

Short-Circuit Analysis IEC Standard

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Purpose of Short-Circuit Studies

- A Short-Circuit Study can be used to determine any or all of the following:
 - Verify protective device close and latch capability
 - Verify protective device interrupting capability
 - Protect equipment from large mechanical forces (maximum fault kA)
 - I²t protection for equipment (thermal stress)
 - Selecting ratings or settings for relay coordination

Types of Short-Circuit Faults

Types of Short-Circuit Faults

Types of SC Faults

- Three-Phase Ungrounded Fault
- •Three-Phase Grounded Fault
- •Phase to Phase Ungrounded Fault
- •Phase to Phase Grounded Fault
- •Phase to Ground Fault

Fault Current

- •I_{L-G} can range in utility systems from a few percent to possibly 115 % (if $X_o < X_1$) of I_{3-phase} (85% of all faults).
- •In industrial systems the situation $I_{L-G} > I_{3-phase}$ is rare. Typically $I_{L-G} \cong .87 * I_{3-phase}$

 In an industrial system, the three-phase fault condition is frequently the only one considered, since this type of fault generally results in Maximum current.

L-L fault

L-G Fault

3-Phase Fault

Short-Circuit Phenomenon

One-Line Diagram in PowerStation

Equivalent Impedance Diagram

Thevenin Equivalent

$$\mathbf{v}(\mathbf{t}) = \mathbf{R}\mathbf{i} + \mathbf{L}\frac{\mathbf{d}\mathbf{i}}{\mathbf{d}\mathbf{t}} = \mathbf{V}\mathbf{m} \times \mathbf{Sin}(\omega\mathbf{t} + \theta) \quad (1)$$

Solving equation 1 yields the following expression
$$\mathbf{i}(\mathbf{t}) = \frac{\mathbf{V}\mathbf{m}}{|\mathbf{Z}|} \times \mathbf{sin}(\omega\mathbf{t} + \theta - \phi) + \frac{\mathbf{V}\mathbf{m}}{|\mathbf{Z}|} \times \mathbf{sin}(\theta - \phi) \times \boldsymbol{e}^{-\frac{R}{L}\mathbf{t}}$$

Steady State Transient (DC Offset)

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

etap Thinking Power

AC Fault Current Including the DC Offset (No AC Decay)

Machine Reactance ($\lambda = LI$)

Fault Current Including AC & DC Decay

IEC Short-Circuit Calculation (IEC 909)

- Initial Symmetrical Short-Circuit Current (I"k)
- Peak Short-Circuit Current (ip)
- Symmetrical Short-Circuit Breaking Current (Ib)
- Steady-State Short-Circuit Current (Ik)

IEC Short-Circuit Calculation Method

- Ik" = Equivalent V @ fault location divided by equivalent Z
- Equivalent V is based bus nominal kV and c factor
- XFMR and machine Z adjusted based on c_{max}, component Z & operating conditions

Transformer Z Adjustment

- K_T -- Network XFMR
- K_S,K_{SO} Unit XFMR for faults on system side
- K_{T,S},K_{T,SO} Unit XFMR for faults in auxiliary system, not between Gen & XFMR
- K=1 Unit XFMR for faults between Gen & XFMR

Syn Machine Z Adjustment

- K_G Synchronous machine w/o unit XFMR
- K_S,K_{SO} With unit XFMR for faults on system side
- K_{G,S},K_{G,SO} With unit XFMR for faults in auxiliary system, including points between Gen & XFMR

Types of Short-Circuits

- Near-To-Generator Short-Circuit
 - This is a short-circuit condition to which at least one synchronous machine contributes a prospective initial short-circuit current which is more than twice the generator's rated current, or a short-circuit condition to which synchronous and asynchronous motors contribute more than 5% of the initial symmetrical short-circuit current (I"k) without motors.

Near-To-Generator Short-Circi

- $I_{\mathbf{k}}''$ = initial symmetrical short-circuit current
- *i*_p = peak short-circuit current
- I_k = steady-state short-circuit current
- $i_{d.e.} = d.c.$ component of short-circuit current
- A =initial value of the d.c. component $i_{d.c.}$

Figure 2 – Short-circuit current of a near-to-generator short circuit with decaying a.c. component (schematic diagram)

Types of Short-Circuits

- Far-From-Generator Short-Circuit
 - This is a short-circuit condition during which the magnitude of the symmetrical ac component of available short-circuit current remains essentially constant.

Far-From-Generator Short-Circ

- $I_{\mathbf{k}}''$ = initial symmetrical short-circuit current
- ip = peak short-circuit current
- I_k = steady-state short-circuit current
- $i_{d.e.} = d.c.$ component of short-circuit current
- A =initial value of the d.c. component $i_{d.c.}$

Figure 1 - Short-circuit current of a far-from-generator short circuit

Factors Used in I_f Calc

- κ calc i_p based on I_k "
- μ calc i_b for near-to-gen & not meshed network
- q calc induction machine i_b for near-to-gen & not meshed network
- Equation (75) of Std 60909-0, adjusting lk for near-to-gen & meshed network

•
$$\lambda_{min} \& \lambda_{max} - \text{calc i}_k$$

IEC Short-Circuit Study Case

Short Circuit Study Cas	e			×
Info Standard Arc Fla	sh Adjustment Alert]		
Standard IEC ANSI	Short-Circuit Current Max. User-Defined c Fac Min. (Exclude Duty	ctor Calc)	Calculation Method X/R for Peak kA Method A Method B Method C	
Zero Sequence Mdl Include Include Branch Y & Static Load	c F < 1001 V 1 1001 to 35000 V 1 > 35000 V 1	actor 1.1 1.1	Breaking kA	
Protective Device Duty	Fault Current ugh Fault Current ty vs. CB Time Delay I Bus If Through If	LV CB	o Use Ics O Use Icu	
< sc		Help	DK Cancel	

Types of Short-Circuits

- Maximum voltage factor is used
- Minimum impedance is used (all negative tolerances are applied and minimum resistance temperature is considered)

Types of Short-Circuits

- Minimum voltage factor is used
- Maximum impedance is used (all positive tolerances are applied and maximum resistance temperature is considered)

- Variations due to time & place
- Transformer taps
- Static loads & capacitances
- Generator & motor subtransient behavior

Voltage Factor (c)

- Ratio between equivalent voltage & Short-Circuit Current nominal voltage
- Required to account for:

Calculation Method

X/R for Peak Current

- Method A Using the uniform ratio X/R in calculating the peak current
- Method B Using the X/R ratio at the short-circuit location in calculating the peak current
- Method C Using equivalent frequency in calculating the peak current

 Breaking kA is more conservative if the option No Motor Decay is selected

Calculation Method

X/R for Peak kA

IEC SC 909 Calculation

Device Duty Comparison

Element	Current Rating	Duty
Bus	Making	i _p
HV CP	Symmetrical Breaking	I _{b,sym}
	Asymmetrical Breaking	I _{b,asym}
	Making	i _p
	DC Component (%)	I dc
LV CP	Symmetrical Breaking	I _{b,sym}
	Asymmetrical Breaking	I _{b,asym}
	Making	i _p
Fuse	Symmetrical Breaking	I _{b,sym}
	Asymmetrical Breaking	I _{b,asym}

Mesh & Non-Mesh I_f

- ETAP automatically determines mesh & nonmeshed contributions according to individual contributions
- IEC Short Circuit Mesh Determination Method – 0, 1, or 2 (default)

L-G Faults

Symmetrical Components

Sequence Networks

L-G Fault Sequence Network Connections

L-L Fault Sequence Network Connections

L-L-G Fault Sequence Network Connections

Transformer Zero Sequence Connections

Solid Grounded Devices and L-G Faults

Generally a 3 - phase fault is the most severe case. L - G faults can be greater if :

$$Z_1 = Z_2 \& Z_0 < Z_1$$

If this conditions are true then :

 $\mathbf{I}_{\mathfrak{B}\phi} < I_{f1\phi}$

This may be the case if Generators or Y/Δ Connected transform er are solidly grounded.

Zero Sequence Model

- Branch susceptances and static loads including capacitors will be considered when this option is checked
- Recommended by IEC for systems with isolated neutral, resonant earthed neutrals & earthed neutrals with earth fault factor > 1.4

Unbalanced Faults Display

X

& Reports

Complete reports that include individual branch contributions for:

DC

Incident Energy

Hazard / Bisk

Total Arcing Current

O L-L-G

Show Units

AC-DC

Arc-Flash

FPB FPB

OLL

Sequence Values (1, 2, 0)

C Phase Values (A, B, C)

• Vb. 3lo

- •L-G Faults
- •L-L-G Faults

Display Options - Short Circuit

AC

•L-L Faults

Results

3.958 KV

<u>C</u>olor

3-Phase Faults

C Mom. Sym.

Inter, Sym.

Fault Type

• L-G

Unbalanced Faults

	ANSI Unbalanced SC Report Manager	x
	Complete Input Result Summary	
al	Complete LG Complete LL Complete LLG Complete TextRept	
	Output Report Name	
	SC-Duty	
	Path	
	D:\CedarRel\example	
	Help OK Cancel	

One-line diagram displayed results that include:

•L-G/L-L-G/L-L fault current contributions

•Sequence voltage and currents

Phase Voltages

Total Fault Current Waveform

Transient Fault Current Calculation (IEC 61363) Percent DC Current Waveform

AC Component of Fault Current Waveform

Unbalanced Faults Display

& Reports

Complete reports that include individual branch contributions for:

- •I -G Faults
- •L-L
- •L-L

-G Faults		
Faults		
Display Options	- Short Circuit	×
Results AC	AC-DC DC	
Color 3-Phase Far O Mon O Inter	■ Show Units ults n. Symm. kA r. Symm. kA	
Unbalanced Falut Type © LG Falut V & I	d Fault OL-L OL-L-G	
© Va& C Sequ (V1, \ C Phase (Va, \	310 ence Values /2, Vo, I1, I2, & 310) e Values /b, Vc, Ia, Ib, & Ic)	

One-line diagram displayed results that include:

- •L-G/L-L-G/L-L fault current contributions
- Sequence voltage and currents
- Phase Voltages

	% Voltage at From Bus							oltage at From Bus Current at From Bus (kA)							
	Va		VЪ		٧c	:	Ia	Ia Ib			Ic		Sequence Current		t (kA)
1	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	I1	12	IO
	0.00	179.1	1.00	-114.5	1.00	114.5	30.939	-88.7	0.000	0.0	0.000	0.0	10.313	10.313	10.1
	65.65	-55.0	65.78	-124.9	107.69	90.0	0.372	-87.2	0.186	92.8	0.186	92.8	0.186	0.186	0.0
	67.80	-50.7	67.87	-129.3	105.00	90.0	1.730	-88.5	0.582	-88.6	0.582	-88.6	0.382	0.382	0.9
	2.61	8.1	100.44	-114.9	100.13	115.0	0.090	-80.5	0.028	100.8	0.028	102.0	0.039	0.039	0.0
1	05.00	0.0	105.00	-120.0	105.00	120.0	28.748	-88.7	0.369	90.0	0.369	89.9	9.706	9.706	9.3

Line-To-Ground Fault

Line-To-Line Fault

	%	Voltage a	t From I	Bus		Current at From Bus (kA)								
Va	1	VI	Ь	Ve	:	Ia		ъ		Ie		Sequer	t (kA)	
Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	11	I2	IO
105.00	0.0	52.50	180.0	52.50	180.0	0.000	0.0	24.254	-178.7	24.254	1.3	14.003	14.003	0.000
9387.80	-6.3	9377.51	-173.7	2053.52	90.3	0.000	-65.6	0.438	-177.2	0.438	2.8	0.253	0.253	0.000
9216.89	-9.3	9211.61	-170.7	2977.94	90.1	0.000	-68.2	0.899	-178.5	0.899	1.5	0.519	0.519	0.000
10498.58	0.0	5215.94	-177.1	5296.05	177.1	0.000	112.9	0.092	-169.9	0.092	9.8	0.053	0.054	0.000
10500.00	0.0	10500.00	-120.0	10500.00	120.0	0.000	-67.1	22.826	-178.7	22.826	1.3	13.179	13.178	0.000

		Current at From Bus (kA)							lus	t From E	Voltage a	%	
Sequence Current (kA)	 Sequence Current			Ib Ic		Ia		2	Ve))	٧V	Va	
II I2 I0	11	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.
19.763 8.244 0.00	19.763	36.8	29.787	145.9	29.772	0.0	0.000	129.8	0.00	-129.8	0.00	0.0	92.72
0.357 0.149 0.0	0.357	16.1	0.450	169.4	0.450	-87.3	0.208	90.3	2053.52	-170.6	6301.67	-9.3	6310.16
0.733 0.306 0.00	0.733	56.6	1.575	126.3	1.573	91.4	0.651	90.1	2977.94	-166.9	6582.50	-13.0	6586.22
0.075 0.031 0.00	0.075	30.3	0.099	169.3	0.098	-78.8	0.031	118.9	288.33	-102.1	283.76	0.1	9359.59
18.599 7.758 0.00	18.599	36.0	27.788	146.5	27.790	-90.0	0.413	120.0	10500.00	-120.0	10500.00	0.0	10500.00

Line-To-Line-To-Ground Fault

