
© Hitachi, Ltd. 2017. All rights reserved.

Sharing knowledge and issues for applying

Kubernetes® and Docker to enterprise system

OSS Summit Tokyo 2017

Hitachi, Ltd.

6/1/2017

Natsuki Ogawa

© Hitachi, Ltd. 2017. All rights reserved.

1.Background

2.Problems & Solutions

3.Evaluation

Contents

1

4.Remaining issues

5.Summary

2© Hitachi, Ltd. 2017. All rights reserved.

1.Background

3© Hitachi, Ltd. 2017. All rights reserved.

1-1 Market trend

 Container technology is getting a lot of attention.
 This technology has been applied mainly to SoE systems.
 Companies whose most systems are SoR, such as financial

companies, also start considering to apply it to their SoR systems,
because they want to speed up their system development to focus on
their new business.

Data source: Google Trends (www.google.com/trends)

4© Hitachi, Ltd. 2017. All rights reserved.

1-2 Hitachi’s container service

 Hitachi has been providing container service to SoR system.

 For example, Hitachi has provided a financial company with its test
environment on Kubernetes and Docker.

Through providing the system, we obtained knowledge and issues for applying
them to enterprise system.

We will share them in this session.

5© Hitachi, Ltd. 2017. All rights reserved.

1-3 Basic requirements for the system

Category Details

Fast boot Test environment must be able to be ready for auto tests quickly so that the tests can

start soon to complete in a short time.

Grouping Test applications must be grouped to execute system test on complicated structure.

Operating

easily

For the beginners, the test operation such as start or stop machines must be

executed easily.

Team

development

Resource must be divided because the software are developed by hundred of

developers and several teams or companies for each function.

Persistent

Storage

Test evidence such as test data or log must be preserved.

6© Hitachi, Ltd. 2017. All rights reserved.

1-4 Why Docker and Kubernetes for the system infrastructure

 Because the most important requirement is fast boot, Docker
and Kubernetes are better than other traditional infrastructure
such as virtual machine or bare metal.

 So, we adopted Docker and Kubernetes for the system.

 However, there is a problem that Dockerfile and Kubernetes
manifests are difficult for beginners.

7© Hitachi, Ltd. 2017. All rights reserved.

1-5 Implementation for basic requirement

Requirements Implementation

Fast boot Docker Container

Grouping Kubernetes Pod

Operating easily Web Portal

Team

development

Kubernetes Namespace

Persistent

Storage

Kubernetes HostPath and PersistentVolume

 The implementation for basic requirement.

 For easy operation, we provide our web portal which wraps commands and
files such as Dockerfile or Kubernetes manifests.

8© Hitachi, Ltd. 2017. All rights reserved.

1-6 Overview of providing system

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Web Portal
Team BTeam A

Grouping

Fast boot

Team
development

Persistent
storage

Operating
easily

 Kubernetes version: 1.3.0

 Docker version: 1.10.3
 Red Hat Enterprise Linux 7.3

 Note that some problems in the chapter 2 and 3 happen only in above versions.
In the latest versions, some of those problems may be resolved.

NamespaceNamespace

9© Hitachi, Ltd. 2017. All rights reserved.

1-7 Problems for the system

Problems Details

Problem A:

Resource allocation

to each team

A-1: Despite of development compliance, team resources are

visible to other team.

A-2: Hardware resources for each team is not allocated evenly.

Problem B:

Middleware

B-1: Some kernel parameters cannot be configured on each

container, independently.

B-2: Some system call cannot be executed on a container.

Problem C:

Storage

C-1: Kubernetes volume system depends on each cloud.

C-2: Raw device cannot be mapped to container by function of

Kubernetes volume.

 3 problems came out after constructing the system.

10© Hitachi, Ltd. 2017. All rights reserved.

2.Problems & Solutions

11© Hitachi, Ltd. 2017. All rights reserved.

Problems Details

Problem A:

Resource allocation

to each team

A-1: Despite of development compliance, team resources are

visible to other team.

A-2: Hardware resources for each team is not allocated evenly.

Problem B:

Middleware

B-1: Some kernel parameters cannot be configured on each

container, independently.

B-2: Some system call cannot be executed on a container.

Problem C:

Storage

C-1: Kubernetes volume system depends on each cloud.

C-2: Raw device cannot be mapped to container by function of

Kubernetes volume.

2 Problems & Solutions

12© Hitachi, Ltd. 2017. All rights reserved.

2- 1 Problem A-1： Current

 Kubernetes can divide resources by using namespace.

 By allocating a different namespace for each team, resources can be divided for each team.

 K8s version 1.3 does not have a function to restrict access to a particular namespace, therefore, it can
not prevent one team from accessing to the other team's resources.

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Web Portal
Team BTeam A

kubectl get pods --namespace=A
PodA1
PodA2

kubectl get pods --namespace=B
PodB1
PodB2

kubectl get pods --namespace=A
PodA1
PodA2

NamespaceNamespace

13© Hitachi, Ltd. 2017. All rights reserved.

2- 1 Problem A-1： Goal

 Other team’s resources must not be able to see.

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Team BTeam A

NamespaceNamespace

Web Portal

14© Hitachi, Ltd. 2017. All rights reserved.

2- 1 Problem A-1： Solution

 Allow users access only via the portal, and make the portal show the user's team's
resources only.

 Portal is required to have an authentication function and user-to-team mapping
information to identify users and to restrict access properly.

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Web Portal

Team BTeam A

Namespace

Auth

Namespace

15© Hitachi, Ltd. 2017. All rights reserved.

Problems Details

Problem A:

Resource allocation

to each team

A-1: Despite of development compliance, team resources are

visible to other team.

A-2: Hardware resources for each team is not allocated evenly.

Problem B:

Middleware

B-1: Some kernel parameters cannot be configured on each

container, independently.

B-2: Some system call cannot be executed on a container.

Problem C:

Storage

C-1: Kubernetes volume system depends on each cloud.

C-2: Raw device cannot be mapped to container by function of

Kubernetes volume.

2 Problems & Solutions

16© Hitachi, Ltd. 2017. All rights reserved.

2- 1 Problems A-2: Current

 If all teams request resources freely, resources will be allocated unfairly
to each team.

 For example, if Team A get resources a lot, Team B hardly can get
resources.

 Hardware resource should be allocated fairly for each team.

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Web Portal
Team BTeam A

There is no resource!

Why?

Deploy new pod!

Namespace

17© Hitachi, Ltd. 2017. All rights reserved.

2- 1 Problem A-2: Goal

 Resources for one team should not be exhausted by other teams'
requests so that each team can always request a certain amount
of resources as if it has dedicated nodes.

 This should be achieved without increasing users' operation
cost.

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Web Portal
Team BTeam A

Team A’s node Team B’s node

Namespace

18© Hitachi, Ltd. 2017. All rights reserved.

2- 1 Problem A-2： Solution

 There are 2 methods to solve this problem.

 Quota for namespace

 Restriction of placement destination using node label

Methods Pros Cons

Quota  Fine control of resources  Administrator needs to manage Quota.

 User must set resource limit to each pod.

Node label  Administrator needs to set

labels only to nodes.

 Separate resources

physically from other team's

pods

 To make a pod deployed to the nodes with an

intended node label, user must set the node label

to each pod.

Resolved in the portal

 Portal can assign the node label to the pod

by using user-to-team mapping information

instead of user operation.

 Adopted Node label suitable for this system

19© Hitachi, Ltd. 2017. All rights reserved.

Kubernetes
node

Kubernetes
node

Kubernetes
node

2- 1 Problem A-2： Solution

 In order to allocate the resources fairly to each team, we use dedicated nodes and shared
nodes, which is identified with node labels.

 The labels are managed by a system administrator.

 Each team can only use its own dedicated nodes and shared nodes via Portal.

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Web Portal
Team BTeam A

Node Label

#1 Team A

#2 Team A

#3 all

#4 all

#5 Team B

#6 Team B

Team B can see only nodes
which label is “all” or “TeamB”.

Namespace
teamid=A

teamid=all

teamid=B

20© Hitachi, Ltd. 2017. All rights reserved.

Problems Details

Problem A:

Resource allocation

to each team

A-1: Despite of development compliance, team resources are

visible to other team.

A-2: Hardware resources for each team is not allocated evenly.

Problem B:

Middleware

B-1: Some kernel parameters cannot be configured on each

container, independently.

B-2: Some system call cannot be executed on a container.

Problem C:

Storage

C-1: Kubernetes volume system depends on each cloud.

C-2: Raw device cannot be mapped to container by function of

Kubernetes volume.

2 Problems & Solutions

21© Hitachi, Ltd. 2017. All rights reserved.

2- 2 Problem B-1： Current

 There are 3 kinds of kernel parameters in the container.

Parameters Detail Range

Node level sysctl It is set for each node and can not be

set for each container.

Node

Unsafe.sysctl Although it is set for each container, it

may affect other containers

Pod

Safe.sysctl It is set for each container, and it does

not affect other container.

Pod

 We want to set kernel parameters to each container in order to use middle
ware, for example DB.

 Setting Node level sysctls or unsafe.sysctls will affect another container.

22© Hitachi, Ltd. 2017. All rights reserved.

2- 2 Problem B-1： Goal

 Kernel parameters can be set without affecting other containers.

 For this purpose, kernel parameters classified as Node level /
unsafe should be able to also be set without affecting other
containers.

Kubernetes Node

Linux®

DB

namespace

Kernel
parameters

AP

namespace

Kernel
parametersSafe sysctl

Unsafe sysctl

Kernel parameters

Node level sysctl

23© Hitachi, Ltd. 2017. All rights reserved.

2- 2 Problem B-1： Solution

Pod sysctl settings Condition Destination node

Only safe.sysctl is set N/A Shared

Unsafe.sysctl or Node

level sysctl is set

Any values of

parameter of Pod are

different from any

existent Pods.

Dedicated

All values of

parameter of Pod are

the same as any

existent Pods.

The node which has the

same parameters.

 We place Pods as following rules.

24© Hitachi, Ltd. 2017. All rights reserved.

2- 2 Problem B-1： Solution (cont’d)

The rules can be achieved by using Tolerate and Taint features of Kubernetes.

 Pods with only safe.sysctl:

1. User deploys Pod without Tolerate.

2. Kubernetes places the Pod to a node without taint.

 Pods with unsafe.sysctl or Node level sysctl:

1. User sets sysctl parameters to the node if using Node level sysctl.

2. User adds Taint for the parameters to the node.

3. User deploys Pod with Tolerate corresponding to the Taint.

4. Kubernetes places the Pod to the node with Taint corresponding to the specified Tolerate.

Kubernetes Node

Linux

AP
namespace

Kernel
parameters

AP
namespace

Kernel
parametersSafe sysctl

Kubernetes Node(Taint)

Linux

DB
namespace

Kernel
parameters

Kubernetes Node(Taint)

Linux

DB
namespace

Kernel
parameters

Kernel parameters

Unsafe sysctl

Kernel parameters

Node level sysctl

Unsafe.sysctl
Tolerate

Unsafe.sysctl
Tolerate

safe.sysctlsafe.sysctl

25© Hitachi, Ltd. 2017. All rights reserved.

Problems Details

Problem A:

Resource allocation

to each team

A-1: Despite of development compliance, team resources are

visible to other team.

A-2: Hardware resources for each team is not allocated evenly.

Problem B:

Middleware

B-1: Some kernel parameters cannot be configured on each

container, independently.

B-2: Some system call cannot be executed on a container.

Problem C:

Storage

C-1: Kubernetes volume system depends on each cloud.

C-2: Raw device cannot be mapped to container by function of

Kubernetes volume.

2 Problems & Solutions

26© Hitachi, Ltd. 2017. All rights reserved.

2- 2 Problem B-2： Current

 Some system calls are restricted by default by Docker.

 Application’s operation is restricted.

 Ex. core dump

Kubernetes Node

Linux

sys_*

seccomp

27© Hitachi, Ltd. 2017. All rights reserved.

2- 2 Problem B-2： Goal

 System calls can be executed within a container.

 Above settings are enable for each container.

 However, extra permissions are not desirable due to security
problems.

Kubernetes Node

Linux

sys_*

seccomp

28© Hitachi, Ltd. 2017. All rights reserved.

2- 2 Problem B-2： Solution

 To make system call executable, it is necessary to set the seccomp=unconfined and either of the following
settings.

 cap_add： Add specified Linux capabilities

 privileged： Add all Linux capabilities

 We adopted cap_add because it can restrict capabilities.

 Ex. Database server’s Kubernetes manifest

seccomp.security.alpha.kubernetes.io/pod: unconfined

securityContext:

capabilities:

add:

- NET_ADMIN

- SYS_RESOURCE

- LEASE

- IPC_LOCK

- IPC_OWNER

29© Hitachi, Ltd. 2017. All rights reserved.

Problems Details

Problem A:

Resource allocation

to each team

A-1: Despite of development compliance, team resources are

visible to other team.

A-2: Hardware resources for each team is not allocated evenly.

Problem B:

Middleware

B-1: Some kernel parameters cannot be configured on each

container, independently.

B-2: Some system call cannot be executed on a container.

Problem C:

Storage

C-1: Kubernetes volume system depends on each cloud.

C-2: Raw device cannot be mapped to container by function of

Kubernetes volume.

2 Problems & Solutions

30© Hitachi, Ltd. 2017. All rights reserved.

2- 3 Problem C-1: Current

 Kubernetes has Persistent volume (PV) which can preserve data persistently on Pod.

 AWS EBS, OpenStack Cinder and other storage can be used as a resource of PV.

 A system administrator must prepare some PV before users use them.

 User specifies the desired size as a Persistent Volume Claim (PVC) and Kubernetes assigns a part of the PV to Pod
as PVC.

 The problem of PV and PVC

 Administrator must manage PV, user must manage PVC.

 In the hybrid cloud, since it is necessary to prepare PV from each cloud, management cost increase.

EBS

Cinder

Vsphere
Volume

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Web Portal

System manager
is watching the PV usage

PV

Team A

NamespaceNamespace

VMware

OpenStack®

Amazon
Web

Services

31© Hitachi, Ltd. 2017. All rights reserved.

2- 3 Problem C-1: Goal

 Test data and log are preserved permanently by the same way
across the clouds.

 Administrator’s operation should be reduced more.

EBS

Cinder

Vsphere
Volume

Kubernetes
node

Kubernetes
node

Kubernetes
node

Kubernetes
master

Web Portal
Team A

simple
Volume mount

NamespaceNamespace

VMware

OpenStack

Amazon
Web

Services

32© Hitachi, Ltd. 2017. All rights reserved.

2- 3 Problem C-1： Solution

 We consider whether it can be solved by using NFS independent from
clouds.

Methods Pros Cons

NFS +

HostPath

There is no need to consider

management of association between

containers and volumes on the system

side.

Low I/O performance

 However, this system

needs less data

capacity and not high

I/O performance

 NFS + HostPath was adopted for this system.

33© Hitachi, Ltd. 2017. All rights reserved.

Problems Details

Problem A:

Resource allocation

to each team

A-1: Despite of development compliance, team resources are

visible to other team.

A-2: Hardware resources for each team is not allocated evenly.

Problem B:

Middleware

B-1: Some kernel parameters cannot be configured on each

container, independently.

B-2: Some system call cannot be executed on a container.

Problem C:

Storage

C-1: Kubernetes volume system depends on each cloud.

C-2: Raw device cannot be mapped to container by function of

Kubernetes volume.

2 Problems & Solutions

34© Hitachi, Ltd. 2017. All rights reserved.

2- 3 Problem C-2: Current

 NFS + HostPath are used for the DataBase area.

 Raw device improves performance of DataBase etc.

 However, NFS + HostPath cannot be used for raw device on a host.

 Even if we use PV instead of NFS + HostPath, the volume mapped in the
container is formatted as a file system and raw devices can not be used.

Kubernetes Node

Linux

DB

raw raw bind

Formatted

35© Hitachi, Ltd. 2017. All rights reserved.

2- 3 Problem C-2: Goal

 Raw device can be used in a container.

 Raw device should be accessible from the container, even when the container
is moved to different node.

Kubernetes Node

Linux

raw

DB

Kubernetes Node

Linux

DB

Kubernetes Node

Linux

DB

rawraw

DB

raw

movable

movable

36© Hitachi, Ltd. 2017. All rights reserved.

2- 3 Problem C-2： Solution

 Create and connect raw devices to the Kubernetes nodes which can be used for DB.

 Create containers which needs raw device with the following settings.

 Grant privileges for host mapping to the Pod to connect raw device.

 Connect raw device with HostPath.

Kubernetes Node

Linux

DB

Kubernetes Node

Linux

DB

Kubernetes Node

Linux

DB

raw

DB

raw bind

raw raw

37© Hitachi, Ltd. 2017. All rights reserved.

3.Evaluation

38© Hitachi, Ltd. 2017. All rights reserved.

3 Evaluation

Problems Details Feasibility

Problem A:

Resource

allocation to

each team

A-1: Despite of development

compliance, a team resource is

seen from other team.

 Realized by Namespace, Web Portal

A-2: The hardware resource for

each team is not allocated

evenly.

 Realized by Node label and Web Portal

Problem B:

Middleware

B-1: Some kernel parameters

cannot be configured on a

container.

 Realized by Node taint

B-2: Some system call cannot

be executed on a container.

 Realized by seccomp, cap_add

Problem C:

Storage

C-1: Kubernetes volume

system depends on each cloud.

 Realized by NFS and HostPath

C-2: Raw device cannot be

mapped to container by

function of Kubernetes volume.

 Realized by host device mount

39© Hitachi, Ltd. 2017. All rights reserved.

3 Evaluation

Problems Details The room of improvement Ideal Kubernetes function

Problem A:

Resource

allocation to

each team

A-1: Despite of development

compliance, a team resource is

seen from other team.

The current implementation is

complicated, but Kubernetes Role-

Based Access Control may make

the implementation easier.

N/A

A-2: The hardware resource for

each team is not allocated

evenly.

N/A N/A

Problem B:

Middleware

B-1: Some kernel parameters

cannot be configured on a

container.

Pod scheduling preparation takes

time because user checks and set

for it manually.

Pod scheduling by sysctl

settings

B-2: Some system call cannot

be executed on a container.

N/A N/A

Problem C:

Storage

C-1: Kubernetes volume system

depends on each cloud.

I/O performance should be

improved because of using NFS.

N/A

C-2: Raw device cannot be

mapped to container by function

of Kubernetes volume.

It is necessary to connect the

device on all nodes manually

because there are no function to

control raw device.

Raw device connect

automatically on Pod.

40© Hitachi, Ltd. 2017. All rights reserved.

3 Evaluation (cont’d)

 We provided Kubernetes and Docker to the testing environment of SoR
environment.

 Improve development test speed.

 How quickly did the test environment build?

 Traditional environment: Copy VM, manual configuration.

 Current environment: Launching Pods from Web Portal.

 Assumed that 3 VM was aggregated into one pod.

 The time for building test environment improved 20 times faster
than that for traditional environment.

41© Hitachi, Ltd. 2017. All rights reserved.

4.Remaining issues

42© Hitachi, Ltd. 2017. All rights reserved.

4-1 Other Knowledge and issues of Kubernetes and Docker

 Pods collaboration

 There is no official way to control the order of boot sequence between Pods. We found 3
workarounds. We hope Kuberetes provides official way.

 Init container

 3rd party plugin.

 https://github.com/Mirantis/k8s-AppController

 ReadinessProbe & command and shell script.

 For legacy application

 In Kubernetes, Docker's --add-host can not be used.

 Applications referring to /etc/hosts do not work at startup.

 Docker compatibility

 When migrating from Docker 1.9 to Docker 1.10, we must change default value of seccomp. If
you need all privileges, Unconfined may be required.

 Some functions of the application that was running up to Docker 1.9 will stop working.

 Validation required for Docker update.

43© Hitachi, Ltd. 2017. All rights reserved.

4-2 knowledge from the system

 Docker registry's CLI is poor, it cannot delete images.

 There are various third party products, but the deletion function, the authentication
function, etc. are inadequate.

 Writing Dockerfile and Kubernetes manifest is difficult for beginners.

 There should be a easy generation tool such as using GUI.

 Troubleshoot (log) problem

 There is too much log output of the Kubedns container.

 Resolved https://github.com/kubernetes/kubernetes/pull/36013

44© Hitachi, Ltd. 2017. All rights reserved.

5.Summary

45© Hitachi, Ltd. 2017. All rights reserved.

5 Summary

 We implemented the test system environment for a financial
company with Docker and Kubernetes.

 It speeded up development without changing development
process.

 We shared knowledge and issues for Kubernetes and Docker to
enterprise system.

46© Hitachi, Ltd. 2017. All rights reserved.

5 Summary

 Since Kubernetes is under development, functions for enterprise
system are being implemented one after another. We
recommend to catch up the latest information.

 Due to the difference in the combination of Kubernetes and
Docker versions, compatibility problems tend to occur, so it
should be applied to production after testing. We recommend to
test the combination again when updating.

 Dockerfile and Kubernetes manifest are still difficult for end users
to use directly. GUI or other mechanisms are required for them to
use easily.

47© Hitachi, Ltd. 2017. All rights reserved.

Trademarks

• HITACHI is a registered trademark of Hitachi, Ltd.
• Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other

countries.
• Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
• Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United

States and/or other countries. Docker, Inc. and other parties may also have trademark rights in
other terms used herein.

• Kubernetes® is a registered trademark of The Linux Foundation.
• The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service marks

or trademarks/service marks of the OpenStack Foundation in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

• Amazon Web Services is a trademark of Amazon.com, Inc. or its affiliates in the United States
and/or other countries.

• Other company and product names mentioned in this document may be the trademarks of their
respective owners.

© Hitachi, Ltd. 2017. All rights reserved.

Natsuki Ogawa

6/1/2017

Hitachi, Ltd.

END

Sharing knowledge and issues for applying
Kubernetes and Docker to enterprise system

48

