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Abstract. This paper formulates properties of similarity measures. We list
a number of similarity measures, some of which are not well known (such as
the Monge-Kantorovich metric), or newly introduced (re
ection metric), and
give a set constructions that have been used in the design of some similarity
measures.

1 Introduction

Large image databases are used in an extraordinary number of multimedia ap-
plications in �elds such as entertainment, business, art, engineering, and science.
Retrieving images by their content, as opposed to external features, has become an
important operation. A fundamental ingredient for content-based image retrieval
is the technique used for comparing images. There are two general methods for im-
age comparison: intensity-based (color and texture) and geometry-based (shape).
A recent user survey about cognition aspects of object retrieval shows that users
are more interested in retrieval by shape than by color and texture [26]. However,
retrieval by shape is still considered one of the most diÆcult aspects of content-
based search. Indeed, systems such as IBM's QBIC, Query By Image Content [21],
perhaps one of the most advanced image retrieval systems to date, is relatively
successful in retrieving by color and texture, but performs poorly when searching
on shape. A similar behavior shows the Alta Vista photo �nder [5].

There is no universal de�nition of what shape is. Impressions of shape can
be conveyed by color or intensity patterns, or texture, from which a geometrical
representation can be derived. This is shown already in Plato's work Meno, where
the word '�gure' is used for shape. First the description \�gure is the only ex-
isting thing that is found always following color" is used, then \terms employed
in geometrical problems": \�gure is limit of solid" [20]. In this paper too we con-
sider shape as something geometrical, and use the term pattern for a geometrical
pattern.

Shape similarity measures are an essential ingredient in shape matching. Match-
ing deals with transforming a pattern, and measuring the resemblance with another
pattern using some dissimilarity measure. The terms pattern matching and shape
matching are commonly used interchangeably. The matching problem is studied
in various forms. Given two patterns and a dissimilarity measure:

{ (computation problem) compute the dissimilarity between the two patterns,
{ (decision problem) for a given threshold, decide whether the dissimilarity be-
tween two patterns is smaller than the threshold,
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{ (decision problem) for a given threshold, decide whether there exists a trans-
formation such that the dissimilarity between the transformed pattern and the
other pattern is smaller than the threshold,

{ (optimization problem) �nd the transformation that minimizes the dissimilar-
ity between the transformed pattern and the other pattern.

Sometimes the time complexities to solve these problems are rather high, so
that it makes sense to devise approximation algorithms that �nd an approximation:

{ (approximate optimization problem) �nd a transformation that gives a dis-
similarity between the two patterns that is within a speci�ed factor from the
minimum dissimilarity.

2 Properties

In this section we list a number of possible properties of similarity measures.
Whether or not speci�c properties are desirable will depend on the particular
application, sometimes a property will be useful, sometimes it will be undesirable.
Some combinations of properties are contradictory, so that no distance function
can be found satisfying them. A shape similarity measure, or distance function,
on a collection of shapes S is a function d : S � S ! R. The following conditions
apply to all the shapes A, B, or C in S.

1 (Nonnegativity) d(A;B) � 0.

2 (Identity) d(A;A) = 0 for all shapes A.

3 (Uniqueness) d(A;B) = 0 implies A = B.

4 (Strong triangle inequality) d(A;B) + d(A;C) � d(B;C).

Nonnegativity (1) is implied by (2) and (4). A distance function satisfying (2), (3),
and (4) is called a metric. If a function satis�es only (2) and (4), then it is called a
semimetric. Symmetry (see below) follows from (4). A more common formulation
of the triangle inequality is the following:

5 (Triangle inequality) d(A;B) + d(B;C) � d(A;C).

Properties (2) and (5) do not imply symmetry.

Fig. 1. Under partial
matching, the triangle
inequality does not hold.

Similarity measures for partial matching, giving a
small distance d(A;B) if a part of A matches a part
of B, in general do not obey the triangle inequality. A
counterexample is given in �gure 1: the distance from
the man to the centaur is small, the distance from the
centaur to the horse is small, but the distance from
the man to the horse is large, so d(man; centaur) +
d(centaur; horse) > d(man; horse) does not hold. It
therefore makes sense to formulate an even weaker
form [12]:

6 (Relaxed triangle inequality) c(d(A;B) + d(B;C)) � d(A;C), for some con-
stant c � 1.



7 (Symmetry) d(A;B) = d(B;A).

Symmetry is not always wanted. Indeed, human perception does not always �nd
that shape A is equally similar to B, as B is to A. In particular, a variant A of
prototype B is often found more similar to B than vice versa [27].

8 (Invariance) d is invariant under a chosen group of transformations G if for all
g 2 G, d(g(A); g(B)) = d(A;B).

For object recognition, it is often desirable that the similarity measure is invariant
under aÆne transformations, illustrated in �gure 2. The following four properties
are about robustness, a form of continuity. Such properties are useful to be robust
against the e�ects of discretization, see �gure 3.

9 (Perturbation robustness) For each � > 0, there is an open set F of deforma-
tions suÆciently close to the identity, such that d(f(A); A) < � for all f 2 F .

10 (Crack robustness) For each each � > 0, and each \crack" x in the boundary
of A, an open neighborhood U of x exists such that for all B, A�U = B �U
implies d(A;B) < �.

11 (Blur robustness) For each � > 0, an open neighborhood U of bd(A), the
boundary of A exists, such that d(A;B) < � for all B satisfying B�U = A�U
and bd(A) � bd(B).

12 (Noise robustness) For each x 2 R2�A, and each � > 0, an open neighborhood
U of x exists such that for all B, B � U = A� U implies d(A;B) < �.

A distance function is distributive in the shape space if the distance between one
pattern and another does not exceed the sum of distances between the one and
two parts of the other:

13 (Distributivity) For all A and decomposable B [ C, d(A;B [ C) � d(A;B) +
d(A;C).

The following properties all describe forms of discriminative power. The �rst one
says that there is always a shape more dissimilar to A than some shape B. This
is not possible if the collection of shapes is �nite.

14 (Endlessness) For each A;B there is a C such that d(A;C) > d(A;B).

The next property means that for a chosen transformation set G, the distance d
is able to discern A as an exact subset of A [ B. No g(A) is closer to A [ B than
A itself:

15 (Discernment) For a chosen transformation set G, d(A;A[B) � d(g(A); A[B)
for all g 2 G.

The following says that changing patterns, which are already di�erent, in a region
where they are still equal, should increase the distance.

16 (Sensitivity) For all A;B with A\U = B\U , B�U = C�U , and B\U 6= C\U
for some open U � R2 , then d(A;B) < d(A;C).



The next property says that the change from A to A[B is smaller that the change
to A [ C if B is smaller than C:

17 (Proportionality) For all A\B = ; and A\C = ;, if B � C, then d(A;A[B) <
d(A;A [ C).

Finally, the distance function is strictly monotone if at least one of the intermediate
steps of adding B�A to A, and C�B to B is smaller than the two steps combined:

18 (Monotonicity) For all A � B � C, d(A;C) > d(A;B), or d(A;C) > d(B;C).

A B

g(A)

g(B)

Fig. 2. AÆne invariance: d(A;B) =
d(g(A); g(B)). Fig. 3. Discretization e�ects: deforma-

tion, blur, cracks, and noise.

3 Similarity Measures

3.1 Lp Distances, Minkowski Distance

Many similarity measures on shapes are based on the Lp distance between two

points. For two points x; y in Rk , the Lp distance is de�ned asLp(x; y) = (
Pk

i=0 jxi�
yijp)1=p. This is also often called the Minkowski distance. For p = 2, this yields the

Euclidean distance: d(x; y) = (
Pk

i=0(xi � yi)
2)1=2. For p = 1, we get the Manhat-

tan, city block, or taxicab distance: L1(x; y) =
Pk

i=0 jxi � yij. For p approaching

1, we get the max metric: L1 = limp!1(
Pk

i=0 jxi � yijp)1=p = maxi(jxi � yij).
For all p � 1, the Lp distances are metrics. For p < 1 it is not a metric anymore,
since the triangle inequality does not hold.

3.2 Bottleneck Distance

Let A and B be two point sets of size n, and d(a; b) a distance between two points.
The bottleneck distance F (A;B) is the minimum over all 1 � 1 correspondences
f between A and B of the maximum distance d(a; f(a)). For the distance d(a; b)
between two points, an Lp distance could be chosen. An alternative is to compute

an approximation ~F to the real bottleneck distance F . An approximate matching
between A and B with ~F the furthest matched pair, such that F < ~F < (1+ �)F ,
can be computed with a less complex algorithm [11].

So far we have considered only the computation problem, computing the dis-
tance between two point sets. The decision problem for translations, deciding
whether there exists a translation ` such that F (A+ `; B) < � can also be solved,
but takes considerably more time [11]. Because of the high degree in the compu-
tational complexity, it is interesting to look at approximations with a factor �:
F (A+ `; B) < (1 + �)F (A+ `�; T ) [25], where `� is the optimal translation.



3.3 Hausdor� Distance

The Hausdor� distance is de�ned for general sets, not only �nite point sets.
The directed Hausdor� distance ~h(A;B) is de�ned as the lowest upperbound

(supremum) over all points inA of the distances toB: ~h(A;B) = supa2A infb2B d(a; b),
with d(a; b) the underlying distance, for example the Euclidean distance (L2). The

Hausdor� distance H(A;B) is the maximum of ~h(A;B) and ~h(B;A): H(A;B) =

maxf~d(A;B); ~d(B;A)g. For �nite point sets, it can be computed using Voronoi
diagrams [1].

Given two �nite point sets A and B, computing the translation `� that min-
imizes the Hausdor� distance H(A + `; B) is discussed in [8] and [18]. Given a
real value �, deciding if there is a rigid motion m (translation plus rotation) such
that H(m(A); B) < � is discussed in [7]. Computing the optimal rigid motion,
minimizing H(m(A); B), is treated in [17], using dynamic Voronoi diagrams.

3.4 Partial Hausdor� Distance

The Hausdor� distance is very sensitive to noise: a single outlier can determine
the distance value. For �nite point sets, a similar measure that is not as sensitive
is the partial Hausdor� distance. It discards the k largest distances, for a chosen k.
The partial Hausdor� distance is not a metric since it fails the triangle inequality.
Computing the optimal partial Hausdor� distance under translation and scaling
is done in [19, 16] by means of a transformation space subdivision scheme. The
running time depends on the depth of subdivision of transformation space.

3.5 p-th Order Mean Hausdor� Distance

For pattern matching, the Hausdor� metric is often too sensitive to noise. For �nite
point sets, the partial Hausdor� distance is not that sensitive, but it is no metric.
Alternatively, [6] observes that the Hausdor� distance of A;B � X can be written
asH(A;B) = supx2X jd(x;A)�d(x;B)j, and replaces the supremum by an average:
�p(A;B) = ( 1

jXj

P
x2X jd(x;A) � d(x;B)jp)1=p, where d(x;A) = infa2A d(x; a).

This is a metric less sensitive to noise. This measure can for example be used for
comparing binary images, where X is the set of all raster points.

3.6 Turning Function Distance

The cumulative angle function, or turning function, �A(s) of a polygon A gives
the angle between the counterclockwise tangent and the x-axis as a function of
the arc length s. �A(s) keeps track of the turning that takes place, increasing
with left hand turns, and decreasing with right hand turns. Clearly, this function
is invariant under translation of the polyline. Rotating a polyline over an angle �
results in a vertical shift of the function with an amount �.

In [4] the turning angle function is used to match polygons. First the size
of the polygons are scaled so that they have equal perimeter. The Lp metric on
function spaces, applied to �A and �B , gives a dissimilarity measure on A and B:

d(A;B) =
�R
j�A(s)��B(s)jp ds

�1=p
, see �gure 4.

In [28], for the purpose of retrieving hieroglyphic shapes, polyline curves do
not have the same length, so that partial matching can be performed. Partial
matching under scaling, in addition to translation and rotation, is more involved
[9].



3.7 Fr�echet Distance

The Hausdor� distance is often not appropriate to measure the dissimilarity be-
tween curves. For all points on A, the distance to the closest point on B may be
small, but if we walk forward along curves A and B simultaneously, and measure
the distance between corresponding points, the maximum of these distances may
be larger, see Figure 5. This is what is called the Fr�echet distance. More formerly,
let A and B be two parameterized curves A(�(t)) and B(�(t)), and let their pa-
rameterizations � and � be continuous functions of the same parameter t 2 [0; 1],
such that �(0) = �(0) = 0, and �(1) = �(1) = 1. The Fr�echet distance is the mini-
mum over all monotone increasing parameterizations �(t) and �(t) of the maximal
distance d(A(�(t)); B(�(t))), t 2 [0; 1], see �gure 5.

s

�A(s)

�B(s)

Fig. 4. Rectangles enclosed by �A(s),
�B(s), and dotted lines are used for eval-
uation of dissimilarity.

H

F

Fig. 5. Hausdor� (H) and Fr�echet (F)
distance between two curves.

[3] considers the computation of the Fr�echet distance for the special case of
polylines. A variation of the Fr�echet distance is obtained by dropping the mono-
tonicity condition of the parameterization. The resulting Fr�echet distance d(A;B)
is a semimetric: zero distance need not mean that the objects are the same. An-
other variation is to consider partial matching: �nding the part of one curve to
which the other has the smallest Fr�echet distance.

Parameterized contours are curves where the starting point and ending point
are the same. However, the starting and ending point could as well lie somewhere
else on the contour, without changing the shape of the contour curve. For convex
contours, the Fr�echet distance is equal to the Hausdor� distance.

3.8 Nonlinear elastic matching distance

Let A = fa1; : : : ; amg and B = fb1; : : : ; bng be two �nite sets of ordered contour
points, and let f be a correspondence between all points in A and all points in
B such that there are no a1 < a2, with f(a1) > f(a2). The stretch s(ai; bj)
of (ai; f(ai) = bj) is 1 if either f(ai�1) = bj or f(ai) = bj�1, or 0 otherwise.
The nonlinear elastic matching distance NEM(A;B) is the minimum over all
correspondences f of

P
s(ai; bj) + d(ai; bj), with d(ai; bj) the di�erence between

the tangent angles at ai and bj . It can be computed using dynamic programming
[10]. This measure is not a metric, since it does not obey the triangle inequality.

3.9 Relaxed Nonlinear elastic matching distance

The relaxed nonlinear elastic matching distance NEMr is a variation of NEM ,
where the stretch s(ai; bj) of (ai; f(ai) = bj) is r (rather than 1) if either f(ai�1) =



bj or f(ai) = bj�1, or 0 otherwise, where r � 1 is a chosen constant. The resulting
distance is not a metric, but it does obey the relaxed triangle inequality, prop-
erty (6) above [12].

3.10 Re
ection Distance

The re
ection metric [15] is an aÆne-invariant metric that is de�ned on �nite
unions of curves in the plane. They are converted into real-valued functions on
the plane. Then, these functions are compared using integration, resulting in a
similarity measure for the corresponding patterns.

The functions are formed as follows, for each �nite union of curves A. For
each x 2 R2 , the visibility star V x

A is de�ned as the union of open line segments
connecting points of A that are visible from x: V x

A =
S
fxa j a 2 A and A \ xa =

?g. The re
ection star Rx
A is de�ned by intersecting V x

A with its re
ection in x:
Rx
A = fx + v 2 R2 j x � v 2 V x

A and x + v 2 V x
Ag. The function �A : R2 ! R is

the area of the re
ection star in each point: �A(x) = area(Rx
A). Observe that for

points x outside the convex hull of A, this area is always zero. The re
ection metric
between patterns A and B de�nes a normalized di�erence of the corresponding
functions �A and �B :

d(A;B) =

R
R2 j�A(x)� �B(x)j dxR

R2max(�A(x); �B(x)) dx
:

From the de�nition follows that the re
ection metric is invariant under all aÆne
transformations. In contrast with single-curve patterns, this metric is de�ned also
for patterns consisting of multiple curves. In addition, the re
ection metric is
deformation, blur, crack, and noise robust.

3.11 Area of Overlap

Two dissimilarity measures that are based on the area of the polygons rather than
their boundaries, are the area of overlap and the area of symmetric di�erence. For
two compact sets A and B, the area of overlap is de�ned as area(A \ B). This
dissimilarity measure is a not a metric, since the triangle inequality does not hold.
The invariance group is the class of di�eomorphisms with unit Jacobi-determinant.

3.12 Area of Symmetric Di�erence, Template Metric

For two compact sets A and B, the area of symmetric di�erence is de�ned as
area((A �B) [ (B �A)). Unlike the area of overlap, this measure is a metric.

Translating convex polygons so that their centroids coincide also gives an ap-
proximate solution for the symmetric di�erence, which is at most 11/3 of the
optimal solution under translations [2]. This also holds for a set of transforma-
tions F other than translations, if the following holds: the centroid of A, c(A), is
equivariant under the transformations, i.e. c(f(A)) = f(c(A)) for all f in F , and
F is closed under composition with translation.

3.13 Banach-Mazur Distance

For any two convex bodies A and B of the Euclidean plane, let �(A;B) be the
smallest ratio s=r where r; s > 0 satisfy rB0 � A � sB00, and B0; B00 are some
translates of B. Let ~B denote class of bodies equivalent to B under translation
and positive scaling (the homothets of B). The function ~�( ~A; ~B) = log�( ~A; ~B) is
a metric on shapes and is called the Banach-Mazur metric. It is invariant under
aÆne transformations [13].



3.14 Monge-Kantorovich Metric, Transport Metric, Earth Mover's

Distance

Given two patterns A = f(A1; w(A1)); : : : ; (Am; w(Am))g and B = f(B1; w(B1));
: : : ; (Bn; w(Bn))g, where Ai and Bi are subsets of R2 , with associates weights
w(Ai); w(Bi). The distance between A and B is the minimum amount of work
needed to transform A into B. This is a form of the Monge-Kantorovich metric
used in heat transform problems [22], which is also used in shape matching [14] and
color-based image retrieval [23]. The discrete version can be computed by linear
programming.

4 Constructions

In this section we discuss a number of constructions that can be used to manipulate
similarity measures, in order to arrive at certain properties.

4.1 Remapping

Let w : [0;1]! [0;1] be a continuous function with w(x) = 0 i� x = 0, and which
is concave: w(x+y) � w(x)+w(y). Examples include x=(1+x), tan�1(x), log(x),
x1=p, for some p � 1, and min(x; c), for some positive constant c. If d(A;B) is a
metric, then so is ~d(A;B) = w(d(A;B)). In this way, an unbounded metric d can
be mapped to a bounded metric. For the cut-o� function min(x; c), the maximum
distance value becomes c, so that property (14) above does not hold. It is used in
[6] for comparing binary images. The log(x) function is used in the Banach-Mazur
distance log�( ~A; ~B). Without the log it would not satisfy the triangle inequality,
and therefore not be a metric.

4.2 Normalization

Normalization is often used to scale the range of values to [0; 1], but it can also
change other properties. For example, normalizing the area of overlap and sym-
metric di�erence by the area of the union of the two polygons makes it invariant
under a larger transformation group, namely the group of all di�eomorphisms with
a Jacobi determinant that is constant over all points [15].

4.3 From Semi-metric to Metric

Let S be a space of objects, and d a semimetric. Identifying elements A;B of S
with d(A;B) = 0, and considering these as a single object yields another space S0.
The semimetric on S is then a metric on S0.

4.4 Semi-metric on Orbits

A collection of patterns S and a transformation group G determine a family of
equivalence classes S=G. For a pattern A 2 S, the orbit is G(A) = fg(A) j g 2 Gg.
The collection of all these orbits forms a space of equivalences classes. A semimetric
d invariant under a transformation group G results in a natural semimetric on the
orbit set: ~d : S=G�S=G! R de�ned by ~d(G(A); G(B)) = inffd(g(A); B) j g 2 Gg
is a semimetric on the space S=G. Rucklidge [24] used this principle to de�ne a
shape distance based on the Hausdor� distance.



4.5 Extension with empty set

A pattern space S not containing the empty set ?, with metric d, can be extended
with ?, by de�ning d0(A;B) = d(A;B)=(1+d(A;B)), d0(?;?) = 0, and d0(A;?) =
1 for A;B 2 S. This gives a bounded metric pattern space such that the restriction
of d0 to S is topologically equivalent to d. In addition, the invariance group remains
the same.

4.6 Vantageing

Let d be some distance function on a space S of patterns, d : S � S ! R. For
some �xed C 2 S (vantage object), the function ~dC(A;B) = jd(A;C) � d(B;C)j
is a semimetric, even if d does not obey nonnegativity, identity, weak triangle
inequality, and symmetry.

4.7 Imbedding patterns

AÆne invariant pattern metrics can be formed by mapping patterns to real-valued
functions and computing a normalized di�erence between these functions. AÆne
invariance is desired in many pattern matching and shape recognition tasks.

Let I(R2 ) be the space of real-valued integrable functions on R2 . De�ne the
L1 seminorm on I(R2 ): jaj =

R
R2 ja(x)j dx. For a di�eomorphism g the Jacobi-

determinant is the determinant of the derivative of g at a given point. We use
jg(x) to denote the absolute value of the Jacobi-determinant of g in x. For real-
valued functions a;b : R2 ! R, a t b denotes the pointwise maximum. De�ne
the normalized di�erence of two functions with non-zero integrals by �n(a;b) =
ja � bj=ja t bj. This is a semimetric on the set of non-negative functions with
non-zero integrals.

A large class of mappings from patterns in R2 to integrable functions result in
invariant semimetrics based on the normalized di�erence �n. Namely, let S be a
collection of subsets of R2 . Let each A 2 S de�ne a unique function nA : R2 ! R

in I(R2 ), and let g be a di�eomorphism with constant Jacobi-determinant. If g
determines a number Æ > 0 such that ng(A)(g(x)) = ÆnA(x) for all A 2 S and
x 2 R2 , then �n(ng(A);ng(B)) = �n(nA;nB) for all A;B 2 S [15]. This was used
in the construction of the re
ection metric.
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