252-0538-00L, Spring 2018

Shape Modeling and Geometry Processing

Discrete Differential Geometry

3/8/2018

Formalize geometric properties of shapes

Formalize geometric properties of shapes Smoothness

Formalize geometric properties of shapes Smoothness Deformation

Roi Poranne

ETHzürich

Formalize geometric properties of shapes **Smoothness** Deformation **Mappings**

3/8/2018

Roi Poranne

ETH zürich

Geometry of manifolds Things that can be explored locally point + neighborhood

#10

Geometry of manifolds Things that can be explored locally point + neighborhood

#11

Geometry of manifolds Things that can be explored locally point + neighborhood

Geometry of manifolds Things that can be explored locally point + neighborhood

If a sufficiently smooth mapping can be constructed, we can look at its first and second derivatives

Tangents, normals, curvatures, curve angles

Distances, topology

Differential Geometry of Curves

3/8/2018

Arc Length Parameterization

Same curve has many parameterizations! Arc-length: equal speed of the parameter along the curve

$$L(\gamma(t_1), \gamma(t_2)) = |t_1 - t_2|$$

#20

Secant

A line through two points on the curve.

Secant

A line through two points on the curve.

Secant

A line through two points on the curve.

Tangent

A line through two points on the curve.

Tangent

The limit secant as two points come together.

Secant and Tangent

Secant: line through p(P) - p(Q)Tangent: $\gamma'(P) = (x'(P), y'(P), ...)^T$

Arc Length Parameterization

Same curve has many parameterizations! Arc-length: equal speed of the parameter along the curve

$$L(\gamma(t_1), \gamma(t_2)) = |t_1 - t_2|$$

 $||\gamma'(t)|| =$

Arc Length Parameterization

Same curve has many parameterizations! Arc-length: equal speed of the parameter along the curve

 $L(\gamma)$ What it $\gamma(t)$ is not arc length?

 $\|\gamma'(t)\| =$

Arc Length Parameterization Re

Curve Reparamterization

 $\gamma(t) \longrightarrow \gamma(p(t))$ $p: [t_0, t_1] \rightarrow [t_0, t_1]$ $p'(t) \neq 0$ Arc length reparamterization $\|\gamma'(p(t))\| = 1$

Arc Length Parameterization Re

Arc length reparamterization

$$\left\|\gamma'(p(t))\right\| = 1$$

Let

$$q(t) = \int_{t0}^{t} ||\gamma'(t)||$$
Then

$$p(t) = q^{-1}(t)$$

ETHzürich

Tangent, normal, curvature

Curvature

Circle through three points on the curve

Curvature

The limit circle as points come together.

Curvature

The limit circle as points come together.

Signed Curvature

Gauss map $\hat{n}(t)$

Point on curve maps to point on unit circle.

Curvature = change in normal direction

Absolute curvature (assuming arc length)

$$\kappa = \|\mathbf{\hat{n}}'(t)\|$$

via the Gauss map

3/8/2018

Roi Poranne

#37

Curvature Normal

Assume t is arc-length parameter

Curvature Normal

Assume t is arc-length parameter

$$\mathbf{p}''(t) = \kappa \hat{\mathbf{n}}(t)$$

Turning Number, k

Turning Number, k

Turning Number Theorem

 $\int \kappa \, dt = 2\pi k$

For a closed curve, the integral of curvature is an integer multiple of 2π .

Discrete Planar Curves

ETH zürich

Discrete Planar Curves

Piecewise linear curves Not smooth at vertices Can't take derivatives

Goal :Generalize notions From the smooth world for the discrete case

There is no one single way!

Sampling

Connection between discrete and smooth Finite number of vertices each lying on the curve, connected by straight edges.

#45

The Length of a Discrete Curve

$$len(p) = \sum_{i=1}^{n-1} \|\mathbf{p}_{i+1} - \mathbf{p}_i\|$$

Sum of edge lengths

The Length of a Continuous Curve

limit over a refinement sequence

Tangents, Normals On edges tangent is the unit vector along edge normal is the perpendicular vector

Many options...

Many options...

Average the adjacent edge normals

Many options...

Average the adjacent edge normals Weighting by edge lengths

Many options...

Average the adjacent edge normals Weighting by edge lengths

Many options...

Average the adjacent edge normals Weighting by edge lengths

$$\hat{\mathbf{n}}_{v} = \frac{|e_{1}|\hat{\mathbf{n}}_{e_{1}} + |e_{2}|\hat{\mathbf{n}}_{e_{2}}}{\||e_{1}|\hat{\mathbf{n}}_{e_{1}} + |e_{2}|\hat{\mathbf{n}}_{e_{2}}\|}$$

ETH zürich

Again: change in normal direction

no change along each edge curvature is zero along edges

Again: change in normal direction

no change along each edge curvature is zero along edges

3/8/2018

Again: change in normal direction

normal changes at vertices - record the turning angle!

Again: change in normal direction

normal changes at vertices - record the turning angle!

3/8/2018

Again: change in normal direction

normal changes at vertices - record the turning angle!

3/8/2018

Again: change in normal direction

same as the turning angle between the edges

Zero along the edges Turning angle at the vertices = the change in normal direction

ETHzürich

Total Signed Curvature

Sum of turning angles

Discrete Gauss Map

Edges map to points, vertices map to arcs.

Discrete Gauss Map

Turning number well defined for discrete curves.

Discrete Turning Number Theorem

$$\operatorname{tsc}(p) = \sum_{i=1}^{n} \alpha_i = 2\pi k$$

For a closed curve, the total signed curvature is an integer multiple of 2π . proof: sum of exterior angles

Turning Number Theorem

Cannot view α_i as pointwise curvature

It is *integrated curvature* over a local area associated with vertex *i*

Integrated over a local area associated with vertex *i*

$$\alpha_1 = A_1 \cdot \kappa_1$$

#68

Integrated over a local area associated with vertex *i*

$$\alpha_1 = A_1 \cdot \kappa_1$$
$$\alpha_2 = A_2 \cdot \kappa_2$$

Integrated over a local area associated with vertex *i*

$$\alpha_1 = A_1 \cdot \kappa_1$$

$$\alpha_2 = A_2 \cdot \kappa_2$$

$$\sum A_i = \operatorname{len}(p)$$

The vertex areas A_i form a covering of the curve. They are pairwise disjoint (except endpoints).

Discrete analogues

- Arbitrary discrete curve
 - total signed curvature obeys discrete turning number theorem
 - even coarse mesh (curve)
 - which continuous theorems to preserve?
 - that depends on the application...

Convergence

- length of sampled polygon approaches length of smooth curve
- in general, discrete measures approaches continuous analogues
- How to refine?
 - depends on discrete operator
 - pathological sequences may exist
 - in what sense does the operator converge? (pointwise, L₂; linear, quadratic)

Differential Geometry of Surfaces

3/8/2018

Surfaces, Parametric Form

Continuous surface

$$\mathbf{p}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}, \ (u,v) \in \mathbb{R}^2$$

Tangent plane at point $\mathbf{p}(u,v)$ is spanned by

$$\mathbf{p}_u = \frac{\partial \mathbf{p}(u, v)}{\partial u}, \quad \mathbf{p}_v = \frac{\partial \mathbf{p}(u, v)}{\partial v}$$

These vectors don't have to be orthogonal

 \mathbf{p}_{u}

Isoparametric Lines

Lines on the surface when keeping one parameter fixed

 $\gamma_{u_0}(v) = \mathbf{p}(u_0, v)$ $\gamma_{u_0}(u) = \mathbf{p}(u, v_0)$

Surfaces, Parametric Form

Continuous surface

$$\mathbf{p}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}, \ (u,v) \in \mathbb{R}^2$$

Tangent plane at point $\mathbf{p}(u,v)$ is spanned by

$$\mathbf{p}_u = \frac{\partial \mathbf{p}(u, v)}{\partial u}, \quad \mathbf{p}_v = \frac{\partial \mathbf{p}(u, v)}{\partial v}$$

These vectors don't have to be orthogonal

Surface Normals

Surface normal:

$$\mathbf{n}(u,v) = \frac{\mathbf{p}_u \times \mathbf{p}_v}{\|\mathbf{p}_u \times \mathbf{p}_v\|}$$

Surface Normals

Surface normal:

$$\mathbf{n}(u,v) = \frac{\mathbf{p}_u \times \mathbf{p}_v}{\|\mathbf{p}_u \times \mathbf{p}_v\|}$$

$$\mathbf{p}_u \times \mathbf{p}_v \neq 0$$

Regular parameterization

Normal Curvature

Normal Curvature

Normal Curvature

The curve γ is the intersection of the surface with the plane through \mathbf{n} and \mathbf{t} .

Normal curvature:

$$\kappa_n(\varphi) = \kappa(\gamma(\mathbf{p}))$$

Surface Curvatures

Principal curvatures

- Minimal curvature $\kappa_1 = \kappa_{\min} = \min \kappa_n(\varphi)$
- Maximal curvature $\kappa_2 = \kappa_{\max} = \max_{\varphi} \kappa_n(\varphi)$

• Mean curvature
$$H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2\pi} \int_0^{2\pi} \kappa_n(\varphi) d\varphi$$

• Gaussian curvature $K = \kappa_1 \cdot \kappa_2$

Principal directions: tangent vectors corresponding to φ_{max} and φ_{min}

What can we say about the principal directions?

min curvature

max curvature

Euler's Theorem: Principal directions are orthogonal.

$$\kappa_n(\varphi) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi$$

Mean Curvature

Gaussian Curvature

Classification $K = \kappa_1 \cdot \kappa_2$

A point \mathbf{p} on the surface is called

- Elliptic, if K > 0
- Parabolic, if K = 0
- Hyperbolic, if K < 0

Developable surface iff K = 0

Local Surface Shape By Curvatures

Theorema Egregium

"Remarkable theorem"

Reminder: Euler-Poincaré Formula

For orientable meshes:

$$v - e + f = 2(c - g) - b = \chi(M)$$

c = number of connected components

$$g = genus$$

b = number of boundary loops

$$\chi(\bigcirc) = 2 \quad \chi(\bigcirc) = 0$$

Gauss-Bonnet Theorem

For a closed surface *M*:

$$\int_{\mathcal{M}} K \, dA = 2\pi \, \chi(\mathcal{M})$$

$$\int K(\mathbf{v}) = \int K(\mathbf{v}) = \int K(\mathbf{v}) = 4\pi$$

Gauss-Bonnet Theorem

For a closed surface *M*:

$$\int_{\mathcal{M}} K \, dA = 2\pi \, \chi(\mathcal{M})$$

Compare with planar curves:

$$\int_{\gamma} \kappa \, ds = 2\pi \, k$$

Fundamental Forms

First fundamental form

$$\mathbf{I} = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \mathbf{p}_u^T \mathbf{p}_u & \mathbf{p}_u^T \mathbf{p}_v \\ \mathbf{p}_u^T \mathbf{p}_v & \mathbf{p}_v^T \mathbf{p}_v \end{pmatrix}$$

Fundamental Forms

I is a generalization of the dot product allows to measure length, angles, area, curvature arc element

$$ds^2 = E \, du^2 + 2F \, du dv + G \, dv^2$$

area element

$$dA = \sqrt{EG - F^2} \, du dv$$

Intrinsic Geometry

Properties of the surface that only depend on the first fundamental form

- length
- angles
- Gaussian curvature (Theorema Egregium)

Fundamental Forms

First fundamental form

$$\mathbf{I} = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \mathbf{p}_u^T \mathbf{p}_u & \mathbf{p}_u^T \mathbf{p}_v \\ \mathbf{p}_u^T \mathbf{p}_v & \mathbf{p}_v^T \mathbf{p}_v \end{pmatrix}$$

Second fundamental form

$$\mathbf{II} = \begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} \mathbf{p}_{uu}^T \mathbf{n} & \mathbf{p}_{uv}^T \mathbf{n} \\ \mathbf{p}_{uv}^T \mathbf{n} & \mathbf{p}_{vv}^T \mathbf{n} \end{pmatrix}$$

Together, they define a surface (if some compatibility conditions hold)

Laplace-Beltrami Operator

Extension of Laplace to functions on manifolds

$$f: \mathcal{M} \to \mathbb{R} \qquad \Delta f: \mathcal{M} \to \mathbb{R}$$

Laplace-Beltrami Operator

For coordinate functions: $\mathbf{p}(x, y, z) = (x, y, z)$

Differential Geometry on Meshes

Assumption: meshes are piecewise linear approximations of smooth surfaces

Can try fitting a smooth surface locally (say, a polynomial) and find differential quantities analytically

But: it is often too slow for interactive setting and error prone

Discrete Differential Operators

Approach: approximate differential properties at point \mathbf{v} as spatial average over local mesh neighborhood $N(\mathbf{v})$ where typically

- v = mesh vertex
- $N_k(\mathbf{v}) = k$ -ring neighborhood

 $\Delta_{\mathcal{M}}\mathbf{p} = -2H\mathbf{n}$

Uniform discretization: $L(\mathbf{v})$ or $\Delta \mathbf{v}$

$$L_u(\mathbf{v}_i) = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} (\mathbf{v}_j - \mathbf{v}_i) = \left(\frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \mathbf{v}_j\right) - \mathbf{v}_i$$

Depends only on connectivity = simple and efficient

Bad approximation for irregular triangulations

$\Delta_{\mathcal{M}}\mathbf{p} = -2H\mathbf{n}$ Intuition for uniform discretization

$$H = \frac{1}{2\pi} \int_0^{2\pi} \kappa(\varphi) d\varphi$$

$$\kappa \mathbf{n} = \gamma''$$

$\Delta_{\mathcal{M}}\mathbf{p} = -2H\mathbf{n}$ Intuition for uniform discretization

 $-2H\mathbf{n} = \gamma'' 2 \approx \left(\frac{1}{h2\pi} \left(\frac{\mathbf{v}_{i+1}^{2\pi} - \mathbf{v}_{i}}{\int_{0}^{2\pi} h^{\kappa}(\varphi)} d\varphi\right) - \frac{\mathbf{v}_{i-1}}{h} \right) \frac{1}{\pi} \int_{0}^{2\pi} \kappa(\varphi) \mathbf{n} \, d\varphi = -\frac{1}{\pi} \int_{0}^{2\pi} \gamma'' \, d\varphi$

T7

$\Delta_{\mathcal{M}}\mathbf{p} = -2H\mathbf{n}$ Intuition for uniform discretization

$$H = \frac{1}{2\pi} \int_0^{2\pi} \kappa(\varphi) d\varphi$$

$$\mathbf{v}_{j6} \qquad \mathbf{v}_{j4} \qquad \mathbf{v}_{j3} \\ \frac{1}{2} (\mathbf{v}_{j1} + \mathbf{v}_{j4}) - \mathbf{v}_i + \\ \frac{1}{2} (\mathbf{v}_{j2} + \mathbf{v}_{j5}) - \mathbf{v}_i + \\ \frac{1}{2} (\mathbf{v}_{j3} + \mathbf{v}_{j6}) - \mathbf{v}_i = \underbrace{\underline{L}_u(\mathbf{v}_i)}_{j \in \mathcal{N}(i)} \\ = \frac{1}{2} \sum_{j \in \mathcal{N}(i)} \mathbf{v}_j - 3\mathbf{v}_i = 3 \left(\frac{1}{6} \sum_{j \in \mathcal{N}(i)} \mathbf{v}_j - \mathbf{v}_i \right)$$

Cotangent formula

$$L_c(\mathbf{v}_i) = \frac{1}{A_i} \sum_{j \in \mathcal{N}(i)} \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{v}_j - \mathbf{v}_i)$$

Cotangent formula

$$L_c(\mathbf{v}_i) = \frac{1}{A_i} \sum_{j \in \mathcal{N}(i)} \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{v}_j - \mathbf{v}_i)$$

Accounts for mesh geometry Potentially negative/ infinite weights

Cotangent formula

$$L_c(\mathbf{v}_i) = \frac{1}{A_i} \sum_{j \in \mathcal{N}(i)} \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{v}_j - \mathbf{v}_i)$$

Can be derived using linear Finite Elements Nice property: gives zero for planar 1-rings!

- Uniform Laplacian $L_u(v_i)$
- Cotangent Laplacian $L_c(v_i)$
- Normal

- Uniform Laplacian $\mathbf{L}_{u}(\mathbf{v}_{i})$
- Cotangent Laplacian $L_c(v_i)$

• Normal

 For nearly equal edge lengths Uniform ≈ Cotangent

112

- Uniform Laplacian $L_u(v_i)$
- Cotangent Laplacian $L_c(v_i)$

• Normal

 For nearly equal edge lengths Uniform ≈ Cotangent

Cotan Laplacian allows computing discrete normal

Discrete Curvatures

Mean curvature

$$|H(\mathbf{v}_i)| = ||L_c(\mathbf{v}_i)||/2$$

Gaussian curvature $K(\mathbf{v}_i) = \frac{1}{A_i} (2\pi - \sum_j \theta_j)$

Principal curvatures $\kappa_1 = H - \sqrt{H^2 - K}$

$$\kappa_2 = H + \sqrt{H^2 - K}$$

Discrete Gauss-Bonnet Theorem

Total Gaussian curvature is fixed for a given topology

$$\int_{\mathcal{M}} K \, dA = \, 2\pi \chi(\mathcal{M})$$

Discrete Gauss-Bonnet Theorem

Total Gaussian curvature is fixed for a given topology

 $\int_{\Lambda A} K \, dA =$

 $2\pi\chi(\mathcal{M})$

Discrete Gauss-Bonnet Theorem

Total Gaussian curvature is fixed for a given topology

$$\int_{\mathcal{M}} K \, dA = \sum_{i} A_{i} K(\mathbf{v}_{i}) = \sum_{i} \left[2\pi - \sum_{j \in \mathcal{N}(i)} \theta_{j} \right] = 2\pi \chi(\mathcal{M})$$

Example: Discrete Mean Curvature

Links and Literature

• M. Meyer, M. Desbrun, P. Schroeder, A. Barr Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, VisMath, 2002

Links and Literature

- libigl implements many discrete differential operators
- See the tutorial!
- <u>http://libigl.github.io/libigl/tut</u>
 <u>orial/tutorial.html</u>

principal directions

Thank You

3/8/2018