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Ming Shao, Student Member, IEEE, and Yun Fu, Senior Member, IEEE

Abstract—Situation awareness involves being aware of what
is happening in the vicinity, in order to understand how in-
formation, events, and one’s own actions will impact goals and
objectives. In this paper, we target at video analytics aspect
of situation awareness and propose a new model for anomaly
detection in a huge amount of image/video data. The proposed
model is called “Deeply sElf-taught multi-view Video Analytics
machiNe (DEVAN)”, which is able to handle data from either
manned or unmanned air craft, and report anomaly detection
results in a fast manner by analyzing signals from multiple
channels. The proposed model is composed of three components.
First, multi-view learning module is able to fuse features from
different sensors, and ensure to discover different levels of
anomaly that might be ignored by a single channel. Second, we
propose a deep robust feature extractor that refines feature from
coarse to fine along with the multi-view learning. Third, we design
a self-taught learning procedure to explore anomaly only from
the data itself and its underlying distribution, without additional
hand labeling work. In the last, we also clarify the datasets and
experimental settings for system evaluations.

Index Terms—Sitation awareness, anomaly detection, deep
learning, multi-view learning

I. MOTIVATION

Situation awareness (SA) means appreciating all you need
to know about what is going on when the full scope of your
task [1]. More specifically and in the context of complex
operational environments, SA is concerned with the person’s
knowledge of particular task-related events and phenomena. In
air force missions, this is especially important for the fighter
pilot who should be aware of the threats and intentions of ene-
my forces as well as the status of his/her own aircraft [2]. It is
even more important for intelligent agency to analyze massive
data collected from drone footage in an efficient way [3]. For
example, in 2011, unmanned aerial vehicles (UAV) collected
327,384 hours of video from surveillance cam-equipped UAVs,
and it might need almost the same working hours of human
to do exhaustive anomaly event search. Such event usually
hides behind messy background, massive moving objects, and
pedestrians. In addition, the data source is diverse and video
quality is not guaranteed. In recent Boston bombing event1, the
suspects are finally targeted through the videos from spectators
after hours of investigations by technicians, although the scale
data is not large. Such brute-force man power based search
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is very impractical for drone footage, which scales largely in
both spatial and temporal domain.
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Fig. 1. Running hours of
drone is increasing in last a
few years [3].

Although unmanned aircraft ve-
hicle is increasingly popular for
years in military (See Figure 1), the
relative video analytics techniques
still fall behind. It has been said
that “Military Is Awash in Data
From Drones”. which is under the
background that there were already
millions of investment on computer
systems for drone footage analy-
sis, and 4000 airman employed for
such work in 2010.

In fact, video analytics for
anomaly events has been widely
discussed in the computer vision
community for years [4], [5], [6],
[7], [8], [9], [10], [11], which is
urged by the strong demands from government and public
safety. However, existing techniques suffer from the following
aspects. First, most of these methods rely on supervised
learning models and labeled data. Second, the low-level visual
descriptors are fragile and affected by noises and corruptions
of data due to uncertainty. Third, they only concentrate on
single view/source signal based anomaly events. Therefore, a
direct application of existing techniques can not satisfy the
requirements of large-scale, robust, and multi-view anomaly
detection raised by drone footage video analytics.

II. INTRODUCTION

As a fundamental problem, anomaly detection motivates
diverse research areas and application domains. It is approach-
ing issues in certain application domains through techniques
specifically developed, as well as those are more generic. An
excellent survey can be found in [12], where a structured
and comprehensive overview of the research on anomaly
detection is provided. In addition, they categorized state-of-
the-art methods based on the underlying approach adopted by
each of them.

Video analytics drew great attentions ever since 2000, when
the Advanced Research and Development Activity (ARDA)
started sponsoring detection, recognition, and understanding
of moving object events, which focused on news broadcast
video, meeting/conference video, unmanned aerial vehicle
(UAV) motion imagery and ground reconnaissance video, and
surveillance video. The Defense Advanced Research Projec-
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Fig. 2. Illustrations of multi-view data from UAV, e.g., multi-aircraft (right),
multi-sensor (left).

tion Agency (DARPA) has also supported several large re-
search projects involving visual surveillance and related topics.
Projects include Visual Surveillance and Monitoring (VSAM,
1997) and Human Identification at a Distance (HID, 2000).
The most recent project, Video and Image Retrieval Analysis
Tool (VIRAT 2008) aims to develop and demonstrate a system
for UAV video data exploitation, enable quick response or alert
of an event or retrieve video content from achieves.

Video analytics has also been appealing to commercial
systems. Readers could refer to a summary of commercial
systems in an good survey [13], where they list advertised
capabilities for human behavior recognition. However, among
many existing systems, it is still difficult to quantitatively
measure the performance of each of them since tasks handled
are treated differently by agencies with different aims or
focuses. Therefore, many efforts have been devoted to standard
evaluation frameworks, i.e., methodologies to quantify and
qualify performance [14], [15], [16], [17], [18], [19].

Multi-view anomaly detection. Multi-view data analysis
has caught a great deal of attention in the recent years [20],
[21], [22]. However, multi-view anomaly detection has not
been discussed before, which however is common in many
real-world scenarios. Anomaly can be detected by different
sensors of an UAV, or sensors from different UAVs (Figure 2).
Such anomaly may be caused by: (1) unstable factors caught
by one sensor, (2) emergency caught different sensors. To the
best of our knowledge, this is the first time when different
levels of anomaly are discussed under a multi-view learning
framework.

Self-taught low-rank anomaly representation. Modeling
anomaly events is not an easy task as there are few labels avail-
able for supervised learning algorithms due to the diversity of
anomaly. In this paper, we propose a new anomaly modeling
methods based on representation learning. Specifically, for
each view, we decompose the anomaly features into a low-
rank and a sparse components to capture the normal feature
space, and anomaly feature vectors, respectively. By such
decomposition, we could learn efficient representations from
data itself, without knowing any label information. Therefore,
all discriminative knowledge is learned from data itself and
corresponding underlying distributions.

Deeply refined robust feature. Recently, deep structure and
its modeling have attracted substantial research attentions from

computer vision, and machine learning communities due to
its appealing performance on many challenging performance,
e.g., face recognition in the wild [23] and 1000-classes objects
classification challenge [24]. The multi-layer deep structure
could build features from coarse to fine, and the denoising
mechanism is able to rule out outliers and local perturbations
of data. In this paper, we propose to integrate such merits with
our self-taught anomaly representations, and therefore are able
to address the data noise in a progressive way.

III. CHALLENGES IN PROPOSED WORK

Uncertainty of multi-view anomaly detection. Anomaly
detection in single view has long been debated; however,
fewer works have mentioned multi-view anomaly detection.
The key issue is the target may be recognized as anomaly in
one view, but as normal event in another view. In addition,
anomaly events may have different semantics in different
views, which is reflected by the structure of feature space.
Therefore, handling different types/levels of anomaly in one
framework is very challenging.

Anomaly detection by unlabeled data. Supervised anoma-
ly detection relies on the well-defined anomaly events and la-
bels on the training set. However, nowadays, “data explosion”
keeps challenging the state-of-the-art algorithms in computer
vision. Manually labeling huge dataset for training is already
impractical, especially for anomaly detection, because the def-
inition of “anomaly” heavily depends on domain knowledge.
Therefore, designing an algorithm that is able to explore the
patterns of anomaly automatically by feature space structure
and detected feature portions makes great sense.

Large-scale video analytics. Although nowadays drone
footage video data have already flooded the intelligence a-
gency, the recent research achievements on “big data” have
demonstrated the necessity of “large-scale” on challenging
vision problems. In our system, we will handle large-scale
problems in three aspects: (1) low-rank anomaly representa-
tion; (2) anomaly categorization; (3) deeply refined feature,
whose computational complexity are highly related to the
number of samples in the dataset.

IV. TECHNICAL PROPOSAL

A. Framework Overview

The system overview is shown in Figure 3, including four
functional parts: (1) low-level feature extractor, (2) self-taught
low-rank representation, (3) multi-view anomaly detection,
and (4) deep robust feature refinement.

B. Low-Level Feature Extractor

Low-level features for events are sparsely distributed in
frames without clear semantics. However, they are highly
related to the motion features, and therefore, we could lo-
cate important low-level features by detecting motions first.
Second, we will refine the tracking results by priors such as
the shape, color, and texture of human/object. Third, we will
extract low-level visual descriptors only on the interested area.
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Fig. 3. Framework illustration of our method including four components: (1) low-level feature extractor, (2) self-taught low-rank representation, (3) multi-view
anomaly detection, (4) deeply refined robust feature.

Motion Detection. The aim of motion detection is to
segment moving objects from the rest of the image [25]. Gen-
erally, popular motion detection methods includes Background
Subtraction [26], [27], [28], Temporal Differencing [29], [30],
and Optical Flow [31], [32], [33].

Object Classification. To transform motion detection to
high-level representation, e.g., human, object and identify each
of them for tracking in the later step, we need to classify
current detected areas. There are mainly three categories:
shape based classification [34], [35], motion-based classifica-
tion [36], [37], and other methods [38], [39].

Object Tracking. Tracking [40], [41] is critical in surveil-
lance system, e.g., tracking across distributed camera system-
s [42], in highly congested areas with crowds of people [43],
tracking using mobile platforms [44], multi-sensor [45], [46],

algorithm-fusion [47], feature integration [48].

In our framework, we will use both local and global features
for anomaly event detection. In vision system, tracking and
detection are “chicken and egg” problems, meaning solving
one problem will help another. We therefore resort to a
“tracking by detection” framework [49] that handles detection
and tracking problems simultaneously in a unified framework.
Then 3D HOG [50] and HOF [51] to are exploited to extract
the low-level feature, which encodes the action or behavior
of single or local units. For the global/crowd movements, we
ignore the integration requirement of the trajectories and only
focus on all the trajectories detected in the video and exploit
anomaly detection of crowd behavior, e.g., moving crowd.
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C. Self-Taught Low-Rank Representation

In this paper, we will tackle the multi-view anomaly detec-
tion problem from the perspective of data representation [52],
[53]. In particular, for the sample set X(i) observed in the i-th
view, we can represent it as:

X(i) = X(i)Z(i) + E(i), (1)

where Z(i) is a coefficient matrix and E(i) is a noise matrix.
Assuming X(i) is drawn from c different classes, then the
coefficient matrix Z(i) is expected to be low-rank. In other
words, the coefficient vectors corresponding to samples within
the same class should be highly correlated. For outliers that
can not be reasonably presented by data drawn from c classes,
they will be ruled out as “sample-specific” noise, which can be
captured by the l2,1 norm of matrix E(i). Since the anomaly
representation Z(i) and E(i) is learned from data itself, we
call it “self-taught low-rank representation”.

Introducing the rank and sparse objectives on Z(i) and E(i),
respectively, problem in Eq. (1) can be solved by Augment
Lagrangian Multiplier (ALM) method in an iterative way [54],
[52], meaning each time we update one unknown variable but
fix the rest. In our large-scale anomaly detection problems,
however, the computational complexity of ALM is prohibitive-
ly high. In our system, we will implement fast solution of the
proposed low-rank and sparse modeling problem by recently
published accelerated numerical approaches [55], [56].

D. Multi-View Anomaly Detection

The low-rank and sparse modeling enable to find the new
representation Z and noise part E from self-taught fashion.
This leads to a new formulation to detect different anomaly
events required by different systems. Take two-view data for
example, we will formulate the detection as:

scorek = Z
(i)T
k Z

(j)
k − λE

(i)T
k E

(j)
k , (2)

where i, j indicates two different views, scorek is an anomaly
indicator, Zk and Ek are low-rank coefficient and sparse noise
for the k-th sample, and λ is a balancing parameter.

The above design benefits us to detect anomaly events
of different levels. First, if the data is slightly perturbed or
contaminated, then it will only change the local geometry
of the neighborhood, but the overall underlying distribution
of data will not change too much. Such anomaly can be
successfully captured by the first term composed of Zk.
Second, if data are heavily contaminated, both E(i)

k and E(j)
k

have large magnitude and their inner product is large as well.
Therefore, the overall score will be significantly decreased.
By setting different threshold, the proposed system can detect
anomaly events of different levels:

• Normal event: large Z(i)T
k Z

(j)
k , small E(i)T

k E
(j)
k

• Subtle anomaly event: small Z(i)T
k Z

(j)
k , small E(i)T

k E
(j)
k

• Significant anomaly event: small Z
(i)T
k Z

(j)
k , large

E
(i)T
k E

(j)
k

E. Deep Feature Refinement

Good feature representation, especially semantics, is essen-
tial to anomaly detection in video surveillance. In this section,
we introduce how we refine anomaly representation by a deep
structure. The basic principle of deep learning is to use mul-
tiple levels of representation of increasing complexity where
the feature is abstracted and confined from the lower layer
to the higher layer [57], [58], [59]. Inspired by this thought,
we also build a deep structure for high-level representation
learning and use the auto-encoder [58] as our building block,
whose hidden layer can highly abstract the appearance from
the lower layer.

To facilitate our large-scale video analytics, we propose to
use marginalized denoising auto-encoder (MDA) to speedup
deep feature learning [60]. Denoising auto-encoder is robust
version of conventional auto-encoder by intentionally dropping
out certain features in the output, and therefore trained a robust
model. MDA further simplifies the auto-encoder by a single
layer structure, which achieves a better balance between speed
and performance. Similar to other deep models, MDA returns
a weight matrix W that minimizes difference between original
feature and contaminated feature. Then, the refined feature in
the i-th view can be reformulated as: W (i)X(i). Combining
this with problem in Eq. (1), we obtain the proposed deeply
refined robust feature in the i-th view as:

W (i)X(i) =W (i)X(i)Z(i) + E(i). (3)

By jointly solving W , Z and E, we could progressively
improve the quality of anomaly representation.

V. EVALUATION FRAMEWORK

There are several existing databases for evaluating UAV
video data exploitation that enables quick response or alert
of an event. To name a few:

VIRAT2. The Video and Image Retrieval and Analysis Tool
(VIRAT) program is a video surveillance project funded by
the Information Processing Technology Office (IPTO) of the
Defense Advanced Research Projects Agency (DARPA). It
includes 8.5 hours HD videos of 12 different events and 11
outdoor scenes. VIRAT focuses heavily on developing means
to be able to search through databases containing thousands
of hours of video, looking for footage where certain types of
activities took place, such as:
Person-to-Person: Following, meeting, gathering, moving as a
group, dispersing, shaking hands, kissing, exchanging objects,
kicking, carrying an object together.
Person-to-Vehicle: Driving, getting-in (out), loading (unload-
ing), opening (closing) trunk, crawling under car, breaking
window, shooting/launching, exploding/burning, dropping off,
picking up.

UAV Dataset of PGB. UAV Dataset of Pedestrian Group
Behavior simulates possible situations in pedestrian crowds
which is captured by UAV [61]. Volunteers in the collection
simulate predefined scenarios with minimal information pro-
vided. In this way, they could behave in a more natural way.

2http://www.viratdata.org/
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(A) VIRAT Dataset

(B) UAV Dataset of PGB

Fig. 4. Sample illustrations of (A) VIRAT and (B) PGB dataset.

The total duration of flight is 12 minutes, including videos of
15 different behaviors, e.g., parallel group motion, diverging,
converging, etc. Samples of both datasets above can be found
in Figure 4.

Data generation. As there are ground truth labels in these
databases, we could directly use them for evaluations. In
addition, to generate multi-view data, we randomly select a
portion of feature vectors as one view, and repeat this n times
for n views. Moreover, the data corruption can be simulated by
randomly dropping a few features, or adding Gaussian noises.
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