Shape Analysis \& Measurement

Michael A. Wirth, Ph.D.
University of Guelph
Computing and Information Science
Image Processing Group

(C) 2004

Shape Analysis \& Measurement

- The extraction of quantitative feature information from images is the objective of image analysis.
- The objective may be:
- shape quantification
- count the number of structures
- characterize the shape of structures

Shape Measures

- The most common object measurements made are those that describe shape.
- Shape measurements are physical dimensional measures that characterize the appearance of an object.
- The goal is to use the fewest necessary measures to characterize an object adequately so that it may be unambiguously classified.

Shape Measures

- The performance of any shape measurements depends on the quality of the original image and how well objects are preprocessed.
- Object degradations such as small gaps, spurs, and noise can lead to poor measurement results, and ultimately to misclassifications.
- Shape information is what remains once location, orientation, and size features of an object have been extracted.
- The term pose is often used to refer to location, orientation, and size.

Shape Descriptors

- What are shape descriptors?
- Shape descriptors describe specific characteristics regarding the geometry of a particular feature.
- In general, shape descriptors or shape features are some set of numbers that are produced to describe a given shape.

Shape Descriptors

- The shape may not be entirely reconstructable from the descriptors, but the descriptors for different shapes should be different enough that the shapes can be discriminated.
- Shape features can be grouped into two classes: boundary features and region features.

Distances

- The simplest of all distance measurements is that between two specified pixels $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.
- There are several ways in which distances can be defined:
- Euclidean

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

- Chessboard

$$
d=\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)
$$

Distances

- City-block

$$
d=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

Euclidean
Chessboard

City-block

Area

- The area is the number of pixels in a shape.

Net Area

Convex Area

- The convex area of an object is the area of the convex hull that encloses the object.

Area

Original Image

Net Area

Filled Area

Perimeter

- The perimeter [length] is the number of pixels in the boundary of the object.
- If x_{1}, \ldots, x_{N} is a boundary list, the perimeter is given by:

$$
\text { perimeter }=\sum_{i=1}^{N-1} d_{i}=\sum_{i=1}^{N-1}\left|x_{i}-x_{i+1}\right|
$$

- The distances d_{i} are equal to 1 for 4-connected boundaries and 1 or $\sqrt{2}$ for 8-connected boundaries.

Perimeter

- For instance in an 8-connected boundary, the distance between diagonally adjacent pixels is the Euclidean measurie
- The number of diagonal links in $\mathrm{N}_{4}-\mathrm{N}_{8}$, and the remaining $\mathrm{N}_{8}-\left(\mathrm{N}_{4}-\mathrm{N}_{8}\right)$ links in the 8-connected boundary are of one pixel unit in length. Therefore the total perimeter is:

$$
\text { perimeter }=(\sqrt{2}-1) N_{4}+(2-\sqrt{2}) N_{8}
$$

Perimeter

- The convex perimeter of an object is the perimeter of the convex hull that encloses the object.

Major Axis

- The major axis is the (x, y) endpoints of the longest line that can be drawn through the object.
- The major axis endpoints ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are found by computing the pixel distance between every combination of border pixels in the object boundary and finding the pair with the maximum length.

Major Axis Length

- The major-axis length of an object is the pixel distance between the major-axis endpoints and is given by the relation:
major-axis length $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
- The result is measure of object length.

Major Axis Angle

- The major-axis angle is the angle between the major-axis and the x-axis of the image:

$$
\text { major-axis angle }=\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
$$

- The angle can range from 0° to 360°.
- The result is a measure of object orientation.

Minor Axis

- The minor axis is the (x, y) endpoints of the longest line that can be drawn through the object whilst remaining perpendicular with the major-axis.
- The minor axis endpoints ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are found by computing the pixel distance between the two border pixel endpoints.

Minor Axis Length

- The minor-axis length of an object is the pixel distance between the minor-axis endpoints and is given by the relation:
minor-axis length $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
- The result is measure of object width.

Major and Minor Axes

Compactness

- Compactness is defined as the ratio of the area of an object to the area of a circle with the same perimeter.

$$
\text { compactness }=\frac{4 \pi \cdot \text { area }}{(\text { perimeter })^{2}}
$$

- A circle is used as it is the object with the most compact shape.
- The measure takes a maximum value of 1 for a circle
$\pi / 4$
- A square has compactness =

Compactness

- Objects which have an elliptical shape, or a boundary that is irregular rather than smooth, will decrease the measure.
- An alternate formulation:

$$
\text { compactness }=\frac{(\text { perimeter })^{2}}{4 \pi \cdot \text { area }}
$$

- The measure takes a minimum value of 1 for a circle
- Objects that have complicated, irregular boundaries have larger compactness.

Compactness

low compactness

compactness $=0.764$ compactness $=0.668$

Elongation

- In its simplest form elongation is the ratio between the length and width of the object bounding box:

$$
\text { elongation }=\frac{\text { width }_{\text {bounding-box }}}{\text { length }_{\text {bounding-box }}}
$$

- The result is a measure of object elongation, given as a value between 0 and 1 .
- If the ratio is equal to 1 , the object is roughly square or circularly shaped. As the ratio decreases from 1, the object becomes more elongated.

Elongation

- This criterion cannot succeed in curved regions, for which the evaluation of elongatedness must be based on maximum region thickness.
- Elongatedness can be evaluated as a ratio of the region area and the square of its thickness.
- The maximum region thickness (holes must be filled if present) can be determined as the number d of erosion steps that may be appliegrefore the region totally disappeedengation $=\frac{a}{2 d^{2}}$

Elongation

high elongation
low elongation

Eccentricity

- Eccentricity is the ratio of the length of the short (minor) axis to the length of the long (major) axis of an object:

$$
\text { eccentricity }=\frac{\text { axislength }_{\text {short }}}{\text { axislength }_{\text {long }}}
$$

- The result is a measure of object eccentricity, given as a value between 0 and 1.
- Sometimes known as ellipticity.

Eccentricity

high eccentricity

low eccentricity

Eccentricity

- Eccentricity can also be calculated using central moments:

$$
\text { eccentricity }=\frac{\left(\mu_{02}-\mu_{20}\right)^{2}+4 \mu_{11}}{\text { area }}
$$

Measures of "Circularity"

- Sometimes it is useful to have measures that are sensitive only to departures of a certain type of circularity:
e.g. convexity (measures irregularities)
roundness (excludes local irregularities)

Circularity or Roundness

- A measure of roundness or circularity (area-toperimeter ratio) which excludes local irregularities can be obtained as the ratio of the area of an object to the area of a circle with the same convex perimeter:

$$
\text { roundness }=\frac{4 \pi \cdot \text { area }}{(\text { convex perimeter })^{2}}
$$

- This statistic equals 1 for a circular object and less than 1 for an object that departs from circularity, except that it is relatively insensitive to irregular boundaries.

Circularity

roundness $=0.584$

roundness $=0.447$

Sphericity

- Sphericity measures the degree to which an object approaches the shape of a "sphere".

- For a circle, the value is the maximum of 1.0

Convexity

- Convexity is the relative amount that an object differs from a convex object.
- A measure of convexity can be obtained by forming the ratio of the perimeter of an object's convex hull to the perimeter of the object itself:

$$
\text { convexity }=\frac{\text { convex perimeter }}{\text { perimeter }}
$$

Convexity

- This will take the value of 1 for a convex object, and will be less than 1 if the object is not convex, such as one having an irregular boundary.

convexity=1.0

convexity=0.483

convexity=0.349

Aspect Ratio

- The aspect ratio measures the ratio of the objects height to its width.

$$
\text { aspect ratio }=\frac{\text { height }}{\text { width }}
$$

Caliper Dimensions

- Caliper or feret diameters are the distances between parallel tangents touching oppoisite sides of an object.
- At orientation θ, the caliper diameter is:
$\max _{(x, y) \in A}(x \sin \theta+y \cos \theta)-\min _{(x y) \in A}(x \sin \theta+y \cos \theta)$
- Certain caliper diameters are of special interest:
- The width of an object $\left(\theta=0^{\circ}\right)$

$$
\max _{(x, y) \in A}(y)-\min _{(x, y) \in A}(y)
$$

Caliper Dimensions

- The height of an object $\left(\theta=90^{\circ}\right)$

$$
\max _{(x, y) \in A}(x)-\min _{(x, y) \in A}(x)
$$

- The maximum caliper diameter is one definition of an objects length.

Curl

- The curl of an object measures the degree to which an object is "curled up".

Curl

- As the measure of curl decreases, the degree to which they are "curled up" increases.
fibre length $=\frac{\text { perimeter- } \sqrt{(\text { perimeter })^{2}-16 \cdot \text { area }}}{4}$

$$
\text { fibre width }=\frac{\text { area }}{\text { fibre length }}
$$

Convex Hull

- The convex hull of an object is defined to be the smallest convex shape that contains the object.

Solidity

- Solidity measures the density of an object.
- A measure of solidity can be obtained as the ratio of the area of an object to the area of a convex hull of the object:

$$
\text { solidity }=\frac{\text { area }}{\text { convex area }}
$$

Solidity

- A value of 1 signifies a solid object, and a value less than 1 will signify an object having an irregular boundary, or containing holes.

solidity=0.592

Shape Variances

- Sometimes a shape should be compared against a template.
- A circle is an obvious and general template choice. The circular variance is the proportional mean-squared error with respect to solid circle.
- It gives zero for a perfect circle and increases along shape complexity and elongation.

Shape Variances

- Elliptic variance is defined similarly to the circular variance. An ellipse is fitted to the shape (instead of a circle) and the meansquared error is measured.

Rectangularity

- Rectangularity is the ratio of the object to the area of the minimum bounding rectangle.
- Let F_{k} be the ratio of region area and the area of a bounding rectangle, the rectangle having the direction k. The rectangle direction is turned in discrete steps as before, and rectangularity measured as a maximum of this ratio F_{k}
rectangularity $=\max _{k}\left(F_{k}\right)$
- Rectangularity has a value of 1 for perfectly rectangular object

Bounding Box

- The bounding box or bounding rectangle of an object is a rectangle which circumscribes the object. The dimensions of the bounding box are those of the major and minor axes.
- The area of the bounding box is:
area $=$ (major axis length $) *($ minor axis length $)$
- The minimum bounding box is the minimum area that bounds the shape.

Bounding Box

bounding boxes

Direction

- Direction is a property which makes sense in elongated regions only. If the region is elongated, direction is the direction of the longer side of a minimum bounding rectangle.
- If the shape moments are known, the direction θ can be computed as:

$$
\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 \mu_{11}}{\mu_{20}-\mu_{02}}\right)
$$

Direction

- Elongatedness and rectangularity are independent of linear transformations translation, rotation, and scaling.
- Direction is independent on all linear transformations which do not include rotation.
- Mutual direction of two rotating objects is rotation invariant.

Orientation

- The overall direction of the shape.

Topological Descriptors

- Topological properties are useful for global descriptions of objects in an image.
- Features that do not change with elastic deformation of the object.
- For binary regions, topological features include the number of holes in a region, and the number of indentations, or protrusions.
- One topological property is the number of connected components.

Topological Descriptors

- The number of holes \mathbf{H} and connected components \mathbf{C} in an image can be used to define the Euler number.
- The Euler number is defined as the number of components minus the number of holes:

Euler number $=\mathbf{C} \mathbf{- H}$

- This simple topological feature is invariant to translation, rotation and scaling.

Boundary Descriptors

- The shape of a region can be represented by quantifying the relative position of consecutive points on its boundary.
- A chain code consists of a starting location and a list of directions $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{N}}$ provides a compact representation of all the information in a boundary.
- The directions d_{i} are estimates of the slope of the boundary.

Boundary Descriptors

- Chain codes are based on 4 - or 8connectivity:

3	2	1
4		0
5	6	7

e.g.

$$
2,1,0,7,7,0,1,1
$$

Boundary Descriptors

- The k-slope of the boundary at $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ can be estimated from the slope of the line joining $\left(x_{i-k / 2}, y_{i-k / 2}\right)$ and $\left(x_{i+k / 2}, y_{i+k / 2}\right)$ for some small, even value of k. Calculated as an angle of:

$$
\tan ^{-1}\left(\frac{y_{i+k / 2}-y_{i-k / 2}}{x_{i+k / 2}-x_{i-k / 2}}\right)
$$

measured in a clockwise direction, with a horizontal slope taken to be zero.

Boundary Descriptors: Curvature

- The k-curvature of the boundary at $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ can be estimated from the change in the k-slope:

$$
\left\{\tan ^{-1}\left(\frac{y_{i+k}-y_{i}}{x_{i+k}-x_{i}}\right)-\tan ^{-1}\left(\frac{y_{i}-y_{i-k}}{x_{i}-x_{i-k}}\right)\right\} \quad(\bmod 2 \pi)
$$

Boundary Descriptors: Curvature

- The curvature (к) of an object is a local shape attribute.

- Convex shapes yield positive curvatures
- Concave shapes yield negative curvatures

Boundary Descriptors: Bending

Energy

- The total bending energy E_{C} is a robust global shape descriptor.
- The bending energy of a boundary may be understood as the energy necessary to bend a rod to the desired shape and can be calculated as a sum-of-squares of the boundary curvature $\kappa(p)$ over the boundary length L.

$$
E_{c}=\frac{1}{L} \sum_{p=1}^{L} \kappa(p)^{2} \quad \frac{2 \pi}{R} \leq E_{c} \leq \infty
$$

- The minimum value $2 \pi / R$ is obtained for a circle of radius R .

Boundary Descriptors: Bending Energy

- For example:

chain-code: $\quad 0 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 7 \quad 6 \quad 0 \quad 0$
curvature: $\quad 0 \quad 2 \quad-2 \quad 1 \quad-1 \quad-1 \quad-1 \quad 2 \quad 0$
sum of squares: $\begin{array}{lllllllllll}0 & 4 & 4 & 1 & 1 & 1 & 1 & 4 & 0\end{array}$
Bending Energy $=16$

Boundary Descriptors:

Total Absolute Curvature

- This descriptor is a measure of the total absolute curvature in an object:

$$
\kappa_{\text {total }}=\frac{1}{L} \sum_{p=1}^{L}|\kappa(p)| \quad 2 \pi \leq \kappa_{\text {total }} \leq \infty
$$

- The minimum value is found for all convex objects.

Moment Analysis

- The evaluation of moments represents a systematic method of shape analysis.
- The most commonly used region attributes are calculated from the three low-order moments.
- Knowledge of the low-order moments allows the calculation of the central moments, normalised central moments, and moment invariants.

Spatial Moments

- To define the $(p, q)^{\text {th }}$-order moment:

$$
m_{p q}=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^{p} y^{q} \text { for } p, q=0,1,2, \ldots
$$

- The zeroth-order moment m_{00} simply represents the sum of the pixels contained in an object and gives a measure of the area (because $x^{0}=y^{0}=1$)

Spatial Moments

- The first-order moments in $x\left(m_{10}\right)$ and $y\left(m_{01}\right)$ normalised by the area can be used to specify the location of an object:
- The centre of gravity, or centroid of an object is a measure of the object's location in the image.
- It has two components, denoting the row and column positions of the point of balance of the object.

$$
\text { centroid }=(\bar{x}, \bar{y})=\left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right)
$$

Spatial Moments

Central Moments

- The central moments $\mu_{p q}$ (i.e. $p+q>1$) represent descriptors of a region that are normalised with respect to location.

$$
\mu_{p q}=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}(x-\bar{x})^{p}(y-\bar{y})^{q} \text { for } p+q>1
$$

Normalised Central Moments

- The central moments can be normalised with respect to the zeroth moment to yield the normalised central moment:

$$
\begin{aligned}
& \eta_{p q}=\mu_{p q} / \mu_{00}^{\gamma} \\
& \gamma=(p+q) / 2+1
\end{aligned}
$$

- The most commonly normalised central moment is η_{11}, the first central moment in x and y .
- This provides a measure of the deviation from a circular region shape. A value close to zero describes a region that is close to circular.

Central Moments

- Central moments are translation invariant:
- i.e. two objects that are identical except for having different centroids, will have identical values of
- Central moments are not rotationally invariant $t_{p q}$
- Central moments are not rotationally invariant - they will change if an object is rotated.

Central Moments

- The second-order central moments:

$$
\mu_{20}=m_{20}-\frac{m_{10}^{2}}{m_{00}} \mu_{02}=m_{02}-\frac{m_{01}^{2}}{m_{00}} \mu_{11}=m_{11}-\frac{m_{10} m_{01}}{m_{00}}
$$

- The second-order moments measure how dispersed the pixels in an object are from their centroid:
- μ_{20} measures the object's spread over rows
- μ_{02} measures the object's spread over columns
- μ_{11} is a cross-product term representing spread in the direction in which both row and column indices increase.

Principal Axes

- Principal axes of an object can be uniquely defined as segments of lines crossing each other orthogonally in the centroid of the object and representing the directions with zero cross-correlation. This way, a contour is seen as an realization of a statistical distribution.

Principal Axes

- Principal (major and minor) axes are defined to be those axes that pass through the centroid, about which the moment of inertia of the region is, respectively maximal or minimal.
- The orientation of the , ${ }^{\text {major }}{ }_{\mu}$ axis:

$$
\theta=\frac{1}{2} \tan ^{-1}\left[\frac{m a j \mu_{11}^{a x s}}{\mu_{20}-\mu_{02}}\right]
$$

which is measured clockwise, with the horizontal direction taken as zero.

- This can be used to find the minimum bounding box.

Moment Invariants

- Normalisation with respect to orientation results in rotationally invariant moments.
- The first two are the following functions of the second-order central moments:

$$
\begin{aligned}
& \phi_{1}=\eta_{20}+\eta_{02} \\
& \phi_{2}=\left(\eta_{20}-\eta_{02}\right)^{2}+4 \eta_{11}^{2}
\end{aligned}
$$

- The first of these statistics is the moment of inertia, a measure of how dispersed, in any direction, the pixels in an object are from their centroid.
- The second statistic measures whether this dispersion is isotropic or directional.

Moment Invariants

$$
\begin{aligned}
& \phi_{1}=\eta_{20}+\eta_{02} \\
& \phi_{2}=\left(\eta_{20}-\eta_{02}\right)^{2}+4 \eta_{11}^{2} \\
& \phi_{3}=\left(\eta_{30}-3 \eta_{12}\right)^{2}+\left(3 \eta_{21}-\eta_{03}\right)^{2} \\
& \phi_{4}=\left(\eta_{03}+\eta_{12}\right)^{2}+\left(\eta_{21}+\eta_{03}\right)^{2}
\end{aligned}
$$

Central Moments

$$
\begin{aligned}
& \mu_{10}=\mu_{01}=0 \\
& \mu_{11}=m_{11}-m_{10} m_{01} / m_{00} \\
& \mu_{20}=m_{20}-m_{10}^{2} / m_{00} \\
& \mu_{02}=m_{02}-m_{01}^{2} / m_{00} \\
& \mu_{30}=m_{30}-3 \bar{x} m_{20}+2 m_{10} \bar{x}^{2} \\
& \mu_{03}=m_{03}-3 \bar{y} m_{02}+2 m_{01} \bar{y}^{2} \\
& \mu_{12}=m_{12}-2 \bar{y} m_{11}-\bar{x} m_{02}+2 m_{10} \bar{y}^{2} \\
& \mu_{21}=m_{21}-2 \bar{x} m_{11}-\bar{y} m_{20}+2 m_{01} \bar{x}^{2}
\end{aligned}
$$

References:

Moments

1. Pohlman, K.A., Powell, K.A., Obuchowski, N.A., Chilcote, W.A., Grunfest-Bronlatowski, S., "Quantitative classification of breast tumours in digitized mammograms", Medical Physics, 1996, 23: pp.1337-1345 (masses)
2. Rangayyan, R.M., El-Faramawy, N.M., Desautels, J.E.L., Alim, O.A., "Measures of acutance and shape classification of breast tumors", IEEE Transactions on Medical Imaging, 1997, 16: pp.799-810 (masses)
3. Shen, L., Rangayyan, R.M., and Desautels, J.E.L., "Application of shape analysis to mammographic calcifications", IEEE Transactions on Medical Imaging, 1994, 13: pp.263-274 (calcifications)
4. Wei, L., Jianhong, X., Micheli-Tzanakou, E., "A computational intelligence system for cell classification", Proceedings of the IEEE International Conference on Information Technology Applications in Biomedicine, 1998, pp.105-109 (blood cells)

Radial Distance Measures

- The shape of a structure of interest can be determined by analysing its boundary, the variations and curvature of which constitute the information to be quantified.
- Transform the boundary into a 1D signal and analysing its structure.
- The radial distance is measured from the central point (centroid) in the object to each pixel $x(n)$, $y(n)$ on the boundary.

Radial Distance Measures

- Generally the centroid is used as the central point, and the radial distance:

$$
d(n)=\sqrt{[x(n)-\bar{x}]^{2}+[y(n)-\bar{y}]^{2}} \quad n=0,1, \ldots, N-1
$$

is obtained by tracing all N pixels of the boundary.

Radial Distance Measures

- To achieve scale invariance, the normalised radial distance $r(n)$ is obtained by normalising $d(n)$ with the maximal distance
- The number of times the signal $r(n)$ crosses its mean and other similar metrics can be used as a measure of boundary roughness.
- Kilday, J., Palmieri, F., and Fox, M.D., "Classifying mammographic lesions using computerized image analysis", IEEE Transactions on Medical Imaging, 1993, 12: pp.664-669

Radial Distance Measures

- The sequence $r(n)$ is further analysed to extract shape metrics such as the entropy:

$$
\mathrm{E}=\sum_{k=1}^{K} h_{k} \log h_{k}
$$

where h_{k} is the k-bin probability histogram that represents the distribution of $r(n)$ as well as the statistical moments:

$$
m_{p}=\frac{1}{N} \sum_{n=0}^{N-1}[r(n)]^{p}
$$

Radial Distance Measures

- The central moment:

$$
\mu_{p}=\frac{1}{N} \sum_{n=0}^{N-1}\left[r(n)-m_{1}\right]^{p}
$$

- Normalised moments invariant to translation, rotation and scaling:

$$
\bar{m}_{p}=\frac{m_{p}}{\mu_{2}^{p / 2}} \quad \bar{\mu}_{p}=\frac{\mu_{p}}{\mu_{2}^{p / 2}} \quad p \neq 2
$$

Fourier Descriptor

- The information in the $r(n)$ signal can be further analysed in the spectral domain using the discrete Fourier transform (DFT):

$$
a(u)=\frac{1}{N} \sum_{n=0}^{N-1} r(n) e^{-j 2 \pi n u / N} \quad u=0,1, \ldots, N-1
$$

- The "low-frequency" terms, correspond to the smooth behavior.
- The "high-frequency" terms correspond to the jagged, bumpy behavior \rightarrow roughness

References:

Radial Distance Measures

1. Pohlman, K.A., Powell, K.A., Obuchowski, N.A., Chilcote, W.A., Grunfest-Bronlatowski, S., "Quantitative classification of breast tumours in digitized mammograms", Medical Physics, 1996, 23: pp.1337-1345 (masses)
2. Bruce, L.M., Kallergi, M., "Effects of image resolution and segmentation method on automated mammographic mass shape classification", Proceedings of the SPIE, 1999, 3661: pp.940-947 (masses)
3. Kilday, J., Palmieri, F., and Fox, M.D., "Classifying mammographic lesions using computerized image analysis", IEEE Transactions on Medical Imaging, 1993, 12: pp.664-669 (masses)
4. Shen, L., Rangayyan, R.M., and Desautels, J.E.L., "Application of shape analysis to mammographic calcifications", IEEE Transactions on Medical Imaging, 1994, 13: pp.263-274 (calcifications)

Contour-based Shape Representation \& Description

- Object boundaries must be expressed in some mathematical form:
- Rectangular (Cartesian) coordinates
- Polar coordinates (in which boundary elements are represented as pairs of angle ϕ and distance r.

Fractal Dimension

- The fractal dimension is the rate at which the perimeter of an object increases as the measurement scale is reduced.
- The fractal dimension produces a single numeric value that summarizes the irregularity of "roughness" of the feature boundary

Fractal Dimension

- Richardson dimension
- Counting the number of strides needed to "walk" along the boundary, as a function of stride length. number of steps \times stride-length $=$ perimeter measurement
- As the stride length is reduced, the path follows more of the local irregularities of the boundary and the measured parameter increases.
- The result, plotted on log-log axes is a straight line whose slope gives the fractal dimension.

Mammogram Features

- Shape descriptors can be used to characterise features extracted from mammograms.

Cell Image Features

- When dealing with images containing numerous objects, such as histological or cytological cell images, shape descriptors are calculated for all the individual cells.
- Global shape measures can be calculated from the individual image descriptors:
- Standard deviation \rightarrow area, short-axis, longaxis, perimeter, circularity,
- Mean \rightarrow compactness, elongation, perimeter, area

Profile

- The profile of a binary image analyses the binary image in terms of its projections.
- Projections can be vertical, horizontal, diagonal, circular, radial, spiral.
e.g. used in determining a region of highest density
- A profile is the sum of the pixel values in a specified direction

Signature Analysis

- A signature is a one-dimensional representation of the boundary.
- Computing the distance from the centroid of an object to the boundary as a function of angle from $0^{\circ} \rightarrow 360^{\circ}$ in any chosen increment.
- Harmonic analysis, or shape un

- The plot repeats every 2π

Hough Transform

- The Hough transform is a global technique that finds the occurrence of objects of a predefined shape.
- Used to identify shapes within a binary image containing disconnected points.
- A cluster of such points may assume the shape of a line, a circle etc.
- The central idea of the Hough transform is to represent a line made up of many pixels by a single peak in parametric space \rightarrow the accumulator array

Hough Transform

- This single peak has coordinate values in the accumulator array of two parameters necessary to describe the line, such as slope and intersect.
- Permits the detection of parametric curves
- e.g. circles, straight lines, ellipses, spheres, ellipsoids etc.

Hough Transform

- Consider the parametric representation of a line:

$$
y=m x+c
$$

- In parameter space (m,c), any straight line in image space is represented by a single point.
- Any line that passes through a point (p, q) in image space corresponds to the line $c=-m p+q$ in parameter space.

Hough Transform

- To detect straight lines in an image:
- Quantise the parameter space (m, c) and create an accumulator array (each dimension in the array corresponds to one of the parameters).
- For every " 1 " pixel ($\left(x_{i}, y_{i}\right)$ in the binary image calculate $\mathrm{c}=-\mathrm{mx}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}$ for every value of the parameter m and increment the value of the entry (m, c) in the accumulator array by one.

Hough Transform

- This model is inadequate for representing vertical lines, a case for which m approaches infinity. To address this problem the normal representation of a line can be used:

$$
r=x \cos \theta+y \sin \theta
$$

- This equation describes a line having orientation θ at distance r from the origin. Here, a line passing through a point $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ in the image corresponds to a sinusoidal curne $=x_{i} \cos \theta+y_{i} \sin \theta$

Hough Transform

Algorithm:

1. Quantise the parameter space \rightarrow accumulator array
2. Initialise all the cells in the accumulator array to zero.
3. For each point (x, y) in the image space, increment by 1 each of the accumulators that satisfy the equation.
4. Maxima in the accumulator array correspond to the parameters in the model.

Hough Transform:
 Finding the Boundary of the Pectoral Muscle

Terminology

- A line joining any two points on the boundary of an object is known as a chord.

Fourier Descriptors

- Staib, L.H., Duncan, J.S., "Boundary fitting with parametrically deformable models", IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(11): pp.1061-1075

