate is set as 2 × 10−4 for the first half of
epochs and is reduced to zero with a linear decay in the next
half of epochs.

Finally, our method is implemented in PyTorch on a com-
puter with an Intel Xeon E5-2683 CPU and a single NVIDIA
GeForce GTX 1080 GPU and is evaluated in MATLAB
R2016a. The training time depends on the number of train-
ing epochs and the total number of training images in the
training set. It takes about 67.4, 67.4, and 68.2 hours to train
LG-ShadowNet on ISTD, AISTD, and USR, respectively. The
testing time depends on the number of testing images in the
testing set. It only takes about 5.6, 5.6, and 3.5 minutes to test
LG-ShadowNet on ISTD, AISTD, and USR, respectively.

C. Variants of Two-Module Connections

To study the impact of using multiplicative connections,
we try several variants of connections. These variants are
shown in Fig. 4. The default connections in LG-ShadowNet,
as shown in Fig. 4(a), are inserted at the first three shallow
residual blocks. No connections are inserted in middle or
deeper blocks since they have been shown to hurt the perfor-
mance: deeper layers are specialised for one task and may not
provide useful information to another task [63]. In our method,
Module I is trained to compensate for the lightness in the given
L channel of the shadow image, while Module II is trained
to remove shadows and restore all colour information in the
given shadow image. The latter performs a more difficult task
than the former. Our later ablation study also shows that the
variants by inserting more connections in deeper layers lack
robustness.

The following three variants shown in Fig. 4(b)-4(d) connect
corresponding layers in both modules, which indicates the case
that k = m in Eq. (9). These three variants show different inter-
vals and different numbers of connections. Specifically, LG-
ShadowNet-3 inserts connections after the first of every three
residual blocks, i.e., with an interval of three, similar to the set-
ting in the Spatiotemporal Multiplier Networks [25]. Similarly,

LG-ShadowNet-4 and LG-ShadowNet-9 insert the connections
between the residual blocks with an interval of two and
one, respectively. The two variants of LG-ShadowNet-N and
LG-ShadowNet-P, shown in Fig. 4(e)-4(f), connect between
non-corresponding residual layers, i.e., k �= m in Eq. (9). They
insert the connections from the next ((k + 1)-th) and previous
((k − 1)-th) residual blocks of Module I to the current (k-th)
residual blocks of Module II, respectively.

We also study the impact of additive connections, i.e., using
addition instead of the element-wise multiplication with k = m
in Eq. (9) in LG-ShadowNet. This is an alternative connection
used in the action recognition task [25] and may perform better
than the multiplicative connection.

D. Ablation Study

We first perform an ablation study on AISTD to evaluate
the effectiveness of the proposed lightness-guided architecture
trained with unpaired data in different colour spaces. We use
the default connection in LG-ShadowNet and remove the pro-
posed colour loss to train different models with different inputs
with different number of input channels. Note that Module II is
trained by following the settings of LG-ShadowNet without the
guidance of Module I and the colour loss. Besides, to verify
the effectiveness of the lightness-guided architecture trained
on paired data, we use a generator that maps shadow-data to
shadow-free data and the L1 loss to train Modules I and II
on paired data in a fully supervised manner, and these models
are denoted with a suffix Sup.. Quantitative results in terms of
RMSE metric are shown in Table I and the RMSE between
the real shadow and shadow-free pairs on AISTD is shown in
the first row of the table.

From the second and third rows of Table I, we can see that
Module I trained on V channel and L channel can significantly
reduce the RMSE of the original data (row 1). The latter
demonstrates the effectiveness of using L channel for lightness
compensation. The results in rows 4-6 show that, using data on
Lab colour space as training data is more suitable for shadow
removal than using RGB or HSV colour spaces. The results in
rows 7-9 show that, using L channel as the input of Module I
achieves the best results than using the V channel and the
Lab data. This confirms that the benefits are from the learned
lightness information and the superiority of using L channel
data to guide the learning of shadow removal. Compared with
Module II� trained on Lab data (row 6), LG-ShadowNet�

trained on L + Lab data (row 9) can reduce RMSE by 8.3%
from 5.64 to 5.17, which proves the effectiveness of the
lightness-guided architecture. In addition, the results in rows
10-12 show that training above modules on paired data in a
fully supervised manner can further improve the performance.
The advantage of using L channel as the guidance and the
effectiveness of the lightness-guided architecture are further
verified here.

Figure 5 shows some visual comparison results of
Module I trained on L data (Module I-L), Module II, and
LG-ShadowNet� on the ISTD, AISTD and USR datasets.
From the second and third columns, we can see that
Module I-L can restore the shadow regions on L channel
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TABLE I

QUANTITATIVE RESULTS ON AISTD IN TERMS OF RMSE. Lab, HSV AND RGB INDICATE THE RESPECTIVE COLOUR SPACES. S AND N REPRESENT THE
RMSE OF SHADOW REGION AND NON-SHADOW REGION, RESPECTIVELY. ‘�’ DENOTES TRAINING WITHOUT COLOUR LOSS, WHICH WE USE

IN ALL THE REMAINING EXPERIMENTS. L AND V REPRESENT THE L CHANNEL OF Lab AND THE V CHANNEL OF HSV, RESPECTIVELY.
MODULE I IS TRAINED TO COMPENSATE FOR THE LIGHTNESS ON L CHANNEL SO WE ONLY SHOW THE RMSE OF L CHANNEL

FOR EVALUATING THIS MODULE

Fig. 5. Visual comparisons on ISTD, AISTD and USR. Three rows from top to bottom show results for one sample from ISTD, AISTD and USR, respectively.
The first two columns show the input shadow images and their L channels, respectively.

TABLE II

QUANTITATIVE RESULTS ON ISTD, AISTD AND USR. EACH RESULT ON USR REPRESENTS THE PROPORTION OF VOTES RECEIVED BY THE PROPOSED

LG-ShadowNet� OR ITS VARIANTS WHEN COMPARED WITH MODULE II� TRAINED ON Lab OR RGB DATA. THE SUFFIX ‘-Lab’ AND ‘-RGB’ IN

THE MODEL NAME REPRESENT THE TRAINING DATA ON Lab AND RGB COLOUR SPACES, RESPECTIVELY, WHICH WE USE IN ALL THE

REMAINING EXPERIMENTS

effectively. LG-ShadowNet� can produce better results than
individual modules, e.g., it successfully removes the shadow
and restores the lightness on the top right of the image shown
in the second row.

Next, we perform another ablation study on ISTD, AISTD
and USR to evaluate the various connection variants of
LG-ShadowNet described in subsection IV-C. All models are

trained on unpaired L + Lab data without the proposed colour
loss. Quantitative results in terms of RMSE metric on ISTD
and AISTD and the user study results of LG-ShadowNet and
its variants against Module II on USR are shown in Table II.

From Tables II, we can see that different variants achieve
different results on different datasets. We observe that LG-
ShadowNet-N� achieves better performance on the ISTD
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TABLE III

QUANTITATIVE RESULTS OF VARIANTS BY INSERTING CONNECTIONS IN
SHALLOWER OR DEEPER LAYERS ON AISTD IN TERMS OF RMSE

dataset. This indicates that inserting multiplicative connections
between deeper layers of Module I and shallower layers of
Module II could be more effective.

On AISTD, LG-ShadowNet� significantly surpasses other
variants, which shows that low-level features are sufficient
for guiding the learning of shadow removal, while embedding
more high-level features leads to inferior results, especially
in non-shadow regions. The variant of LG-ShadowNet-9�

achieves the best result on USR, which means using the
lightness features from deeper layers may be more effective in
producing visually pleasing results. However, from the results
of LG-ShadowNet-9� on ISTD and AISTD datasets, we can
see that inserting connections in middle and deeper blocks
leads to worse results, indicating its lack of robustness. In
addition, we try a variant LG-ShadowNe-Deep� that inserts
connections in deeper blocks (the last three blocks) and
trained it on the AISTD dataset. The results are also shown
in Table III. We observe that this variant fails to surpass the
best variant, which further proves that inserting connections in
deeper blocks performs worse than inserting them in shallower
blocks.

Comparing LG-ShadowNet� with the LG-ShadowNet-A�,
we observe that the additive connections lead to inferior
performance. Also, when we compare LG-ShadowNet-A� with
Module II, we observe that LG-ShadowNet-A� achieves lower
RMSE values. The above comparisons show that, although
LG-ShadowNet-A� performs worse than LG-ShadowNet�,
it outperforms the Module II, which means that the variant
using additive connections is better than the one without using
any connection, but its performance is not as good as the
variant using multiplicative connections. One possible reason
might be that multiplicative connections can bring stronger or
better guidance signals than additive connections as pointed
out in [25]. We chose LG-ShadowNet as the default connection
variant because it performs more robust than other variants on
all three datasets.

We report the qualitative results of LG-ShadowNet trained
with and without the proposed colour loss in Table IV to
evaluate the effectiveness of the proposed colour loss. On
the ISTD dataset, we can see that the colour loss has little
effect on the overall RMSE, but it improves the RMSE of
non-shadow regions, i.e., the quality of most parts of the
results is improved. Comparing the statistics on AISTD and
USR, we observe the conspicuous improvement by using the
proposed colour loss. We also try different values for the
weight ω4 of the colour loss in Eq. (3) to train the proposed
LG-ShadowNet and find that ω4 = 10 leads to the best
performance, as shown in Table V. On the whole, the colour
loss that restricts the colour direction to be the same is an
effective constraint for shadow removal.

TABLE IV

QUANTITATIVE RESULTS OF LG-SHADOWNET TRAINED WITH AND
WITHOUT THE COLOUR LOSS ON ISTD, AISTD AND USR

TABLE V

QUANTITATIVE RESULTS OF THE PROPOSED LG-SHADOWNET BY USING
DIFFERENT VALUES OF ω4 ON AISTD IN TERMS OF RMSE

TABLE VI

QUANTITATIVE RESULTS OF THE PROPOSED LG-SHADOWNET BY USING
DIFFERENT BASE LEARNING RATES ON AISTD IN TERMS OF RMSE

TABLE VII

QUANTITATIVE RESULTS OF THE PROPOSED LG-SHADOWNET AND THE
COMPARED MASK-SHADOWGAN IN TERMS OF SSEQ, NIQE, AND

DBCNN METRICS ON THE USR DATASET. FOR THESE THREE

METRICS, THE LOWER THE BETTER

To justify the choice of the base learning rate, we train
our model using different base learning rates on the AISTD
dataset. The results in Table VI show that overly large or small
learning rate may hurt the shadow removal performance.

In addition, we visualise several samples of the learned
lightness guidance and compared them with the restored
images. We extract two kinds of feature maps from the first
residual block R1 of LG-ShadowNet. One is taken from the
input feature maps of R1, i.e., the xLab

k in Eq. (9). The other is
taken from the feature maps after multiplicative operation, i.e.,
xLab

k �x L
m in Eq. (9) with m = k. The visualisation of these fea-

ture maps in terms of heat map are shown in Fig. 6. We observe
that after the multiplicative operation, the activation values of
non-shadow region decrease significantly, e.g., the colour of
each pixel presented in the heat map is close to blue, which
means the model pays more attention on the shadow region.
Especially from the second row of Fig. 6, we can see that the
activation values of floor-tile joints in the non-shadow region
are greatly suppressed.

Finally, while we propose to train Module I and Module II in
LG-ShadowNet individually, we also try to train them jointly
on the AISTD dataset. The jointly trained model achieves
slightly worse results: it achieves 5.24, 4.18, 11.30 on the
whole Lab image, non-shadow region, and shadow region in
terms of RMSE, respectively. Note that in the training stage,
the jointly trained model leads to a higher memory occupation
and a longer training time.
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TABLE VIII

QUANTITATIVE RESULTS ON ISTD AND AISTD IN TERMS OF RMSE, PSNR, AND SSIM. ‘-’ DENOTES THE RESULT IS NOT PUBLICLY REPORTED. THE
RESULTS OF THESE METHODS ARE EITHER OBTAINED FROM THE THEIR OFFICIAL RESULTS/PUBLICATIONS OR PRODUCED BY US USING THEIR

OFFICIAL CODES (MARKED WITH ‘∗’)

Fig. 6. Visualisation of the learned guidance on four samples from the AISTD
testing set. xLab

k represents the input features of R1. xLab
k � x L

m represents the
features after the multiplicative operation.

E. Comparison With the State-of-the-Art

In this subsection, we compare our full model with sev-
eral state-of-the-art methods on the ISTD, AISTD and USR
datasets. Results of Mask-ShadowGAN are obtained by train-
ing and testing on each dataset using the code provided by
its authors, while other results are provided by the authors of
ST-CGAN [14], DSC [12] and SP+M-Net [18].

First of all, we compare our method with
Mask-ShadowGAN on the USR dataset. The results of
SSEQ, NIQE, and DBCNN are shown in Table VII. We
observe that our method achieves the best performance in
terms of NIQE, SSEQ, and DBCNN, which shows that
the quality of shadow removal results can be improved
by the proposed lightness-guided framework. For the user
study, Mask-ShadowGAN trained on RGB data reports the
most recent state-of-the-art performance. The proportions
of votes received by LG-ShadowNet when compared
with Mask-ShadowGAN trained on RGB and Lab data
are 80.7% and 72.7%, respectively. These results show

Fig. 7. Visual comparisons on USR. Each row shows results for one sample
image.

that, after converting the input data from RGB to Lab,
Mask-ShadowGAN actually performs even better on USR.
However, the proposed LG-ShadowNet still receives more
votes than Mask-ShadowGAN trained on RGB or Lab data.
Qualitative results are shown in Fig. 7.

Next, we compare the proposed method with the state-
of-the-art methods on the ISTD and AISTD datasets.
Among them, Guo et al. [8], Gong and Cosker [65], and
Yang et al. [64] remove shadows based on image priors.
ST-CGAN [14], DSC [12], and ARGAN [11] are trained
using paired shadow and shadow-free images. SP+M-
Net [18] is trained by using shadow and shadow-free
image pairs, as well as shadow masks. CycleGAN [16] and
Mask-ShadowGAN [15] are trained using unpaired images.

The quantitative results are shown in Table VIII. We can see
that our method outperforms the methods based on image pri-
ors and those using unpaired data on both datasets. Compared
with the methods using paired data, our method is also compet-
itive, achieving comparable results to DSC [12] on the ISTD
dataset. Note that Module II� trained on Lab data performs
better than Mask-ShadowGAN on AISTD, and the former has
fewer parameters. This proves the effectiveness of using the
strategy of SqueezeNet [27] to reduce the model parameters.
The comparison of the number of parameters, FLOPs, and
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Fig. 8. Visual comparisons on ISTD and AISTD. Each row shows results for one sample image.

run time per image of the proposed LG-ShadowNet and the
compared Mask-ShadowGAN [15] is shown in Table IX.

Figure 8 shows the qualitative results of LG-ShadowNet and
several state-of-the-art methods on four challenging sample
images in the ISTD (rows 1-4) and AISTD (rows 5-8) datasets.
Compared with Mask-ShadowGAN, LG-ShadowNet restores
the lightness of the shadow regions on all samples better and
has less artefacts. However, the results of our method on some
samples in the ISTD dataset (rows 1 and 3, the last column)
look like bleaching artefacts and the colour is not well restored.
Such bleaching artefacts are actually quite common in the
results of other state-of-the-art methods [14], [15], [18]. One
reason may be that our method pays more attention to the
lightness and somehow ignores the restoration of other colours.
A better balance between the use of the lightness information
and the other colour information may alleviate this problem,
which we will study in our future works.

Our method is also comparable to the methods using paired
data, especially on the samples in ISTD. It is worth noting

TABLE IX

THE NUMBER OF PARAMETERS, FLOPS, AND RUN TIME PER IMAGE

OF MASK-SHADOWGAN AND THE PROPOSED LG-SHADOWNET. THE

RUN TIME PER IMAGE IS THE AVERAGE OF 100 RUNS. THE INPUT
IMAGE SIZE IS 480 × 640

that our method can deal with the shadow edges better than
SP+M-Net (rows 5-8 and column 4). The reason is that our
method uses the continuous lightness information to guide the
shadow removal while SP+M-Net uses binary shadow masks.
These visual results verify the effectiveness of the proposed
method for shadow removal.

Above all, our method exhibits the following advantages:
1) it is trained on unpaired data which are much easier to
collect with a large variety in practice than paired data; 2) it
has fewer parameters, lower complexity, and faster run time
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per image than Mask-ShadowGAN; 3) it outperforms the state-
of-the-art unpaired method Mask-ShadowGAN and traditional
methods on public datasets.

V. CONCLUSION

In this paper, we proposed a new lightness-guided method
for shadow removal using unpaired data. It fully explores
the important lightness information by first training a CNN
module only for lightness before considering other colour
information. Another CNN module is then trained with the
guidance of lightness information from the first CNN module
to integrate the lightness and colour information for shadow
removal. A colour loss is proposed to further utilise the
colour prior of existing data. Experimental results verified the
effectiveness of the proposed lightness-guided architecture and
demonstrated that our LG-ShadowNet outperforms the state-
of-the-art methods with training on unpaired data.
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