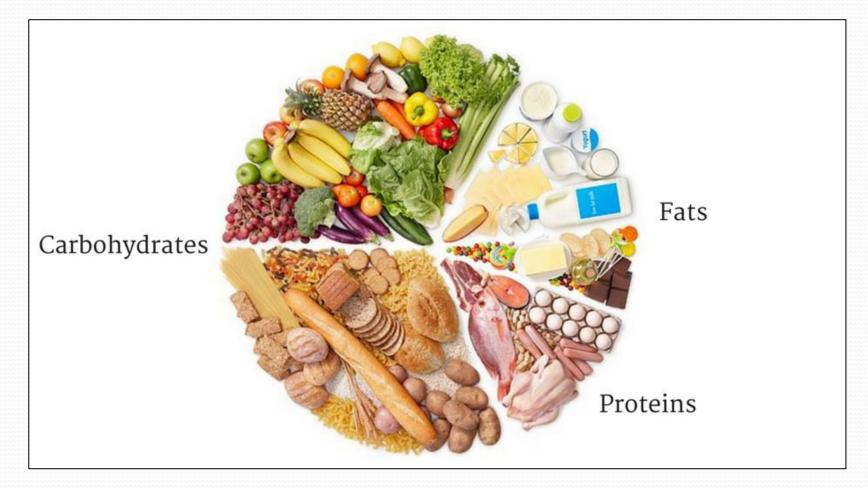
Macronutrients, Calories, and Blood Glucose

Sheri R. Colberg, PhD, FACSM Professor Emerita, Exercise Science Old Dominion University

Issues for Discussion

- Optimal macronutrient distribution in diet
- Role of carbohydrates
- Role of protein
- Role of fat
- Glycemic effects of foods
- Role of macronutrients in exercise

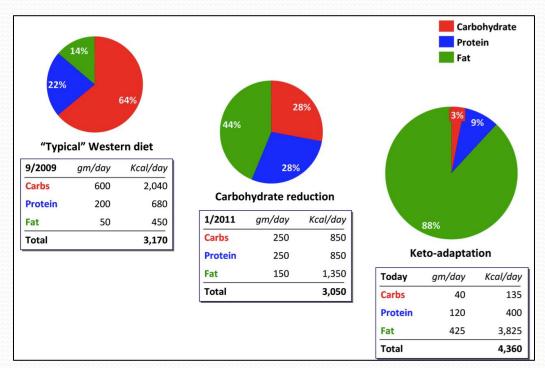

Goals of MNT for Diabetes

- Promote healthful eating patterns, emphasizing a variety of nutrient-dense foods in appropriate portions to improve overall health and specifically to:
 - Achieve and maintain body weight goals
 - Attain glycemic, blood pressure, and lipid goals
 - Delay or prevent complications of diabetes
- Address individual nutrition needs based on personal and cultural preferences, health literacy and numeracy, access to healthful foods, willingness and ability to make behavioral changes, and barriers to change

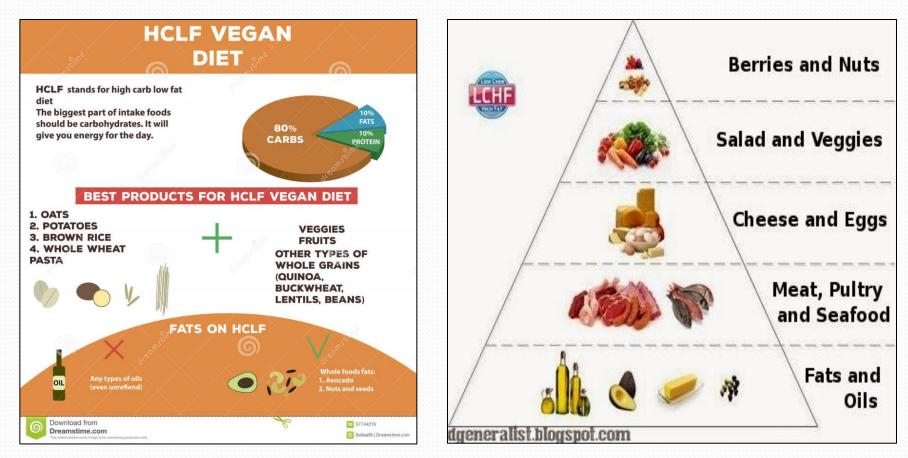
Goals of MNT for Diabetes

- Maintain the pleasure of eating by providing nonjudgmental messages about food choices
- Provide practical tools for healthy eating rather than focus on individual macronutrients, micronutrients, or single foods

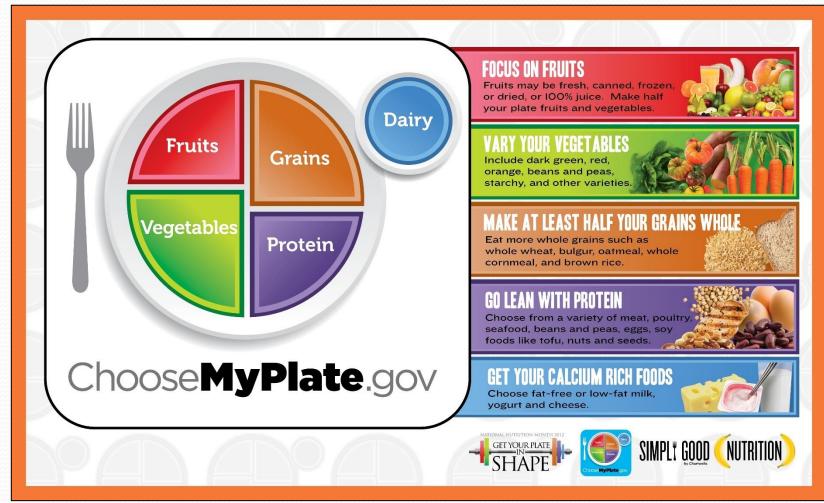
Macronutrient Distribution

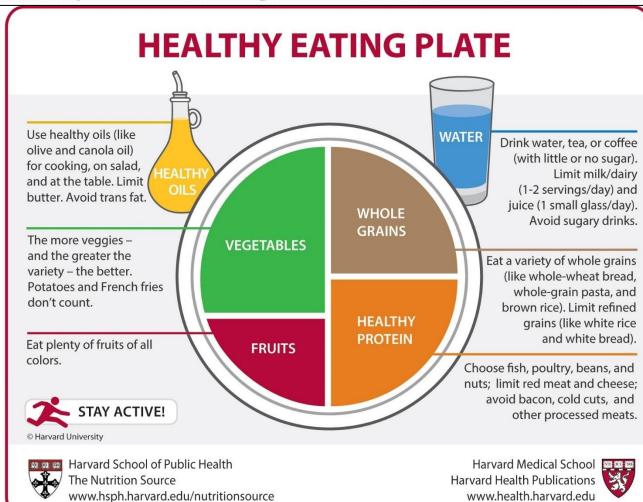

Eating Patterns

- No single ideal dietary distribution of calories among carbohydrates, fat, and protein for people with diabetes
- Macronutrient distribution should be individualized
- A variety of eating patterns acceptable for the management of type 2 diabetes and prediabetes including Mediterranean, DASH, and plant-based diets

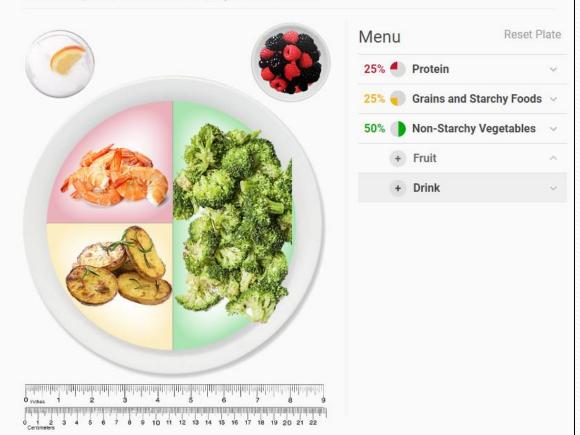

Am Diabetes Assoc. *Diab. Care,* 40(1):S33-S43, 2017

Macronutrient Distribution


 Macronutrients distribution should be based on individual assessment of current eating patterns, preferences, and metabolic goals


From One Extreme to the Other

MyPlate Recommendations


Healthy Eating Plate Recs

Diabetes Meal Plate

Create Your Plate!

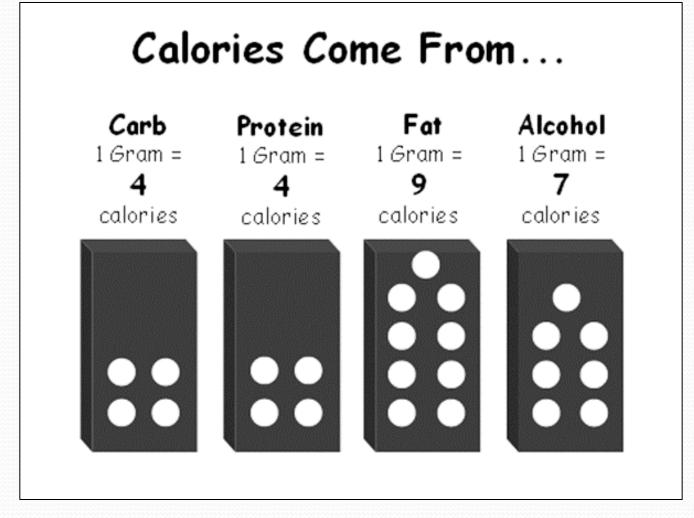
Click on the plate sections below to add your food choices.

http://www.diabetes.org/food-and-fitness/food/planning-meals/create-your-plate

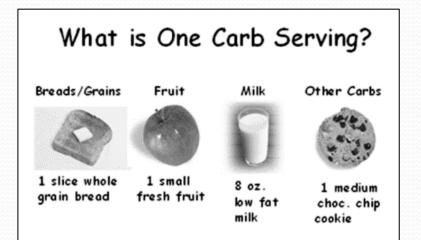
AMDR (% of Total Daily Diet)

Acceptable Macronutrient Distribution Ranges (AMDR)

Males & Females	Total Carbs	Total Protein	Total Fat
	% of Energy	% of Energy	% of Energy
1-3 years	45-65%	5-20%	30-40%
4-18 years	45-65%	10-30%	25-35%
19 + years	45-65%	10-35%	20-35%


Macronutrient Ranges (AMDR)

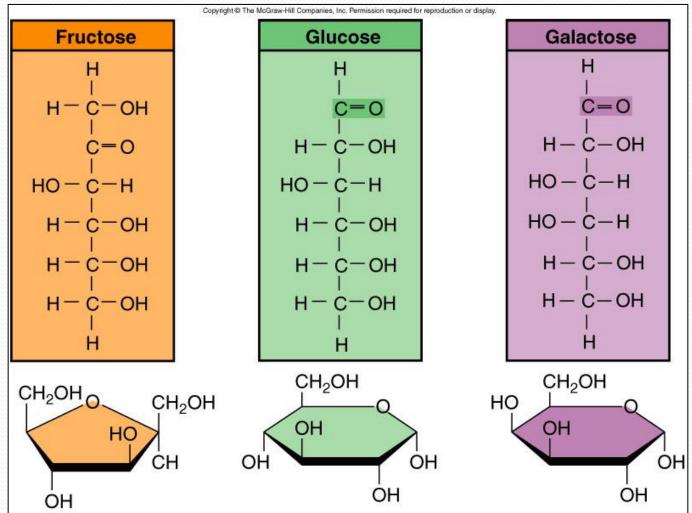
	All Adults	Diabetes*
Carbohydrates:	45 -65%	40- 45 %
• Fat:	20-35%	30 -35%
• Protein:	10-35%	20-30%


 *ADA does not take a definitive stance on macronutrient distribution ranges for adults with diabetes

http://www.nationalacademies.org

Calorie Equivalents

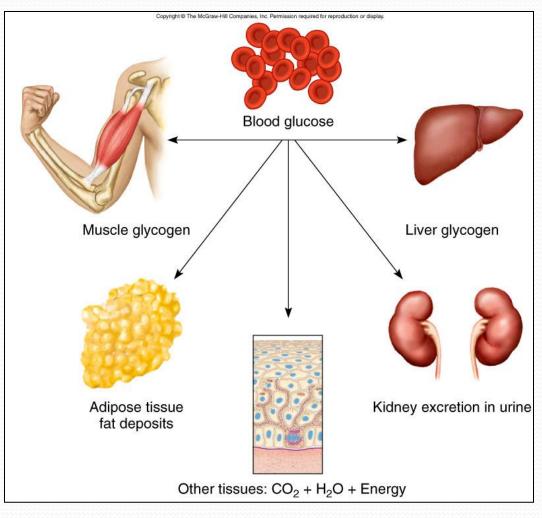
Macronutrient Servings


What is One Serving of a Meat/Protein/MeatAlternative?

Lean meats, fish, poultry, low fat cheese	Tuna fish, cottage cheese	Beans, peas, lentils (15 grams carb)	Peanut** butter
1 ounce =	1/4 cup =	1/2 cup =	2 Tbsp.
1 servii	ng lean meat : ng medium fat iving = 2 extro	= 3 grams fat, 0 meat = 5 gram a fat servings	l carb is fat

What is One Fat Serving?

Margarine Oil Butter* Mayonnaise*	Salad dressing, Reduced fat mayo or marg. Cream cheese	Bacon*	Reduced calorie salad dressing
1 tsp. =	1 Tbsp. =	1 strip =	2 Tbsp.
1 serving fat = 5 grams fat, 0 grams carb * = saturated fat			


Role of Carbohydrates

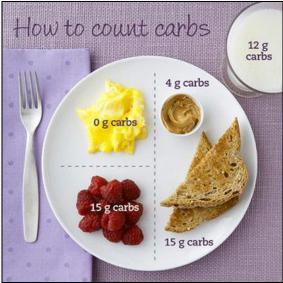
Types of Dietary Carbohydrates


Monosaccharides	Disaccharides	Polysaccharides	Other carbohydrates
Glucose Fructose Galactose	Sucrose Maltose Lactose	Plant starch Amylose Amylopectin Resistant starch	Sorbitol (sugar alcohol) Ribose (a five-carbon sugar
		Animal starch Glycogen	
Dietary fiber	Functional fiber	Dietary/ Functional fiber**	
Hemicellulose Resistant starch*	Polydextrin Psyllium Resistant starch*	Beta-glucans Cellulose Gums Pectins	

Fates of Blood Glucose

What Is Fiber?

- Dietary fiber (intact foods)
 - Water soluble and water insoluble
- Functional fiber (isolated, extracted, or synthetic)
 - Pectin, gums, resistant starch
- Total fiber
 - Sum of all types
- Recommended total: (gm per day)
 - Adults <50 years: 38 g M, 25 g F
 - Adults >50: 30 g M, 21 g F



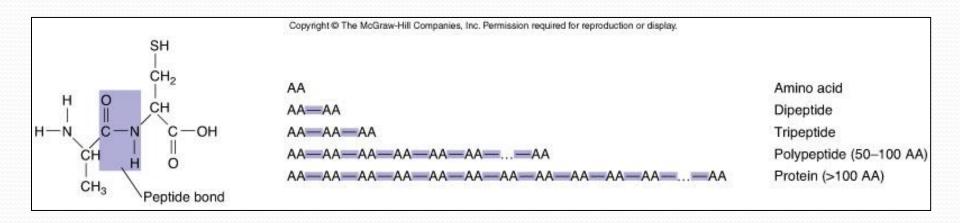
ADA Carbohydrate Recs

- Emphasize carbs in whole grains, vegetables, fruits, legumes, and dairy products
 - Emphasis on foods higher in fiber and lower in glycemic load advised, especially over those with sugars
- Avoid sugar-sweetened beverages to control weight and reduce risk for CVD and fatty liver
- Minimize consumption of foods with added sugar that displace healthier, more nutrient-dense food choices

ADA Stance on Carb Counting

- Individuals with T1D or T2D taking insulin for meals should be educated on counting carbs
- Modify insulin dosing from meal to meal based on carb intake to improve glycemic control

Am Diabetes Assoc. *Diab. Care,* 40(1):S33-S43, 2017


Nonnutritive Sweeteners


- Nonnutritive sweeteners may reduce overall calorie and carbohydrate intake
 - If substituted for caloric ones and without compensating with calories from other sources
- Generally safe to use within acceptable daily intake levels

Am Diabetes Assoc. *Diab. Care,* 40(1):S33-S43, 2017

Role of Protein

Animal vs. Plant Proteins

- Animal proteins generally regarded as "better" since complete (all essential amino acids)
- High quality plant proteins, but only soy complete

TABLE 6.1 The dietary amino acids

Essential amino acids	Nonessential amino acids
Histidíne	Alanine
Isoleucine*	Arginine**
Leucíne*	Asparagine
Lysine	Aspartic acid
Methionine	Cysteine**
Phenylalanine	Glutamic acid
Threonine	Glutamine**
Tryptophan	Glycíne**
Valine*	Prolíne**
	Seríne
	Tyrosine ^{∞∗}

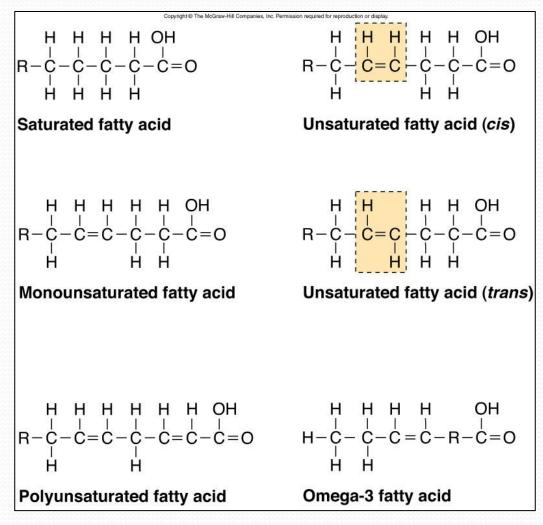
* BCAAs; **Conditionally essential

ADA Protein Recs

- Lowering daily protein intake (from 1–1.5 g/kg or 15–20% total calories) does not necessarily improve health
- Ideal amount of dietary protein to optimize either glycemic control or CVD risk unknown
- Higher protein may increase satiety

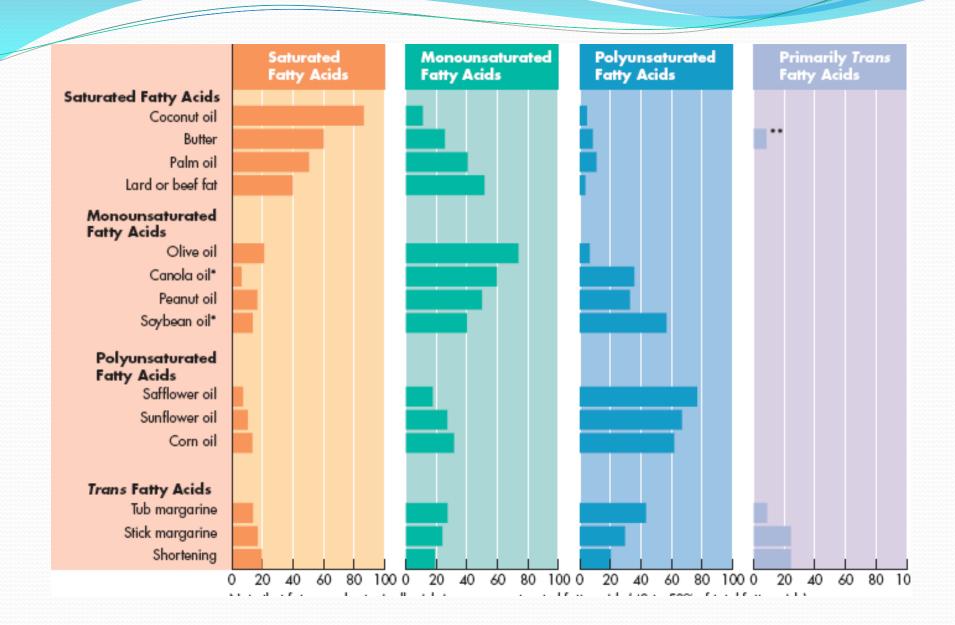
Am Diabetes Assoc. Diab. Care, 40(1):S33-S43, 2017

ADA Protein Recs


- In T2D, ingested protein increases insulin response without increasing blood glucose
 - More insulin released to cover protein
- In T1D, higher protein intake may raise mealtime insulin needs to cover delayed postprandial rise in blood glucose
 - More insulin needed to cover protein
- Carbohydrate sources high in protein should not be used to treat or prevent hypoglycemia

Am Diabetes Assoc. *Diab. Care*, 40(1):S33-S43, 2017

Protein and Kidney Disease

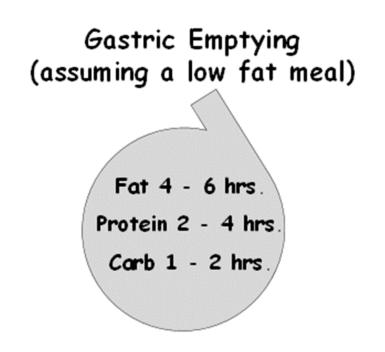

- Dietary protein should be at recommended daily allowance of 0.8 g/kg body weight/day, but not lower
- Lower protein intake does not alter glycemic measures, CVD risk, or rate of decline of glomerular filtration rate

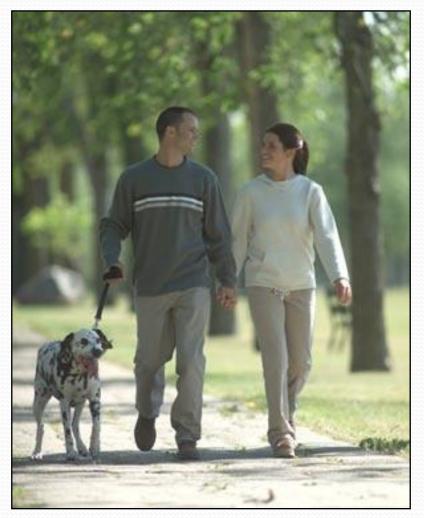
Role of Fat

ADA Fat Recs

- Ideal total dietary fat content for PWD not identified
- Mediterranean-style diet (rich in monounsaturated fats) may improve glucose metabolism and lower CVD risk
 - Effective alternative to a diet low in total fat but relatively high in carbohydrates
- Eating foods rich in ω-3 fatty acids, such as fatty fish (EPA and DHA) and nuts and seeds (ALA), recommended to prevent or treat CVD (but not ω-3 dietary supplements)

Type of Fats vs. Total Fat


 Type of fats consumed more important than total amount of fat when looking at metabolic goals and CVD risk


Am Diabetes Assoc. *Diab. Care*, 40(1):S33-S43, 2017

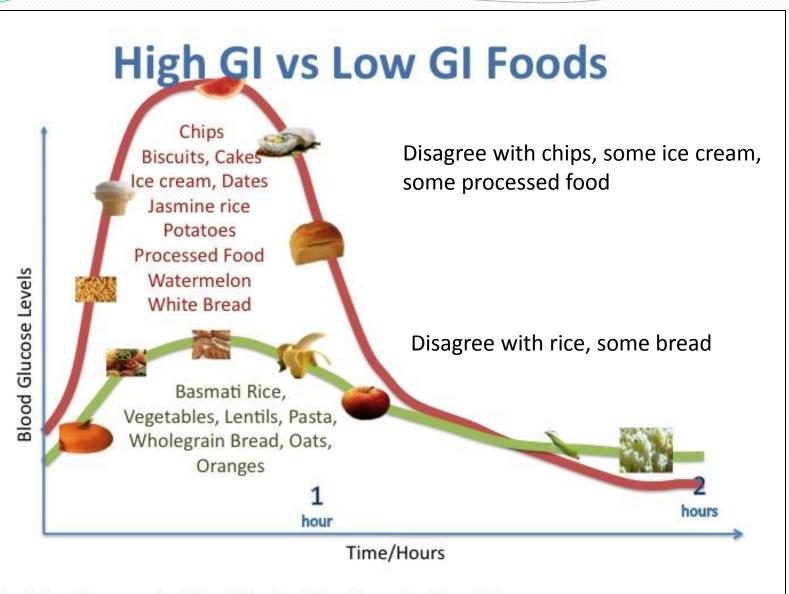
Delayed Effects of Fats

 Higher fat intake may require mealtime insulin dose adjustments to compensate for delayed postprandial glycemic excursions

Glycemic Effects of Foods

Glycemic Effects of Carbs

- Affected by relative carbohydrate, protein, and fat
- Foods with little or no carbohydrate do not have much of an immediate impact on the rise in blood glucose (i.e., they have a low or no effect)
 - Examples: meat, fish, eggs, avocado, wine, beer, spirits, *most* non-starchy vegetables
- Harder to test the effects of mixed meals and foods
 - Also, test subjects do not have diabetes
 - Intersubject and intrasubject variability


What Is Glycemic Index?

- Relative to the effect of 50 grams of a specific carbohydrate on the rate of rise in blood glucose
- 50 grams of glucose ranked at 100
- GI rating scale:
 - 70 or more High
 - 56 to 69 Medium
 - 55 or less Low

Typical Glycemic Index Values

		GLYC Low Glycemic		AIC INE		CHA cemic (70 or H			
	B		?		6	Ć	5	-	P
SNACKS	6.I.	STARCH	G.I.	VEGETABLES	G.I.	FRUITS	6.1.	DAIRY	G.I.
Pizza	33	Bagel, Plain	33	Broccoli	10	Cherries	22	Yogurt, Plain	14
Chocolate Bar	49	White Rice	38	Pepper	10	Apple	38	Yogurt, Low Fat	14
Pound Cake	54	White Spaghetti	38	Lettuce	10	Orange	43	Whole Milk	30
Popcorn	55	Sweet Potato	44	Mushrooms	10	Grapes	46	Soy Milk	31
Energy Bar	58	White Bread	49	Onions	10	Kiwi	52	Skim Milk	32
Soda	72	Brown Rice	55	Green Peas	48	Banana	56	Chocolate Milk	35
	76	Pancakes	67	Carrots	49	Pineapple	66	Yogurt, Fruit	36
Doughnut	and the second second								
Doughnut Jelly Beans	80	Wheat Bread	80	Beets	64	Watermelon	72	Custard	43

Search database at www.glycemicindex.com

Graph adapted from: www.gisymbol.com (University of Sydney). Images from Microsoft Clipart.

GI Affected By...

- Ripeness/storage of foods (green vs. ripe bananas)
- Processing of foods (highly processed vs. natural)
- Cooking method (al dente pasta)
- Type or variety (converted long-grain vs. short-grain rice)
- Acidity of foods (vinegar)
- Individual differences in response
- Eaten alone or part of mixed meal
- Amount eaten (total carbs, GL)

Glycemic Load

- Incorporates both GI and portion size
- Subtracts out grams of fiber

GL = (Glycemic index) × (grams of non-fiber carbohydrate in one serving)

100

The following values are used to rank the glycemic load of foods:

- 20 or more—High GL foods
- 19-11—Medium GL foods
- 10 or less—Low GL foods

Typical Glycemic Load Values

Some examples of Glycemic Index (GI) and Glycemic Loads (GL) of common foods taken from the international tables [8]

Food	GI	Serving size (g)	Available carbs (g)	GL
Watermelon	72	120	6	4
Ice cream, premium (high-fat)	37	50	9	4
Spaghetti, white, boiled 5 min	32	148	48	15
Skittles (Mars Confectionery, Australia)	70	50	45	32
Baked potato Ontario, white, baked in skin (Canada)	60	150	30	18
Sushi, salmon (I Love Sushi; Australia)	48	100	36	17
Carrots, NS (Canada)	92	80	6	5
Rice cracker, plain (Sakada, Japan)	91	30	25	23

Search database at www.glycemicindex.com

GI/GL of Select Hawaiian Foods

- Dasheen (Jap. taro, boiled)—57 g carbs, 1 cup mashed
 - GI 75 (high); GL 43 (high)
- Mochi (glutinous rice ball)—28 g carbs, 4 1-in cubes
 - GI 48 (low); GL 13 (medium)
- Breadfruit ('ulu, raw)—27 g carbs (1/2 cup)
 - GI 68 (medium); GL 18 (medium)

GI/GL of Select Hawaiian Foods

- Papaya (paw paw)—30 g carbs, 1 medium
 - Ripe: GI 55 (low); GL 17 (medium)
 - Raw: GI 60 (medium); GL 9 (low)—only 15 g carbs
- Bananas—~25 g carbs, 1 large (8-9")
 - Under ripe: GI 30 (low); GL 6 (low)
 - Almost ripe: GI 42 (low); GL 11 (medium)
 - Ripe: GI 51 (low); GL 13 (medium)
 - Over ripe: GI 48 (low); GL 12 (medium)
 - All trials: GI 46-62 (low to medium); GL 11-16 (medium)

Use of GI/GL in Diabetes

- Low-GI foods and meals produce lower glycemic responses (studies in T1D)
- Risk of mild hypoglycemia is greater with low-GI than with high-GI foods
- Low-GI foods more likely to cause early hypoglycemia
 - Correlation between GI and time to hypoglycemia
 - Each unit increase in GI delaying hypoglycemia by 1 min

Use of Food Insulin Index (FII)

- FII is based on insulin demand evoked by 1,000-kJ food portions (calories) in healthy subjects
- Accounts for all nutritional and metabolic factors affecting insulin demand, not just macronutrients
- Improves glycemia in the 3-h postprandial period, but relatively short postprandial monitoring may not have detected delayed impact of fat and protein

Impact of Mixed Meals

- Systematic review of 21 studies on glycemic effect of fat (n = 7), protein (n = 7), and GI (n = 7)
- Fat, protein, and GI all modify postprandial glycemia
- Late postprandial hyperglycemia the predominant effect of dietary fat
- In some with high fat intake, glucose reduced in the first
 2–3 h, possibly due to delayed gastric emptying

Impact of Mixed Meals

- 10 studies on insulin bolus dose and delivery patterns required for high-fat and/or high-protein meals
- Results inconsistent regarding optimal bolus delivery pattern (due to study design differences), but...
- High-fat/protein meals require more insulin than lowerfat/protein meals with identical carbohydrate content
- Marked interindividual differences in fat sensitivity

Protein with Carbohydrate

- Protein affects postprandial glycemia, but effects differ when consumed with and without carbohydrates
- Addition of 35 g protein to 30 g carbohydrates increased blood glucose by 2.6 mmol/L (47 mg/dL) at 5 hours
- Effect of fat and protein additive, with blood glucose concentrations increasing by 5.4 mmol/L at 5 hours
 - Sum of individual incremental increases for protein and fat

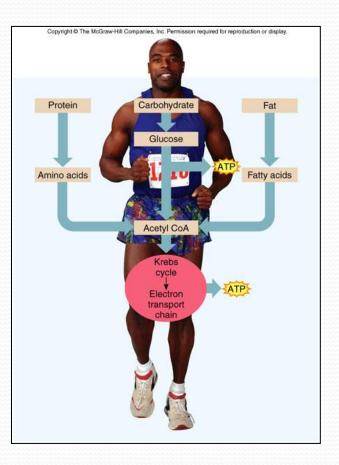
Protein without Carbohydrate

- Effect of protein only (with no carbs and fat) less
- Addition of 12.5–50 g protein with no effect
- 75 and 100 g protein increases glucose
 - Reached peak at the conclusion of the 5-hour study
 - Increase in similar to that of 20 g carbs without insulin

Unanswered Questions (T1D)

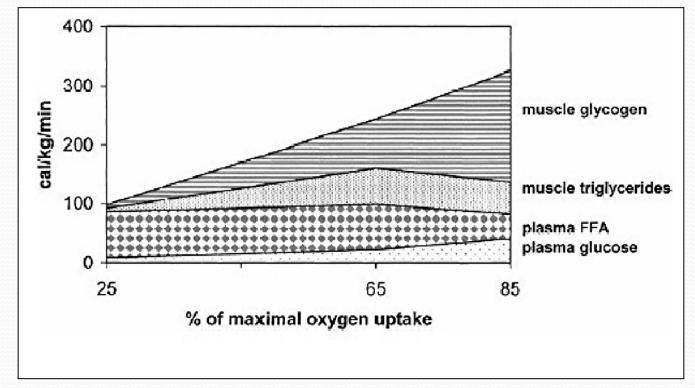
- How much fat does there need to be in a meal before a clinically significant glycemic effect becomes apparent?
- Is there a threshold and/or dose response (i.e., more fat requires more insulin)?
- Do all types of fat and protein have similar effects?

Unanswered Questions (T1D)


- Are there phenotypic characteristics that can be used as markers to identify individuals with diabetes who are more nutrient sensitive and will require more insulin to cover higher-fat/protein meals?
- What are the optimal insulin dose adjustments needed for common meals with varying fat and protein content?

Role of Macronutrients in Exercise

Exercise Fuels


- ATP-PCr System (Phosphagens)
 - Stored ATP, PCr only (10 seconds)
- Lactic Acid System (Glycolysis)
 - Muscle glycogen exclusively (2 min)
- Oxygen System (Aerobic)
 - Use of all fuels possible (over 2 min)

Exercise Fuel Use by Intensity

- Carb use more "fuel efficient" (more kcals/L oxygen)
- Fat is major energy source for low-intensity ex
- Blood glucose and fat (FFA) use greater during mild exercise (done at < 50% maximal)
- Muscle glycogen and TG used during higher intensity
- Training ↑ ability to use both fuels

Carbs Used Most for Exercise

- For most exercise (moderate or higher), carbs are main fuel
 - Muscle glycogen (~80%), blood glucose (20%)

Romijn JA et al., *JAP*, 88(5): 1707-1714, 2000

Limited Carbohydrate Stores

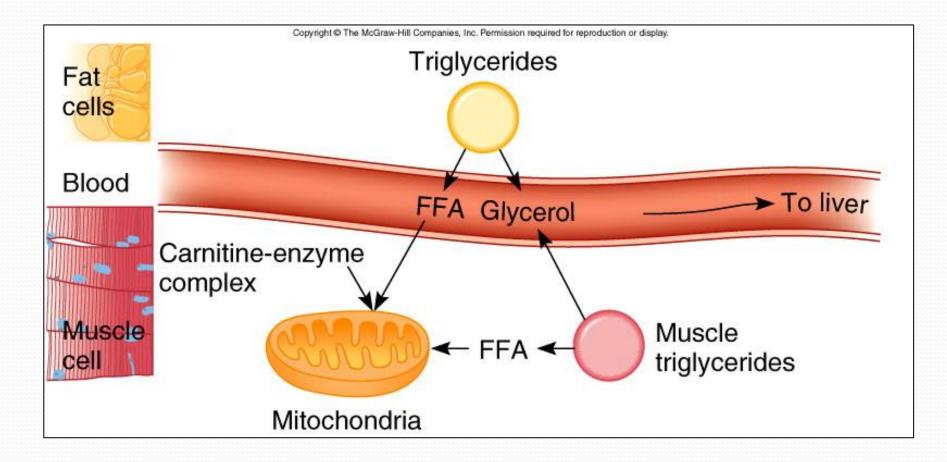
TABLE 4.5	Approximate carbohydrate stores in the body
	of a normal, sedentary adult

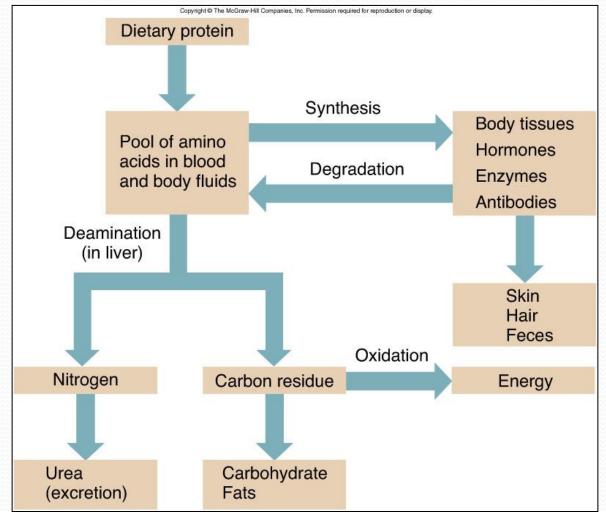
Source	Amount in grams	Equivalent amount in calories
Blood glucose	5	20
Líver glycogen	75–100	300-400
Muscle glycogen	300–400	1,200-1,600

Glucose Use with Exercise

- BG uptake into muscles occurs 2 ways:
 - (1) Insulin
 - Rest
 - Exercise

(2) Contractions


• Exercise



• Separate, but *additive* mechanisms

FFA Use During Exercise

Protein Use for Exercise (<5%)

Protein Intake for Athletes

- Athletes need at least the RDA for protein (0.8-1.0 gm/kg body weight), but likely more
- At 12% of calories, protein intake averages 1.5-1.7 g/kg, so most athletes already consume this
- Increasing calorie intake decreases need for protein

Final Conclusions

- No single ideal dietary distribution of carbohydrates, fats, and proteins for PWD (but carbs matter)
- Focus on fiber, plant proteins, and type of fat for health
- GI and GL may better predict blood glucose responses
- Protein and fat have delayed effects on glycemia, but how to factors in these effects for all PWD is less clear
- Exercise is primarily fueled by carbs and fat, with carb use greatest during moderate or higher intensity

Resources

www.DiabetesMotion.com

QUESTIONS?