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The following is a collection of my solutions for Michael Shearer and Rachel Levy’s text Partial Differential
Equations: An Introduction to Theory and Applications. These solutions were worked out over the summer
of 2017, and will almost certainly contain errors. If you happen to find any, or have suggestions for more
elegant/interesting/general approaches to problems, please drop me a line at hstufflebeam@utexas.edu. The
figures and diagrams were made with Mathematica.

As an update, I have become to privy to the existence of an errata sheet for the text, which explains
some of the funkiness of certain questions. I have adjusted the problems here to represent what is written
on the errata sheet, when necessary.
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1 Introduction

1.1

Show that the traveling wave u(x, t) = f(x− 3t) satisfies the linear transport equation ut + 3ux = 0 for any
differentiable function f : R→ R.

Solution. This is obvious: if f is differentiable then ut = −3f ′(x−3t) and ux = f ′(x−3t). Hence ut+3ux =
−3f ′(x− 3t) + 3f ′(x− 3t) = 0.
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1.2

Find an equation relating the parameters k,m, n so that the function u(x, t) = emt sin(nx) satisfies the heat
equation ut = kuxx.

Solution. We have ut = mu(x, t) and uxx = −n2u(x, t). Hence, u will satisfy the heat equation above
provided that m = −kn2.

1.3

Find an equation relating the parameters c,m, n so that the function u(x, t) = sin(mt) sin(nx) satisfies the
wave equation utt = c2uxx.

Solution. We have utt = −m2u(x, t) and uxx = −n2u(x, t). Hence, u will satisfy the wave equation above
provided that m2 = c2n2.

1.4

Find all functions a, b, c : R→ R such that u(x, t) = a(t)e2x+b(t)ex+c(t) satisfies the heat equation ut = uxx
for all x, t.

Solution. We have ut = a′(t)e2x + b′(t)ex + c′(t) and uxx = 4a(t)e2x + b(t)ex. If u satisfies the heat equation
above, then 4a(t) = a′(t), b(t) = b′(t), and c′(t) = 0. As such, we conclude that a, b, c in general have the
forms a(t) = λ1e

4t, b(t) = λ2e
x, and c(t) = λ3 for λi ∈ R.

1.5

For m > 1, define the conductivity k = k(u) so that the porous medium equation ut = ∇2(um) can be
written as the quasilinear heat equation ut = ∇ · (k(u)∇u)

Solution. We first recall that, in general, if f, g : Rm → R are differentiable, then

∇ · (g∇f) = 〈∇g,∇f〉+ g∇2f.

Define k = k(u) = mum−1. Then we have

ut = ∇2(um) =

n∑
i=1

(um)xixi =

n∑
i=1

(mum−1uxi)xi

=

n∑
i=1

{m(m− 1)um−2u2
xi +mum−1uxixi}

= m(m− 1)um−2‖∇u‖2 +mum−1∇2u

On the other hand, by the first remark

∇ · (k(u)∇u) = 〈∇k(u),∇u〉+ k(u)∇2u

and since

〈∇k(u),∇u〉 = 〈∇mum−1,∇u〉 = m(m− 1)um−2〈∇u,∇u〉 = m(m− 1)um−2‖∇u‖2

we see that indeed ut = ∇ · (k(u)∇u) with the conductivity k(u) = mum−1.
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1.6

Solve the initial value problem

ut + 4ux = 1, −∞ < x < +∞, t > 0,

u(x, 0) = (1 + x2)
−1
, −∞ < x < +∞.

Solution. The general form of the solution is u(x, t) = f(x − 4t) for some differentiable f : R → R. By the
initial data, we have f(x) = 1

1+x2 for all x ∈ R. Hence, the particular solution of the IVP is

u(x, t) =
1

1 + (x− 4t)2
.

Figure 1: u(x, t)

1.7

Solve the initial boundary value problem

ut + 4ux = 0, 0 < x < +∞, t > 0,

u(x, 0) = 0, 0 < x < +∞,
u(0, t) = te−t, t > 0.

Why is there no solution if the PDE is changed to ut − 4ux = 0?

Solution. The general solution is again of the form u(x, t) = f(x − 4t) for some differentiable function
f : R→ R. By the first boundary condition we have that f(x) = 0 whenever t = 0 and x > 0. By the second
boundary condition we have f(−4t) = te−t whenever x = 0 and t > 0. When x− 4t = 0, both imply that f
vanishes. From the above, we gather that

f(ξ) =

{
0 ξ > 0

− ξ4e
ξ
4 ξ < 0

which implies that the solution u of the BVP is

u(x, t) =

{
0 x > 4y

−x−4t
4 e

x−4t
4 x < 4t

4



Figure 2: u(x, t) Note that Mathematica is having some trouble on the line x = 4t
Suppose, on the other hand, that the PDE were changed to ut − 4ux = 0. Then the general form of

the solution would be u(x, t) = f(x + 4t), and the boundary conditions would give contradictory data, e.g.
u(x, 0) = f(x) = 0 for all x > 0 at the same time that u(0, t) = f(4t) = te−t > 0 when t > 0.

1.8

Consider the linear transport equation ut + cux = 0 with initial and boundary conditions

u(x, 0) = φ(x), if x > 0,

u(0, t) = ψ(t), if t > 0.

where φ, ψ : [0,+∞) are differentiable.

(a) Suppose the data φ, ψ are differentiable functions. Show that the function u : Q1 → R given by

u(x, t) =

{
φ(x− ct) x > ct,

ψ(t− x
c ) x 6 ct

satisfies the PDE away from the line x = ct, the boundary condition, and the initial condition.

(b) In the solution above, the line x = ct which emerges from the origin x = t = 0 separates the quadrant
Q1 into two regions. On the line, the solution has one-sided limits given by φ, ψ. Consequently, the
solution will in general have singularities on the line.

(i) Find conditions on the data φ, ψ so that the solution is continuous across the line x = ct.

(ii) Find conditions on the data φ, ψ so that the solution is differentiable across the line x = ct.

Solution. (a) We have

ut =

{
−cφ(x− ct) x > ct

ψ(t− x
c ) x 6 ct

and

ux =

{
φ(x− ct) x > ct

− 1
cψ(t− x

c ) x 6 ct

hence

ut + cux =

{
−cφ(x− ct) + cφ(x− ct) = 0 x > ct

ψ(t− x
c )− ψ(t− x

c ) = 0 x < ct

provided that we are also away from the boundary of Q1.
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(b) (i) This seems to always be the case, since by the boundary conditions we get that φ(0) = u(0, 0) = ψ(0)
(and finite!), which is exactly what we need to know to conclude that u is continuous across the line
x = ct. Indeed, if ((xk, tk)) is any sequence in Q1 which tends to a point (ξ, τ) on the line x = ct,
then we can say the following: u takes the value u0 = φ(0) = ψ(0) along the line x = ct, so it suffices
to show that for any ε > 0 we can find a K ∈ Z≥1 such that u(xk, tk) ∈ B(u0; ε) for all k > K.
This is true, however, given the fact that both φ(x) and ψ(t) are continuous. We can simply choose
K so large such that all points of the sequence after time K lie in a ball about (ξ, τ) small enough
so that φ(xk− ctk) ∈ B(u0 = φ(0); ε) (in the case when xk > ctk) and ψ(tk− xk

c ) ∈ B(u0 = ψ(0); ε)
(in the case when x 6 ctk) for all k > K. Hence, u(xk, tk)→ u0, so u is continuous across the line
x = ct.

(ii) If we want u to be differentiable across the line x = ct, then we must have −cφ′(0) = ψ′(0). Indeed,
this comes from the results above, since if −cφ′(0) = ψ′(0), we can unambiguously define ut and
ux on the line x = ct. If you look closely at the piecewise definitions of ut and ux above, you will
see that we actually get this condition for free as well, so as stated the solution is differentiable
over the line x = ct.

As an aside, it may be possible that the intended problem involved NOT having data about how φ and
ψ behave at 0. If this is the case, then the conditions φ(0) = ψ(0) and −cφ′(0) = ψ′(0) are not had for free,
and must be imposed to ensure continuity and differentiability, respectively, over the line x = ct.

1.9

Let f : R→ R be differentiable. Verify that if u(x, t) is differentiable and satisfies u = f(x−ut), then u(x, t)
is a solution of the initial value problem

ut + uux = 0, −∞ < x < +∞, t > 0

u(x, 0) = f(x), −∞ < x < +∞.

Solution. It is immediately evident that u(x, 0) = f(x) for all x. We then calculate ut = −(u+utt)f
′(x−ut)

and ux = (1− uxt)f ′(x− ut), from which we gather

ut + uux = −(u+ utt)f
′(x− ut) + u(1− uxt)f ′(x− ut)

= −uttf ′(x− ut)− uuxtf ′(x− ut)
= −(ut + uux)tf ′(x− ut)

which gives us the relation
(ut + uux)(1 + tf ′(x− ut)) = 0.

Since R is a field one of these factors must be zero; we show that in fact ut + uux always vanishes, which
proves that u is a solution of the IVP. By inspection, the only thing we need to be worried about is the
possibility of having f ′(x− ut) = − 1

t for some positive time. Recalling that ux = (1− uxt)f ′(x− ut), if for
some positive time t∗ it were true that f ′(x−ut∗) = − 1

t∗ , then we would have ux|t=t∗ = − 1
t∗ +ux|t=t∗ which

yields the absurdity 0 = − 1
t∗ . Thus, f ′(x−ut) 6= − 1

t for all positive time, and we conclude that ut+uux = 0
for all time t > 0. Hence u as described is a solution of the IVP.

1.10

Let

u0 =

{
1− x2 −1 6 x 6 1

0 otherwise.
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(a) Use the equation u = u0(x − ut) to find a formula for the solution u = u(x, t) of the inviscid Burgers
equation ut + uux = 0 with −1 < x < 1 and 0 < t < 1

2 .

(b) Verify that u(1, t) = 0 for all 0 < t < 1
2

(c) Differentiate the formula to find ux(1−, t), and deduce that ux(1−, t)→ −∞ as t→ 1
2

−
.

Note that ux(x, t) is discontinuous at x = ±1.

Solution. (a)

u = u0(x− ut) =

{
1− (x− ut)2 −1 6 x− ut 6 1

0 otherwise

Provided that x−ut ∈ [−1, 1], then, we can write u = 1− (x−ut)2 = 1−x2 + 2uxt−u2t2. Rearranging,
we find that

t2u2 + (1− 2xt)u+ x2 − 1 = 0.

By the quadratic formula,

u(x, t) =
(2xt− 1) +

√
(1− 2xt)2 − 4t2(x2 − 1)

2t2
.

where we must take the + conjugate root solution, since the − conjugate solution does not satisfy
−1 6 x− ut 6 1 over the region (−1, 1)× (0, 1

2 ).

Figure 3: u(x, t)

Figure 4: Graph of x− ut corresponding to the + conjugate solution for u(x, t)
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Figure 5: Graph of x− ut corresponding to the − conjugate solution for u(x, t)

(b) Note first that 1 − 2t > 0 for 0 < t < 1
2 . Then u(1, t) =

2t−1+
√

(1−2t)2

2t2 = 2t−1+(1−2t)
2t2 = 0 for all

0 < t < 1
2 .

(c) By direct computation,

ux(x, t) =
2t− 1− 2t√

(1−2xt)2−4t2(x2−1)

2t2

so

ux(1−, t) =
2t− 1− 2t

1−2t

2t2
=

2t− 1

2t2
− 1

t(1− 2t)

which clearly tends to −∞ as t→ 1
2

−
.

To see what this actually means, consider Figure 3. ux(1−, t) is the slope of the wave front at time t,
and as time goes to 1

2 , this slope becomes infinitely steep, resulting in the shock.

2 Beginnings

2.1

(a) Determine the type of the equation uxx + uxy + ux = 0

(b) Determine the type of the equation uxx + uxy + αuyy + ux + u = 0 for each real value of the parameter
α.

(c) Determine the type of the equation utt + 2uxt + uxx = 0. Verify that there are solutions u(x, t) =
f(x− t) + tg(x− t) for any twice differentiable functions f, g.

(d) The equation (1+y)uxx−x2uxy+xuyy = 0 is hyperbolic, elliptic, or parabolic depending on the location
of (x, y) in the plane. Find a formula to determine where in the x− y plane the equation is hyperbolic.
Sketch the x − y plane and label where the equation is hyperbolic, where it is elliptic, and where it is
parabolic.

Solution. (a) The principal symbol for the equation is L(p)[ξ1, ξ2] = ξ2
1 +ξ1ξ2, which informs us that b2 > ac,

since 1 > 0. Hence, the PDE is hyperbolic.
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(b) The principal symbol for the equation is L(p)[ξ1, ξ2] = ξ2
1 + ξ1ξ2 + αξ2

2 , which informs us that

b2 − ac = 1− α is


> 0 α ∈ (−∞, 1)

= 0 α = 1

< 0 α ∈ (1,∞)

.

Hence, the PDE is hyperbolic when α ∈ (∞, 1), parabolic when α = 1, and elliptic when α ∈ (1,∞).

(c) The principal symbol for the equation is L(p)[ξ1, ξ2] = ξ2
1 + 2ξ1ξ2 + ξ2

2 , which informs us that b2 > ac,
since 4 > 1. Hence, the PDE is hyperbolic. Suppose that f, g ∈ C2, and that u(x, t) = f(x−t)+tg(x−t).
Then

utt = f ′′(x− t)− 2g′(x− t) + tg′′(x− t)
uxt = −f ′′(x− t) + g′(x− t)− tg′′(x− t)
uxx = f ′′(x− t) + tg′′(x− t)

hence utt + 2uxt + uxx = 0.

(d) The principal symbol for the equation is L(p)[ξ1, ξ2] = (1+y)ξ2
1−x2ξ1ξ2 +xξ2

2 , which says that b2−ac =
x4 − x(1 + y).

Figure 6: Graph of b2 − ac = x4 − x(1 + y)

The main item of interest is the region of the plane where this function is positive, since that is where
the PDE is hyperbolic:

Figure 7: Graph of b2 − ac = x4 − x(1 + y) = 0. The function is positive of the shaded region, negative
on the light region, and zero on the boundary.
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Thus, we see that the PDE is hyperbolic on the shaded region, elliptic on the light region, and parabolic
on the boundary between the two.

2.2

Show that with the change of variables y = Bx, the principal symbol of

L(p)[ξ] =

n∑
i,j=1

aijξiξj , ξ = (ξ1, . . . , ξn)t

corresponding to
n∑

i,j=1

aijuxixj = f(x, u, ux1
, . . . , uxn)

has coefficients cij given by C = BABT , where C = (cij).

Solution. With y = Bx, we have that yi = bijxj , hence ∂yi
∂xj

= bij . We thus write

aijuxiuxj = aij

(
uyk

∂yk
∂xi

)(
uyk

∂yk
∂xj

)
= aij (uykbki) (uykbkj)

= aijuysuytbsibtj

= bsiaijb
T
jtuysuyt

= cstuysuyt

where cst is the s, t entry of the matrix C = BABT , as well as the s, t coefficient of the principal symbol
after the change of variable.

2.3

For the series

u(x, y) =

∞∑
k=0

1

k!
uk(x)yk

write formulas for u3(x) and u4(x) in terms of derivative of the functions a, b, c, f, g, h, and G.

Solution. It’s silly to work these out, since the whole process just comes down to rote calculation. I’ll do all
the work for u3(x), but will just remark on how one would go about computing u4(x).

We have the following three relations from the initial data and the assumption that c is nonzero in some
neighborhood including y = 0:

uyy =
1

c(x, y)
(f(x, y, u, ux, uy)− a(x, y)uxx − 2b(x, y)uxy)

∂mx u(x, 0) = ux · · ·x︸ ︷︷ ︸
m times

(x, 0) = g(m)(x)

∂mx uy(x, 0) = ux · · ·x︸ ︷︷ ︸
m times

y(x, 0) = h(m)(x)
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and we have the following worked out already:

u0(x) = u(x, 0) = g(x)

u1(x) = uy(x, 0) = h(x)

u2(x) = uyy(x, 0) =
1

c(x, 0)
(f(x, 0)− a(x, 0)g′′(x)− 2b(x, 0)h′(x))

To calculate u3(x), we want to find uyyy(x, 0). Differentiating uyy with respect to y, we find that

uyyy = −cx
c2

(f − auxx − 2buxy) +
1

c
(fy − ayuxx − auxxy − 2byuxy − 2buxyy)

If you look carefully, you will notice that we know the values of everything in sight at (x, 0) except for
uxyy(x, 0). To find it, we differentiate uyy with respect to x, we find that

uyyx = uxyy = −cy
c2

(f − auxx − 2buxy) +
1

c
(fx − axuxx − auxxx − 2bxuxy − 2buxyx)

and here we do know the values of everything in sight at (x, 0). Note that everything being smooth in some
open neighborhood is also important since it means we can permute the set of variables we are differentiating
with respect to. Substituting this expression for uxyy into the one for uyyy and evaluating at (x, 0) gives us
an expression for u3(x) in terms of things we know. Out of morbid curiosity, it ends up being

u3(x) = uyyy(x, 0)

= −cy(x, 0)

c2(x, 0)
u2(x) +

1

c(x, 0)
(fy(x, 0)− ay(x, 0)g′′(x)− a(x, 0)h′′(x)− 2by(x, 0)h′(x)− 2b(x, 0)uxyy(x, 0)).

The expression for u4(x) is undoubtedly worse, but we comment on why we can find it. In the same
spirit as above, we first differentiate uyyy with respect to y, but find it has the terms uxxyy and uxyyy we
don’t yet know. The first can be found by differentiating uxyy with respect to x, which is something we end
up knowing, and the second by either differentiating uxyy with respect to y or uyyy with respect to x, and
subsequently substituting in our new-found expression for uxxyy. Piecing everything together and evaluating
at (x, 0), we can assuredly calculate u4(x).

2.4

Show that ζ ∈ C∞(R), where

ζ(x) =

{
0 x 6 0,

e−
1
x x > 0

Solution. If x < 0, then ζ is clearly C∞ since it is constant in a sufficiently small neighborhood. If x > 0,
again ζ is visibly C∞ because mindless calculation shows ζ(n) is some Laurent polynomial times ζ, which is
differentiable since we are always away from 0. The only thing to check, then, is that ζ is C∞ at the origin,
which we do by showing that the limits limt→0− ζ(n)(t) = limt→0+ ζ(n)(t) for all n. The left hand side limit
is clearly 0, since ζ vanishes in a sufficiently small neighborhood of every point less than zero. the item of
interest is thus the right hand side limit, which is a limit of the derivatives ζ(n) we said we could always
calculate earlier. This limit is indeed zero, which can be proven using a change of variables and L’Hopital’s
rule. We prove a more general claim, which follows from the next observation. If p(x) is any polynomial

under the sun, then p(x)
ex tends to 0 as x → ∞. Indeed, for each term pnx

n

ex we may use L’Hopital’s rule.

Since the quotient of the nth derivatives of the top and bottom of this term is pnn!
ex , which tends to 0 as

x→∞, repeated n-fold application of L’Hopital’s rule proves that the original term grows arbitrarily small
as x grows large. Since this is true for every term of the polynomial (note we could even do this for infinite
polynomials using a standard epsilon trick in measure theory, bounding the nth term by ε

2n ), we see that

11



p(x)
ex tends to 0 as x→∞. Now, make the change of variables x 7→ 1

x , and conclude that for any polynomial

p(x), the quotient p( 1
x )e−

1
x tends to 0 as x→ 0.

Now, since every ζ(n) for x > 0 is of the form p( 1
x )e−

1
x , we see that the right hand side limit is 0 for

every n. Altogether, we have shown that ζ is smooth on all of R.

Remark 2.1. Shearer and Levy are a bit unclear about what phase velocity and group velocity are. Suppose
that a PDE has a solution of the form eiξx+σt = ei(ξx+ωt). The phase velocity is ω

ξ and the group velocity

is dω
dξ (sometimes both written with a -). We say a PDE is non-dispersive if the dispersion relation σ(ξ) is

linear in ξ, which implies that the phase and group velocities are equal. If the dispersion relation is nonlinear,
then the PDE is said to be dispersive. The intuition is that a packet of waves containing waves of different
spatial frequency (wave number) will spread out in time.

2.5

Find the dispersion relation σ = σ(ξ) for the following dispersive equations.

(a) The beam equation utt + uxxxx = 0. Why is the equation dispersive and not dissipative? What makes
this equation dispersive, whereas the wave equation is not dispersive?

(b) The linear Benjamin-Bona-Mahoney (BBM) equation ut + cux + βuxxt = 0. Deduce that the equation
is dispersive, and show that the corresponding solutions u = eiξx+σ(ξ)t are traveling waves. Write a
formula for their speed as a function of the wave number ξ. Identify a significant difference between this
formula and the wave speeds of KdV traveling waves.

Solution. (a) With the initial data u(x, 0) = eiξx, the function u(x, t) = eiξx+σt is a solution to the PDE
provided that ±iξ2 = σ holds. Indeed, utt + uxxxx = σ2u + ξ4u = 0. Hence, we have σ(ξ) = ±iξ2 for
the dispersion relation. Intuitively, the beam equation is dispersive because the traveling waves u(x, t)
travel faster in time as their spatial wave number (frequency) increases. This means that a group of
waves of varying frequency will spread out in time.

Figure 8: Real part of the solution u(x, t) =
ei(x−y)

Figure 9: Imaginary part of the solution u(x, t) =
ei(x−y)

Compare this with
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Figure 10: Real part of the solution u(x, t) =
ei(3x−9y)

Figure 11: Imaginary part of the solution
u(x, t) = ei(3x−9y)

From these observations, we conclude that the beam equation utt = uxxxx is a dispersive equation. On
the other hand, the wave equation utt − c2uxx = 0 is not dispersive. Let u(x, 0) = eiξx be initial data
for the one dimensional wave equation, the solution of which is thus u(x, t) = eiξx+σt. This yields the
dispersion relation σ = ±icξ. Indeed, we see that the group velocity c(ξ) = dω

dξ = ±c is the same as the
phase velocity, so that the equation is not dispersive. Consider the following contour plots. In each case
the phase velocity/group velocity is c = −7.

Figure 12: Real part of the solution u(x, t) =
ei(x−7y)

Figure 13: Imaginary part of the solution
u(x, t) = ei(x−7y)

Figure 14: Real part of the solution u(x, t) =
ei(2x−14y)

Figure 15: Imaginary part of the solution
u(x, t) = ei(2x−14y)
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Note that the slopes of the contour lines (which encodes the phase velocity) does not increase with an
increase in the wave number. This is different from how the beam equation behaves, where we see a
change in the slope of the contours.

(b) For any of this to make sense, we want to take β < 0 (or at least that’s what it looks like to me). Suppose
we have initial data u(x, 0) = eiξx for the BBM equation, yielding solution u(x, t) = eiξx+σt. Then from
the PDE we have the equation σ + ciξ − βξ2σ = 0, which gives us the dispersion relation σ = − ciξ

1−βξ2 .
Note that σ is bounded by the assumption β < 0. The equation is dispersive, since the phase velocity
ω
ξ = − c

1−βξ2 is nonlinear. The fact that the corresponding solutions are traveling waves is evident from
inspection.

Lastly, we consider how the phase velocities of wave solutions to the BBM equation relate to those of
the linearity KdV equation, which is ut + cux +βuxxx = 0. As noted in the text, the dispersion relation
for lKdV is σ = −i(cξ − βξ3). The phase velocity is thus ω

ξ = c− βξ2 which, unlike the phase velocity
of the traveling waves solving BBM, is unbounded.

2.6

Suppose in the traffic flow model discussed in section 2.4 that the speed v of cars is taken to be a positive
monotonic differentiable function of density v = v(u).

(a) Should v be increasing or decreasing?

(b) How would you characterize the maximum velocity vmax and the maximum density umax?

(c) Let Q(u) = uv(u). Prove that Q has a maximum at some density u∗ in the interval (0, umax).

(d) Can there be two local maxima of the flux?

Solution. (a) v should be (strictly) monotonic decreasing with density in a continuously differentiable man-
ner. This is because we expect traffic velocity to decrease as traffic density increases.

(b) It makes sense to let vmax be the limit of velocity as u → 0, and to let umax be the sup over all u such
that v > 0. Lastly, it also behooves us to ensure that vmax and umax are finite, since otherwise we don’t
have a realistic model. In particular, for this model we could let vmax be the velocity of cars assuming
no congestion (where density is taken to be zero), and umax be the maximum density of cars physically
possible, i.e., the greatest density of cars (assuming they are all the same length) without overlap.

(c) With Q(u) = uv(u), by the assumptions above, we have Q(umax) = Q(0) = 0. Since Q is continuous on
the interval [0, umax] and differentiable on (0, umax), by the mean value theorem dQ

du vanishes somewhere
on (0, umax). Since Q is positive on (0, umax), it follows that this critical point is a local maximum.

For example, with Q(u) = vmaxu(1 − 1
umax

u), we have dQ
du = vmax(1 − 2

umax
u). Q thus has a critical

point at u = 1
2umax in the interval (0, umax). Since d2Q

du2 = −2 vmax

umax
< 0, it follows that 1

2umax is a local
maximum for the flux Q.

(d) Yes it is possible, depending on the relation v(u). In the event that v is cubic in u, Q is quartic, and
thus might have two local maxima.
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3 First Order PDE

3.1

Use the substitution v = uy to solve for u = u(x, y) :

uxy = 5uy, u(x, x) = 0, uy(x, x) = 2.

Solution. Letting v = uy, the PDE becomes vx = 5v with initial condition v(x, x) = 2. This yields the
solution v(x, y) = A(y)e5x for some A(y). The initial data then informs us that A(y) = 2e−5y, so that the
solution of the new PDE is uy(x, y) = v(x, y) = 2e5(x−y). Hence, we find that u(x, y) = − 2

5e
5(x−y) + B(x)

for some B(x). The initial data gives u(x, x) = − 2
5 +B(x) = 0, so that B(x) = 2

5 . Thus the solution of the
IVP is

u(x, t) = −2

5
e5(x−y) +

2

5
.

3.2

Solve for u = u(x, y) :
(1 + t2)ut + ux = 0, u(x, 0) = sinx.

Solution. Since 1 + t2 > 0, we can rewrite the PDE as

ut +
1

1 + t2
ux = 0.

The corresponding characteristic equations are thus

dx

dt
=

1

1 + t2
, x(0) = x0 and

dû

dt
= 0, û(0) = û(0;x0) = sinx0

which yield
x(t) = arctan t+ x0 and û(t) = û(t;x0) = sinx0.

Hence, the solution of the IVP is

u(x, t) = û(t;x0(x, t)) = sin(x− arctan t).

Figure 16: Graph of u is orange; graph of the initial curve is red; graphs of characteristics corresponding to
x0 = −.5 and x0 = −1.5 are shown in blue; graphs of û on each characteristic are in green.
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3.3

Solve for u = u(x, y) :
ut + ux + 3u = e2x+t, u(x, 0) = x.

Solution. We reorganize a smidgen to get ut + ux = e2x+t − 3u, which has the corresponding characteristic
equations

dx

dt
= 1, x(0) = x0 and

dû

dt
= e2x+t − 3û, û(0) = û(0;x0) = x0

which yield

x(t) = t+ x0 and thus
dû

dt
= e3t+2x0 − 3û, û(0) = û(0;x0) = x0

so that

û = û(t;x0) = e−3t

∫
e6t+2x0dt = e−3t

{
1

6
e6t+2x0 +A(x0)

}
for some constant A(x0). The initial condition informs us that A(x0) = x0 − 1

6e
2x0 . Hence, the solution of

the IVP is

u(x, t) = û(t;x0(x, t)) = e−3t

{
1

6
e2(2t+x) + x− t− 1

6
e2(x−t)

}
.

Figure 17: Graph of u is orange; graph of the initial curve is red; graphs of characteristics corresponding to
x0 = 0 and x0 = 1 are shown in blue; graphs of û on each characteristic are in green.

3.4

Solve
ux + uy = u, u(x, 0) = cosx

using the general method of characteristics. Show that the initial curve Γ is noncharacteristic.

Solution. We parametrize the initial curve Γ by γ(s) = [s, 0]. Thus, u(x, y) = cosx for [x, y] ∈ Γ. Examining
the PDE in a general setting, we see that with a(x, u) = [1, 1], c(x, u) = u, where x ∈ R2, the IVP can be
written as

〈a(x, u),∇u〉 = c(x, u), and u(x) = cosx1 x ∈ Γ.

This set up yields the characteristic equations

a =
dx

dτ
=

(
1
1

)
, x(s, 0) = x0(s) =

(
s
0

)
and c =

dz

dτ
= z, z(s, 0) = cos s.

Solving these equations gives us

x(s, τ) =

(
τ
τ

)
+

(
ξ1(s)
ξ2(s)

)
and z(s, τ) = A(s)eτ ,
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for some functions ξ1, ξ2, A, which after applying initial conditions yields

x(s, τ) =

(
τ + s
τ

)
and z(s, τ) = cos(s)eτ .

Writing x = [x, y], we solve the first equation for s, τ as functions of x, y, giving s = x− y and τ = y. Hence,
the solution of the Cauchy problem is

u(x, y) = z(s(x, y), τ(x, y)) = cos(x− y)ey.

To confirm that the initial curve Γ is noncharacteristic, we compute the jacobian of the transformation
x(s, τ): (

∂x
∂s

∂x
∂τ

∂y
∂s

∂y
∂τ

)
=

(
1 1
0 1

)
which is invertible on Γ.

Figure 18: Graph of u is orange; graph of Γ is red; graphs of characteristics corresponding to x0 = 0 and
x0 = 3 are shown in blue; graphs of z on each characteristic are in green.

3.5

Verify that u(x, t) = û(t; x̃0(x, t)) constructed in general in Section 3.1 is indeed a solution of

ut + c(x, t, u)ux = r(x, t, u), t > 0, u(x, 0) = f(x)

Solution. In particular, we have x = x(t;x0) and u = û(t;x0) the solutions of the characteristic equations

dx

dt
= c, x(0) = x0 and

dû

dt
= r, û(0) = û(0;x0) = f(x0).

Inverting the relation x(t;x0) to get x0 = x̃0(x, t) , we can compute

ux = D1(u)D1(x̃0)

ut = D2(u) = D1(û) +D2(û)D2(x̃0)

ut + cux = ut +
dx

dt
ux = D1(û) +D2(û)D2(x̃0) +D1(u)D1(x̃0)

dx

dt
= ∂tû(t, x̃0(x(t), t))

=
dû

dt
= r

17



3.6

With characteristics described by y = x+ k, solve

ux + uy = u, u(x, 0) = cosx.

Solution. The characteristic equations are

dy

dx
= 1, y(0) = k, and

dû

dx
= û, û(y−1(0)) = û(y−1(0); 0) = cos(y−1(0))

which yield, as advertised,
y(x) = x+ k, û(x; k) = A(k)ex.

Since cos(−k) = û(y−1(0)) = A(−k)e−k, we see that A(k) = cos(k)ek and thus

u(x, y) = û(x; k(x, y)) = cos(y − x)ey.

3.7

For the avalanche flow equation

ut + yux + S(u(u− 1))y = 0, S > 0

suppose an initial distribution of particles is given by

u(x, y, 0) = u0(x, y) = x+ y, (x, y) ∈ R2.

Find the solution u(x, y, t), (x, y, t) ∈ R2 × R>0 by the method of characteristics.

Solution. We write the PDE out as

ut + yux + S(2u− 1)uy = 0

which has corresponding characteristic equations

dx

dt
= y,

dy

dt
= S(2û− 1),

dû

dt
= 0

with initial conditions

x(0) = x0, y(0) = y0, û(0) = û(0;x0, y0) = u0(x0, y0) = x0 + y0.

We thus find that

û(t) = û(t;x0, y0) = u0(x0, y0) = x0 + y0

y(t) = S(2û− 1)t+ y0

x(t) =
1

2
S(2û− 1)t2 + y0t+ x0

Hence we conclude that implicitly the solution to the PDE is given by

u(x, y, t) = û(t;x0(x, y, t), y0(x, y, t)) =
1

2
S(2u− 1)t2 + x− yt+ y − S(2u− 1)t.
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Amended in the Errata

Use the method of characteristics to solve the initial value problem for u = u(x, y, t) on the domain x, y ∈ R,
and for small t > 0:

ut + yux + uuy = 0, u(x, y, 0) = x+ y.

Show that the solution has a singularity as t→ t∗ for some t∗ > 0, and find the value of t∗.

Solution. The characteristic equations are

dx

dt
= y,

dy

dt
= û,

dû

dt
= 0

with initial conditions

x(0) = x0, y(0) = y0, û(0) = û(0;x0, y0) = u0(x0, y0) = x0 + y0.

We thus find that

û(t) = û(t;x0, y0) = u0(x0, y0) = x0 + y0

y(t) = ût+ y0

x(t) =
1

2
ût2 + y0t+ x0

Hence we conclude that implicitly the solution to the PDE is given by

u(x, y, t) = û(t;x0(x, y, t), y0(x, y, t)) = x+
1

2
ut2 − (y + u)t+ y

which can be easily solved for u:

u(x, y, t) = 2
x+ y − yt
−t2 + 2t+ 2

.

The denominator vanishes at t = 1±
√

3, so with t > 0 the blowup occurs at t∗ = 1 +
√

3.
Below the graphs of u are shown for various values of t:

Figure 19: t = 0 Figure 20: t = 1
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Figure 21: t = 2 Figure 22: t = 2.73

3.8

(a) Use the method of characteristics to solve the initial value problem

ut + tux = u2, −∞ < x <∞, 0 < t < 1; u(x, 0) =
1

1 + x2
, −∞ < x <∞.

(b) Show that the solution blows up as t→ 1, that is, lim
t→1−

max
x

u(x, t) =∞.

Solution. (a) We have the characteristics

dx

dt
= t, x(0) = x0, and

dû

dt
= û2, û(0) = û(0;x0) =

1

1 + x2
0

which yield the solutions

x(t) =
1

2
t2 + x0, and û(t;x0) =

1

1 + x2
0 − t

.

Thus, the explicit solution is

u(x, t) = û(t;x0(x, t)) =
1

1 + (x− 1
2 t

2)2 − t
.

(b) Now, we calculate

lim
t→1−

max
x

u(x, t) = lim
t→1−

max
x

1

1 + (x− 1
2 t

2)2 − t
= lim
t→1−

1

1− t
= +∞.
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Figure 23: Graph of log100 u; The green curve is the one parametrized by (1
2 t

2, t, log100
1

1−t ), which is
along the “ridgeline” of log100 u.

3.9

Sketch the graph of the traffic flow flux Q as a function of density u. Explain each zero of Q in terms of the
physical model.

Solution. Earlier, we chose the constitutive law Q(u) = βu(1− u
α ), where α is the maximum density and β

is the maximum velocity. Everyone knows what a parabola looks like, so I think the following sketch with
constants normalized is sufficient:

There are of course two zeros, provided that β > 0 meaning we do have car movement. The least zero
is the one corresponding to when there are no cars on the road, that is, when the density is zero. In this
case, there is clearly no flux. The greatest zero occurs when maximum density is reached, which is where
the velocity of cars vanishes corresponding to a stand-still traffic jam.

3.10

Formulate constitutive laws for the traffic flux Q as a function of density assuming that traffic speed v(p) is
a quadratic decreasing function of density ρ. How many parameters are in the model? Is it possible to make
the flux nonconcave as a function of density?

Solution. We begin with the relation Q(ρ) = ρv(ρ) which gives correct units for flux. We could take, for
instance,

Q(ρ) = ρv(ρ) = βρ

(
1−

( ρ
α

)2
)

with α and β as before.
Now, suppose in general that v(ρ) = αρ2 +βρ+ξ is quadratic and decreasing so that v′(ρ) = 2αρ+β < 0

for all ρ in the interval [0, ρmax]. Then we can interpret ξ as the maximum velocity assuming no cars (so

21



ρ = 0), and we take α = −βρmax+ξ
ρ2max

to ensure that v(ρmax) = 0. It is indeed possible to make the flux convex

on some interval: indeed, we can just choose β satisfying

3
βρmax + ξ

ρ2
max

> β

since this will make Q′′(ρ) > 0 over some subinterval of [0, ρmax].

3.11

Write the details of how to use the Implicit Function Theorem on u = u0(x− ut) to prove: If u0 is smooth
and bounded on (−∞,∞) then for each x0 ∈ R there is an interval I ⊂ R containing x0 such that the
solution u(x, t) exists, is C1, and is unique for all x ∈ I and all small enough t. Recall we are trying to solve
the IVP

ut + uux = 0 for (x, t) ∈ R× R>0, u(x, 0) = u0(x) for x ∈ R

Solution. Consider the function F : R2×R→ R defined by F (x, y, û) = û−u0(x− ût). We want to prove the
existence of a unique C1 function u(x, t) such that û = u(x, t) for all (x, t) ∈ R×R>0 in some neighborhood
of (x0, 0). Note that F (x0, 0, u0(x0)) = u0(x0)− u0(x0) = 0 for any x0 ∈ R and that F is a C1 function on
all of R, which is all we need for the implicit function theorem to guarantee that u is C1. We check

(D3F (x0, 0, u0(x0))) = (1)

which is nonsingular. Hence, there exists an open set A × B ⊂ R2 containing (x0, 0), an open set V ⊂ R
containing u0(x0), and a unique C1 function u : A × B → V such that u(x0, 0) = u0(x0) and u(x, t) = û
satisfies F (x, t, û) = 0 for all (x, t) ∈ A × B. Since B is open, there is some open neighborhood of positive
time on which u(x, t) = u0(x− ut) = û solves the IVP.

I am a little confused as to why u0 is assumed to be smooth and bounded on R, since it seems we were
able to prove the result using only continuous differentiability and pointwise boundedness on R. Clearly,
pointwise boundedness on R is necessary for F to even make sense, but I fail to see why boundedness on all
of R should be necessary.

3.12

Let u0(x) = H(x)x2, where H(x) = 0 for x < 0 and H(x) = 1 for x > 0 is the Heaviside step function.
Write the solution u(x, t) of

ut + uux = 0, −∞ < x <∞, t > 0; u(x, 0) = u0(x), −∞ < x <∞

as an explicit formula for t > 0.

Solution. It is visibly true that u0(x) is C1 on R, so let’s go ahead with solving the IVP. By the method of
characteristics, the solution of the IVP is, in implicit form,

u(x, t) = H(x− ut)(x− ut)2.

We have two cases we are concerned with, the first where x − ut < 0, where u(x, t) = 0, and the second
where x−ut > 0, where u(x, t) = x2− 2xtu+u2t2. Since u(x, t) > 0 and t > 0, we see that u(x, t) = 0 when
x− ut 6 x < 0.

Suppose then that x − ut > 0, so that u = x2 − 2xtu + u2t2. Solving for u, we obtain the two possible
solutions

u(x, t) =
2xt+ 1±

√
4xt+ 1

2t2
.

To see which solution we need to take, note that (with t > 0) x − ut > 0 implies that x
t − u > 0. Then we

subtract
x

t
− u+ =

x

t
− 2xt+ 1 +

√
4xt+ 1

2t2
=
−1−

√
4xt+ 1

2t2
< 0
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and
x

t
− u− =

x

t
− 2xt+ 1−

√
4xt+ 1

2t2
=
−1 +

√
4xt+ 1

2t2
> 0.

Hence, we need to take the negative conjugate solution u−. Hence, the full solution is

u(x, t) =

{
0 x 6 0
2xt+1−

√
4xt+1

2t2 x > 0

Figure 24: Graph of u

3.13

Get the answer

v =
u′0(x0)

1 + u′0(x0)t

by differentiating the implicit solution u = u0(x− ut) with respect to x.

Solution. We compute ∂xu(x, t) = ∂xu0(x− ut) = u′0(x− ut)(1− uxt). Hence,

ux
1− uxt

= u′0(x− ut)

so with v = ux and x = ut+ x0 we solve
v

1− vt
= u′0(x0)

to find

v =
u′0(x0)

1 + u′0(x0)t

3.14

Use the method of characteristics to prove global (t > 0) existence of a smooth solution of

ut + uux = 0, −∞ < x <∞, t > 0; u(x, 0) = u0(x), −∞ < x <∞

when the initial data are given by a strictly increasing but bounded C1 function u0.

Solution. I think we need u0 to be smooth and pointwise bounded. If this is so, then the method of
characteristics gives us the implicit solution u(x, t) = u0(x− ut). Then

ux =
u′0(x− ut)

1 + u′0(x− ut)t
=

u′0(x0)

1 + u′0(x0)t
and ut =

−uu′0(x− ut)
1 + u′0(x− ut)t

=
−uu′0(x0)

1 + u′0(x0)t
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which both exist and are smooth on R× R>0 since u0 is smooth and u′0 > 0. By repeatedly differentiating,
we obtain all the derivatives of u in terms of previous ones, which we know are smooth. Hence, u is smooth
on R× R>0.

3.15

Carry through the analysis presented in Section 3.4 for a general scalar conservation law

ut + f(u)x = 0

where f : R → R is a given C2 function. Derive an implicit solution u(x, t) of the Cauchy problem, and
formulate a condition for the solution to remain smooth for all time. Likewise, if the condition is violated,
find an expression for the time at which the solution first breaks down.

Solution. Suppose that u(x, 0) = u0(x) for some smooth u0. We write ut + f(u)x = ut + f ′(u)ux = 0, which
has characteristic equations

dx

dt
= f ′(û), x(0) = x0 and

dû

dt
= 0, û(0) = û(0;x0) = u0(x0)

yielding the solutions
x(t) = f ′(û)t+ x0 and û(t;x0) = u0(x0)

which gives the solution of the Cauchy problem

u(x, t) = û(t;x0(x, t)) = u0(x− f ′(u)t).

Now, suppose that either f is convex (so that f ′′ > 0) and that u0 is monotonic increasing, or that f is
concave (so f ′′ 6 0) and u0 is monotonic decreasing. Then ux and ut are defined for all t > 0, since as above

ux =
u′0(x− ut)

1 + u′0(x− ut)f ′′(u)t
=

u′0(x0)

1 + u′0(x0)f ′′(u)t
and ut =

−f ′(u)u′0(x− ut)
1 + u′0(x− ut)f ′′(u)t

=
−f ′(u)u′0(x0)

1 + u′0(x0)f ′′(u)t
.

As above, we can obtain every derivative of u by repeatedly differentiating, and so we conclude that in either
of the above cases u is smooth.

On the other hand, suppose that f ′′(u0(x0)) > 0 and u′0(x0) < 0 at some point x0, or that f ′′(u0(x0)) < 0
and u′0(x0) > 0. Then the break down time is

t∗ = inf

{
− 1

f ′′(u0(x0))u′0(x0)
|f ′′(u0(x0)) > 0 and u′0(x0) < 0 or f ′′(u0(x0)) < 0 and u′0(x0) > 0

}
.

4 The Wave Equation

4.1

Consider the IVP

utt = uxx, x ∈ R, t > 0

u(x, 0) = φ(x), x ∈ R
ut(x, 0) = ψ(x), x ∈ R.

where φ is the function defined by

φ(x) =


0 x < 1

x− 1 1 6 x < 2

3− x 2 6 x < 3

0 3 6 x
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and ψ ≡ 0. In the x − t plane representation of the solution in Fig. 4.5, we find that u ≡ 0 in the middle
section with t > 1

2 . Show that if we keep the same φ but make ψ nonzero, with suppφ = [1, 3], then u will
still be constant in this middle section. Find a condition on ψ that is necessary and sufficient to make this
constant 0.

Solution. We consult d’Alembert’s solution

u(x, t) =
1

2

[
φ(x+ ct) + φ(x− ct) +

1

c

∫ x+ct

x−ct
ψ(ξ)dξ

]
.

If (x0, t0) is in this middle region as pictured in Fig 4.5, then x0 − ct0 < 1 and x0 + ct0 > 3, hence the first
two terms in d’Alembert’s solution vanish. Thus the solution of the IVP is just the last term:

1

2c

∫ x+ct

x−ct
ψ(ξ)dξ =

1

2c

∫
[1,3]

ψ(ξ)dξ

which is just some constant. This holds for every (x0, t0) in this region, hence we conclude that u is constant
there. To ensure that this constant is zero, it is necessary and sufficient to require this integral to vanish.

4.2

Consider C3 solutions of the wave equation

utt = c2uxx.

For c = 1, define the energy density e = 1
2 (u2

t + u2
x), and let p = utux (the momentum density).

(a) Show that et = px and ex = pt.

(b) Conclude that both e and p satisfy the wave equation.

Solution. Notice that u being C3 implies that u satisfies the Schwarz-Clairaut Theorem for equality of mixed
partials of order up to 3, although it seems we only require this equality to hold up to order 2. Now, with
this fact and the assumption that uxx = utt we calculate

et = ututt + uxuxt = utuxx + uxuxt = px

ex = ututx + uxuxx = utuxt + uxutt = pt

Hence it follows that

ett = pxt = ptx = exx

ptt = ext = etx = pxx

4.3

Suppose u(x, t) satisfies the wave equation utt = c2uxx. Show that

(a) For each y ∈ R, the function u(x− y, t) also satisfies the wave equation.

(b) Both ux and ut satisfy the wave equation.
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(c) For any a > 0, the function u(ax, at) satisfies the wave equation. Note that the restriction a > 0 is not
necessary.

Solution. We need u to be C3! Indeed, if this is true then we can go ahead and calculate:

(a) Letting ũ = u(x− y, t), we have ũtt = utt = c2uxx = c2ũxx.

(b)

(ux)tt = uxtt = uttx = (utt)x = (c2uxx)x = c2uxxx = c2(ux)xx

(ut)tt = uttt = (utt)t = (c2uxx)t = c2uxxt = c2utxx = c2(ut)xx

(c) Letting ũ = u(ax, at), we have ũtt = a2utt = a2c2uxx = c2ũxx.

4.4

(a) Let u(x, t) be a solution of the wave equation with c = 1, valid for all x, t. Prove that for all x, t, h, k

u(x+ h, t+ k) + u(x− h, t− k) = u(x+ k, t+ h) + u(x− k, t− h).

(b) Write a corresponding identity if u satisfies the wave equation with c = 2.

Solution. (a) We appeal to the general form of the solution, which is of the form

u(x, t) = F (x− t) +G(x+ t)

for C2 functions F,G. We can just go ahead and compute

u(x+ h, t+ k) + u(x− h, t− k) = F (x− t+ h− k) + F (x− t− h+ k) +G(x+ t+ h+ k) +G(x+ t− h− k)

u(x+ k, t+ h) + u(x− k, t− h) = F (x− t+ k − h) + F (x− t− k + h) +G(x+ t+ k + h) +G(x+ t− k − h)

So that the equality clearly holds.

(b) With c = 2, it is readily seen that the following holds:

u(x+ 2h, t+ k) + u(x− 2h, t− k) = u(x+ 2k, t+ h) + u(x− 2k, t− h),

since the general solution is now u(x, t) = F (x− 2t) +G(x+ 2t).
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4.5

Consider the quarter-plane problem

utt = 4uxx, x > 0, t > 0,

u(0, t) = 0, t > 0

u(x, 0) = φ(x), x > 0

ut(x, 0) = ψ(x), x > 0

Let φ(x) be the function described in 4.1, and let ψ(x) ≡ 0. Sketch the solution u(x, t) as a function of x
for t = 1

4 ,
3
8 ,

1
2 , 1, 2.

Solution. Before we plot the solution, lets actually say what it is. Since the initial data is only defined for
positive values, our solution splits into two parts depending on whether x is less than or greater than 4t (it
doesn’t actually matter which part we go with on the line x = 4t, since the two parts agree). We have

u(x, t) =

{
1
2 [φ(x+ 4t) + φ(x− 4t)] x > 4t
1
2 [φ(x+ 4t)− φ(4t− x)] x 6 4t

Figure 25: u(x, t) at t = 0 Figure 26: u(x, t) at t = 1
4

Figure 27: u(x, t) at t = 3
8 Figure 28: u(x, t) at t = 1

2
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Figure 29: u(x, t) at t = 1 Figure 30: u(x, t) at t = 2

4.6

Consider the quarter-plane problem with a homogeneous Neumann boundary condition

utt = uxx, x > 0, t > 0,

ux(0, t) = 0, t > 0

u(x, 0) = φ(x), x > 0

ut(x, 0) = ψ(x), x > 0

Suppose that suppφ = [1, 2] = suppψ.

(a) Solve for u(x, t), x > 0, t > 0.

(b) Where can you guarantee u = 0 in the first quadrant of the x− t plane?

(c) Consider φ ≡ 0; write a formula for u.

(d) If 0 is in the support of φ or ψ (e.g. if limx→0+ φ(x) 6= 0), write conditions that guarantee u is (a)
continuous and (b) C1. Explain your answers in terms of the behavior of the data around the boundary
of the domain. Any compatibility condition will be effectively at the origin, but you will need to match
u, ux, and ut across x = t.

Solution. (a) Let’s first solve the more general problem where ux(0, t) = h(t) and h is not necessarily
identically 0. If x > t, then we just take d’Alembert’s solution. On the other hand, if x < t we have the
following to work with:

u(x, 0) = F (x) +G(x) = φ(x)

ut(x, 0) = −F ′(x) +G′(x) = ψ(x)

ux(0, t) = F ′(−t) +G′(t) = h(t)

Since suppφ = [1, 2] = suppψ, we can define without cause for concern ψ(0) = φ(0) = 0, from which we
surmise that −F (x) +G(x) =

∫ x
0
ψ(ξ)dξ +A and −F (−x) +G(x) =

∫ x
0
h(ξ)dξ +B for constants A and
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B. These two relations also tell us that A = B, which is found by evaluating both expressions at x = 0.
Now, notice that F (−x) = G(x)−

∫ x
0
h(ξ)dξ−B, and G(x) = 1

2

[
φ(x) +

∫ x
0
ψ(ξ)dξ +A

]
, which allow us

to calculate (remember we are dealing with the case x < t)

u(x, t) = F (x− t) +G(x+ t)

= G(t− x)−
∫ t−x

0

h(ξ)dξ −B +G(x+ t)

=
1

2

[
φ(t− x) +

∫ t−x

0

ψ(ξ)dξ +A

]
−
∫ t−x

0

h(ξ)dξ −B +
1

2

[
φ(x+ t) +

∫ x+t

0

ψ(ξ)dξ +A

]
=

1

2

[
φ(t− x) + φ(x+ t) +

∫ x+t

0

ψ(ξ)dξ +

∫ t−x

0

ψ(ξ)dξ

]
−
∫ t−x

0

h(ξ)dξ −B +A

=
1

2

[
φ(t− x) + φ(x+ t) +

∫ x+t

t−x
ψ(ξ)dξ

]
+

∫ t−x

0

ψ(ξ)dξ −
∫ t−x

0

h(ξ)dξ

If we now specialize to h ≡ 0, we recover the solution of our original IBVP when x < t. Altogether,

u(x, t) =


1
2

[
φ(x− t) + φ(x+ t) +

∫ x+t

x−t ψ(ξ)dξ
]

t < x

1
2

[
φ(t− x) + φ(x+ t) +

∫ x+t

t−x ψ(ξ)dξ
]

+
∫ t−x

0
ψ(ξ)dξ x 6 t

(b) u must vanish in the region of the first quadrant defined by x+ t < 1, the region defined by x− t > 2,
and the region defined by t− x > 2, since in these regions both backward characteristics cross the t = 0
line outside the support of φ and ψ. Hence the region of dependence of a point in either of these regions
contains no nonzero initial data.

(c) We have, based on our results from the first part,

u(x, t) =
1

2
[φ(t− x) + φ(x+ t)] .

(d) We first handle the task of ensuring that u is continuous. All we need here is that φ be continuous at
0, and that ψ be Riemann integrable. Then everything on the right hand side of the definition of u in
part (a) is continuous on the whole of the quarter plane. Indeed, taking the limit of u along a sequence
(x, t)→ (x0, t0) of the quarter plane tending to some point (x0, t0) therein is evidently convergent to the
value u(x0, t0) if the preceding conditions hold.

For u to be guaranteed C1, we need to require a little more. Let’s first calculate the derivatives of u:

ux(x, t) =

{
1
2 [φ′(x− t) + φ′(x+ t) + ψ(x+ t)− ψ(x− t)] x > t
1
2 [−φ′(x− t) + φ′(x+ t) + ψ(x+ t)− ψ(t− x)] x 6 t

ut(x, t) =

{
1
2 [−φ′(x− t) + φ′(x+ t) + ψ(x+ t) + ψ(x− t)] x > t
1
2 [φ′(t− x) + φ′(x+ t) + ψ(x+ t) + ψ(t− x)] x 6 t

If we want u to be C1, then, we need to have φ ∈ C1, and we need φ′(0) = 0. This can be seen by taking
the limits of ut along sequences which tend to a point (x0, t0) on the line x = t from each side of the
line.

Looking at the origin in particular, we can see why the condition φ′(0) = 0 is necessary. Indeed, the
boundary data has ux(0, t) = 0 for all t > 0, while u(x, 0) = φ(x) implies ux(x, 0) = φ′(x) for all x > 0.
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Taking the limit as t → 0 and x → 0 in these respective relations should yield the same value if we
assume that u is C1.

4.7

Consider the more general case above where ux(0, t) = h(t) for h not identically 0. Derive the solution for
x < t. Also derive a suitable compatibility condition at the origin that ensures the solution is continuous
when the data are continuous. What about the first derivatives across x = t?

Solution. Oh boy! We already took care of the first part in the preceding problem, although for some reason
my answer does not match with Shearer and Levy’s since we’ve got that rogue integral of ψ floating around.

u(x, t) =
1

2

[
φ(t− x) + φ(x+ t) +

∫ x+t

t−x
ψ(ξ)dξ

]
+

∫ t−x

0

ψ(ξ)dξ −
∫ t−x

0

h(ξ)dξ.

This solution appears to be correct, however, since we can directly calculate

ux(x, t) =
1

2
[−φ′(t− x) + φ′(x+ t) + ψ(x+ t) + ψ(t− x)]− ψ(t− x) + h(t− x)

which gives ux(0, t) = h(t) as we want.
As suggested by the analysis at the end of the last problem, we should take φ′(0) = h(0) for u to be C1.

Otherwise, continuity of the initial data guarantees continuity of u.

4.8

Consider the wave equation that includes frictional damping:

utt + µut = c2uxx,

in which µ > 0 is a damping constant. Show that if u is a C2 solution with ux → 0 as x → ∞, then the
total energy

E(t) =

∫ ∞
−∞

1

2
(u2
t + c2u2

x)dx

is a decreasing function.
Devise a C2 function f(x) with the property that f approaches some constant as x→ ±∞, but f ′ does

not simultaneously approach 0.

Solution. As outlined in the text, we really want ut and ux to be in L2. That way ut and ux both approach
zero as x→ ±∞ (otherwise we could find a sufficiently large ball about the origin and a positive δ > 0 such
that ut > δ and ux > δ in the complement of said ball, the integral over which of u2

t or u2
x would be infinite).

If this is the case, then we can multiply the PDE by ut, integrate by parts, and find that

E′(t) =
1

2

d

dt

∫ ∞
−∞

(
u2
t + c2u2

x

)
dx = −

∫ ∞
−∞

µu2
tdx

which says that the energy is decreasing.
For the added exercise at the end, typical examples of such functions include f(x) = 1

xm sin(|x|n) where
m > 1 +n (this is actually related to an exercise in Baby Rudin). One that I just pulled out of my rear end,
which I happen to like, but am too tired to write out explicitly uses bump functions. We define a function
f on the positive real line which, we extend to an even function on the whole line, as follows: centered at
each positive integer n take a ball of diameter 1

n and define on this ball a bump function reaching a height
of 1

n , such that it attains a slope of n. Then let f be zero everywhere else, and extend as an even function
to the whole real line. Then clearly f is smooth, tends to 0 as |x| →=∞, and has a derivative with no limit
as |x| → ∞.

30



4.9

Consider the quarter-plane problem

utt = c2uxx, x > 0, t > 0,

u(0, t) = 0, t > 0

u(x, 0) = φ(x), x > 0

ut(x, 0) = ψ(x), x > 0

.

(a) Formulate the mechanical energy E(t) for solutions, and show that it is conserved. Specify any assump-
tions you need on the initial data.

(b) For the nonzero boundary condition u(0, t) = h(t), evaluate E′(t) in terms of the data φ, ψ, h.

Solution. (a) Following the analysis in the text, we multiply the PDE by ut, and integrate by parts, assuming
ux and ut are in L2. We find that

1

2

∫ ∞
0

∂

∂t
(ut)

2dx =

∫ ∞
0

uttutdx =

∫ ∞
0

c2uxxutdx = c2uxut|x=∞
x=0 −

1

2

∫ ∞
0

c2
∂

∂t
(ux)2dx

which implies that

E′(t) =
1

2

∫ ∞
0

(u2
t + c2u2

x)dx = c2uxut|∞0 .

Thus, energy will be conserved provided that either of ux(0, t) = 0 or ut(0, t) = ψ(0) = 0 holds (as ut
and ux being integrable implies that they tend to 0 as x tends to ∞).

(b) We simply substitute into the above result:

E′(t) =
1

2

∫ ∞
0

(u2
t + c2u2

x)dx = c2uxut|x=∞
x=0 = −c2ux(0, t)ut(0, t) = −c2ux(0, t)h′(t).

I’m not sure what else you can do.

4.10

Let f(x, t) be a continuous function, and let ∆(x, t) denote the domain of dependence of the point (x, t) for
utt = c2uxx. Use the Fundamental Theorem of Calculus to show directly that

u(x, t) =
1

2c

∫ ∫
∆(x,t)

f(y, s)dyds

satisfies
utt = c2uxx + f(x, t), u(x, 0) = ut(x, 0) = 0.

Solution. We have that

u(x, t) =
1

2c

∫ ∫
∆(x,t)

f(y, s)dyds =

∫ t

0

∫ x+c(t−s)

x−c(t−s)

1

2c
f(y, s)dyds =

∫ t

0

ũ(x, t, s)ds
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where ũ(x, t, s) = 1
2c

∫ x+c(t−s)
x−c(t−s) f(y, s)dy. Recall that ũ solves the IVP

ũtt(x, t; s) = c2ũxx(x, t; s), t > s, x ∈ R
ũ(x, s; s) = 0,

ũt(x, s; s) = f(x, s).

We then calculate directly

ut(x, t) =

∫ t

0

ũt(x, t, s)ds+ ũ(x, t, t) =

∫ t

0

ũt(x, t, s)ds

utt(x, t) =

∫ t

0

ũtt(x, t, s)ds+ ũt(x, t, t) =

∫ t

0

ũtt(x, t, s)ds+ f(x, t)

ux(x, t) =

∫ t

0

ũx(x, t, s)ds

uxx(x, t) =

∫ t

0

ũxx(x, t, s)ds

Since we have ũtt − c2ũxx = 0, we verify that

utt − c2uxx =

∫ t

0

(
ũtt − c2ũxx

)
ds+ f(x, t) = f(x, t).

4.11

Consider the wave equation in three dimensions, with initial conditions in which φ(x) = f(|x|) is rotationally
symmetric, the function f satisfies f(r) = 0, r > ε, and ψ ≡ 0. Show that the solution u(x, t) is (a)
rotationally symmetric, and (b) zero outside a circular strip centered at the origin and having width ε.

Solution. To be more clear, the IVP we are considering is:

utt = c2∇2u, x ∈ R3, t > 0

u(x, 0) = φ(x) = f(|x|), f(r) = 0, r > ε

ut(x, 0) = ψ(x) ≡ 0.

(a) From the method of spherical means, the solution is

u(x, t) = t−
∫
S(x,ct)

ψ(y)dS +
∂

∂t

{
t−
∫
S(x,ct)

φ(y)dS

}
=

∂

∂t

{
t−
∫
S(x,ct)

f(|y|)dS

}
.

Since this last integral does not depend upon x itself, only |x|, it follows that u is rotationally symmetric.

(b) Suppose that x and t are such that ||x| − ct| > ε. Then S(x, ct) ∩ B(O; ε) = ∅. Hence, the last integral
vanishes, meaning u(x, t) = 0.
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