
Shell Scripting

Shaohao Chen and Le Yan

HPC User Services @ LSU

9/22/2015 HPC training series Fall 2015

Outline
• Introduction to Linux Shell
• Shell Scripting Basics
• Beyond Basic Shell Scripting

– Arithmetic Operations
– Arrays
– Flow Control
– Command Line Arguments
– Functions

• Advanced Text Processing Commands (grep, sed,
awk)

9/22/2015 HPC training series Fall 2015 1

What Do Operating Systems Do?

• Operating systems
work as a bridge
between hardware
and applications
– Kernel: hardware

drivers etc.
– Shell: user interface to

kernel
– Some applications

(system utilities)

9/22/2015 HPC training series Fall 2015 2

Hardware

Kernel

Shell

Application

: Operating System

Kernel

• Kernel
– The kernel is the core component of most operating systems
– Kernel’s responsibilities include managing the system’s

resources
– It provides the lowest level abstraction layer for the resources

(especially processors and I/O devices) that application software
must control to perform its functions

– It typically makes these facilities available to application
processes through inter-process communication mechanisms
and system calls

9/22/2015 HPC training series Fall 2015 3

Shell

• Shell
– The command line interface is the primary user

interface to Linux/Unix operating systems.
– Each shell has varying capabilities and features and

the users should choose the shell that best suits their
needs

– The shell can be deemed as an application running on
top of the kernel and provides a powerful interface to
the system.

9/22/2015 HPC training series Fall 2015 4

Type of Shell
• sh (Bourne Shell)

– Developed by Stephen Bourne at AT&T Bell Labs

• csh (C Shell)
– Developed by Bill Joy at University of California, Berkeley

• ksh (Korn Shell)
– Developed by David Korn at AT&T Bell Labs
– Backward-compatible with the Bourne shell and includes many features of the C shell

• bash (Bourne Again Shell)
– Developed by Brian Fox for the GNU Project as a free software replacement for the Bourne shell
– Default Shell on Linux and Mac OSX
– The name is also descriptive of what it did, bashing together the features of sh, csh and ksh

• tcsh (TENEX C Shell)
– Developed by Ken Greer at Carnegie Mellon University
– It is essentially the C shell with programmable command line completion, command-line editing,

and a few other features.

9/22/2015 HPC training series Fall 2015 5

Shell Comparison
Software sh csh ksh bash tcsh

Programming language y y y y y

Shell variables y y y y y

Command alias n y y y y

Command history n y y y y

Filename autocompletion n y* y* y y

Command line editing n n y* y y

Job control n y y y y

9/22/2015 HPC training series Fall 2015 6

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

*: not by default

Linux Shell Variables

• Linux allows the use of variables
– Similar to programming languages

• A variable is a named object that contains data
– Number, character or string

• There are two types of variables: ENVIRONMENT and user defined
• Environment variables provide a simple way to share configuration

settings between multiple applications and processes in Linux
– Environment variables are often named using all uppercase letters
– Example: PATH, LD_LIBRARY_PATH, SHELL, DISPLAY etc.
– printenv: list all environment variables

• To reference a variable, prepend $ to the name of the variable, e.g.
$PATH, $LD_LIBRARY_PATH

– Example: $PATH, $LD_LIBRARY_PATH, $DISPLAY etc.

9/22/2015 HPC training series Fall 2015 7

Variable Names

• Rules for variable names
– Must start with a letter or underscore
– Number can be used anywhere else
– Do not use special characters such as @,#,%,$
– (again) They are case sensitive
– Example

• Allowed: VARIABLE, VAR1234able, var_name,
_VAR

• Not allowed: 1var, %name, $myvar, var@NAME

9/22/2015 HPC training series Fall 2015 8

Editing Variables (1)

• How to assign values to variables depends on the shell

• Shell variables is only valid within the current shell,
while environment variables are valid for all
subsequently opened shells.

9/22/2015 HPC training series Fall 2015 9

Type sh/ksh/bash csh/tcsh

Shell name=value set name=value

Environment export name=value setenv name=value

Editing Variables (2)

• Example: to add a directory to the PATH variable

– sh/ksh/bash: no spaces except between export
and PATH

– csh/tcsh: no “=“ sign

– Use colon to separate different paths

– The order matters: more forward, higher priority.

9/22/2015 HPC training series Fall 2015 10

sh/ksh/bash: export PATH=/path/to/executable:${PATH}

csh/tcsh: setenv PATH /path/to/executable:${PATH}

Basic Linux Commands

Name Function

ls Lists files and directories

cd Changes the working directory

mkdir Creates new directories

rm Deletes files and directories

cp Copies files and directories

mv Moves or renames files and directories

pwd prints the current working directory

echo prints arguments to standard output

cat Prints file content to standard output

9/22/2015 HPC training series Fall 2015 11

• Use option --help to check usage of commands

File Editing in Linux
• The two most commonly used editors on Linux/Unix systems are:

– vi or vim (vi improved)
– emacs

• vi/vim is installed by default on Linux/Unix systems and has only
a command line interface (CLI).

• emacs has both a CLI and a graphical user interface (GUI).
– if emacs GUI is installed then use emacs –nw to open file in console

• Other editors you may come across: kate, gedit, gvim,
pico, nano, kwrite

• To use vi or emacs is your choice, but you need to know one of
them

• For this tutorial, we assume that you already know how to edit a
file with a command line editor.

9/22/2015 HPC training series Fall 2015 12

Outline
• Introduction to Linux Shell
• Shell Scripting Basics
• Beyond Basic Shell Scripting

– Arithmetic Operations
– Arrays
– Flow Control
– Command Line Arguments
– Functions

• Advanced Text Processing Commands

9/22/2015 HPC training series Fall 2015 13

Scripting Languages

• A script is a program written for a software environment that
automate the execution of tasks which could alternatively be
executed one-by-one by a human operator.

• Shell scripts are a series of shell commands put together in a file
– When the script is executed, it is as if someone type those commands

on the command line

• The majority of script programs are ``quick and dirty'', where the
main goal is to get the program written quickly.
– Compared to programming languages, scripting languages do not

distinguish between data types: integers, real values, strings, etc.
– Might not be as efficient as programs written in C and Fortran, with

which source files need to be compiled to get the executable

9/22/2015 HPC training series Fall 2015 14

Startup Scripts
• When you login to a *NIX computer, shell scripts are automatically loaded

depending on your default shell
• sh/ksh (in the specified order)

– /etc/profile

– $HOME/.profile

• bash (in the specified order)
– /etc/profile (for login shell)
– /etc/bashrc or /etc/bash/bashrc

– $HOME/.bash_profile (for login shell)
– $HOME/.bashrc

• csh/tcsh (in the specified order)
– /etc/csh.cshrc

– $HOME/.tcshrc

– $HOME/.cshrc (if .tcshrc is not present)

• .bashrc, .tcshrc, .cshrc, .bash_profile are script files where
users can define their own aliases, environment variables, modify paths etc.

9/22/2015 HPC training series Fall 2015 15

An Example

9/22/2015 HPC training series Fall 2015 16

Writing and Executing a Script

• Three steps
– Create and edit a text file (hello.sh)

– Set the appropriate permission

– Execute the script

9/22/2015 HPC training series Fall 2015 17

Components Explained

• The first line is called the "Shebang” line. It tells the OS
which interpreter to use. In the current example, bash
– For tcsh, it would be: #!/bin/tcsh

• The second line is a comment. All comments begin with
"#".

• The third line tells the OS to print "Hello World!" to the
screen.

9/22/2015 HPC training series Fall 2015 18

Special Characters (1)

Starts a comment line.

$ Indicates the name of a variable.

\ Escape character to display next character literally

{} Used to enclose name of variable

; Command separator. Permits putting two or more commands on the same
line.

;; Terminator in a case option

. “dot” command. Equivalent to source (for bash only)

9/22/2015 HPC training series Fall 2015 19

Special Characters (2)

$? Exit status variable.

$$ Process ID variable.

[] Test expression.

[[]] Test expression, more flexible than []

$[], $(()) Integer expansion

||, &&, ! Logical OR, AND and NOT

9/22/2015 HPC training series Fall 2015 20

Quotation

• Single quotation

– Enclosed string is read literally

• Double quotation

– Enclosed string is expanded

• Back quotation

– Enclose string is executed as a command

9/22/2015 HPC training series Fall 2015 21

Quotation - Examples

9/22/2015 HPC training series Fall 2015 22

[shaohao@mike1 bash_scripts]$ str1='echo $USER'

[shaohao@mike1 bash_scripts]$ echo $str1

echo $USER

[shaohao@mike1 bash_scripts]$ str2="echo $USER"

[shaohao@mike1 bash_scripts]$ echo $str2

echo shaohao

[shaohao@mike1 bash_scripts]$ str3=`echo $USER`

[shaohao@mike1 bash_scripts]$ echo $str3

shaohao

Quotation – More Examples

9/22/2015 HPC training series Fall 2015 23

Outline
• Introduction to Linux Shell
• Shell Scripting Basics
• Beyond Basic Shell Scripting

– Arithmetic Operations
– Arrays
– Flow Control
– Command Line Arguments
– Functions

• Advanced Text Processing Commands

9/22/2015 HPC training series Fall 2015 24

Arithmetic Operations (1)

• You can carry out numeric operations on
integer variables

9/22/2015 HPC training series Fall 2015 25

Operation Operator

Addition +

Subtraction -

Multiplication *

Division /

Exponentiation ** (bash only)

Modulo %

Arithmetic Operations (2)

• bash
– $((…)) or $[…] commands

• Addition: $((1+2))

• Multiplication: $[$a*$b]

– Or use the let command: let c=$a-$b

– Or use the expr command: c=‘expr $a - $b‘

– You can also use C-style increment operators:

let c+=1 or let c--

9/22/2015 HPC training series Fall 2015 26

Arithmetic Operations (3)

• tcsh
– Add two numbers: @ x = 1 + 2
– Divide two numbers: @ x = $a / $b
– You can also use the expr command: set c = ‘expr $a % $b‘
– You can also use C-style increment operators:

@ x -= 1 or @ x++

• Note the use of space
– bash: space required around operator in the expr command
– tcsh: space required between @ and variable, around = and numeric

operators.

9/22/2015 HPC training series Fall 2015 27

Arithmetic Operations (4)

• For floating numbers
– You would need an external calculator like the GNU basic

calculator (bc)
• Add two numbers

echo "3.8 + 4.2" | bc

• Divide two numbers and print result with a precision of 5 digits:
echo "scale=5; 2/5" | bc

• Call bc directly:
bc <<< “scale=5; 2/5”

• Use bc -l to see result in floating point at max scale:
bc -l <<< "2/5"

9/22/2015 HPC training series Fall 2015 28

Arrays (1)
• bash and tcsh supports one-dimensional arrays
• Array elements may be initialized with the variable[i] notation:

variable[i]=1

• Initialize an array during declaration
– bash: name=(firstname ’last name’)

– tcsh: set name = (firstname ’last name’)

• Reference an element i of an array name: ${name[i]}
• Print the whole array

– bash: ${name[@]}
– tcsh: ${name}

• Print length of array
– bash: ${#name[@]}
– tcsh: ${#name}

9/22/2015 HPC training series Fall 2015 29

Arrays (2)

• Print length of element i of array name: ${#name[i]}
– Note: In bash ${#name} prints the length of the first element of the

array

• Add an element to an existing array
– bash name=(title ${name[@]})
– tcsh set name = (title "${name}")
– In the above tcsh example, title is first element of new array while the

second element is the old array name

• Copy an array name to an array user
– bash user=(${name[@]})
– tcsh set user = (${name})

9/22/2015 HPC training series Fall 2015 30

Arrays (3)

• Concatenate two arrays
– bash 1

– tcsh set nameuser=(“${name}” “${user}”)

• Delete an entire array: unset name
• Remove an element i from an array

– bash unset name[i]

– tcsh @ j = $i – 1

@ k = $i + 1

set name = (“${name[1-$j]}” “${name[$k-]}”)

• Note
– bash: array index starts from 0
– tcsh: array index starts from 1

9/22/2015 HPC training series Fall 2015 31

Arrays (4)

9/22/2015 HPC training series Fall 2015 32

Flow Control

• Shell scripting languages execute commands in
sequence similar to programming languages such as C
and Fortran
– Control constructs can change the order of command

execution

• Control constructs in bash and tcsh are
– Conditionals: if
– Loops: for, while, until
– Switches: case, switch

9/22/2015 HPC training series Fall 2015 33

if statement
• An if/then construct tests whether the exit status of a list of

commands is 0, and if so, execute one or more commands

• Note the space between condition and the brackets
– bash is very strict about spaces.
– tcsh commands are not so strict about spaces
– tcsh uses the if-then-else if-else-endif similar to Fortran

9/22/2015 HPC training series Fall 2015 34

File Tests

Operation bash tcsh

File exists if [-e .bashrc] if (-e .tcshrc)

File is a regular file if [-f .bashrc]

File is a directory if [-d /home] if (-d /home)

File is not zero size if [-s .bashrc] if (! -z .tcshrc)

File has read permission if [-r .bashrc] if (-r .tcshrc)

File has write permission if [-w .bashrc] if (-w .tcshrc)

File has execute permission if [-x .bashrc] if (-x .tcshrc)

9/22/2015 HPC training series Fall 2015 35

Integer Comparisons

Operation bash tcsh

Equal to if [1 –eq 2] if (1 == 2)

Not equal to if [$a –ne $b] if ($a != $b)

Greater than if [$a –gt $b] if ($a > $b)

Greater than or equal to if [1 –ge $b] if (1 >= $b)

Less than if [$a –lt 2] if ($a < 2)

Less than or equal to if [$a –le $b] if ($a <= $b)

9/22/2015 HPC training series Fall 2015 36

String Comparisons
Operation bash tcsh

Equal to if [$a == $b] if ($a == $b)

Not equal to if [$a != $b] if ($a != $b)

Zero length or null if [-z $a] if ($%a == 0)

Non zero length if [-n $a] if ($%a > 0)

9/22/2015 HPC training series Fall 2015 37

• One might think that these "[" and "]" belong to the syntax of Bash's
if-clause: No they don't! It's a simple, ordinary command, still!

if [expression] if test expression

if [! -e .bashrc] if test ! -e .bashrc

Logical Operators
Operation Example

! (NOT) if [! -e .bashrc]

&& (AND) if [-f .bashrc] && [-s .bashrc]

if [[-f .bashrc && -s .bashrc]]

if (-e .tcshrc && ! -z .tcshrc)

| (OR) if [-f .bashrc] || [-f .bash_profile]

if [[-f .bashrc || -f .bash_profile]]

9/22/2015 HPC training series Fall 2015 38

Examples

9/22/2015 HPC training series Fall 2015 39

Loop Constructs

• A loop is a block of code that iterates a list of
commands as long as the loop control
condition is evaluated to true

• Loop constructs

– bash: for, while and until

– tcsh: foreach and while

9/22/2015 HPC training series Fall 2015 40

For Loop - bash
• The for loop is the basic looping construct in bash

• The for and do lines can be written on the same line:
for arg in list; do

• for loops can also use C style syntax

9/22/2015 HPC training series Fall 2015 41

For Loop - tcsh

• The foreach loop is the basic looping
construct in tcsh

9/22/2015 HPC training series Fall 2015 42

While Loop

• The while construct tests for a condition at the top of a loop and
keeps going as long as that condition is true.

• In contrast to a for loop, a while loop finds use in situations
where the number of loop repetitions is not known beforehand.

• bash

• tcsh

9/22/2015 HPC training series Fall 2015 43

While Loop - Example

9/22/2015 HPC training series Fall 2015 44

Until Loop
• The until construct tests for a condition at the top of a

loop, and keeps looping as long as that condition is false
(opposite of while loop)

9/22/2015 HPC training series Fall 2015 45

Switching Constructs - bash

• The case and select constructs are technically not loops since
they do not iterate the execution of a code block

• Like loops, however, they direct program flow according to
conditions at the top or bottom of the block

9/22/2015 HPC training series Fall 2015 46

Switching Constructs - tcsh

• tcsh has the switch constructs

9/22/2015 HPC training series Fall 2015 47

9/22/2015 HPC training series Fall 2015 48

9/22/2015 HPC training series Fall 2015 49

Command Line Arguments (1)

• Similar to programming languages, bash and other shell scripting
languages can also take command line arguments
– Execute: ./myscript arg1 arg2 arg3

– Within the script, the positional parameters $0, $1, $2, $3 correspond
to ./myscript, arg1, arg2, and arg3, respectively.

– $#: number of command line arguments
– $*: all of the positional parameters, seen as a single word
– $@: same as $* but each parameter is a quoted string.
– shift N: shift positional parameters from N+1 to $# are renamed to

variable names from $1 to $# - N + 1

• In csh and tcsh
– An array argv contains the list of arguments with argv[0] set to the name

of the script
– #argv is the number of arguments, i.e. length of argv array

9/22/2015 HPC training series Fall 2015 50

9/22/2015 HPC training series Fall 2015 51

Declare command

• Use the declare command to set variable and functions
attributes

• Create a constant variable, i.e. read-only
– declare -r var

– declare -r varName=value

• Create an integer variable
– declare -i var

– declare -i varName=value

• You can carry out arithmetic operations on variables declared as
integers

9/22/2015 HPC training series Fall 2015 52

Functions (1)

• Like “real” programming languages, bash has functions.
• A function is a code block that implements a set of operations, a

“black box” that performs a specified task.
• Wherever there is repetitive code, when a task repeats with only

slight variations in procedure, then consider using a function.

9/22/2015 HPC training series Fall 2015 53

9/22/2015 HPC training series Fall 2015 54

Functions (2)

• You can also pass arguments to a function
• All function parameters can be accessed via $1,
$2, $3…

• $0 always point to the shell script name
• $* or $@ holds all parameters passed to a

function
• $# holds the number of positional parameters

passed to the function

9/22/2015 HPC training series Fall 2015 55

Functions (3)

• Array variable called FUNCNAME contains the names of
all shell functions currently in the execution call stack.

• By default all variables are global.
• Modifying a variable in a function changes it in the

whole script.
• You can create a local variables using the local

command
local var=value

local varName

9/22/2015 HPC training series Fall 2015 56

• A function may recursively call itself even
without use of local variables.

9/22/2015 HPC training series Fall 2015 57

Outline
• Introduction to Linux Shell
• Shell Scripting Basics
• Beyond Basic Shell Scripting

– Arithmetic Operations
– Arrays
– Flow Control
– Command Line Arguments
– Functions

• Advanced Text Processing Commands

9/22/2015 HPC training series Fall 2015 58

Advanced Text Processing Commands

– grep & egrep

– sed

– awk

9/22/2015 HPC training series Fall 2015 59

grep & egrep
• grep is a Unix utility that searches through either information piped to it or files.
• egrep is extended grep (extended regular expressions), same as grep -E

• Use zgrep for compressed files.
• Usage: grep <options> <search pattern> <files>

• Commonly used options

3/4/2015 HPC training series Spring 2015 60

-i ignore case during search

-r,-R search recursively

-v invert match i.e. match everything except pattern

-l list files that match pattern

-L list files that do not match pattern

-n prefix each line of output with the line number within its input file.

-A num print num lines of trailing context after matching lines.

-B num print num lines of leading context before matching lines.

grep Examples
• Search files that contain the word node in the examples directory

• Repeat above search using a case insensitive pattern match and print line
number that matches the search pattern

3/4/2015 HPC training series Spring 2015 61

egrep node *

checknodes.pbs:#PBS -o nodetest.out

checknodes.pbs:#PBS -e nodetest.err

checknodes.pbs:for nodes in "${NODES[@]}"; do

checknodes.pbs: ssh -n $nodes ’echo $HOSTNAME ’$i’ ’ &

checknodes.pbs:echo "Get Hostnames for all unique nodes"

egrep -in node *

checknodes.pbs:20:NODES=(‘cat "$PBS_NODEFILE"‘)

checknodes.pbs:21:UNODES=(‘uniq "$PBS_NODEFILE"‘)

checknodes.pbs:23:echo "Nodes Available: " ${NODES[@]}

checknodes.pbs:24:echo "Unique Nodes Available: " ${UNODES[@]}

checknodes.pbs:28:for nodes in "${NODES[@]}"; do

checknodes.pbs:29: ssh -n $nodes ’echo $HOSTNAME ’$i’ ’ &

checknodes.pbs:34:echo "Get Hostnames for all unique nodes"

checknodes.pbs:39: ssh -n ${UNODES[$i]} ’echo $HOSTNAME ’$i’ ’

sed
• sed ("stream editor") is Unix utility for parsing and

transforming text files.

– Also works for either information piped to it or files

• sed is line-oriented - it operates one line at a time and allows
regular expression matching and substitution.

• sed has several commands, the most commonly used
command and sometime the only one learned is the
substitution command, s

3/4/2015 HPC training series Spring 2015 62

> echo day | sed ’s/day/night/’

> night

List of sed commands and flags

Flags Operation Command Operation

-e combine multiple commands s substitution

-f read commands from file g global replacement

-h print help info p print

-n disable print i ignore case

-V print version info d delete

-r use extended regex G add newline

w write to file

x exchange pattern with hold buffer

h copy pattern to hold buffer

; separate commands

3/4/2015 HPC training series Spring 2015 63

sed Examples (1)
• Add the -e to carry out multiple matches.

• Alternate form

• The default delimiter is slash (/), but you can change it to whatever you want
which is useful when you want to replace path names

3/4/2015 HPC training series Spring 2015 64

cat hello.sh | sed -e ’s/bash/tcsh/g’ -e ’s/First/First tcsh/g’

#!/bin/tcsh

My First tcsh Script

echo "Hello World!"

sed ’s/bash/tcsh/g; s/First/First tcsh/g’ hello.sh

#!/bin/tcsh

My First tcsh Script

echo "Hello World!"

sed ’s:/bin/bash:/bin/tcsh:g’ hello.sh

#!/bin/tcsh

My First Script

echo "Hello World!"

sed Examples (2)
• sed can also delete blank lines from a file

• Delete line n through m in a file

• Insert a blank line above every line which matches pattern

3/4/2015 HPC training series Spring 2015 65

sed ’/^$/d’ hello.sh

#!/bin/bash

My First Script

echo "Hello World!"

sed ’2,4d’ hello.sh

#!/bin/bash

echo "Hello World!"

sed ’/First/{x;p;x}’ hello.sh

#!/bin/bash

My First Script

echo "Hello World!"

sed Examples (3)
• Insert a blank line below every line which matches
pattern

• Insert a blank line above and below every line which
matches pattern

3/4/2015 HPC training series Spring 2015 66

sed ’/First/G’ hello.sh

#!/bin/bash

My First Script

echo "Hello World!"

sed ’/First/{x;p;x;G}’ hello.sh

#!/bin/bash

My First Script

echo "Hello World!"

sed Examples (4)
• Print only lines which match pattern (emulates grep)

• Print only lines which do NOT match pattern (emulates grep -v)

• Print current line number to standard output

3/4/2015 HPC training series Spring 2015 67

sed -n ’/echo/p’ hello.sh

echo "Hello World!"

sed -n ’/echo/!p’ hello.sh

#!/bin/bash

My First Script

sed -n ’/echo/ =’ quotes.sh

5

6

7

8

9

10

11

12

13

awk
• The awk text-processing language is useful for such tasks as:

– Tallying information from text files and creating reports from the results.
– Adding additional functions to text editors like "vi".
– Translating files from one format to another.
– Creating small databases.
– Performing mathematical operations on files of numeric data.

• awk has two faces:
– It is a utility for performing simple text-processing tasks, and
– It is a programming language for performing complex text-processing tasks.

• awk comes in three variations
– awk : Original AWK by A. Aho, B. W. Kernighnan and P. Weinberger from AT&T
– nawk : New AWK, also from AT&T
– gawk : GNU AWK, all Linux distributions come with gawk. In some distros,

awk is a symbolic link to gawk.

3/4/2015 HPC training series Spring 2015 68

awk Syntax

• Simplest form of using awk
– awk pattern {action}

• pattern decides when action is performed

– Most common action: print

– Print file dosum.sh: awk ’{print $0}’ dosum.sh

– Print line matching bash in all .sh files in current
directory: awk ’/bash/{print $0}’ *.sh

3/4/2015 HPC training series Spring 2015 69

Awk Examples

• Print list of files that are csh script files

• Print contents of hello.sh that lie between two patterns

3/4/2015 HPC training series Spring 2015 70

awk ’/^#\!\/bin\/tcsh/{print FILENAME}’ *

dooper.csh

factorial.csh

hello1.sh

name.csh

nestedloops.csh

quotes.csh

shift.csh

awk ’/^#\!\/bin\/bash/,/echo/{print $0}’ hello.sh

#!/bin/bash

My First Script

echo "Hello World!"

How awk Works

• awk reads the file being processed line by line.
• The entire content of each line is split into columns with space or

tab as the delimiter. The delimiter can be changed as will be seen
in the next few slides.

• To print the entire line, use $0.
• The intrinsic variable NR contains the number of records (lines)

read.
• The intrinsic variable NF contains the number of fields or columns

in the current line.
• By default the field delimiter is space or tab. To change the field

delimiter use the -F<delimiter> command.

3/4/2015 HPC training series Spring 2015 71

3/4/2015 HPC training series Spring 2015 72

uptime

11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11, 0.17

uptime | awk ’{print $1,NF}’

11:19am 0.17

uptime | awk -F: ’{print $1,NF}’

11 0.12, 0.10, 0.16

for i in $(seq 1 10); do touch file${i}.dat ; done

ls file*

file10.dat file2.dat file4.dat file6.dat file8.dat

file1.dat file3.dat file5.dat file7.dat file9.dat

for i in file* ; do

> prefix=$(echo $i | awk -F. ’{print $1}’)

> suffix=$(echo $i | awk -F. ’{print NF}’)

> echo $prefix $suffix $i

> done

file10 dat file10.dat

file1 dat file1.dat

file2 dat file2.dat

file3 dat file3.dat

file4 dat file4.dat

file5 dat file5.dat

file6 dat file6.dat

file7 dat file7.dat

file8 dat file8.dat

file9 dat file9.dat

Arithmetic Operations (1)

• awk has in-built support for arithmetic
operations

3/4/2015 HPC training series Spring 2015 73

Operator Operation Operator Operation

+ Addition ++ Autoincrement

- Subtraction -- Autodecrement

* Multiplication += Add to

/ Division -= Subtract from

** Exponentiation *= Multiple with

% Modulo /= Divide by

echo | awk ’{print 10%3}’

1

echo | awk ’{a=10;print a/=5}’

2

Conditionals and Loops (1)

• awk supports
– if ... else if .. else conditionals.
– while and for loops

• They work similar to that in C-programming
• Supported operators: ==, !=, >, >=, <, <=, ~ (string matches), !~

(string does not match)

3/4/2015 HPC training series Spring 2015 74

awk ’{if (NR > 0){print NR,”:”, $0}}’ hello.sh

1 : #!/bin/bash

2 :

3 : # My First Script

4 :

5 : echo "Hello World!"

Conditionals and Loops (2)

• The for command can be used for processing
the various columns of each line

3/4/2015 HPC training series Spring 2015 75

cat << EOF | awk ’{for (i=1;i<=NF;i++){if (i==1){a=$i}else if (i==NF){print a}else{a+=$i}}}’

1 2 3 4 5 6

7 8 9 10

EOF

15

24

echo $(seq 1 10) | awk ’BEGIN{a=6}{for (i=1;i<=NF;i++){a+=$i}}END {print a}’

61

Further Reading

• BASH Programming http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
• Advanced Bash-Scripting Guide http://tldp.org/LDP/abs/html/
• Regular Expressions http://www.grymoire.com/Unix/Regular.html
• AWK Programming http://www.grymoire.com/Unix/Awk.html
• awk one-liners: http://www.pement.org/awk/awk1line.txt
• sed http://www.grymoire.com/Unix/Sed.html
• sed one-liners: http://sed.sourceforge.net/sed1line.txt
• CSH Programming http://www.grymoire.com/Unix/Csh.html
• csh Programming Considered Harmful
• http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
• Wiki Books http://en.wikibooks.org/wiki/Subject:Computing

3/4/2015 HPC training series Spring 2015 76

Exercises
1. Write a shell script to

– Print “Hello world!” to the screen
– Use a variable to store the greeting

2. Write a shell script to
– Take two integers on the command line as arguments
– Print the sum, different, product of those two integers
– Think: what if there are too few or too many arguments? How can you check

that?

3. Write a shell script to read your first and last name to an array
– Add your salutation and suffix to the array
– Drop either the salutation or suffix
– Print the array after each of the three steps above

4. Write a shell script to calculate the factorial and double factorial of an
integer or list of integers

9/22/2015 HPC training series Fall 2015 77

Next Tutorial –
Distributed Job Execution

• If any of the following fits you, then you might
want come
– I have to run more than one serial job.
– I don’t want to submit multiple job using the serial

queue
– How do I submit one job which can run multiple serial

jobs?

• Date: Sept 30th, 2015

9/22/2015 HPC training series Fall 2015 78

Getting Help

• User Guides
– LSU HPC: http://www.hpc.lsu.edu/docs/guides.php#hpc
– LONI:http://www.hpc.lsu.edu/docs/guides.php#loni

• Documentation: http://www.hpc.lsu.edu/docs
• Online courses: http://moodle.hpc.lsu.edu
• Contact us

– Email ticket system: sys-help@loni.org
– Telephone Help Desk: 225-578-0900
– Instant Messenger (AIM, Yahoo Messenger, Google Talk)

• Add “lsuhpchelp”

9/22/2015 HPC training series Fall 2015 79

http://www.hpc.lsu.edu/docs
http://moodle.hpc.lsu.edu/
mailto:sys-help@loni.org

