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ABSTRACT: Angular-distance weighting (ADW) is a common approach for interpolation of an irregular network of
meteorological observations to a regular grid. A widely used version of ADW employs the correlation decay distance
(CDD) to (1) select stations that should contribute to each grid-point estimate and (2) define the distance component of
the station weights. We show, for Europe, that the CDD of daily precipitation varies spatially, as well as by season and
synoptic state, and is also anisotropic. However, ADW interpolation using CDDs that varies spatially by season or synoptic
state yield only small improvements in interpolation skill, relative to the use of a fixed CDD across the entire domain.
If CDDs are optimized through cross validation, a larger improvement in interpolation skill is achieved. Improvements
are larger for the determination of the state of precipitation (wet/dry) than for the magnitude. These or other attempts to
improve interpolation skill appear to be fundamentally limited by the available station network. Copyright  2008 Royal
Meteorological Society
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1. Introduction

Gridded climate data derived from meteorological mea-
surements are important for climate change detection
(e.g. Karoly et al., 2003), validation of regional and
global climate models (Caesar et al., 2006), and to drive
many models used in global and regional change studies
(e.g. hydrology, biodiversity, biogeochemical cycling).
One of the most common methods used to interpolate
from an irregular network of observations to a regular
grid is angular-distance weighting (ADW). ADW has
been used to interpolate climatic means (Legates and
Willmott, 1990a,b) or monthly anomalies (New et al.,
2000), daily data (Caesar et al., 2006) and extreme cli-
mate indices (Kiktev et al., 2003; Alexander et al., 2006).
Various forms of ADW have been used; all have a com-
mon approach that an estimate at a particular point is
a weighted average of nearby station data, where indi-
vidual station weights are a function of inverse distance
from the point to be estimated and angular isolation from
other data points (Shepard, 1968; Willmott et al., 1985;
New et al., 2000).

* Correspondence to: Nynke Hofstra, Environmental Systems Analysis
Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen,
The Netherlands. E-mail: nynke.hofstra@wur.nl.

A common implementation of ADW (New et al., 2000,
henceforth NEW2000) uses the concept of correlation
decay distance (CDD), also called correlation length scale
or decorrelation length, for (1) selection of stations to
average when estimating a grid value and (2) formulation
of the inverse-distance component of the station weight.
The CDD is defined as the distance where the correlation
between one station and all other stations decays below
1/e (Briffa and Jones, 1993; Jones et al., 1997, see
Section 3). The search radius for the selection of stations
used for the interpolation is set equal to the CDD, because
the best result is expected when we use only stations that
are correlated with the target grid point. The use of the
CDD in the distance weighting is explained in Section 4.

The use of CDD in the NEW2000 formulation of
ADW assumes that CDD is isotropic. Previous work
has shown that for temperature and rainfall CDD can
be anisotropic. Briffa and Jones (1993) and Jones et al.
(1997) studied annual temperature and conclude that
correlations decay much more rapidly in the meridional
than zonal direction; they also found that in the Northern
Hemisphere CDDs are lower at higher latitudes. On
the other hand, Caesar et al. (2006) and Alexander
et al. (2006), who examined daily temperature and daily
temperature extremes respectively, conclude that CDDs
are higher at higher latitudes, and that CDDs in summer
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are lower than in winter. Osborn and Hulme (1997)
found, in a study of daily rainfall over Europe, that
CDDs are larger in the north and the west of Europe, and
lowest in Northern Italy. Alexander et al. (2006) found
for indices of daily precipitation extremes that CDDs
are generally greater at lower latitude and, similarly to
Osborn and Hulme (1997), that the CDD is lower in
summer than in winter due to the larger percentage of
frontal rain in winter.

Gridded datasets of daily climate by Alexander et al.
(2006) and Caesar et al. (2006) were created using ADW
interpolation with CDDs varied by latitude band and
season. These studies however, did not fully explore the
spatial variability in CDD within latitude bands or assess
the relative improvement in interpolation skill arising
from the use of a variable CDD. The purpose of this study
is therefore twofold. We first make use of a new dataset
of daily precipitation for meteorological stations over
Europe to explore in detail the spatial pattern of CDD
of daily rainfall as a function of seasonality, anisotropy
and synoptic state. Having identified how CDDs vary as
a function of these factors, we then explore the extent to
which the use of varying CDDs influences the accuracy
of ADW interpolation.

2. Data

We use a new dataset of meteorological station daily
precipitation measurement, collated in collaboration with
over 50 partners from European countries (Klok and
Klein Tank, 2008) as a part of the EU FP6 ENSEMBLES
project. The version of the dataset used for this study is a
preliminary version containing 1768 stations (Figure 1);
the station distribution is best over the Netherlands,
and good over Switzerland, Ukraine, Belarus, the Baltic
States and Portugal. The distribution is poor over Poland,
the Balkans, Scandinavia and Northern Africa. The
dataset covers the period 1950 or earlier to present, but
for this study we use the period 1961–1990, because the
data availability is best in this period. The data have been
quality controlled, so potentially erroneous outliers have
been removed.
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Figure 1. Station availability for the period 1961–1990. The symbols
represent the percentage of available data for each station.

3. Variability in CDD

3.1. Calculation and subsetting of CDDs

CDDs can be calculated from a correlation matrix for
all the stations in the dataset. For each station, correla-
tions (r) with all other stations are extracted, and plotted
against distance from the target station (x). An exponen-
tial decay function of the form is then fitted by least
squares through the points.

r = e−x/CDD (1)

The CDD therefore corresponds to the distance where
r equals 1/e, approximately the 0.05 significance level for
r with large samples (Figure 2). A large CDD indicates
that more distant stations retain a significant correlation
(Briffa and Jones, 1993; Osborn and Hulme, 1997).

As a base case we calculate CDDs using all available
data. We then calculate CDDs using subsets of the data
as follows:

–Seasonality. Data are divided into four seasons, DJF,
MAM, JJA, SON and separate CDDs are calculated at
each station for each season.

–Anisotropy. Stations are subdivided into quadrants origi-
nating at the target station, and extending north, south,
east and west (for example the northern quadrant
extends from NW to NE). CDDs are then calculated
separately for stations in the meridional and zonal
pairs of these quadrants.

–Synoptic state. We use self organizing maps (SOMs)
to identify 12 ‘archetypal’ synoptic states from daily
mean sea level pressure from the ERA40 reanalysis
data (see Hewitson and Crane, 2002 for a description
of the use of SOMs for synoptic classification). Each
day is assigned to a SOM node (synoptic state number)
and the CDDs are then calculated using station data
only from days associated with each synoptic state. In

Cambridge, precipitation, 1961-1990
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Figure 2. Example of computation of CDD, for Cambridge, UK using
all data, and also winter and summer. Exponential curves are fitted to
the data by least squares, and the CDD is defined as the distance where
the fitted curve has a correlation of 1/e (dashed line): 269 km for all

data, 361 km for winter and 244 km for summer.
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this study we use 12 nodes, which is a user defined
number, dependent on data availability and the degree
on differentiation required.

3.2. Variability in CDD: results

The spatial pattern of CDDs calculated using all the data
are shown in Figure 3; they are similar to those reported
by Osborn and Hulme (1997), with longer CDDs in
NW and W Europe (up to 400 km) and shorter CDDs
in Mediterranean Europe, especially in Italy, (as low
as 150 km). These patterns are consistent with greater
frontal influence on rainfall in the NW and W, and
more convective and local scale influence in the E and
Mediterranean. CDDs are also lower over the Alps,
especially the Southern Alps, where the Alps act as a
barrier to frontal influence. CDDs tend to be lower at the
edge of the analysis domain, at least partly because these
stations can only be correlated with stations within the
domain.

When subsetting the data by season (Figure 3(b)–(e)),
quite large contrasts in CDD between winter and summer
can be seen, with intermediate differences in spring and
autumn (not shown). In winter, CDDs at any station are
nearly always larger than those using annual data, and
significantly larger than in summer. This effect is greatest
in NW and W Europe, where frontal rainfall is more
important in winter compared to summer; differences
here between summer and winter CDDs can be as much
as 150 km.

If stations are divided according to azimuth, some
differences in the patterns of CDDs in an EW and NS
direction emerge (Figure 3(f) and (i)), but they are not
particularly distinct. In Western Europe, EW CDDs tend
to be larger than NS, and also CDDs derived using
all station data. In central Europe the opposite tends to
occur, and in Eastern Europe there is little difference.
Discrepancies are largest over the northern part over the
Alps, where EW CDDs are higher than NS CDDs. We
also evaluated whether a lagged correlation in an EW
direction would increase CDDs, based on the idea of
EW movement of frontal systems, but find no significant
increase in CDDs when this is taken into account.

Figure 4 shows the patterns of CDDs under different
synoptic states. Node 1 corresponds to a situation with
low pressure over Scandinavia; in the nodes below
that (nodes 5 and 9), the low pressure moves towards
Greenland and becomes stronger. These patterns occur
mostly in winter and also occasionally in spring and
autumn. From node 9 to the right the low-pressure system
becomes less strong and is located progressively closer
to the United Kingdom; these patterns are also mostly
associated with winter, spring and autumn weather.
Nodes 2, 3, 4 and 7 correspond to high pressure close
to the Spanish coast and a low-pressure system over the
Middle East and are more common in spring, summer
and autumn.

The CDDs associated with each node show quite
marked variation with pressure pattern. Patterns with

deep low pressure to the west and NW tend to have
the largest CDDs, while CDDs associated with high-
pressure patterns are lower. These results are similar
to those achieved using seasonal subsetting, because
different nodes tend to be preferentially associated with
a particular season or seasons (e.g. node 1 in winter).
However, the use of synoptic patterns has the advantage
that it can account for occurrence of particular pressure
patterns at any time of the year, whereas different patterns
are lumped together if seasonal subsetting is used.

4. Influence of the CDD on ADW

4.1. Angular-distance interpolation

The ADW interpolation scheme used in this study is a
modified version of Shepard’s algorithm (Shepard, 1968).
All stations within the search radius (which equals the
CDD) from the point at which an interpolated estimate
is needed (henceforth L) are selected. Then, weights
are assigned to each station, which are function of the
distance between L and the stations and the angular
separation between the stations. The distance weight is
equal to:

wi = (e−x/CDD)m (2)

where wi is the weight for station i and x the distance
between station i and point L. m is a constant, set to 4,
through cross validation. This value has also been used by
New et al. (2000) and Caesar et al. (2006). The angular-
distance weight for each station i out of k contributing
stations is:

Wi = wi




1 +

∑
k

wk[1 − cos(θk − θi)]

∑
k

wk




, i �= k (3)

where the position of the ith station is defined in terms of
its distance, xi and its angle to north, θi , relative to the
specified point L (Caesar et al., 2006). These weights
ensure that stations closest to L and/or more isolated
stations have a greater weight. Note that weights are
standardized to sum to 1.0, regardless of the number of
contributing stations.

Anomalies, in the case of rainfall the percentage of
the monthly total, are used to reduce the influence
of factors such as elevation (Widmann and Bretherton,
2000). Initially, all stations within the search radius are
selected, but if there are more than ten stations, only the
ten stations with the highest weights are used for the
actual interpolation. If less than three stations are present
within the search radius, interpolation for this grid point is
not deemed possible, and the point is assigned a missing
value.

4.2. Comparisons

In Section 3, we have shown that CDD exhibits con-
siderable spatial variability, and that the degree of spatial
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(a)  All data

(b)  Winter (djf) (c)  Winter - All data

(d)  Summer (e)  Summer - All data
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(h)  Northsouth (i)  Northsouth - All data
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Figure 3. Spatial pattern of CDDs over Europe, for the period 1961–1990. (a) Calculated using all data; (b) and (d) for winter and summer;
(f) and (h): split into east–west and north–south quadrants; (c), (e), (g), and (i): difference from a, with the frequency distribution of differences
as inset. Figures (f)–(i) loose stations, e.g. Portugal and Ireland in (f) and (g) and Spain and Africa in (h) and (i), due to a lack of station data

in each quadrant available for the calculation of the CDD. This figure is available in colour online at www.interscience.wiley.com/ijoc

variability is also dependent on season, synoptic state, and
to a smaller extent, subsetting by azimuth (EW and NS
quadrant pairs). Therefore, using a constant CDD within
ADW might in particular locations be either too gener-
ous, or too conservative. For example, CDDs are typically
larger in NW Europe and using an average (smaller)

CDD for the whole of Europe would exclude stations
that have useful information. Similarly, for Mediterranean
Europe, CDDs are generally smaller, so using an average
CDD would potentially include stations with no useful
information, contaminating the interpolated value. These
effects can be even larger if season and/or synoptic state
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Figure 4. Pattern of CDDs for different synoptic states over 1961–1990, defined using self organizing maps. Contours show the ‘archetypal’
pressure patterns for each SOM node, from ERA40 mean sea level pressure data (solid lines show high-pressure, dotted lines low pressure;

contour interval is 50 hPa). This figure is available in colour online at www.interscience.wiley.com/ijoc

are considered, for example, in winter over NW Europe,
where CDDs are up to 200 km larger than the average
for Europe.

We therefore test the sensitivity of ADW interpolation
skill using a variable CDD. Our base case is interpolation
using a constant CDD of 250 km, approximately the
average for all stations over Europe (henceforth ADW0).
We then allow CDD to vary spatially on a station-by-
station basis within the ADW as follows:

–CDD at each station calculated using all data (ADW1);
–CDD varies as function of season (ADW2);
–CDD varies as function of synoptic state (ADW3);
–CDD optimized through cross validation at each station

(ADW4);
–CDD optimized through station cross validation and

varying as a function of season (ADW5);
–CDD optimized through station cross validation and

varying as a function of synoptic state (ADW6).

ADW4–ADW6 represent the best possible interpola-
tion that can be achieved with the existing method. For
ADW4, at each target station we iterate through a range
of possible CDDs (50–500 km) and choose the CDD
that produces the best skill score (R, Compound Rela-
tive Error (CRE), Critical Success Index (CSI) and pro-
portion correct (PC), see below). Two different optimal
CDDs are obtained for each station: (1) state (wet/dry)
and (2) magnitude. ADW is then run first to estimate
state; if the value is ≥0.5 mm (wet) then the magnitude

is estimated using the second CDD. The same procedure
is adopted for ADW5 and ADW6, but there the iteration
is undertaken separately for each season or each synoptic
state.

4.3. Skill evaluation

We evaluate interpolation skill through station cross
validation. Each station is excluded from the dataset in
turn, and its daily values estimated using the remaining
stations. Interpolation skill is then calculated for the
excluded station by comparing estimated and observed
values. We note that the interpolation scheme we are
evaluating is not an exact interpolator, so cross validation
against station data is not strictly appropriate; however,
we expect the relative scores for cross validation to
correspond to the relative skill of the interpolation
method in estimating area average values at high spatial
resolution.

Five skill scores are used: the Pearson correlation (R),
the mean absolute error (MAE) and the CRE for the
magnitude of rainfall, and the CSI and the PC for the
state (wet or dry, where a wet day is quite simply defined
as having a value ≥0.5 mm). These skill scores evaluate
different characteristics of the interpolated data; we use
a range of scores so that we can explore the extent to
which improvement in skill due to interpolation method
is consistent across different aspects of the observations.

–R is a statistic that removes the effect of any bias
in the interpolated data and highlights just problems
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with modelling the daily variability. Problems with
correctly capturing the variance will not be empha-
sized, because the measure normalizes the observed
and modelled values by their standard deviations. The
correlation coefficient should be considered as a mea-
sure of potential skill, because of its insensitivity to
biases and errors in variance (Murphy and Epstein,
1989; Wilks, 2006). It is bounded below by −1 and
above by 1 (best case).

–MAE is, according to Willmott and Matsuura (2006),
a natural, unambiguous, measure of average error.
MAE shows the errors in the same unit as the climate
variable itself and is bounded below by 0 (best case)
and unbounded above.

–CRE is a measure of similarity between the interpolated
and observed values. The correspondence of two
variables is measured in terms of relative departures
from the means, and in terms of the means and
absolute variances of the two series. It is bounded
below by 0 (best case) and unbounded above and can
be calculated as follows (Murphy and Epstein, 1989;
Schmidli et al., 2001):

CRE =

n∑
k=1

(yk − ok)
2

n∑
k=1

(ok − o)2

(4)

where y is the series to evaluate, o the observed series.
A disadvantage of the CRE is that this skill score
tends to favour interpolations that are too smooth. The
method is sensitive to outliers (Murphy and Epstein,
1989; Schmidli et al., 2001).

–PC is the proportion correctly predicted, and is quite
simple defined as the number of correct state predic-
tions divided by the total number of predictions; it is
the most direct and intuitive measure of accuracy:

PC = wc + dc

n
(5)

where wc and dc are the number of correct predictions
of wet and dry days, respectively. The PC may not be

the best measure to use when one of the correct events
is less common than the other, such as for rainfall in
very wet or dry regimes.

–In this case, CSI is a more appropriate method (Wilks,
2006):

CSI = wc

wc + wi + di

(6)

where wi and di are the number of days incorrectly
predicted as wet and dry respectively.

4.4. ADW: results

As shown in Table I, the average skill across the Euro-
pean domain shows only small differences between the
various approaches to using CDD for ADW interpolation.
The skill of each method tends to be similar across the
scores, but for some versions, the rank differs for mag-
nitude (R, MAE and CRE) and state (CSI and PC). All
but ADW1 performs better than our base case, ADW0.
Thus using a CDD that varies as a function of season or
synoptic state, and at the same time varies spatially pro-
duces better results than using a constant CDD or CDD
that varies spatially, but not as a function of season of
synoptic state. Although these improvements in average
performance are larger for state than magnitude, in both
cases they are not particularly notable. Using more or
fewer SOM nodes does not produce the change in skill
markedly (not shown).

Figures 5 and 6 show the differences in skill between
the different ADW methods, for state (CSI) and mag-
nitude (CRE) respectively. To reduce the number of
maps, we do not include ADW5 and ADW6, as the
patterns of these ‘optimized’ methods are similar to
ADW4. The figures show that ADW1–ADW3 have a
higher CRE skill than ADW0, mostly for areas in Eastern
Europe. This area benefits from a lower CDD in gen-
eral for ADW1 and a lower CDD in summer for ADW2
and ADW3. For CSI improvements in skill when using
ADW1–ADW3 are mainly seen in the SE, whereas the
skill in the NW deteriorates compared to ADW0. The
interpolation of the state of rainfall generally benefits
from lower CDDs and for ADW1–ADW3 the CDDs are
higher in the NW than the SE. ADW4 nearly always
has a better skill than ADW0. In areas with a sparser

Table I. Skill scores and their ranks for seven different versions of ADW (Section 4). Results of 1471 stations have been used
for the comparison. The 220 (1) stations are lost because the CDD of ADW1 (ADW0) is too low to do the interpolation, the

other 76 stations do not have enough data available.

ADW
version

Average
rank

Rank R Rank MAE Rank CRE Rank CSI Rank PC

0 5.6 5 0.761 5 1.237 4 0.417 7 0.660 7 0.838
1 6.6 7 0.760 7 1.231 7 0.421 6 0.662 6 0.840
2 4.8 5 0.761 5 1.237 5 0.419 4 0.664 5 0.841
3 4.2 4 0.762 4 1.225 5 0.419 4 0.664 4 0.842
4 2.6 3 0.772 3 1.152 3 0.398 2 0.691 2 0.862
5 2 2 0.773 2 1.147 2 0.396 2 0.691 2 0.862
6 1 1 0.775 1 1.146 1 0.394 1 0.693 1 0.863
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(a) ADW0

(b) ADW1 (c) ADW1 - ADW0

(d) ADW2 (e) ADW2 - ADW0

(f) ADW3 (g) ADW3 - ADW0

(h) ADW4 (i) ADW4 - ADW0

0.00 0.20 0.40 0.60 0.80 1.00 -0.020 -0.005 0.005 0.020

Figure 5. Spatial pattern of CSI for each ADW method (left) and difference from the base case, ADW0 (right); also shown is the frequency
distribution of differences in CSI across the dataset. This figure is available in colour online at www.interscience.wiley.com/ijoc

station network, differences are less consistent; here
ADW0 shows better skill at some stations. As with the
spatially averaged statistics, improvements in skill are
quite small, typically less than 1% for CRE and 2–5%
for CSI.

One consequence of using variable CDDs is that for
smaller CDDs the number of stations (or with grid-
ding the number of grid points) where an estimate can

be made decreases. This is because our implementa-
tion of ADW requires at least three stations within the
CDD before an estimate can be made. Thus ADW1
is less effective from this point of view, as it has
197 and 220 fewer stations that have three or more
neighbouring stations within the CDD than ADW0 and
ADW4 respectively. ADW4 is penalized least in this
way, because the optimization process chooses the best
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(a) ADW0

(b) ADW1 (c) ADW1 - ADW0

(d) ADW2 (e) ADW2 - ADW0

(f) ADW3 (g) ADW3 - ADW0

(h) ADW4 (i) ADW4 - ADW0

0.00 0.20 0.40 0.60 0.80 -0.020 -0.005 0.005 0.020

Figure 6. Same as in Figure 5, but for the CRE skill score. This figure is available in colour online at www.interscience.wiley.com/ijoc

CDD for which there are at least three stations within
the CDD radius. This has the advantage that estimates
can be made for nearly all station locations, but for loca-
tions with very distant neighbours, the interpolation will
have lower skill. An analysis of the skill at these sta-
tions shows that the interpolation skill is reduced between
about 5 and 30% for each of our skill scores. How-
ever, compared to other interpolation methods (Hofstra
et al., 2008), ADW4 performs better for these specific

stations and in a gridded dataset based on this sta-
tion network (Haylock et al., 2008) uncertainty of grid-
point estimates for these stations will be correspondingly
higher.

5. Discussion and conclusions

The underlying rationale for the use of CDD in ADW
is that only stations that are correlated with the target
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location should be used in the interpolation, and that
using uncorrelated stations simply interpolates noise or
error to the target location. Thus the use of CDDs is
intuitively appealing. If they are used it would appear
logical to use a spatially variable set of CDDs as this
maximizes their benefit.

Our analysis has shown that the CDD varies with sea-
son, synoptic state and, to a lesser degree, are anisotropic,
varying with azimuth. Similarly to Osborn and Hulme
(1997) we find lower CDDs in the Mediterranean and
much higher correlation distances in the United Kingdom
(and also NW Europe generally), indicating that the CDD
increases from SE to NW. Osborn and Hulme (1997) find
CDDs that are generally slightly lower than the CDDs we
find, which may be in part due to their use of a less dense
station network.

Our SOM analysis has shown that CDD varies
markedly with synoptic state. Highest CDDs are found
when there is a high-pressure area just west of Spain
and a low-pressure area over Iceland, corresponding to
frontal conditions over NW Europe. The lowest CDDs
are found when both pressure systems are much less
strong and there is a low-pressure system over the Middle
East.

Latitudinal subsetting has been used in the produc-
tion, by ADW, of grids of daily temperature (Caesar
et al., 2006) and daily temperature and rainfall extremes
(Alexander et al., 2006). For rainfall in Europe, this
subsetting would not be optimal because CDD gener-
ally changes in a NW–SE direction. Seasonally differ-
ent CDDs have been used by Alexander et al. (2006),
but Caesar et al. (2006) concluded that the annual mean
interpolation error was slightly lower using an annually
constant CDD than using different CDDs for each month.
This study shows that the introduction of seasonal or syn-
optic state dependent CDDs does improve the skill of
ADW, but only very slightly.

Despite the intuitive appeal of using a variable CDD
in ADW interpolation, only small improvement gained
from implementing this approach over Europe for daily
precipitation. The primary limitation on interpolation
accuracy appears to be station network density, as shown
by Hofstra et al. (2008) in a comparison of several
interpolation methods. In that comparison, however, use
of ADW4 produces interpolation skill extremely close
to the best performing interpolation method (global
kriging) while use of a constant CDD reduced skill
by between 1 and 5%. Improvement of ADW with
CDDs optimized through cross validation should be
considered in further studies on the interpolation of daily
rainfall data, especially in areas with relatively dense
networks.
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