
Shared Virtual Memory in KVM
Yi Liu (yi.l.liu@intel.com)

Senior Software Engineer

Intel Corporation

Legal Disclaimer

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as
any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative
to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may
cause deviations from published specifications. Current characterized errata are available on
request.

Copies of documents which have an order number and are referenced in this document may be
obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

Shared Virtual Memory (SVM)

CPU page

tables

IOMMU page

tables

Host/Physical Memory

VA IOVA

PA PA

OS

Managed

CPUs

Root Complex

IOMMU

M
M

U

Non-SVM

capable

devices

Discrete

Devices

Integrated

Devices

memory

(E.g.: Legacy

Devices)

(E.g.: PCI-E

attached devices)

(E.g.: Processor

Graphics)

CPU Device

Shared Virtual Memory (SVM)

CPU page

tables

CPU page

tables

Host/Physical Memory

VA VA

PA PA

OS

Managed

CPUs

Root Complex

IOMMU

M
M

U

Non-SVM

capable

devices

Discrete

Devices

Integrated

Devices

memory

(E.g.: Legacy

Devices)

(E.g.: PCI-E

attached devices)

(E.g.: Processor

Graphics)

CPU Device

Called Shared Virtual Addressing in Linux Community

Shared Virtual Memory (SVM)

CPU page

tables

CPU page

tables

Host/Physical Memory

GVA GVA

HPA HPA

OS

Managed

EPT tables VT-d tables
VMM

Managed

CPUs

Root Complex

IOMMU

M
M

U

Non-SVM

capable

devices

Discrete

Devices

Integrated

Devices

memory

(E.g.: Legacy

Devices)

(E.g.: PCI-E

attached devices)

(E.g.: Processor

Graphics)

GPA GPA

CPU Device

SVM on Intel® VT-d

• Process Address Space ID (PASID)
– Identify process address space

• First-level translation
– DMA requests with PASID

– For SVM transaction from endpoint device

• Second-level translation
– DMA requests without PASID

– For normal DMA transaction from endpoint device

• Translation Types
– First-Level translation

– Second-Level translation

– Nested translation

– Pass-Through (address translation bypassed)

• Intel® VT-d 3.0 introduced Scalable Mode
– SVM can be used together with Intel® Scalable I/O Virtualization

SVM on Intel® VT-d (Cont.)

• Nested Translation
– Use both first-level and second-level for address

translation

– Enable SVM in virtualization environment

• First-level: GVA->GPA

• Second-level: GPA->HPA

GPA

First Level page table Second Level page table

HPA
GVA

• Most vendor supports nested translation

for SVM usage in Virtual Machine

Enable SVM in VM

• Need a virtual IOMMU with SVM capability
– Proper emulation according to IOMMU spec (e.g. Intel® VT-d

specification)

• either fully-emulated or virtio-based IOMMU

• Notification for guest translation structure
changes

– Notification mechanism is vendor specific

– For Intel® VT-d

• “caching-mode”: explicit cache invalidation is required for
any translation structure change in software

• Enable nested translation on physical IOMMU for
given PASID

Enable SVM in VM (Cont.)

Guest VT-d

Host VT-d

RTAR

1st level translation (i.e. CPU page tables)

2nd level translation (i.e. VT-d tables)

...

PASID Table

PASID Table

SVM in VM based on Intel® VT-d

Translation

structure

RTAR

...

Translation

structure

Enable SVM in VM (Cont.)

Guest VT-d

Host VT-d

RTAR

1st level translation (i.e. CPU page tables)

2nd level translation (i.e. VT-d tables)

...

PASID Table

PASID Table

Save guest cpu page table pointer to host

SVM in VM based on Intel® VT-d

Translation

structure

RTAR

...

Translation

structure

Enable SVM in VM (Cont.)

Guest VT-d

Host VT-d

RTAR

1st level translation (i.e. CPU page tables)

2nd level translation (i.e. VT-d tables)

...

PASID Table

PASID Table

Save guest cpu page table pointer to host

SVM in VM based on Intel® VT-d

Translation

structure

RTAR

...

Translation

structure

In nested
translation,

hardware treats
1st-level page

table pointer as
GPA

Enable SVM in VM (Cont.)

Guest VT-d

Host VT-d

RTAR

1st level translation (i.e. CPU page tables)

GVA -> GPA

GPA -> HPA

2nd level translation (i.e. VT-d tables)

...

PASID Table

PASID Table

Save guest cpu page table pointer to host

SVM in VM based on Intel® VT-d

Translation

structure

RTAR

...

Translation

structure

Nested
Translation

Shared Virtual Memory in KVM

• Qemu
– vIOMMU emulation is in Qemu

• VFIO: Virtual Function I/O
– Program host IOMMU via VFIO

• IOMMU driver
– New APIs exposed to VFIO for

guest SVM

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

IOMMU

Qemu

vIOMMU

Shared Virtual Memory in KVM

• Bind PASID to guest

CPU page table
Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

Translation Cache

Invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

Shared Virtual Memory in KVM

• Bind PASID to guest

CPU page table

• Forward guest CPU

page table cache

invalidation to host

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

Translation Cache

Invalidation

CPU

page table

cache

invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

Shared Virtual Memory in KVM

• Bind PASID to guest

CPU page table

• Forward guest CPU

page table cache

invalidation to host

• Page fault reporting

and servicing

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

IOMMU

Fault

vIOMMU

Fault

Translation Cache

Invalidation

CPU

page table

cache

invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

Shared Virtual Memory in KVM

• Bind PASID to guest

CPU page table

• Forward guest CPU

page table cache

invalidation to host

• Page fault reporting

and servicing

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

IOMMU

Fault

vIOMMU

Fault

Translation Cache

Invalidation
PRQ

Response

CPU

page table

cache

invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

Shared Virtual Memory in KVM

• Bind PASID to guest

CPU page table

• Forward guest CPU

page table cache

invalidation to host

• Page fault reporting

and servicing

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

IOMMU

Fault

vIOMMU

Fault

Translation Cache

Invalidation
PRQ

Response

CPU

page table

cache

invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

Neutral Kernel APIs for both emulated and

virtio-based vIOMMUs

Bind PASID

• New VFIO IOCTL supporting multiple binding types:
– VFIO_IOMMU_BIND_PROCESS

• Binding to host CPU page table

– VFIO_IOMMU_BIND_PGTBL

• Binding to guest CPU page table

– VFIO_IOMMU_BIND_PASID_TBL

• Binding to guest PASID Table

• New IOMMU API to configure physical IOMMU
– Need compatibility check of the table format

Qemu

vIOMMU

pIOMMU

Driver
vIOMMU

Driver
VFIO

Program

guest pasid entry New VFIO IOCTL iommu_bind_xxx(…)
Program pasid entry;

Enable nested mode

<File descriptor of assigned device,

bind_cfg>

<struct device *dev,

bing_cfg>

Forward Cache Invalidation to Host

• Invalidation types
– IOMMU_INV_TYPE_TLB

• IOTLB and paging structure-caches

• Granularity conversion
– Supported granularities

• Domain selective flush

• PASID selective flush

• Page selective flush

– Avoid unnecessary flush

• Guest global flush -> either domain/pasid selective flush in host

• Use host Identities
– RID, Domain ID, PASID

Qemu

vIOMMU

pIOMMU

Driver
vIOMMU

Driver
VFIO

iommu tlb flushing
New VFIO IOCTL

(VFIO_IOMMU_INVALIDATION) iommu_sva_invalidate(…) Submit Invalidation to HW

Page Fault Handling

• PCI Express® Address Translation Service
– PRI: page request interface

– Page Response (PRS)

device IOMMU

Dev IOTLB

PRI

PCIE Dev DMA

IOTLB

PRQ event

PRQ handling

Page response

Translation fault

Page request

Page response

Translated request

PCIe (PRS/ATS) Dev-IOTLB missing
Translation request

IOMMU

Page Fault Handling (Cont.)

• Report PRQ to Guest
– Page Request Capability in vIOMMU

• Forward guest page response to host

Qemu

vIOMMU

vIOMMU

Driver
pIOMMU

Driver
VFIO

iommu fault

report framework
Notify via eventfd Emulate virtual fault/PRQ request

<vendor-agnostic fault info> <VT-d specific prq desc format><IOMMU_DMAR_FAULT,

PRQ info>

Device

driver

Qemu

vIOMMU

pIOMMU

Driver
vIOMMU

Driver
VFIO

Guest issue PRQ response New VFIO IOCTL

(VFIO_IOMMU_SVM_PAGE_RESP)
iommu_sva_page_resp (…) submit PRQ response to HW

IOMMU Fault Reporting Framework

• Newly defined “struct iommu_fault_param”, added to
“struct device”

/**
* struct iommu_fault_param - Per device generic IOMMU runtime data
* @dev_fault_handler: Callback function to handle IOMMU faults at device level
* @data: handler private data
* @faults: holds the pending faults which needs response, e.g. page response.
* @timer: track page request pending time limit
* @lock: protect pending PRQ event list
*/
struct iommu_fault_param {

iommu_dev_fault_handler_t handler;
struct list_head faults;
struct timer_list timer;
struct mutex lock;
void *data;

};

IOMMU Fault Reporting Framework

• IOMMU fault handler registration
– iommu_register_device_fault_handler()

– iommu_unregister_device_fault_handler()

• In-kernel device driver and vfio driver registers
its own fault handler

– Vfio fault handler should further notify Qemu or other user-
space application

• The original idea was brought up by David
Woodhouse

– May refer to more detail https://lwn.net/Articles/608914/

https://lwn.net/Articles/608914/

Upstream Status (Kernel)

• IOMMU/VFIO extension for virtual SVA support

(Jacob Pan/Yi Liu, Intel)
– Earliest RFC patch for vSVA support

– current kernel API in v5 (https://lkml.org/lkml/2018/5/11/605)

• SVA native enabling on ARM platform (Jean-

Philippe Brucker, ARM)

• Shared requirements in the two tracks
– binding PASID, fault reporting

SVA stands for Shared Virtual Addressing in Linux community

https://lists.gnu.org/archive/html/qemu-devel/2017-04/msg04946.html
https://lkml.org/lkml/2018/5/11/605

Upstream Status (Qemu)

• Qemu vSVA enabling has two parts (Yi Liu,

Intel)
– vIOMMU emulation

• Earliest RFC patch for vSVA back to 2017-April

– Notification framework between vIOMMU emulator and

VFIO within Qemu

• Notifier framework in v3, with community comments

addressed

https://www.spinics.net/lists/kvm/msg148798.html
http://qemu.11.n7.nabble.com/PATCH-v3-00-12-Introduce-new-iommu-notifier-framework-for-virt-SVA-td555166.html

Summary

• Shared Virtual Memory (SVM) enables efficient workload
submission by directly programming CPU virtual addresses
on the device

• Intel® VT-d 3.0 specification extends SVM usage together
with Intel® Scalable I/O Virtualization

• Holistic enhancements are introduced cross multiple
kernel/user space components, to enable SVM
virtualization in KVM

• New kernel APIs are kept neutral to support all kinds of
virtual IOMMUs (either emulated or para-virtualized)

Q&A

Backup

Intel® VT-d ECS (deprecated)

Intel® VT-d Scalable Mode Translation

Key Difference: PASID is a global ID space shared by all VMs.
ALL page-table pointers moved to PASID Granular table

