Shape Modeling and Geometry Processing

Discrete Differential Geometry

Differential Geometry - Motivation

Formalize geometric properties of shapes

Differential Geometry - Motivation

Formalize geometric properties of shapes Smoothness

Differential Geometry - Motivation

Formalize geometric properties of shapes
Smoothness
Deformation

ETHzürich

Differential Geometry - Motivation

Formalize geometric properties of shapes
Smoothness
Deformation

Differential Geometry Basics

Geometry of manifolds

Things that can be explored locally point + neighborhood

Differential Geometry Basics

Geometry of manifolds

Things that can be explored locally point + neighborhood

Differential Geometry Basics

Geometry of manifolds

Things that can be explored locally point + neighborhood

Differential Geometry Basics

Geometry of manifolds
 Things that can be explored locally point + neighborhood

Differential Geometry Basics

Geometry of manifolds
 Things that can be explored locally point + neighborhood

Differential Geometry Basics

Geometry of manifolds
 Things that can be explored locally point + neighborhood

Differential Geometry Basics

Geometry of manifolds

Things that can be explored locally point + neighborhood

Differential Geometry Basics

Geometry of manifolds

Things that can be explored locally point + neighborhood

Differential Geometry Basics

Geometry of manifolds

Things that can be explored locally
point + neighborhood

If a sufficiently smooth mapping can be constructed, we can look at its first and second derivatives

Tangents, normals, curvatures, curve angles

Distances, topology

Differential Geometry of Curves

Planar Curves

$$
\gamma(t)=\binom{x(t)}{y(t)}, t \in\left[t_{0}, t_{1}\right]
$$

EПHzürich

Planar Curves

$$
\begin{gathered}
\gamma(t)=\binom{x(t)}{y(t)}, t \in\left[t_{0}, t_{1}\right] \\
t_{0}
\end{gathered}
$$

Planar Curves

$$
\begin{gathered}
\gamma(t)=\binom{x(t)}{y(t)}, t \in\left[t_{0}, t_{1}\right] \\
t_{0}
\end{gathered}
$$

$$
\gamma(t)=\binom{t}{t^{2}}
$$

ETHzürich

Planar Curves

$$
\begin{gathered}
\gamma(t)=\binom{x(t)}{y(t)}, t \in\left[t_{0}, t_{1}\right] \\
\gamma(t)=\binom{t}{t^{2}} \quad \gamma(t)=\binom{t^{2}}{t^{4}}
\end{gathered}
$$

ETHzürich

Arc Length Parameterization

Same curve has many parameterizations! Arc-length: equal speed of the parameter along the curve

$$
L\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right|
$$

Secant

A line through two points on the curve.

Secant

A line through two points on the curve.

Secant

A line through two points on the curve.

Tangent

A line through two points on the curve.

Tangent

The limit secant as two points come together.

Secant and Tangent

Secant: line through $\boldsymbol{p}(P)-\boldsymbol{p}(Q)$
Tangent: $\gamma^{\prime}(P)=\left(x^{\prime}(P), y^{\prime}(P), \ldots\right)^{T}$

Arc Length Parameterization

Same curve has many parameterizations! Arc-length: equal speed of the parameter along the curve

$$
\begin{aligned}
& L\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right| \\
& \left\|\gamma^{\prime}(t)\right\|=
\end{aligned}
$$

Arc Length Parameterization

Same curve has many parameterizations!
Arc-length: equal speed of
the parameter along the curve
$L(\gamma$ What it $\gamma(t)$ is not arc length?
$\left\|\gamma^{\prime}(t)\right\|=$

Arc Length,Parameterization Re

Curve Reparamterization

$$
\gamma(t) \Longrightarrow \underset{\substack{ \\p:\left[t_{0}, t_{1}\right] \rightarrow\left[t_{0}, t_{1}\right] \\ p^{\prime}(t) \neq 0}}{\gamma(p(t))}
$$

Arc length reparamterization

$$
\left\|\gamma^{\prime}(p(t))\right\|=1
$$

Arc Length,Parameterization Re

Arc length reparamterization

$$
\left\|\gamma^{\prime}(p(t))\right\|=1
$$

Let

$$
q(t)=\int_{t 0}^{t}\left\|\gamma^{\prime}(t)\right\|
$$

Then

$$
p(t)=q^{-1}(t)
$$

ETHzürich

Tangent, normal, curvature

Osculating circle

Curvature

Circle through three points on the curve

Curvature

The limit circle as points come together.

Curvature

The limit circle as points come together.

Signed Curvature

Curving left or right

EПHzürich

Gauss map $\hat{n}(t)$

Point on curve maps to point on unit circle.

$$
\hat{n}(t) \rightarrow \mathrm{S}^{1}
$$

Curvature = change in normal direction

Absolute curvature (assuming arc length)

$$
\kappa=\left\|\hat{\mathbf{n}}^{\prime}(t)\right\|
$$

via the Gauss map

Curvature Normal

Assume t is arc-length parameter

$$
\mathbf{p}^{\prime \prime}(t)=\kappa \hat{\mathbf{n}}(t)
$$

"A multiresolution framework for variational subdivision", Kobbelt and Schröder, ACM TOG 17(4), 1998

Curvature Normal

Assume t is arc-length parameter

$$
\mathbf{p}^{\prime \prime}(t)=\kappa \hat{\mathbf{n}}(t)
$$

Turning Number, k

Turning Number, k

ETHzürich

Turning Number Theorem

$$
\int_{\gamma} \kappa d t=2 \pi k
$$

For a closed curve,
the integral of curvature is an integer multiple of 2π.

Discrete Planar Curves

Discrete Planar Curves

Piecewise linear curves
Not smooth at vertices
Can't take derivatives

Goal :Generalize notions
From the smooth world for the discrete case

There is no one single way!

ETHzürich

Sampling

Connection between discrete and smooth Finite number of vertices each lying on the curve, connected by straight edges.

The Length of a Discrete Curve

$$
\operatorname{len}(p)=\sum_{i=1}^{n-1}\left\|\mathbf{p}_{i+1}-\mathbf{p}_{i}\right\|
$$

Sum of edge lengths

EПHzürich

The Length of a Continuous Curve

limit over a refinement sequence
$\lim _{h \rightarrow 0} \operatorname{len}(p)$

EПHzürich

Tangents, Normals

 On edgestangent is the unit vector along edge normal is the perpendicular vector

Tangents, Normals On vertices

Many options...

Tangents, Normals On vertices

Many options...
Average the adjacent edge normals

$$
\hat{\mathbf{n}}_{v}=\frac{\hat{\mathbf{n}}_{e_{1}}+\hat{\mathbf{n}}_{e_{2}}}{\left\|\hat{\mathbf{n}}_{e_{1}}+\hat{\mathbf{n}}_{e_{2}}\right\|}
$$

Tangents, Normals

On vertices

Many options...
Average the adjacent edge normals
Weighting by edge lengths

$$
\hat{\mathbf{n}}_{v}=\frac{\hat{\mathbf{n}}_{e_{1}}+\hat{\mathbf{n}}_{e_{2}}}{\left\|\hat{\mathbf{n}}_{e_{1}}+\hat{\mathbf{n}}_{e_{2}}\right\|}
$$

Tangents, Normals

On vertices

Many options...
Average the adjacent edge normals
Weighting by edge lengths

Tangents, Normals

On vertices

Many options...
Average the adjacent edge normals
Weighting by edge lengths

$$
\hat{\mathbf{n}}_{v}=\frac{\left|e_{1}\right| \hat{\mathbf{n}}_{e_{1}}+\left|e_{2}\right| \hat{\mathbf{n}}_{e_{2}}}{\left\|\left|e_{1}\right| \hat{\mathbf{n}}_{e_{1}}+\left|e_{2}\right| \hat{\mathbf{n}}_{e_{2}}\right\|}
$$

Curvature of a Discrete Curve

Again: change in normal direction

no change along each edge curvature is zero along edges

Curvature of a Discrete Curve

Again: change in normal direction

no change along each edge -
curvature is zero along edges

Curvature of a Discrete Curve

Again: change in normal direction

normal changes at vertices -
record the turning angle!

Curvature of a Discrete Curve

Again: change in normal direction

normal changes at vertices record the turning angle!

Curvature of a Discrete Curve

Again: change in normal direction

normal changes at vertices -
record the turning angle!

Curvature of a Discrete Curve

Again: change in normal direction

same as the turning angle between the edges

Curvature of a Discrete Curve

Zero along the edges
Turning angle at the vertices
= the change in normal direction

ETHzürich

Total Signed Curvature

$$
\operatorname{tsc}(p)=\sum_{i=1}^{n} \alpha_{i}
$$

Sum of turning angles

EПHzürich

Discrete Gauss Map

Edges map to points, vertices map to arcs.

Discrete Gauss Map

Turning number well defined for discrete curves.

Discrete Turning Number Theorem

$$
\operatorname{tsc}(p)=\sum_{i=1}^{n} \alpha_{i}=2 \pi k
$$

For a closed curve, the total signed curvature is an integer multiple of 2π.
proof: sum of exterior angles

ETHzürich

Turning Number Theorem

Curvature is scale dependent

$$
\kappa=\frac{1}{r}
$$

α_{i} is scale-independent

Discrete Curvature - Integrated Quantity!

Cannot view α_{i} as pointwise curvature

It is integrated
curvature over a local area associated with
 vertex i

Discrete Curvature - Integrated Quantity!

Integrated over a local area associated with vertex i

$$
\alpha_{1}=A_{1} \cdot \kappa_{1}
$$

Discrete Curvature - Integrated Quantity!

Integrated over a local area associated with vertex i

$$
\begin{aligned}
& \alpha_{1}=A_{1} \cdot \kappa_{1} \\
& \alpha_{2}=A_{2} \cdot \kappa_{2}
\end{aligned}
$$

Discrete Curvature - Integrated Quantity!

Integrated over a local area associated with vertex i

$$
\begin{aligned}
& \alpha_{1}=A_{1} \cdot \kappa_{1} \\
& \alpha_{2}=A_{2} \cdot \kappa_{2} \\
& \sum A_{i}=\operatorname{len}(p)
\end{aligned}
$$

The vertex areas A_{i} form a covering of the curve.
They are pairwise disjoint (except endpoints).

Discrete analogues

- Arbitrary discrete curve
- total signed curvature obeys discrete turning number theorem
- even coarse mesh (curve)
- which continuous theorems to preserve?
- that depends on the application...

Convergence

- length of sampled polygon approaches length of smooth curve
- in general, discrete measures approaches continuous analogues
- How to refine?
- depends on discrete operator
- pathological sequences may exist
- in what sense does the operator converge?
(pointwise, L_{2}; linear, quadratic)

Differential Geometry of Surfaces

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Surfaces, Parametric Form

Continuous surface

$$
\mathbf{p}(u, v)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right),(u, v) \in \mathbb{R}^{2}
$$

Tangent plane at point $\mathbf{p}(u, v)$ is spanned by

$$
\mathbf{p}_{u}=\frac{\partial \mathbf{p}(u, v)}{\partial u}, \quad \mathbf{p}_{v}=\frac{\partial \mathbf{p}(u, v)}{\partial v}
$$

These vectors don't have to be orthogonal

Isoparametric Lines

Lines on the surface when keeping one parameter fixed

$$
\begin{aligned}
& \gamma_{u_{0}}(v)=\mathbf{p}\left(u_{0}, v\right) \\
& \gamma_{u_{0}}(u)=\mathbf{p}\left(u, v_{0}\right)
\end{aligned}
$$

Surfaces, Parametric Form

Continuous surface

$$
\mathbf{p}(u, v)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right),(u, v) \in \mathbb{R}^{2}
$$

Tangent plane at point $\mathbf{p}(u, v)$ is spanned by

$$
\mathbf{p}_{u}=\frac{\partial \mathbf{p}(u, v)}{\partial u}, \quad \mathbf{p}_{v}=\frac{\partial \mathbf{p}(u, v)}{\partial v}
$$

These vectors don't have to be orthogonal

Surface Normals

Surface normal:

$$
\mathbf{n}(u, v)=\frac{\mathbf{p}_{u} \times \mathbf{p}_{v}}{\left\|\mathbf{p}_{u} \times \mathbf{p}_{v}\right\|}
$$

Surface Normals

Surface normal:

$$
\begin{gathered}
\mathbf{n}(u, v)=\frac{\mathbf{p}_{u} \times \mathbf{p}_{v}}{\left\|\mathbf{p}_{u} \times \mathbf{p}_{v}\right\|} \\
\mathbf{p}_{u} \times \mathbf{p}_{v} \neq 0
\end{gathered}
$$

Regular parameterization

Normal Curvature

Normal Curvature

Normal Curvature

The curve γ is the intersection of the surface with the plane through \mathbf{n} and \mathbf{t}.

Normal curvature:

$$
\kappa_{n}(\varphi)=\kappa(\gamma(\mathbf{p}))
$$

Surface Curvatures

Principal curvatures

- Minimal curvature $\kappa_{1}=\kappa_{\text {min }}=\min _{\varphi} \kappa_{n}(\varphi)$
- Maximal curvature $\kappa_{2}=\kappa_{\text {max }}=\max _{\varphi} \kappa_{n}(\varphi)$
- Mean curvature $H=\frac{\kappa_{1}+\kappa_{2}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa_{n}(\varphi) d \varphi$

Gaussian curvature $K=\kappa_{1} \cdot \kappa_{2}$

Principal Directions

Principal directions: tangent vectors corresponding to $\varphi_{\max }$ and $\varphi_{\text {min }}$

Principal Directions

Principal directions:

 tangent vectors corresponding toWhat can we say about the principal directions?

Principal Directions

Euler's Theorem: Principal directions are orthogonal.

$$
\kappa_{n}(\varphi)=\kappa_{1} \cos ^{2} \varphi+\kappa_{2} \sin ^{2} \varphi
$$

Principal Directions

ETHzürich

Mean Curvature

$$
H=\frac{\kappa_{1}+\kappa_{2}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa_{n}(\varphi) d \varphi
$$

Gaussian Curvature

Classification

$$
K=\kappa_{1} \cdot \kappa_{2}
$$

A point \mathbf{p} on the surface is called

- Elliptic, if $K>0$
- Parabolic, if $K=0$
- Hyperbolic, if $K<0$

Developable surface iff $K=0$

Local Surface Shape By Curvatures

$$
K>0 \quad K=0 \quad K<0
$$

Anisotropic: 2 distinct principal directions

Theorema Egregium

"Remarkable theorem"

$$
K=\lim _{r \rightarrow 0^{+}} 3 \frac{2 \pi r-C(r)}{\pi r^{3}}
$$

Reminder: Euler-Poincaré Formula

For orientable meshes:

$$
\begin{aligned}
& v-e+f=2(c-g)-b=\chi(M) \\
c & =\text { number of connected components } \\
g= & \text { genus } \\
b= & \text { number of boundary loops }
\end{aligned}
$$

Gauss-Bonnet Theorem

For a closed surface M :

$$
\begin{array}{r}
\int_{\mathcal{M}} K d A=2 \pi \chi(\mathcal{M}) \\
\int K(\square)=\int K\left(\int_{\mathcal{M}}^{2}\right)=\int K(\square)=4 \pi
\end{array}
$$

Gauss-Bonnet Theorem

For a closed surface M :

$$
\int_{\mathcal{M}} K d A=2 \pi \chi(\mathcal{M})
$$

Compare with planar curves:

$$
\int_{\gamma} \kappa d s=2 \pi k
$$

Fundamental Forms

First fundamental form

$$
\mathbf{I}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{p}_{u}^{T} \mathbf{p}_{u} & \mathbf{p}_{u}^{T} \mathbf{p}_{v} \\
\mathbf{p}_{u}^{T} \mathbf{p}_{v} & \mathbf{p}_{v}^{T} \mathbf{p}_{v}
\end{array}\right)
$$

Fundamental Forms

I is a generalization of the dot product allows to measure
length, angles, area, curvature arc element

$$
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}
$$

area element

$$
d A=\sqrt{E G-F^{2}} d u d v
$$

Intrinsic Geometry

Properties of the surface that only depend on the first fundamental form
length
angles
Gaussian curvature (Theorema Egregium)

Fundamental Forms

First fundamental form

$$
\mathbf{I}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{p}_{u}^{T} \mathbf{p}_{u} & \mathbf{p}_{u}^{T} \mathbf{p}_{v} \\
\mathbf{p}_{u}^{T} \mathbf{p}_{v} & \mathbf{p}_{v}^{T} \mathbf{p}_{v}
\end{array}\right)
$$

Second fundamental form

$$
\mathbf{I I}=\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{p}_{u u n}^{T} \mathbf{n} & \mathbf{p}_{u v}^{T} \mathbf{n} \\
\mathbf{p}_{u v}^{T} \mathbf{n} & \mathbf{p}_{v v}^{T} \mathbf{n}
\end{array}\right)
$$

Together, they define a surface (if some compatibility conditions hold)

Laplace Operator

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \Delta f: \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

Laplace
operator
function in
Euclidean space

$$
\operatorname{grad} f=\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \quad \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}
$$

Laplace-Beltrami Operator

Extension of Laplace to functions on manifolds

$$
f: \mathcal{M} \rightarrow \mathbb{R} \quad \Delta f: \mathcal{M} \rightarrow \mathbb{R}
$$

Laplace-Beltrami Operator

For coordinate functions: $\mathbf{p}(x, y, z)=(x, y, z)$

EHzzürich

Differential Geometry on Meshes

Assumption: meshes are piecewise linear approximations of smooth surfaces

Can try fitting a smooth surface locally (say, a polynomial) and find differential quantities analytically
But: it is often too slow for interactive setting and error prone

Discrete Differential Operators

Approach: approximate differential properties at point \mathbf{v} as spatial average over local mesh neighborhood $N(\mathbf{v})$ where typically

- $\mathbf{v}=$ mesh vertex
- $N_{k}(\mathbf{v})=k$-ring neighborhood

Discrete Laplace-Beltrami

$$
\Delta_{\mathcal{M}} \mathbf{p}=-2 H \mathbf{n}
$$

ETHzürich

Discrete Laplace-Beltrami

$\Delta_{\mathcal{M}} \mathbf{p}=-2 H \mathbf{n}$

Uniform discretization: $L(\mathbf{v})$ or $\Delta \mathbf{v}$

$$
L_{u}\left(\mathbf{v}_{i}\right)=\frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)}\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)=\left(\frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \mathbf{v}_{j}\right)-\mathbf{v}_{i}
$$

Depends only on connectivity
= simple and efficient
Bad approximation for irregular triangulations

Discrete Laplace-Beltrami

$\Delta_{\mathcal{M}} \mathbf{p}=-2 H \mathbf{n}$
Intuition for uniform discretization

Discrete Laplace-Beltrami

$\Delta_{\mathcal{M}} \mathbf{p}=-2 H \mathbf{n}$

Intuition for uniform discretization

$$
H=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa(\varphi) d \varphi \quad \kappa \mathbf{n}=\gamma^{\prime \prime}
$$

$-2 H \mathbf{n}=\gamma^{\prime \prime} z\left(\frac{1}{h} \frac{1}{2 \pi} \frac{\mathbf{v} \int_{0}^{2 \pi}-\mathbf{v}_{i}(\varphi) d \varphi}{h^{i}(\varphi)-\mathbf{v}_{i-1}}{ }_{h}^{=} \frac{7}{\pi} \int_{0}^{2 \pi} \kappa(\varphi) \mathbf{n} d \varphi=-\frac{1}{\pi} \int_{0}^{2 \pi} \gamma^{\prime \prime} d \varphi\right.$

Discrete Laplace-Beltrami

$\Delta_{\mathcal{M}} \mathbf{p}=-2 H \mathbf{n}$

Intuition for uniform discretization

$$
H=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa(\varphi) d \varphi
$$

Discrete Laplace-Beltrami

Cotangent formula

$$
L_{c}\left(\mathbf{v}_{i}\right)=\frac{1}{A_{i}} \sum_{j \in \mathcal{N}(i)} \frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)
$$

ETHzürich

Discrete Laplace-Beltrami

Cotangent formula

$$
L_{c}\left(\mathbf{v}_{i}\right)=\frac{1}{A_{i}} \sum_{j \in \mathcal{N}(i)} \frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)
$$

Accounts for mesh geometry
Potentially negative/ infinite weights

Discrete Laplace-Beltrami

Cotangent formula

$$
L_{c}\left(\mathbf{v}_{i}\right)=\frac{1}{A_{i}} \sum_{j \in \mathcal{N}(i)} \frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)
$$

Can be derived using linear Finite Elements
Nice property: gives zero for planar 1-rings!

Discrete Laplace-Beltrami

- Uniform Laplacian $\mathbf{L}_{u}\left(\mathbf{v}_{i}\right)$
- Cotangent Laplacian $\mathbf{L}_{c}\left(\mathbf{v}_{i}\right)$
- Normal

Discrete Laplace-Beltrami

- Uniform Laplacian $\mathbf{L}_{u}\left(\mathbf{v}_{i}\right)$
- Cotangent Laplacian $\mathbf{L}_{c}\left(\mathbf{v}_{i}\right)$
- Normal
- For nearly equal edge lengths
Uniform \approx Cotangent

Discrete Laplace-Beltrami

- Uniform Laplacian $\mathbf{L}_{u}\left(\mathbf{v}_{i}\right)$
- Cotangent Laplacian $\mathbf{L}_{c}\left(\mathbf{v}_{i}\right)$
- Normal
- For nearly equal edge lengths Uniform ~ Cotangent

Cotan Laplacian allows computing discrete normal

Discrete Curvatures

Mean curvature

$$
\left|H\left(\mathbf{v}_{i}\right)\right|=\left\|L_{c}\left(\mathbf{v}_{i}\right)\right\| / 2
$$

Gaussian curvature

$$
K\left(\mathbf{v}_{i}\right)=\frac{1}{A_{i}}\left(2 \pi-\sum_{j} \theta_{j}\right)
$$

Principal curvatures

$$
\kappa_{1}=H-\sqrt{H^{2}-K} \quad \kappa_{2}=H+\sqrt{H^{2}-K}
$$

ETHzürich

Discrete Gauss-Bonnet Theorem

Total Gaussian curvature is fixed for a given topology
$\int_{\mathcal{M}} K d A=2 \pi \chi(\mathcal{M})$

Discrete Gauss-Bonnet Theorem

Total Gaussian curvature is fixed for a given topology
$\int_{\mathcal{M}} K d A=$

Discrete Gauss-Bonnet Theorem

Total Gaussian curvature is fixed for a given topology
$\int_{\mathcal{M}} K d A=\sum_{i} A_{i} K\left(\mathbf{v}_{i}\right)=\sum_{i}\left[2 \pi-\sum_{j \in \mathcal{N}(i)} \theta_{j}\right]=2 \pi \chi(\mathcal{M})$

Example: Discrete Mean Curvature

Links and Literature

- M. Meyer, M. Desbrun, P. Schroeder, A. Barr Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, VisMath, 2002

Links and Literature

- libigl implements many discrete differential operators
- See the tutorial!
- http://libigl.github.io/libigl/tut orial/tutorial.html

Thank You

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

