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Abstract

Biological systems manifest continuous weak autoluminescence, which is present even in
the absence of external stimuli. Since this autoluminescence arises from internal
metabolic and physiological processes, several works suggested that it could carry
information in the time series of the detected photon counts. However, there is little
experimental work which would show any difference of this signal from random Poisson
noise and some works were prone to artifacts due to lacking or improper reference
signals. Here we apply rigorous statistical methods and advanced reference signals to
test the hypothesis whether time series of autoluminescence from germinating mung
beans display any intrinsic correlations. Utilizing the fractional Brownian bridge that
employs short samples of time-series in the method kernel, we suggest that the detected
autoluminescence signal from mung beans is not totally random, but it seems to involve
a process with a negative memory. Our results contribute to the development of the
rigorous methodology of signal analysis of photonic biosignals.

Introduction

Practically all organisms perpetually generate weak light (300–700 nm wavelength
range), too weak to be visible to naked human eye, in the course of their internal
metabolic processes [1]. This light phenomenon differs from a rather bright
bioluminescence which is dependent a specific enzymatic complexes which are present
only in very specific species such as fireflies and selected jellyfish. What differentiates
the general biological autoluminescence from ordinary bioluminescence is, apart the
weaker intensity, its ubiquity across biological species ranging from microorganisms [2–5]
through tissue cultures [6–8], plants [9–13] up to animals [14] including human [15–17].
There are also various synonyma used in the literature describing this light phenomenon
such as ultra-weak photon emission [18], ultra-weak bioluminescence [19], endogenous
biological chemiluminescence [20], biophotons [21–23], etc.

Widely accepted underlying mechanism which generates biological autoluminescence
(BAL) is related to a chemical generation of electron-excited states of biomolecules in
the course of oxidative metabolism and oxidative stress [18,24]. While intensity and
optical spectrum properties of BAL as a factor of various influences have been widely
investigated [3, 25–29], there is a limited knowledge and consensus about statistical
properties of BAL.
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The object of our current study is the BAL time series from the seeds of mung beans
that were measured using a sensitive photomultiplier setup. We decided to test the
hypothesis if the BAL signals of mung beans contain any intrinsic correlations. To that
end, we recorded and analyzed the time series of the BAL from mung beans. One of the
ways to assess correlations in the signal employs chaos- and fractal-based
approaches [30]. We focus here on the analysis of the fractal character of time-series
using fractional processes.

Fractional Brownian motion (fBm) and fractional Gaussian noise (fGn), introduced
by Mandelbrot [31], have been intensively investigated over the last few decades. They
are both dependent on Hurst [32,33] exponent H ∈ (0; 1) that influences their
autocovariance structure. The fBm or fGn assumption of finite sample is
advantageously used in many fields of research of time series analysis – in network
traffic modelling [34,35], financial time series [36,37], or in biomedicine especially for
detection of Alzheimer’s disease [38] and cardiology [39].

When analyzing real-world data, the measured sample is usually discrete and short.
The traditional methods are generally not suitable for short time series analysis. That is
the reason why we need to use a precise method that can estimate the Hurst exponent
without bias and can determine the confidential intervals of the estimate. The fractional
character of data can be measured via fractional Brownian bridge model, which is a
derived discrete process from traditional continuous fBm. A lot of time series are short
due to their nature or cut by purpose or experimental limitations. Reconsidering some
fBm properties that are taken in long time series analysis as granted and customizing
them into a short-time, the discrete model allows estimating Hurst exponent of the
discrete measured signal. This approach is advantageously used in a recently developed
method of fractional Brownian bridge [40].

The article at first analyzes current open questions of statistical properties of
biological autoluminescence. In the next section, we then describe the theory of fBm
and the method of Hurst exponent estimation as well ass other employed methods,
whereas the last section contains the results of the analysis of experimental signals
compared to computer generated reference signals.

Statistical properties of biological autoluminescence
(BAL)

Rationale for the need of understanding of BAL statistical
properties

Multiple authors proposed that statistical properties of BAL time series might contain
an information related to the state of biological system [41–43]. If the existence of such
nontrivial statistical properties was rigorously confirmed, it would make a substantial
impact on three major areas of this research field.

At first, the discovery of nontrivial statistical properties of BAL would have an
impact on the understanding of the BAL generating mechanisms [18,21]. So far, well
accepted generating mechanism of BAL [18,24] implicitly considers BAL a weak
endogenous biological chemiluminescence formed as a by-product of oxidative
metabolism and oxidative stress. General chemiluminescence is typically considered to
be random arising from individual uncorrelated photon emitter molecules [44]. If any
correlations in the signal were observed, one would start to ask questions what physical,
chemical, and biological processes generate such correlations, hence casting the light on
BAL generating mechanisms.

At second, nontrivial statistical properties might revive an interest into
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long-standing intriguing, yet unresolved question: does BAL enable optical
communication between cells and organisms [45–48]. Underlying hypotheses for such
biocommunication role of BAL usually expect that BAL carries information which can
be processed by a receiver [46]. Such information could be encoded in the intensity and
optical spectrum of BAL [49] or in statistical properties of BAL, if they are any
different from random light, as claimed by some authors [45].

At third, statistical properties would represent a completely novel fingerprint for
application of BAL in biosensing in biotechnology, agriculture, food industry, and
medicine beyond the intensity and optical spectra, hence greatly enhancing application
potential of BAL analysis.

Approaches for analysis of BAL statistical properties

Quantum optics approach

Historically, the first common approach to analyze the statistical properties of the
photon signals is based on quantum optics theorems and employs photocount statistics
of detected photonic signal [50]. Using this approach, several authors suggested that
BAL manifests quantum optical coherent properties [21] or even interpreted the
observed photocount statistics in terms of quantum optical squeezed states [22, 51]. We
have recently criticized the interpretation of experimental evidence claiming quantum
optical and quantum coherence properties of BAL [23].

Fractal- and chaos-based signal analysis approach

We believe that it is more realistic to consider that BAL could manifest complex
statistical or correlated behavior due to the nature of underlying chemical reactions [52]
instead of a hypothetical biological coherent quantum field as proposed in the earlier
approach. For the analysis of such complex statistical or correlated behavior, fractal or
chaos-based methods seem to be appropriate. Therefore, more recent efforts in the
analysis of BAL statistical properties were focused on the various measures quantifying
the complexity and correlations in the time series such as Hurst exponent [53] and
multifractal spectra [54].

Several works found correlations or deviations from purely random process with a
trivial properties in the BAL signal [42,43,54]. However, in all those cases, either
signals of different signal-to-noise ratio [42,43,54] or surrogate (randomly reshuffled
time series) [43] were used as reference signals. Comparing BAL signals having different
signal-to-noise (signal = net mean intensity of BAL, noise = mean value of detector
noise) ratio may lead to results indicating different statistical properties due to a trivial
fact: statistical properties of experimentally detected BAL signal are formed by a
convolution of detector noise properties with a pure BAL properties. We demonstrated
this issue on the example of Fano factor analysis in [13, Fig.4].

Using surrogate signals might also lead to misleading interpretation in case the
signal contains a certain trivial linear trend before random reshuffling – such reshuffling
would eradicate any trend. We showed recently that detrending of the BAL signal is not
sufficient to remove artifacts since the trend is present not only in the local mean but
also in the local variance of the signal [53, Fig.1b, Fig.4b]. We suggest that the most
reliable testing of the hypothesis of non-trivial correlation properties so far can be
obtained using reference signals with well-defined properties. To that end, in our recent
works, we used computer-generated Poisson signal time series superposed on the
experimentally detected detector dark count times series as the control signals with
signal-to-noise ratio same as the experimentally detected BAL signals [53]. Such a
method for reference signal generation was also recently used in entropy analysis of BAL
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from model plant Arabidopsis Thaliana and helped to correctly interpret findings of
different entropy values at different stages of seed germination [20, Fig.6] .

For the first time, we combine here the advanced approach of computer generated
reference signals [53] and a novel method based on fractional Brownian motion
analysis [55] to test if BAL signals from mung beans manifest any correlations.

Materials and Methods

Experimental

Preparation of Samples

Mung bean seeds (Vigna radiata, BIO Mung, CZ-BIO-001) were used as a biological
material. Mung seeds were surface-sterilized with 70% ethanol for 1 min. Then, the
ethanol was removed and 50% disinfecting agent (SAVO, CZ) was added. After 10 min,
the seeds were washed with distilled water 6 times and soaked for 6 h (shaken every half
an hour). After the preparation, the green covers of the seeds were removed. Then, they
were germinated in dark condition on large Petri dishes with ultra-pure water.

Luminescence measurement system

We used a measurement system based on cooled (-30 °C) low-noise photomultiplier tube
(PMT) R2256-02 (all components of the system from Hamamatsu Photonics
Deutschland, DE, unless noted otherwise), see Fig. 2. Cooling unit C10372 (Hamamatsu
Photonics Deutschland, DE) consisted of a control panel and a housing in which the
PMT is placed. External water cooling is used for lower cooling temperature. High
voltage power supply PS350 (Stanford Research Systems, USA) was used for powering
the PMT. C9744 unit, consisting of a preamplifier, discriminator and shaping circuit,
transforms photocount pulses coming from the PMT into 5V TTL pulses detected by
C8855 unit connected to PC. Discriminator level was set to -500 mV and high voltage
PMT supply to –1550 V based on the experimental SNR (signal-to noise-ratio)
optimization procedure performed in [56].

The PMT had a dark count of ca. 17.2 s−1 and photocathode diameter 46 mm); see
its quantum efficiency in Fig. 2. PMT was mounted from the top outer side of the black
light-tight chamber (standard black box, Institute of Photonics and Electronics of the
CAS, CZ). The distance between the PMT housing input window and the inner side of
the bottom of the Petri dish was 3 cm.

Measurement protocol

The second day after the preparation day, 12 similar mung beans were chosen for the
study and distributed into a Petri dish (5 cm in diameter), see Fig. 2.

Short Sequence Analysis

fBm Hypothesis

Fractional Brownian motion (fBm) [31] is a continuous Gaussian process BH(t) defined
for continuous variable t ∈ [0; +∞), H ∈ (0; 1) and σ > 0. The process starts at zero
and has zero expected value for all positive times t. The autocovariance structure of
fBm obeys for all t, s > 0

E(BH(t)BH(s)) =
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
. (1)
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Parameter H is called Hurst exponent, for H = 1/2, the fBm becomes Wiener process,
which is standard Brownian motion. There are several cases of time series behaviour:

• H → 1− as strongly dependent and predictable,

• H ∈ (1/2; 1) as positive long memory process,

• H = 1/2 as Wiener-like process,

• H ∈ (0; 1/2) as negative long memory process,

• H → 0+ as strongly dependent, but hardly predictable.

Discrete fractional Brownian motion of length N ∈ N is any discrete process defined
for discrete variable k = 0, . . . , N − 1 with zero mean and autocovariance function
defined for k, l = 0, . . . , N − 1 and l < N − k as

E(BH(k)BH(k + l)) =
σ2

2

(
|k|2H + |k + l|2H − |l|2H

)
. (2)

Taking a sample of fractional Brownian motion, it is possible to investigate short
samples of time series with fractional character. Finite sample BH(k) of size N + 1 for
k = 0, . . . , N of standardized fBm can be used for the construction of fractional
Brownian bridge [55] in the following way

MH(k) = BH(k)−BH(0)− k

N
(BH(N)−BH(0)). (3)

In the fractal analysis of time series, the fractional processes are often converted to
fractional noises utilizing signal difference to simplify their covariance structure together
with its spectral properties keeping the desired dependence on Hurst exponent. The
differenced fractional Brownian bridge (dfBB) [55] is defined as

XH(k) = MH(k + 1)−MH(k) (4)

for k = 0, . . . , N − 1.

Theory of dfBB

The dfBB is a discrete process and it is proven that the process has zero expected value
and its variance is independent on the time lag and equals

γ0 = 1−N2H−2. (5)

The autocovariance of dfBB can be expressed as

γm = η(m,H) +N2H−2 +
|m|2H − |N −m|2H − |N |2H

N(N −m)
, (6)

for m = 0, 1, . . . N − 1 where

η(m,H) =
1

2

(
|m+ 1|2H − 2|m|2H + |m− 1|2H

)
(7)

The corresponding autocorrelation function is again independent on the time lag and
can be expressed as

ρm =
γm
γ0

(8)

for m = 0, . . . , N − 1. The autocorrelation function of dfBB for selected H is depicted
in Fig. 1.
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Fig 1. Autocorrelation function of dfBB for H = 0.7 (dotted), H = 0.3 (dashed) and
H = 0.5 (solid line).

The estimation of Hurst exponent will be based on the correlation function (8). This
correlation function is valid only for discrete processes that originated as sampling
continuous fBm. In our work, we assume that the investigated signals have the fBm
property with unknown Hurst exponent. The advantage of using dfBB is the de-trending
of the input signal which is important in the real experiment outcome analysis.

Hurst Exponent Estimation

The estimation of Hurst exponent is based on the fitting of the autocorrelation function.
For an input discrete signal that has the fBm properties, the dfBB according to
formulas (3), (4) is created. If the original signal has length N + 1, the respective dfBB
has length N having elements x0, x1, . . . , xN−1. The estimation of n-th autocovariance
coefficient r̂n can be expressed for n = 0, . . . , N − 1 as

r̂n =
1

N − n

N−n−1∑
k=0

xkxk+n (9)

in the case of unbiased estimation. Alternative biased estimate is based on formula

r̂n =
1

N

N−n−1∑
k=0

xkxk+n (10)

and the estimation of autocorrelation coefficient ρ̂n as

ρ̂n =
r̂n
r̂0
. (11)

The results using (9) and (10) were proven to be comparable, therefore we used the
equation (9) for the following calculations. Denote the theoretical value of
autocorrelation from equation (8) as ρn = ρn(H) and the experimentally calculated
autocorrelation as ρ̂n. Than we obtain the estimation of parameter H by means of
solving the minimization problem

Ĥ = argmin
H∈(0,1)

M∑
j=1

N−1∑
n=1

(ρn,j − ρn(H))
2
, (12)
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where M is the number of signal segments. The point estimate of Ĥ was obtained by
the maximum likelihood method [57] together with its standard deviation ŝ as
recommended in [55].

Reference signal generation

Recently we demonstrated that a suitable reference signal is crucial to understand and
interpret the findings from various BAL signal analysis [20,53]. Detector noise itself is
not a suitable reference signal since it contains intrinsic technogenic correlations
itself [53] and using signals of other samples with different signal-to-detector noise ratio
can also lead to misleading results as we explained in section . Hence for this work we
follow our method [53], and generated the reference signal as a sum of measured
detector noise and computer-generated Poisson signal (using Matlab®2017 poissrnd
command) with given λ in every experimental point where λ = EλMUNG − EλNOISE.
The respective values of λ in case of 200 µs signal as well as 500 µs signal are calculated
in Tab. 2. Hence, experimentally detected BAL signals from mung beans and reference
signals have practically the same mean value and same signal-to-noise ratio.

Results

Measurement

The investigated sample of germinating mung beans is displayed in the Fig. 2. An
overview of all signals collected and employed in this paper is in Tab. 1.

Table 1. Number and type of the signals collected.

bin size 200 µs 500 µs

signal type
mung beans (B) N=5 N=5

detector noise (D) N=5 N=5
reference signals (R) N=5 N=5

number of bins in each measurement Nb=100 000 Nb=100 000
length of each measurement [s] 20 50
total number of bins Q=N×Nb 500 000 500 000

total length of all measurements per signal type [s] 100 500
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Fig 2. A: Sample of germinating mung beans. B: Scheme of the luminescence
measurement setup. C: Quantum efficiency of the photomultiplier used for the detection
of biological autoluminescence

There were two bin size settings used to collect the signals: Ts = 200 and 500 µs.
For each sampling period, we have corresponding mung bean signals, detector noise
signals and computer generated reference signals.
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Both mung beans signal and PMT detector noise signal are assumed to be stationary
with their mean values with Poisson distribution. Therefore, they can be represented by
their mean values EλMUNG and EλNOISE that are estimated from the measured data.

Table 2. Mean values of mung beans signal and noise.

Tb 200 µs 500 µs

EλMUNG 0.0115 0.0288
EλNOISE 0.0036 0.0088

λ 0.0079 0.0200

As previously mentioned, the aim of study is to compare mung beans signal with the
reference signal and find statistical difference between them using their autocorrelation.
With each of these two signals independently, we performed basic data processing. This
procedure describes the normalization of the data, which is the essential property of
fBm processes. At first the input time series yk for k = 0, 1, . . . , Q− 1 was cumulatively
summed for a window size h ∈ N and Anscombe transformation [58] was performed. The
resulting signal zk can be expressed based on the output from measuring device yk as

zk = 2 ·

3

8
+

(k+1)h−1∑
i=kh

yi

1/2

(13)

for k = 0, . . . ,M − 1. This transformations assures stationarity by terms of variance
and guarantees Gaussian distribution of the resulting signal.

Likelihood ratio test

Having signal from the mung beans photon emission as well as the reference signal, we
will use likelihood ratio test [59] to decide, whether the Hurst exponent of both samples
is significantly different. We denote HD as the Hurst exponent estimate of the PMT
detector noise or reference signal and HB as the Hurst exponent estimate of mung
emission using the formula (12). The overall error (sum of the squares of residuals) is
defined as

SSQFULL =
M∑
i=1

N−1∑
j=1

(
ρBi,j − ρj(HB)

)2
+

M∑
i=1

N−1∑
j=1

(
ρDi,j − ρj(HD)

)2
, (14)

where ρD, ρB are the autocorrelation coefficient of the noise and photon emission,
respectively. The case of j = 0 is excluded due to ρDi,0 = ρ0(HD) = 1 for all i = 1, ..,M .
Using sub-model satisfying HB = HD we get

SSQSUB =
M∑
i=1

N−1∑
j=1

(
ρBi,j − ρj(HD)

)2
+

M∑
i=1

N−1∑
j=1

(
ρDi,j − ρj(HD)

)2
. (15)

Using likelihood ratio (LR) test of significant difference between the sub-model and the
full model, we calculate

χ2 = 2 ln
LFULL

LSUB
= M · (N − 1) · ln SSQSUB

SSQFULL
, (16)

where LFULL and LSUB are corresponding likelihoods.
When the hypothesis H0 : HD = HB holds, i.e. the full model has the same validity

as the submodel, the criterion has χ2
1 distribution due to single parameter constrain.
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Hurst Exponent Estimates

There is no prior knowledge of optimal model length, segment length, and Hurst
exponent. Therefore, we will apply the maximum likelihood method of Hurst exponent
estimation for the various model and segment lengths, and then we will individually test
the differences in the Hurst exponent. However, there is a finite number of reasonable
pairs (model length N , segment length h) which will cause the phenomenon of the
multiple hypothesis testing. After the False Discovery Rate (FDR) correction, we will
localize the model and segment lengths which causes significant differences in the Hurst
exponent. These pairs (h,N) will be declared as significantly sensitive to the signal
differences in the Hurst exponent.

Having signals with two different bin sizes, we will use the signal bin size Tb = 200
µs as training set and the signal with Tb = 500 µs as a verification set. Normalized
mung beans and reference signals with bin size Tb = 200 µs and length Q = 500 000
were the subject of the initial analysis. The bin compression of size h was applied to the
signals, therefore the number of bins was bS/hc. After the bin compression, the signal is
divided into segments of length N . Due to the memory of fBm process, we will use only
the odd segments for the calculation of autocorrelation function and the even segments
are excluded. The new signal has length dbbQ/hc /Nc /2e. Using equation (12) and
maximum likelihood method, we obtain the corresponding HD and HB estimates for the
Hurst exponent of referential signal and mung beans, respectively. Based on these
estimates, we can derive the p-values of LR test using (16) statistics.

In our case, we performed altogether 11× 11 = 121 tests for h = 1500, 1550, . . . , 2000
and N = 20, 21, . . . , 30. Due to multiple testing and obeying the Hochberg-Benjamini
principle, we diminish the significance level from 0.05 to αFDR = 0.000050. The
p-values as decadic logarithms are shown in Tab. 3.

Table 3. Difference between the estimated Hurst exponent of mung beans and reference signal as
(− log10 p)-values.

h \N 20 21 22 23 24 25 26 27 28 29 30

1500 1.188 2.934 1.835 1.888 3.175 1.645 2.284 0.863 0.506 0.192 0.762
1550 1.172 1.617 0.394 0.887 1.420 1.470 0.912 2.113 1.651 0.026 0.691
1600 1.978 1.576 0.646 0.523 1.217 0.394 1.597 0.786 1.487 0.880 1.859
1650 0.990 1.616 1.127 2.024 1.209 0.651 1.635 0.909 1.906 3.573 2.927
1700 0.772 0.621 1.288 1.196 1.239 0.488 0.407 1.175 2.658 0.463 0.776
1750 1.475 2.325 1.269 3.131 4.638 1.535 2.370 1.017 0.726 0.412 1.945
1800 0.465 1.455 1.394 1.098 1.313 0.180 2.661 2.064 2.449 1.917 2.001
1850 2.377 2.010 1.308 0.567 1.533 2.382 3.184 4.301 3.328 2.418 1.968
1900 2.599 0.879 0.850 0.629 1.053 1.264 0.950 0.943 1.397 2.093 0.142
1950 2.574 0.095 0.706 1.900 2.843 2.874 3.261 2.514 3.462 2.501 2.405
2000 2.212 1.611 1.315 0.935 1.040 1.232 0.922 0.282 0.366 1.159 0.963

In these settings, there were two cases where the Hurst exponent was significantly
different. The results from these two cases are displayed in Tab. 4. The lowest p-value
was obtained in the case of (h,N) = (1750, 24), which represents the segmentation into
bins with duration 1750× 200 µs = 350 000 µs = 0.35 sec.

Table 4. Estimated Hurst exponent values for mung beans (B) signal and
reference signal (R).

h N HB HR p-val − log10 p-val

1750 24 0.4142 0.5299 2.3135×10−5 4.638
1850 27 0.3569 0.4291 4.9977×10−5 4.301
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As the verification set, the signal with Ts = 500 µs was taken into account, following
the same procedure as the previous one. The bin compression h was accordingly
diminished to 2/5 of its previous value to guarantee the same segment length. Initially,
we have three types of signal:

• (B) - mung beans signal,

• (D) - noise signal of PMT detector,

• (R) - reference signal as a sum of measured detector noise (D) and
computer-generated Poisson noise.

We perform the verification for the combination of signals (B) and (R) similarly as
in the previous case and additionally for the combination of (B) and (D). The first set
of signals ((B) and (R)) will be used to test if the photon emission is not random and
has a negative memory, while the results from the second set ((B) and (D)) of signals
will be used to test if there is a significant difference between the cases, when the PMT
detects BAL signals from mung beans compared to PMT noise. We use the significant
cases from Tab. 4 to estimate their Hurst exponent and the results on verification set is
displayed in Tab. 5. The variables s1, s2 denote the pair of signals, whereas the HX

denotes the estimation of Hurst exponent of the signal s2.

Table 5. Estimated Hurst exponent values from verification dataset. h=700
for 500 µs signals corresponds to h=1750 for 200 µs signals.

s1 s2 h N HB HX p-val

B R 700 24 0.4032 0.4415 0.0130
B R 740 27 0.3761 0.4112 0.0042
B D 700 24 0.4032 0.4378 0.0169
B D 740 27 0.3761 0.4480 0.0054

We performed 4 tests and according to Hochberg-Benjamini false discovery rate, we
diminish the αFDR = 0.0169. Therefore, all four cases are considered significant and we
reject the hypothesis that the Hurst exponent of mung beans would be the same as HX.

Discussion

Results from rigorous statistical analysis and testing in tables 3, 4, and 5 suggest that
the mung beans signal has a negative memory (negative correlations, antipersistent
behavior [60]) and its Hurst exponent is lower than the referential signal. How could
such behavior originate in biological systems ? It was proposed that the restriction of
Brownian motion due to structuring of nano- to microscale intracellular environment
leads to anomalous sub-diffusion [61] characterized by Hurst exponent < 0.5 [60]. This
is understandable since a cytoplasm environment displays fractal spatial structuring [62].
Since biochemical reactions (encounters of reactants) leading to BAL are taking place
within the cell cytoplasm, organelles and lipid membranes [24] where anomalous
sub-diffusion was observed [61,63], it is not a great logical leap to speculate that BAL
from mung bean samples could also display sub-diffusive features. Actually, it is already
acknowledged that chemical reactions spatially constrained on the microscopic level may
lead to fractal reaction kinetics [64–66] also in case of intracellular biochemical
kinetics [67]. The 0.35 s as the time scale where we found statistically significant
differences of mung bean signal Hurst exponent from that of the reference signal (Tab.3)
could correspond to a rate of underlying rate-limiting step of chemical reactions or
processes which gives rise to BAL. However, one has to be careful in the interpretation
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since there are many pitfalls in an accurate estimation of the Hurst exponent value from
experiments [68, 69]. Although unlikely, given the nature of our experiments we can not
fully exclude that the correlations we observe in mung signals are introduced by the
photodetector (PMT) due to the nature of photocounting process [70, 71]. Introduction
of anti-/correlations could be at the physical level of the PMT tube (after-pulsing, a
temporary drop of the voltage at dynodes after ejecting electrons, ...) or the follow-up
circuitry (amplifiers). Anti-correlations of the detected counts depending on the count
rate have been actually observed due to a PMT construction [71, Fig.9]. However,
marked anti-correlations were present only for very high count rates (> kHz) and very
low quantum efficiency which is not the case in our experiments. We also believe that
the dead-time of a PMT [72] is not affecting the value of correlations we observe since
the PMT dead-time is on the time scale of few hundreds of nanoseconds - several orders
of magnitude smaller than the time scale of correlations we observed (0.35 s) and three
orders of magnitude smaller than our bin size (200 and 500 µs).

Throughout the analysis, the lower limit for parameter h was chosen as 1500 to
assure the normality of the processed data due to the sparsity of the input signal.
Higher accumulation than 2000 is not useful since then we would lose the precision of
estimate due to the short length of investigated time-series. The minimal length of
segment N was chosen to assure consistency of the used model, segment lengths of
N > 30 do not significantly contribute to the higher precision of estimate [40].

Conclusion

In this work, we focused on statistical properties of biological autoluminescence from
germinating mung bean sample. Our emphasis was on the development of a rigorous
mathematical and statistical methodology which takes into account proper reference
signals, likelihood ratio test and multiple hypothesis testing effects.

We used a highly sensitive photomultiplier-based detection system to record
time-series of photon counts of the mung bean sample emission and noise of the
detector. Using the normalization of the input signal we were able to employ the
fractional models that allowed us to estimate Hurst exponent. Dividing the input
signals into the training set and evaluating the differences in the Hurst exponent of both
signals, the procedure allowed us to test our initial hypothesis on the verification signal.
The resulting Hurst exponent mean value of mung bean sample time series is below the
level of 1/2 which confirmed our initial hypothesis, that the biological autoluminescence
displays correlations. We also proposed that this value could be related to anomalous
sub-diffusive features of biochemical reactions underlying processes within mung beans
which give rise to photon emission time series. Further extensive work beyond the scope
of this methodical paper needs to be carried out to test the biological ubiquity of
anti-/correlations in biological autoluminescence signals and the role of the detector in
the observed Hurst exponent values. Especially interesting would be an analysis of BAL
statistical properties across samples with rising complexity starting from simple
chemical solutions of small biomolecules through isolated cellular structures and cell
suspensions up to whole tissues and organisms. Nevertheless, we believe that rigorous
methodology we presented here will help to support the future research of BAL
statistical properties towards a deeper understanding of BAL mechanisms as well as
applications for label-free and non-invasive analysis in medicine and biotechnology using
completely new signal fingerprint types.
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