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1 Introduction

The American writer Kurt Vonnegut began his career in the public relations division

of General Electric. One day, he saw a new milling machine operated by a punch-

card computer outperform the company’s best machinists. This experience inspired

his novel Player Piano. It describes a world where children take a test that determines

their fate. Those who pass become engineers and design robots used in production.

Those who fail have no jobs and are supported by the government. Are we converg-

ing to this dystopian world? How should public policy respond to the impact of

automation on the demand for labor?

These questions have been debated ever since 19th-century textile workers in the

U.K. smashed the machines that eliminated their jobs. As the pace of automation

quickens and affects a wider range of economic activities, Bill Gates reignited this

debate by proposing the introduction of a robot tax.1 Policies that address the im-

pact of automation on the labor force have been widely discussed—for example, by

the European Parliament—and have been implemented in countries such as South

Korea.

In this paper, we use a model of automation to study whether it is optimal to

tax robots. Our model has two types of occupations, which we call routine and

non-routine. We use the word robots to refer to all production inputs that are com-

plements to non-routine workers and substitutes for routine workers. So, our con-

clusions apply to all forms of routine-biased technical progress.2

To build our intuition, we first consider a simple static model in which workers

have fixed occupations. In this model, a fall in the cost of automation increases

1Kevin J. Delaney, “The robot that takes your job should pay taxes, says Bill Gates, ”Quartz, Febru-
ary 17, 2017, https://qz.com/911968/bill-gates-the-robot-that-takes-your-job-should-pay-taxes/.

2AUTOR, KATZ and KRUEGER (1998), AUTOR, LEVY and MURNANE (2003), BRESNAHAN, BRYN-
JOLFSSON and HITT (2002), ACEMOGLU and AUTOR (2011), GOOS et al. (2014), CORTES, JAIMOVICH
and SIU (2017), and ACEMOGLU and RESTREPO (2018, 2019, 2020) discuss the impact of various forms
of routine-biased technical change on the labor market.
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income inequality by increasing the non-routine wage premium.

If the tax system allowed for different lump-sum taxes on different workers, then

technical progress would always be welfare improving since the gains could be re-

distributed. But these discriminatory taxes cannot be levied when the government

does not observe the worker type.

For this reason, we solve for the optimal tax system imposing, as in MIRRLEES

(1971), the constraint that the government does not observe the worker type or the

worker’s labor input. The government observes the worker’s income and taxes it

with a nonlinear schedule. In addition, robot purchases are also observed and taxed

with a proportional tax.

In this Mirrleesian tax system, it is optimal to tax robots if the planner wants

to redistribute income toward routine workers. To redistribute, the planner seeks

to give positive net transfers to routine workers. However, because the tax sys-

tem is the same for all workers, the non-routine workers can choose the income-

consumption bundle of routine workers. This bundle can be particularly attractive

for non-routine, high-wage workers because they can earn the same level of income

as routine workers in just a few hours. Taxing robots reduces the non-routine wage

premium, which makes the routine bundle relatively less attractive to non-routine

workers. As a result, the planner can provide a better bundle to routine workers. The

optimal robot tax balances these benefits of wage compression with the efficiency

losses from distorting production decisions.

This rationale for positive robot taxes differs from the one proposed by Bill Gates.

Gates argued that robots should be taxed to replace the tax revenue from the routine

jobs lost to automation. In our model, automation increases output and overall tax

revenue, so there’s no need to replace taxes on routine wages.

The benchmark model that we use in our quantitative work is a dynamic model

with endogenous skill acquisition. This model has an overlapping-generations struc-

ture that incorporates life-cycle aspects of labor supply. Workers have heterogeneous
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costs of skill acquisition and choose either a routine or non-routine occupation be-

fore they enter the labor market.3 Once they enter the labor force, they cannot change

their skill choice. They work and then retire.

The cost of producing robots falls over time as a result of technical progress. We

choose parameters so that the status quo of the dynamic model is consistent with

the time series for the non-routine wage premium and the fraction of the population

with routine occupations in the U.S. economy.

We show that, under the current tax system, a sustained fall in the cost of au-

tomation generates a large rise in income inequality and a fall in the welfare of those

who work in routine occupations.

We solve for the optimal Mirrleesian tax policy under perfect commitment. In this

model, tax policy affects the skill choices made by the current newborn generation as

well as future generations. For this reason, the question of whether robots should be

taxed is more complex than in the static model. Initially, it is optimal for the planner

to tax robots to help redistribute income toward routine workers of the initial older

generations who are still in the labor force. These workers made their skill choices

in the past, so those choices are not affected by the planner’s generosity. In contrast,

the planner gives future routine workers a less generous allocation to give them

incentives to acquire non-routine skills.

Implementing this policy requires commitment. The planner treats the initial

generations, which can no longer change their skill choices, differently from the gen-

erations that will be making skill choices in the future. This time dependence of the

optimal commitment solution is a source of time inconsistency. At every future date,

the planner would benefit from revising the optimal commitment solution. This

revision would involve taxing robots to redistribute more income toward routine

3Our model is related to a large literature on the importance of technology-specific human capital
for the diffusion of new technologies; see, for example, CHARI and HOPENHAYN (1991), CASELLI
(1999), and ADÃO, BERAJA and PANDALAI-NAYAR (2018).
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workers.

We find that robot taxes should be positive in the first three decades of the optimal

plan. During this period, the labor force still includes older workers that chose their

occupation in the past. The optimal robot tax is 5.1, 2.2, and 0.6 percent in the decades

that start in 2018, 2028, and 2038, respectively. The robot tax is initially higher than

the estimated effective tax rate of 1.8 percent in the status quo tax system after the

2017 tax reform. Once the initial generations retire, the optimal robot tax is zero.

The paper is organized as follows. In Section 2, we discuss the related litera-

ture. In Section 3, we describe a simple static model of automation. In Section 4, we

analyze the benchmark dynamic model of automation with endogenous skill acqui-

sition. Section 5 develops the quantitative analysis of this dynamic model. Section 6

concludes. To streamline the main text, we relegate the more technical proofs to the

appendix.

2 Related literature

Our results on optimal robot taxes follow from well-known principles of optimal

taxation in the public finance literature. The classic result in this literature is the

production efficiency theorem of DIAMOND and MIRRLEES (1971). According to this

theorem, taxing intermediate goods is not optimal even when the planner has to

use distortionary taxes. Since robots are an intermediate good, our result that it is

optimal to tax robots represents a failure of the production efficiency theorem.

Why does this theorem fail in our setting? The theorem requires the ability to

tax net trades of different goods at different linear rates. In other words, the plan-

ner must have enough independent tax instruments to affect every relative price in

the economy. In our model, this restriction means that the labor income of different

types of workers can be taxed at different rates, even when those workers earn the

same income. We do not allow for this form of tax discrimination. Instead, as in MIR-
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RLEES (1971), we require that all worker types face the same nonlinear tax schedule.

Workers can be taxed at different rates only when they earn different incomes.

Given the restriction that all workers face the same tax schedule, it can be op-

timal to deviate from production efficiency. But this restriction is not sufficient to

justify deviating from production efficiency. ATKINSON and STIGLITZ (1976) show

that production efficiency is still optimal in a MIRRLEES (1971)-type model in which

labor types are perfect substitutes. In that setting, pretax relative wages are exoge-

nous, so even if the planner does not have instruments to affect every relative price,

distorting production does not help in affecting those prices to improve redistribu-

tion outcomes.

The result that, when labor types are imperfect substitutes, production efficiency

may no longer be optimal was first shown by NAITO (1999), building on the work

of STIGLITZ (1982) (see also SCHEUER, 2014 and JACOBS, 2015).4 This result applies

directly to our static model. Routine and non-routine workers are imperfect substi-

tutes. Robots are substitutes for routine labor and complements to non-routine labor.

By taxing robots, the planner can raise the pretax relative wage of routine workers

through a general equilibrium effect.5

We find that taxing robots can also be optimal in the benchmark, dynamic version

of our model in which workers choose whether to be routine or non-routine. In
4There is also a large literature that studies how the general equilibrium effects on prices and

wages first emphasized by STIGLITZ (1982) affect the optimal shape of labor income taxes. This liter-
ature includes, among others, ROTHSCHILD and SCHEUER (2013), SCHEUER (2014), ALES, KURNAZ
and SLEET (2015), and SACHS, TSYVINSKI and WERQUIN (2016).

5SCHEUER and WERNING (2016) clarify these results. Given that different levels of income in a
Mirrleesian setup can be interpreted as different goods in the Diamond and Mirrlees setup, there is
an equivalence between the two approaches. Since the Mirrleesian tax schedule is nonlinear, different
labor incomes can be taxed at different rates. When there is a single occupation (i.e., when workers
are perfect substitutes), the different goods (labor income levels) are taxed at different rates and pro-
duction efficiency is optimal. Instead, with multiple occupations (i.e., when workers are imperfect
substitutes), different occupations that pay the same labor income are different goods. But these dif-
ferent goods have to be taxed at the same rate if there is a single nonlinear income tax function. For
this reason, production efficiency may cease to be optimal.
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allowing for endogenous skill choice, our approach is closely related to SAEZ (2004),

ROTHSCHILD and SCHEUER (2013), SCHEUER (2014), and GOMES, LOZACHMEUR

and PAVAN (2018), among others. These authors characterize Mirrlees-style optimal

tax plans in static models with endogenous occupation choice.

SAEZ (2004) shows that the production efficiency theorem holds in a model in

which the worker chooses the occupation but labor supply is exogenous. SCHEUER

(2014), instead, considers a model with an endogenous labor supply in which agents

choose whether to become workers or entrepreneurs. He finds that, in the absence

of differential taxation for these two occupations, the optimal plan may feature pro-

duction distortions, much like the ones we have in our model.

In our setup, since workers choose their labor hours as well as their skills, both

the intensive and extensive margins are potentially relevant. The robot tax is posi-

tive as long as the intensive-margin choice for the worker constrains the design of

the optimal policy. If the planner needs to provide incentives only along the exten-

sive margin, then production efficiency is optimal. In our calibrated economy, it is

optimal to tax robots for the first three decades because the intensive margin is the

only relevant margin for the initial old generations who cannot acquire new skills.

Once these old workers retire, the optimal robot tax is zero because the only relevant

margin for future young generations is skill choice.

Our results are related to the extensive literature on optimal capital taxation. This

literature dates back to the seminal Chamley-Judd result that capital should not be

taxed in the steady state (CHAMLEY, 1986; JUDD, 1985). WERNING (2007) extends

the Chamley-Judd result to a model in which workers are heterogeneous but perfect

substitutes in production. He shows that it is optimal to not distort capital accumu-

lation both in the transition and in the steady state.

Our analysis is closest to that of SLAVÍK and YAZICI (2014), who consider optimal

Mirrleesian taxation in an infinite-horizon model with low- and high-skill workers

and capital-skill complementarity. They find that it is optimal to tax equipment cap-
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ital in the steady state because it is a complement to high-skill workers and a sub-

stitute for low-skill workers.6 Optimal capital taxes are high initially and rise over

time. The highest capital tax rate occurs in the steady state.

Despite our different applications, the reasons for taxing equipment capital in

SLAVÍK and YAZICI (2014) are very similar to the reasons why we find that robots

should be taxed: the imperfect substitutability of labor types and the skill comple-

mentarity with either capital or robots. Our model differs from the one in SLAVÍK

and YAZICI (2014) along two key dimensions: our analysis takes into account tech-

nical progress and endogenous skill acquisition. Because of these two elements, the

reasons to deviate from production efficiency in our model cease to be relevant in

the long run, so robot taxes eventually become zero.

In our model, robots are an intermediate good. We do not model robots as cap-

ital because a period represents a decade. So, there is no time to build, and robots

depreciate fully. Time to build and partial depreciation are relevant for the optimal

taxation of capital in ways that are not present in our model. However, if robots

were modeled as a capital good, production efficiency would fail in our model for

the same reason that the accumulation of robots would be distorted.7

In recent work, THUEMMEL (2018) and COSTINOT and WERNING (2018) also

study optimal robot taxation.8 The reason why it is optimal to tax robots in these pa-

6Imperfect substitutability of labor types is also why the optimal capital tax is positive in JONES,
MANUELLI and ROSSI (1997) when the Ramsey tax system is the same for all workers.

7The literature on capital taxation has emphasized other motives for capital taxation that are not
relevant for our analysis for the following reasons. First, WERNING (2007) shows that, in a Mirrleesian
setting, there is no confiscation motive for future capital taxes. Second, our preference structure and
assumptions about available instruments are such that the uniform taxation results of ATKINSON
and STIGLITZ (1972, 1976) apply. As a result, there is no reason to use capital taxes to introduce in-
tertemporal distortions (see CHARI and KEHOE, 1999, and CHARI, NICOLINI and TELES, 2019). Third,
we do not consider idiosyncratic income risk, so the reasons to tax capital discussed by GOLOSOV,
KOCHERLAKOTA and TSYVINSKI (2003) are not present (see also DA COSTA and WERNING, 2002).

8Another related recent paper is TSYVINSKI and WERQUIN (2017). These authors generalize the
idea of a compensating variation to an economy with general equilibrium effects and distortionary
taxation. They use their formulas to describe the optimal changes to the tax system required to com-
pensate the effects of automation, but abstract from the possibility of taxing automation directly.
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pers is essentially the same as in our work. THUEMMEL (2018) considers a static Mir-

rleesian economy with three occupations: non-routine cognitive, non-routine man-

ual, and routine workers. This model generates a richer set of implications for the

impact of automation on income inequality than a model with only one type of non-

routine worker. THUEMMEL (2018) also considers within-occupation wage hetero-

geneity, which is not present in our analysis. Despite these differences, the quantita-

tive findings in THUEMMEL (2018) are broadly consistent with ours. COSTINOT and

WERNING (2018) consider a general static framework with a continuum of worker

types. They derive optimal tax formulas that depend on a small set of sufficient

statistics that require relatively few structural assumptions. Using empirical esti-

mates of these statistics, they find that small, positive robot taxes are optimal. They

also characterize a set of conditions under which the optimal robot tax decreases as

automation progresses.

Our motivation for studying a dynamic overlapping-generations economy with

skill acquisition comes in part from the work of CORTES et al. (2017) and ADÃO et al.

(2018). These authors show that younger generations are more responsive to routine-

biased technical progress than older generations. Using a structural model, ADÃO

et al. (2018) find weak responses of employment shares to changes in relative wages

for old generations, but very strong responses for the newer generations. This em-

pirical result suggests that the incentives of new generations to acquire skills are

important in understanding how to optimally tax robots.

3 A static model

We first consider a static model of automation to address our optimal policy ques-

tions. The model has two types of workers that draw utility from consumption

8



of private and public goods and disutility from labor.9 One worker type supplies

routine labor and the other non-routine labor. The consumption good is produced

combining both types of labor with robots. Robots and routine labor are used in a

continuum of tasks.10

Workers There is a continuum of unit measure of workers. The index j denotes

either non-routine workers, j = n, or routine workers, j = r. The fractions πn and πr

of workers are non-routine and routine, respectively. A worker derives utility from

consumption, cj, and from the provision of a public good, G, and derives disutility

from the hours of labor, lj. The worker’s utility function is

Uj = u(cj, lj) + v(G). (1)

We assume that the first and second derivatives satisfy uc > 0, ul < 0, ucc, ull < 0.

We also assume that consumption and leisure are normal goods, so that ulc/ul −
ucc/uc ≥ 0, and ull/ul − ucl/uc ≥ 0, with one of these conditions as a strict inequal-

ity. Finally, we assume that vG > 0, vGG < 0 and that u(c, l) satisfies standard Inada

conditions.

Worker j chooses consumption and labor to maximize utility (1) subject to the

budget constraint

cj ≤ wjlj − T(wjlj),

where wj denotes the wage rate received by worker type j and T(·) denotes the

income tax schedule.

Robot producers Robots are produced by competitive firms. It costs φ units of

output to produce a robot. This cost is the same across all tasks. A representative
9See THUEMMEL (2018) for a static Mirrleesian economy with three worker types (non-routine

cognitive, non-routine manual, and routine) and within-occupation wage heterogeneity.
10See AUTOR, LEVY and MURNANE (2003) for a study of the importance of tasks performed by

routine workers in different industries and a discussion of the impact of automating these tasks on
the demand for routine labor.
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robot-producing firm chooses robot supply, X, to maximize profits: pXX − φX. It

follows that in equilibrium, pX = φ and profits are zero.

Final good producers The representative producer of final goods hires non-routine

labor (Nn) and routine labor and buys intermediate goods, which we refer to as

robots. Aggregate production follows a task-based framework which has become

standard in the automation literature (ACEMOGLU and RESTREPO, 2019, 2020). There

is a unit interval of tasks that can be performed by either routine labor or robots. The

services produced by these tasks are denoted by yi for each i ∈ [0, 1]. The production

function is given by

Y = A

[ˆ 1

0
y

ρ−1
ρ

i di

] ρ
ρ−1 (1−α)

Nα
n , α ∈ (0, 1), ρ ∈ [0, ∞). (2)

Each task can be produced with ni workers or xi robots,

yi =

{
κixi, if i is automated,
`ini, if i is not automated.

(3)

The parameters κi and `i represent the efficiency of robots and routine labor, respec-

tively, in task i. Without loss of generality, let κi/`i be weakly decreasing in i. This

property implies that tasks are ordered such that routine workers are relatively more

efficient in tasks indexed by higher values of i. Given this assumption, firms choose

to automate the first tasks in the unit interval. We write the production function as:

Y = A

[ˆ m

0
(κixi)

ρ−1
ρ di +

ˆ 1

m
(`ini)

ρ−1
ρ di

] ρ
ρ−1 (1−α)

Nα
n , (4)

where m denotes the level of automation (i.e., the fraction of tasks executed by

robots).

The firm’s problem is to maximize profits,

Y− wnNn − wr

ˆ 1

m
nidi− (1 + τx)φ

ˆ m

0
xidi,
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where Y is given by equation (4). The variable τx is the proportional tax rate on

robots.

The optimal choices of Nn, xi for i ∈ [0, m], and ni for i ∈ (m, 1] require that the

following first-order conditions be satisfied:

wn =
αY
Nn

, (5)

(1 + τx)φ =
(1− α)Y

xs

(κsxs)
ρ−1

ρ

´ m
0 (κixi)

ρ−1
ρ di +

´ 1
m(`ini)

ρ−1
ρ di

, (6)

wr =
(1− α)Y

ns

(`sns)
ρ−1

ρ

´ m
0 (κixi)

ρ−1
ρ di +

´ 1
m(`ini)

ρ−1
ρ di

. (7)

To simplify, we assume that κi = `i = 1 for all i (i.e., robots and routine workers

are equally productive for all tasks). This assumption lends tractability and clarity

to the exposition of our results.11 Section 4 relaxes this assumption in the context of

the dynamic model.

Under this assumption, it is optimal to use the same level of routine labor, ni, in

the 1−m tasks that have not been automated and use the same number of robots in

the m automated tasks:

mxi = X, for i ∈ [0, m], and (1−m)ni = Nr, for i ∈ (m, 1], (8)

where Nr denotes total routine hours and X denotes the total number of robots.

The optimal level of automation is zero, m = 0, if wr < (1 + τx)px. The firm

chooses to fully automate, m = 1, and to employ no routine workers if wr > (1 +

τx)px. If wr = (1 + τx)px, the firm is indifferent between any level of automation

m ∈ [0, 1]. In the latter case, equations (6) and (7) imply that the levels of routine

labor and robots are the same across tasks.
11Under the assumption that `i = κi = 1, our task-based production function coincides with the

aggregate production function considered by AUTOR et al. (2003).
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In the case of an interior solution for the level of automation, we find that the

optimal level of automation is m = X/(Nr + X). This result allows us to write the

production function as Y = A (X + Nr)
1−α Nα

n .

Government The government chooses taxes and the optimal level of government

spending in order to satisfy the budget constraint

G ≤ πrT(wrlr) + πnT(wnln) + τx pxX. (9)

Equilibrium An equilibrium is a set of allocations {cr, lr, cn, ln, G, Nr, X, xi, ni, m},
prices {wr, wn, px}, and a tax system {T(·), τx} that: (i) solves the workers’ problem

given prices and taxes; (ii) solves the firms’ problem given prices and taxes; (iii)

satisfies the government budget constraint; and (iv) satisfies market clearing.

The market-clearing conditions for routine and non-routine labor are

Nj = πjlj, j = n, r, (10)

and the market-clearing condition for output is

πrcr + πncn + G ≤ Y− φX. (11)

The equilibrium with interior automation In an equilibrium with automation,

the wage rate of routine workers equals the cost of robot use: wr = (1 + τx)φ. This

condition implies that the number of robots used in each automated task equals the

number of routine workers used in each non-automated task:

X
m

=
πrlr

1−m
.

Combining this equation with the firm’s first-order condition (6), we obtain

(1 + τx)φ = (1− α)(X + πrlr)−α(πnln)α. (12)
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Finally, replacing X = mπrlr/(1−m) in equation (12), we find that the equilibrium

level of automation satisfies

m = 1−
[
(1 + τx)φ

(1− α)A

]1/α πrlr
πnln

. (13)

Furthermore, using equations (5) and (6), we find that the wages of both non-routine

and routine labor are given by technological parameters and τx:

wn = αA1/α

[
1− α

(1 + τx)φ

] 1−α
α

, (14)

wr = (1 + τx)φ. (15)

The wage of routine workers is determined by the after-tax cost of robots. Because

of constant returns to scale, the ratio of inputs is pinned down, as is the wage of the

non-routine worker. An increase in τx raises the wage of routine workers and lowers

the wage of non-routine agents.

Production net of the cost of robots is given by

Y− φX = πnwnln
τx + α

α(1 + τx)
+

πrwrlr
1 + τx . (16)

It is useful to note that the shares of routine and non-routine income in total

production are

wrπrlr
Y

= (1− α)(1−m) and
wnπnln

Y
= α.

An increase in automation reduces the income share of routine workers in total

production and leaves the share of non-routine workers unchanged. As the econ-

omy approaches full automation, non-routine workers earn all labor income. In this

sense, an increase in automation leads to an increase in pretax income inequality.
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3.1 Status quo equilibrium in the static model

We now compute the status quo equilibrium in the static model. For simplicity,

we assume that robot taxes are zero (τx = 0).12 We model the income tax system

using the functional form for U.S. after-tax income proposed by FELDSTEIN (1969),

PERSSON (1983), and BENABOU (2000) and estimated by HEATHCOTE et al. (2017). In

this specification, the income tax paid by worker j is given by

T(wjlj) = wjlj − λ(wjlj)
1−γ, (17)

where γ < 1. The parameter λ controls the level of taxation—higher values of λ

imply lower average taxes. The parameter γ controls the progressivity of the tax

code. When γ is positive, the average tax rate rises with income, so the tax system is

progressive.

To illustrate the properties of the status quo equilibrium in closed form, we as-

sume that the utility function is given by

u(cj, lj) + v(G) = log(cj)− ζ
l1+ν
j

1 + ν
+ χ log(G). (18)

These preferences, which are also used in ALES, KURNAZ and SLEET (2015) and

HEATHCOTE et al. (2017), have two desirable properties: they are consistent with

balanced growth and with the empirical evidence reviewed in CHETTY (2006).

For these preferences and the status quo tax specification, the equilibrium is eas-

ily computed. Worker optimality implies that hours worked are constant and de-

pend on the preference parameters ζ and ν and the progressivity parameter γ:

lj =

(
1− γ

ζ

) 1
1+ν

≡ `. (19)

12In Section 5, we calibrate the baseline dynamic model with positive robot taxes equal to 3.8 per-
cent before the 2017 tax reform and 1.8 percent after this reform.

14



Consumption of worker type j is equal to

cj = λ(wj`)
1−γ. (20)

This property implies that the ratio of consumption of routine and non-routine work-

ers is
cr

cn
=

(
wr

wn

)1−γ

=
φ

1−γ
α[

αA1/α(1− α)
1−α

α

]1−γ
(21)

and that the equilibrium level of automation is

m = 1−
[

φ

(1− α)A

]1/α πr

πn
. (22)

We assume that government spending is a fraction χ of aggregate consumption,

so government spending grows over time. This assumption is natural since, given

the form of the utility function, the optimal ratio of government spending to con-

sumption is χ. We also assume that tax progressivity, γ, is constant and that the

government adjusts λ to maintain a balanced budget. The resulting value of λ is

λ =
1

1 + χ

∑j=n,r πjwj`

∑j=n,r πj(wj`)1−γ
. (23)

To investigate the impact of technical progress, we compute the equilibrium ef-

fects of a marginal increase in φ−1, corresponding to a fall in the robot production

cost, φ.

As robots become cheaper, pretax labor income rises for non-routine workers and

falls for routine workers:

d log(wn`)

d log φ−1 =
1− α

α
and

d log(wr`)

d log φ−1 = −1. (24)

This divergence is associated with an increase in the number of tasks that are auto-

mated by replacing routine workers with robots:

d log(1−m)

d log φ−1 = −1
α

. (25)
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Higher pretax income inequality leads to higher consumption inequality:

d log cn/cr

d log φ−1 =
1− γ

α
. (26)

When income taxes are progressive (γ > 0), consumption inequality rises by less

than pretax income inequality.

The impact of technical progress on individual consumption depends on the re-

sponse of pretax income and also on how the parameter that controls the level of

taxation, λ, adjusts. Interestingly, λ rises as technical progress rises.

To further illustrate the properties of the model, we parameterize this model us-

ing the calibration of the dynamic model in Section 5.

Figure 1: The status quo equilibrium in the static economy
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Notes: This figure illustrates the properties for the status quo equilibrium for a sequence of economies
in the static model. The parameters are chosen to be consistent with the calibration of the quantitative
model in Section 5. The first and second panels show the levels of automation, mt, and the tax code
level, λt, respectively. The third and fourth panels plot the wages and consumption levels of non-
routine and routine workers. Finally, the fifth and sixth panels plot the level of labor supply and
utility for each worker type.
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In Figure 1, we consider a sequence of static economies in which the cost of pro-

ducing robots falls according to φt = φ̃e−gφ(t−1) (t = 1 corresponds to 1988).13 As the

cost of robots falls over time, the consumption of non-routine workers rises and the

consumption of routine workers falls. The cost of robots converges to zero asymp-

totically, driving the consumption of routine workers toward zero.

In sum, our analysis suggests that, under the current U.S. tax system, a fall in

automation costs will lead to massive income and welfare inequality.

3.2 Optimal taxation in the static model

It is useful to briefly consider the allocation that maximizes welfare subject only

to technological constraints. Implementing this first-best allocation requires setting

agent-specific lump-sum taxes.

We assume that the social welfare function is a weighted average of individual

workers’ utilities. The weights on the social welfare function, ωn and ωr for non-

routine and routine agents, respectively, are normalized so that πrωr + πnωn = 1.

The planner’s problem is to choose allocations to maximize social welfare,

W ≡ πrωr [u(cr, lr) + v(G)] + πnωn [u(cn, ln) + v(G)] , (27)

subject only to the economy’s resource constraint.

The first-best allocation always features production efficiency. This property im-

plies that the marginal productivity of robots equals their marginal cost, φ, so the

robot tax is zero. As we have seen, without taxes on robots, a fall in φ leads to an

increase in pretax wage inequality. However, since the first best features unrestricted

taxes/transfers, it is always possible to redistribute income without creating distor-

tions. As a result, pretax wage inequality does not constrain redistribution, and both

types of workers benefit from technical progress.

13We start our analysis in 1988 and assume that there was zero automation prior to this period. This
assumption is consistent with the analysis in ACEMOGLU and RESTREPO (2019, 2020).
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In general, the first-best solution cannot be implemented if the planner cannot

discriminate between worker types. To see the intuition for this result, consider the

case in which ωn = ωr and the workers’ utility function is separable in consumption

and leisure. In this case, routine and non-routine workers have the same level of

consumption, but non-routine workers work longer hours than routine workers. As

a consequence, non-routine workers would have an incentive to act as routine to

obtain a more generous consumption and leisure bundle.

In what follows, we consider a restricted planning problem. We show that if

the planner cannot discriminate across worker types, then pretax wage inequality

becomes relevant in order to determine how much redistribution can be done.

Mirrleesian optimal taxation In this section, we characterize the nonlinear income

tax schedule that maximizes social welfare when the planner observes a worker’s

total income but does not observe the worker’s type or labor supply, as in MIRRLEES

(1971).

We focus on the case in which the level of automation is interior, m > 0.14 We

also assume that φ ≤ αα(1− α)1−α A, so that if τx ≤ 0, non-routine workers earn a

higher wage than routine workers, wn ≥ wr (see equations (14) and (15)).

The Mirrleesian planning problem is to choose the allocations {cj, lj}j=n,r, G, and

the robot tax τx to maximize social welfare, (27), subject to the resource constraint,

πrcr + πncn + G ≤ πnwnln
τx + α

α(1 + τx)
+

πrwrlr
1 + τx , (28)

and two incentive constraints (IC),

u(cn, ln) ≥ u
(

cr,
wr

wn
lr

)
, (29)

u(cr, lr) ≥ u
(

cn,
wn

wr
ln

)
. (30)

14When m = 0, this simple model is a special case of the one considered in STIGLITZ (1982).
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The wages of the two types of workers are given by equations (14) and (15). The

conditions (28), (29), and (30) are necessary and sufficient to describe a competitive

equilibrium. We discuss these properties in the appendix.

In MIRRLEES (1971)’s model, the productivities of the different agents are exoge-

nous. ATKINSON and STIGLITZ (1976) show that production efficiency is optimal in

that environment. Our model instead features endogenous productivities that de-

pend on τx. This property turns out to be central to the question we are interested

in studying: whether it is optimal to tax robot use, distorting production, in order

to redistribute income from non-routine to routine workers. Based on the work of

STIGLITZ (1982) and NAITO (1999), who first considered the impact of endogenous

productivities in the design of the optimal tax system, we should expect production

efficiency to no longer be optimal. That is indeed the case in our model. As long as

automation is interior, robot taxes are positive in our model, as stated in Proposition

1.

The expression for net output on the right-hand side of equation (28) can be writ-

ten as
τx + α

α(1 + τx)1/α

αA1/α(1− α)
1−α

α

φ
1−α

α

πnln + φπrlr. (31)

The term (τx + α) /
[
α (1 + τx)

1/α
]

is equal to one for τx = 0 and strictly less than

one for τx 6= 0. This term is a measure of the production inefficiency created by the

robot tax. Fixing labor supplies, ln and lr, a zero robot tax maximizes the level of

production.

Proposition 1 shows that, when automation is incomplete, the planner is willing

to bear a resource cost, in terms of production inefficiency, to loosen the incentive

constraint. In this proposition, we characterize the optimal allocation under the as-

sumption that the planner wants to redistribute to routine workers to an extent such

that the incentive constraint of the non-routine worker binds and the incentive con-

straint of the routine worker is slack. This approach is standard in the literature.
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Proposition 1. Suppose the optimal allocation is such that the incentive constraint binds for

non-routine workers and does not bind for routine workers. Then, if automation is incomplete

(m < 1), optimal robot taxes are strictly positive (τx > 0).

This proposition is proved in the appendix. The intuition for this result is that,

starting from any robot tax that is less than or equal to zero, τx ≤ 0, there are welfare

gains from increasing this tax rate. First, suppose that the tax on robots is strictly

negative, τx < 0. In this case, a marginal increase in τx has two benefits. First, for

given levels of the labor supplies, it strictly increases output and hence the amount of

goods available for consumption. Second, it reduces the non-routine wage premium,

wn/wr, and makes the non-routine worker less inclined to mimic the routine worker.

This property can easily be seen from the incentive constraint of the non-routine

worker, (29).

Suppose instead that the robot tax is zero, τx = 0. Since, for a given level of the

labor supplies, the value of τx maximizes output, a marginal increase in that tax pro-

duces only second-order output losses. On the other hand, increasing τx generates

a first-order gain from loosening the incentive constraint. Therefore, starting from

τx = 0, the planner can always improve welfare with a marginal increase in τx.

Robot taxes are optimal only when automation is incomplete (m < 1), so that rou-

tine workers are employed in production (lr > 0). When full automation is optimal

(m = 1 and lr = 0), there are no informational gains from taxing robots. Since the

robot tax distorts production and does not help to loosen the incentive constraint of

the non-routine agent, the optimal value of τx is zero (see the appendix for a proof).

4 A dynamic model

In this section, we study the optimal tax policy in a model with endogenous skill ac-

quisition. We consider an overlapping-generations model in which workers choose

their occupation when they enter the workforce, work in the following periods, and
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then retire.

For computational reasons, we assume that each period represents a decade.

Agents live for six decades, working in the first four and retiring in the last two.

We assume that robots produced at time t can immediately be used in production,

so there is no time to build, and robots depreciate fully within the period.15

As in the static model, technical change reduces the cost of producing robots over

time. Because robots are better substitutes for routine than for non-routine workers,

technical change is biased toward non-routine skills and increases the non-routine

wage premium. This effect is analogous to the impact on the skill premium of tech-

nical change with capital-skill complementarity discussed in KRUSELL, OHANIAN,

R ÍOS-RULL and VIOLANTE (2000).

Workers and preferences Time is discrete with an infinite horizon t = 1, 2, ... .

For simplicity, we assume that each generation is composed of a unit measure of

workers. Workers live for L periods and work for Lw ≤ L periods. We use a ∈
{0, ..., L − 1} to denote a worker’s age: a = 0 denotes the first period of life and

a = L− 1 the final period.

Workers born before the initial date, t = 1, enter the economy at age ã, where

1 ≤ ã ≤ L − 1. In the next period, t = 2, their age is a = ã + 1, then a = ã + 2,

and so on. The initial older generations cannot acquire new skills. A share πr,1−a of

these workers are routine and πn,1−a are non-routine. We denote the consumption

and labor supply of those workers in occupation j and age a at time t by ca
j,t and

la
j,t, respectively. Workers value streams of consumption, government spending, and

leisure according to the utility function

Uj,1−ã ≡
L−1

∑
a=ã

βa−ã
[
u
(

ca
j,1+a−ã

)
+ v(G1+a−ã)

]
−

Lw−1

∑
a=ã

βa−ãψ
(

la
j,1+a−ã

)
, (32)

15The standard modeling of capital accumulation embodies a one-period time to build: capital
goods used in production at time t are produced at time t− 1. This formulation would introduce a
time-to-build period of ten years in robot production, which seems unreasonably long.
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where Uj,1−ã denotes their utility level and β is the subjective discount factor. We

assume that the utility function is separable in consumption and labor and satisfies

the standard assumptions about monotonicity, concavity, and Inada conditions.

Workers born in period t ≥ 1 have heterogeneous utility costs of skill acquisition,

θ ∈ Θ. We assume that these costs follow a distribution H with continuous proba-

bility density function h. We denote by ca
θ,t the consumption of a worker with skill

cost θ and age a at time t, and by la
θ,t the worker’s labor supply. The lifetime utility

of a worker born in period t, without including skill acquisition costs, is

Uθ,t ≡
L−1

∑
a=0

βa [u(ca
θ,t+a) + v(Gt+a)

]
−

Lw−1

∑
a=0

βaψ
(
la
θ,t+a

)
. (33)

This worker’s overall utility is equal to lifetime utility net of the costs of skill ac-

quisition, Uθ,t − θsθ,t. The indicator function sθ,t ∈ {0, 1} denotes the worker’s skill

choice, where sθ,t = 0 denotes routine skills and sθ,t = 1 denotes non-routine skills.

Workers with positive values of θ face a positive cost of acquiring non-routine

skills, which means that, all else equal, they would prefer to acquire routine skills.

Workers with negative values of θ prefer, all else equal, to acquire non-routine skills.

We denote by Θr,t and Θn,t the subsets of Θ that correspond to the choice of routine

and non-routine occupations, respectively; that is, Θn,t ≡ {θ : st(θ) = 1} and Θr,t ≡
Θ−Θn,t.

Throughout, we use πn,t ≡
´

Θn,t
h(θ)dθ to denote the share of non-routine work-

ers in the newborn population at time t and πr,t ≡ 1− πn,t to denote the share of

routine workers in the newborn population at time t.

In the competitive equilibrium, workers choose their consumption, labor supply

and savings on risk-free bonds to maximize their utility. Workers pay taxes and

receive government transfers.

Firms and technology Robots and final output are produced by competitive firms

using the same production technology as in the static model. Robots cost φt units
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of output to produce at time t. Final output is produced according to (4), so the

elasticity of substitution between total tasks and non-routine labor is equal to one.

This property is important in order to ensure the existence of a balanced-growth

path, which is reached asymptotically.

A representative final goods firm maximizes per-period profits by choosing how

much to produce, how much labor to hire, and how many robots to buy. The firm

hires non-routine labor at the wage rate wn,t, hires routine labor at the wage rate

wr,t, and pays the robot cost gross of taxes, (1 + τx
t )φt. The first-order conditions for

this profit maximization problem for each period t are the analog of the first-order

conditions (5)-(7).

Without loss of generality, suppose that tasks are ordered so that κi/`i is weakly

decreasing in i ∈ [0, 1]. This property implies that routine workers are relatively

more efficient in tasks indexed by higher values of i. Given this assumption, the firm

uses robots in the first mt tasks and routine workers in the final 1− mt tasks. The

optimal allocation of routine workers and robots to each of those tasks is described

by the same first-order conditions as in the static model. These conditions imply that

xi,t =
κ

ρ−1
i´ mt

0 κ
ρ−1
j dj

Xt, i ∈ [0, mt] and ni,t =
`

ρ−1
i´ 1

mt
`

ρ−1
j dj

Nr,t, i ∈ (mt, 1].

Following ACEMOGLU and RESTREPO (2019, 2020), we replace these expressions in

the production function and obtain

Yt = A

(ˆ mt

0
κ

ρ−1
i di

) 1
ρ

X
ρ−1

ρ

t +

(ˆ 1

mt

`
ρ−1
i di

) 1
ρ

N
ρ−1

ρ

r,t


ρ

ρ−1 (1−α)

Nα
n,t

The firm’s optimal choice of the level of automation implies that

Xt

Nr,t
=

´ mt
0 κ

ρ−1
i di´ 1

mt
`

ρ−1
i di

`
ρ
mt

κ
ρ
mt

.
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At this level of generality, we cannot solve for mt in closed form. As in CHEN (2019),

we make the analysis more tractable by introducing the following assumption.

Assumption 1. κi = ςi
ε−1

ε and `i = ς(1 − i)
ε−1

ε where ς =
[
1 + (ε−1)(ρ−1)

ε

] 1
ρ−1 and

(1− ε)(ρ− 1)/ε < 1.

Under this assumption, the optimal value of mt is given by

mt =
Xε

t
Xε

t + Nε
r,t

. (34)

The routine tasks aggregator becomes a contant elasticity of substitution aggregator

of total robots and routine labor, where ε ≤ 1. The elasticity of substitution between

robots and routine workers is given by 1/(1− ε). The production function becomes

Yt = A
(
Xε

t + Nε
r,t
) 1−α

ε Nα
n,t. (35)

We write this production function as F(Xt, Nr,t, Nn,t) and denote its partial deriva-

tives at time t as FX,t and Fj,t for j = n, r. The wage rate per efficiency unit of labor is

equal to the worker’s marginal productivity

wj,t = Fj,t.

We want to focus on environments in which robots have a higher degree of com-

plementarity with non-routine workers than with routine workers. For this reason,

we assume that ε > 0 so that routine workers and robots are substitutes. This as-

sumption implies that the elasticity of the non-routine wage premium with respect

to robot use is

Et ≡
d log (Fn,t/Fr,t)

d log Xt
= εmt ≥ 0.

To make the model consistent with the life-cycle profile of labor earnings, we

assume that workers of age a supply ea units of labor in efficiency units per hour
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worked. Total labor supply for occupation j = n, r at time t must satisfy the market-

clearing condition:

Nj,t =

∑t−1
a=0
´

Θj,t−a
eala

θ,tdH(θ) + ∑Lw−1
a=t πj,t−aeala

j,t, if t < Lw

∑Lw−1
a=0

´
Θj,t−a

eala
θ,tdH(θ), if t ≥ Lw.

(36)

Aggregate consumption at time t, Ct, is given by

Ct =

{
∑t−1

a=0
´

Θ ca
θ,tdH(θ) + ∑j=n,r ∑L−1

a=t πj,t−aca
j,t, if t < L

∑L−1
a=0
´

Θ ca
θ,tdH(θ), if t ≥ L.

(37)

Using these definitions, the resource constraint in period t can be written as

Ct + Gt ≤ F (Xt, Nr,t, Nn,t)− φtXt. (38)

We define net output as NYt = Yt − φtXt.

4.1 First-best allocation

We assume that the planner assigns Pareto weights ωj,1−a to workers born before the

initial period and βt−1ωθ,t to agents of type (θ, t). To ensure that the first best has a

well-defined balanced-growth allocation, we assume that the current-value weights

converge in the long run; that is, for all θ, ωθ,t → ωθ ≥ 0 as t → ∞. The planner’s

objective function is

W ≡
L−1

∑
ã=1

∑
j=n,r

πj,1−ãωj,1−ãUj,1−ã +
∞

∑
t=1

ˆ
Θ

βt−1ωθ,t[Uθ,t − θsθ,t]dH(θ). (39)

The first-best allocation maximizes this welfare function subject to the resource con-

straints, (38). The solution to this problem implies the following efficiency condi-

tions:
ψ′(la

θ,t)

u′(ca
θ,t)

= eaFsθ,t−a(t),

ωθ,t−au′(ca
θ,t) = ωθ,t−a′u′(ca′

θ,t),

for all θ, θ′, a, a′ and t, and

FX(t) = φt.
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4.2 Mirrleesian taxation

As in the dynamic Mirrleesian taxation literature, we characterize the second-best

problem for a planner who can design allocations that are functions of observable

histories of income and consumption, but not of each worker’s type, wage, or skill

choice. We assume that the planner can tax the different generations differently. This

assumption is common in the optimal taxation literature.

We consider a direct revelation mechanism in which the planner elicits informa-

tion on the worker’s type and assigns the worker a profile of consumption, labor

supply, and skill choice. In line with SCHEUER (2014), we write the implementability

constraints as follows.

The first incentive constraint is the same as in the static model. For the workers

who are born before the initial date and have ã < Lw at t = 1, this is the only relevant

constraint:16

Un,1−ã ≥ Ur,1−ã +
Lw−1

∑
a=ã

βa−ã
[

ψ
(

la
r,1+a−ã

)
− ψ

(
Fr,1+a−ã

Fn,1+a−ã
la
r,1+a−ã

)]
, (40)

Ur,1−ã ≥ Un,1−ã +
Lw−1

∑
a=ã

βa−ã
[

ψ
(

la
n,1+a−ã

)
− ψ

(
Fn,1+a−ã

Fr,1+a−ã
la
n,1+a−ã

)]
. (41)

for a = 1, ..., Lw − 1. For the workers born after the initial date, this constraint is

Uθ,t ≥ Uθ′,t +
Lw−1

∑
a=0

βa

[
ψ
(

la
θ′,t+a

)
− ψ

(
Fsθ′ ,t,t+a

Fsθ,t,t+a
la
θ′,t+a

)]
, (42)

for all θ, θ′ ∈ Θ and t ≥ 1. This intensive-margin incentive constraint guarantees that

the worker chooses the assigned allocation, given the worker’s occupation choice.

The second condition is the incentive constraint for the choice of occupation of

an individual of type θ:

Uθ,t − θsθ,t ≥ Uθ′,t − θsθ′,t, (43)

16There is no incentive problem for agents who are retired.
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for all θ, θ′ ∈ Θ and t = 1, 2, 3... . This extensive-margin incentive constraint ensures that

the worker chooses the assigned occupation.17 The planning problem is to maximize

(39) subject to these incentive constraints and the resource constraints, (38).

As in SCHEUER (2014), we now state two results that allow us to simplify the

analysis.18

Lemma 1. An allocation satisfies the extensive-margin incentive constraints if and only if

for all t there exists Un,t, Ur,t ∈ R and θ∗t = Un,t −Ur,t such that:

1. If θ < θ∗t , then sθ,t = 1 and Uθ,t = Un,t;

2. If θ > θ∗t , then sθ,t = 0 and Uθ,t = Ur,t.

This lemma allows us to simplify the incentive constraints. For an allocation

to be incentive compatible, all workers that choose the same skill should have the

same utility gross of skill-acquisition costs. This property allows us to express the

incentive constraints as a cutoff rule: workers with θ < θ∗t acquire non-routine skills,

whereas those with high θ > θ∗t acquire routine skills.

The next lemma allows us to further simplify the problem. This lemma shows

that all workers who have the same skills should have the same allocation in terms

of consumption and labor.

Lemma 2. At the optimum, if sθ,t = sθ′,t, then these two workers have the same consumption

at each age ca
θ,t+a = ca

θ′,t+a , for a = 0, ..., L− 1, and the same labor supply la
θ,t+a = la

θ′,t+a ,

for a = 0, ..., Lw − 1.

To find the allocations for routine and non-routine workers, it is useful to define

Uj,t ≡
L−1

∑
a=0

βa
[
u
(

ca
j,t+a

)
+ v(Gt+a)

]
−

Lw−1

∑
a=0

βaψ
(

la
j,t+a

)
,

17These constraints do not explicitly take into account the possibility that agent θ might choose
an allocation that corresponds to an occupational choice that is different from sθ′ ,t. However, those
additional constraints are redundant.

18See the appendix for the proofs of these results.
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for j = n, r. The number of incentive constraints can be simplified to just two per

generation born before time t = 1, (41) and (40), and three constraints per generation

born after t = 1,

θ∗t = Un,t −Ur,t, (44)

and

Un,t ≥ Ur,t +
Lw−1

∑
a=0

βa
[

ψ
(
la
r,t+a

)
− ψ

(
Fr,t+a

Fn,t+a
la
r,t+a

)]
, (45)

Ur,t ≥ Un,t +
Lw−1

∑
a=0

βt−1
[

ψ
(
la
r,t+a

)
− ψ

(
Fn,t+a

Fr,t+a
la
n,t+a

)]
. (46)

The next proposition states results that are analogous to those we obtained for the

static model. As long as automation is incomplete and at least one intensive-margin

incentive constraint binds, (40) or (45), it is optimal to tax robots in a given period.

Proposition 2. At the optimal plan, suppose that at time t, there is an age a such that: (i)

the intensive-margin constraint for a non-routine worker of age a at time t is binding and (ii)

la
r,t > 0; and no intensive-margin constraint of routine workers working at time t is binding.

Then, robot usage should be distorted, FX(t) > φt; that is, robots should be taxed.

Since this model features endogenous skill acquisition, the intensive-margin in-

centive constraint of non-routine workers might not bind. This is because the gov-

ernment can redistribute income in two ways. The first, which we call the direct re-

distribution mechanism, is to redistribute income from non-routine to routine workers.

This mechanism is the one used in our static model. But in a model with endogenous

skill choice, this mechanism reduces the incentive for workers to acquire non-routine

skills.

The second, which we call the indirect redistribution mechanism, involves little in-

come redistribution in order to provide an incentive for workers to acquire non-

routine skills. When this mechanism is the most relevant, the intensive-margin in-

centive constraint no longer binds. Because robot taxes are desirable only insofar as
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they help to provide incentives along the intensive margin, then, if the government

redistributes indirectly, robot taxes should be zero. Which mechanism turns out to

be optimal is a quantitative question.

Asymptotic balanced growth We assume that the cost of robots declines geomet-

rically over time as a result of exogenous technical progress, φt = φ̃e−gφ(t−1). In

addition, we assume that u(·) and v(·) are logarithmic functions so that preferences

are consistent with balanced growth.

Assumption 2 (Preferences). The utility function takes the form u(c) = log(c) and

v(G) = χ log(G), with χ > 0.

These preferences have been used in different public finance applications, espe-

cially the ones featuring technical change; see, for example, ALES et al. (2015) and

HEATHCOTE et al. (2017). Recall that these preferences are also compatible with the

empirical evidence reviewed in CHETTY (2006).

The variables in the model can be normalized to remove trends (see appendix

A.2.4). We call the version of our model expressed in terms of these normalized

variables the normalized economy. We say that the economy is on a balanced-growth

path if the allocations of the normalized economy are constant over time; that is, the

normalized economy is in a steady state.

In dynamic optimal taxation problems, the steady-state allocations generally de-

pend on initial conditions; see, for example, CHAMLEY (1986) or SLAVÍK and YAZICI

(2014). This dependence requires solving for the balanced-growth path and tran-

sition jointly, which is often challenging from a computational standpoint. In our

model, the steady state of the normalized economy is independent of initial condi-

tions because, in our overlapping-generations structure, workers have finite hori-

zons and the government can treat different generations differently.

We show in appendix A.2.5 that if aggregate consumption, government spend-
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ing, aggregate labor supply, robot use, and the cutoff θ∗t converge to an interior

balanced-growth path, then all other variables including individual allocations and

Lagrange multipliers also converge to constant values. In the appendix, we show

the necessary and sufficient conditions to compute this balanced-growth path.

Proposition 3. Suppose that the optimal plan is such that the allocations converge to a

balanced-growth path with interior automation. Then, the optimal tax on robots converges

asymptotically to zero.

This proposition holds irrespective of the distribution of skill acquisition costs.

As a result, it it remains valid even if costs are arbitrarily high, that is, in an economy

with exogenous skills.

Proposition 3 stands in contrast with the optimal tax scheme in SLAVÍK and

YAZICI (2014). These authors consider optimal Mirrleesian taxation in an infinite-

horizon model with low- and high-skill workers and capital-skill complementarity.

They find that in this setting, optimal asymptotic production distortions are high.

SLAVÍK and YAZICI (2014) abstract from technical progress. In the presence of

technical progress, the asymptotic balanced-growth path would be such that the

workers for whom wages fall no longer supply any labor. As a result, there is no

reason to affect pretax wages to provide intensive-margin incentives, and thus pro-

duction efficiency is optimal. In the same way that in our model robot taxes con-

verge to zero, capital taxes would also converge to zero in a version of the SLAVÍK

and YAZICI (2014) model with technical progress.

5 Quantitative analysis

In this section, we describe our calibration and solve the planning problem in order

to quantify the effects of advances in automation on optimal tax policy.
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5.1 Parameter calibration

We calibrate the parameters so that the status quo economy matches salient features

of the U.S. economy for the period 1987-2017. Table 1 summarizes the calibrated

parameters.

Our calibration targets the non-routine wage premium and the occupation shares

of each skill type. We obtain time-series data for these variables from the Current

Population Survey (CPS) March Annual Social and Economic Supplement (ASEC),

compiled in FLOOD et al. (2018). Our classification of occupations into routine and

non-routine is the one proposed by CORTES et al. (2014). We compute the share

of employment of routine and non-routine workers using the ASEC-CPS weights

and the average weekly wage of routine and non-routine workers using personal

earnings weights.

The utility function is assumed to be isoelastic in consumption, labor, and gov-

ernment spending:

u(c) = log c , ψ(l) = ζ
l1+ν

1 + ν
, v(G) = χ log G. (47)

This utility specification is consistent with balanced growth. The cross-sectional dis-

tribution of θ, h(θ), follows a logistic distribution with location parameter µ and

scale parameter σ.19

In the status quo, conditional on a given skill choice, all workers solve the same

problem. Workers of the same occupation choose the same consumption, labor sup-

ply, and savings and obtain the same utility,

Uθ,t =

{
Un,t, if sθ,t = 1
Ur,t, if sθ,t = 0,

(48)

19This assumption is equivalent to postulating that the worker has occupation-specific utility costs
of acquiring skills, θn and θr, and that these costs follow a Gumbel distribution. This distributional
assumption has been widely used in the literature on discrete choice following MCFADDEN (1974);
see, for example, JOHNSON and KEANE (2013) and ROYS and TABER (2019).

31



for the equilibrium levels of Uj,t. As a result, the skill choice can be described by a

threshold rule θ∗t = Un,t −Ur,t, such that all newborns at time t with θ < θ∗t choose

non-routine skills, and those with θ > θ∗t choose routine skills.

The budget constraint for workers at time t, age a, in a particular occupation is

given by

ca
j,t +

ba
j,t

Rt
= ba−1

j,t−1 + wj,teala
j,t − Tt(wj,teala

j,t), for a = 0, ..., Lw − 1, (49)

ca
j,t +

ba
j,t

Rt
= ba−1

j,t−1, for a = Lw, ..., L− 1, (50)

where the final wealth holdings are zero, bL−1
j,t = 0. The initial wealth holdings are

zero for the newborn populations, b−1
j,t−1 = 0, and the initial bond holdings, ba

j,1 for

a ≥ 0, are given. Here, Rt denotes the gross real interest rate between t and t+ 1. The

taxation of labor earnings is the same as in HEATHCOTE et al. (2017), which means

that T(y) = y− λty1−γ.

The government’s time-t flow constraint is given by

Gt + Bt−1 =
Lw−1

∑
a=0

∑
j=n,r

πj,t−aTt

(
wj,teala

j,t

)
+ τx

t φtXt +
Bt

Rt
. (51)

In our calibration exercises, we set the ratios of government spending to consump-

tion, Gt/Ct, and assets to consumption, Bt
Rt

/Ct. We set λt so that the government

budget constraint is satisfied.

We now describe how the parameters are calibrated.

Externally calibrated parameters We assume that a time period corresponds to

ten years. Workers live for six periods and work for four of these; that is, L = 6

and Lw = 4. Following CHETTY et al. (2011), we set the Frisch elasticity to 0.75,

ν = 1/0.75. We calibrate ea to match the life-cycle earnings profile in GUVENEN et al.

(2015). On the production side, we normalize A = 1.
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When utility functions take the form (47), the optimal ratio of government spend-

ing to private consumption is equal to χ. We set the value of χ to 0.19 to match the

average ratio of government spending to consumption in the data.

ACEMOGLU et al. (2020) estimate that, during this period, the effective tax rate

on equipment and software capital is around 10 percent. In our model, this esti-

mate translates into a tax on robot purchases of 3.8 percent.20 We use the method

in FERRIERE and NAVARRO (2014) to calibrate γ using NBER TAXSIM data and find

γ = 0.18. This value is in line with the estimates in HEATHCOTE et al. (2017). We use

World Bank data to compute the ratio of government spending to private consump-

tion and the ratio of government bonds to private consumption. During this time

period, the average values for these ratios are 0.19 percent and 0.07, respectively.21

We compute the values of Gt and Bt so as to be consistent with these ratios and ad-

just the level parameter in the tax function, λt, to satisfy the government flow budget

constraint, (51).

We then proceed with our calibration in two steps: we first find a steady state for

the normalized economy with fixed occupations and zero automation for 1987. We

use this steady state to calibrate the subjective discount factor, β, the labor disutility

parameter, ζ, and the share of non-routine workers in production, α. Next, we com-

pute a perfect foresight transition to the new balanced-growth path and use the data

on the non-routine wage premium and the occupation shares between 1988 and 2017

to calibrate the level parameter of the cost of robots, φ̃, the rate of technical progress

in robot production, gφ, the elasticity of routine workers and robots, 1/(1− ε), and

the parameters of the distribution of skill acquisition costs, µ and σ.

20We compute the equivalent ad-valorem robot tax as τx = [r/(1− τ) + δ]/(r + δ) − 1, where r
denotes the annual real interest rate, δ = 1− (1− δ)e−gφ denotes the annual depreciation rate adjusted
for the rate of technical progress, and δ is the annual depreciation rate. The variable τ denotes the
effective tax rate on equipment and software capital income estimated by ACEMOGLU et al. (2020).
We use the annual real interest rate implied by the model r = β−1/10 − 1, δ = 0.15, and τ = 0.1.

21The debt-to-consumption ratio is adjusted for the fact that one period in the model corresponds
to 10 years. The annual debt-to-consumption ratio is 70 percent.

34



Pre-automation steady-state equilibrium Our first step is to calibrate the steady

state before automation so as to match the ratio of government spending to private

consumption and the ratio of government debt to private consumption for 1987.

We also calibrate the shares of routine and non-routine workers to match their 1987

shares: πn = 0.44 and πr = 0.56. In the pre-automation steady state, these occupa-

tional shares are constant across generations.

Following GOURINCHAS and PARKER (2002), we impose βR = 1. We choose the

labor disutility parameter, ζ, so that on average the labor supply is equal to 1/3.

Finally, we calibrate α so that the non-routine wage premium is wn/wr = 1.19. This

calibration leads to β = 0.47, ζ = 14.03, and α = 0.48.

Figure 2: Calibration fit

1990 1995 2000 2005 2010
0.4

0.45

0.5

0.55

0.6

1990 1995 2000 2005 2010

1.2

1.25

1.3

1.35

1.4

Notes: The left panel shows the labor force shares of routine and non-routine workers, and the right
panel shows the non-routine wage premium, wn,t/wr,t. In each figure, solid lines represent these
quantities computed from ASEC-CPS data, and dashed lines show their counterparts in the status
quo equilibrium for the calibrated model. See text for details.
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Transitional dynamics and steady state We solve for the perfect foresight transi-

tion between the initial and the final steady state of the normalized economy.

In the asymptotic final steady state, there is full automation. Labor hours and

consumption are zero for routine workers, so all workers choose non-routine occu-

pations.22

Recall that the cost of robots declines geometrically over time as a result of ex-

ogenous technical progress, φt = φ̃e−gφ(t−1). We choose the technological param-

eters φ̃, gφ, and ε, plus the skill acquisition parameters µ and σ to match the time

series of observed occupation shares and the non-routine wage premium. Using a

least squares procedure, we find φ̃ = 0.43, gφ = 0.02, and ε = 1, plus µ = 0.34 and

σ = 0.35. Figure 2 shows that our model fits the ten-year average trends quite well

in both the occupation shares and the non-routine wage premium.

5.2 Status quo equilibrium

ACEMOGLU et al. (2020) estimate that the effective tax rate on income from equip-

ment and software capital declined from 10 to 5 percent after the 2017 tax reform.

Assuming these tax rates apply to robots, they correspond to ad-valorem tax rates

of 3.8 and 1.8 percent, respectively. We recompute the perfect-foresight equilibrium

starting in 2017 assuming that the tax reform was unanticipated and permanent.

Figures 3 and 4 plot prices and allocations for the status quo economy. The solid

and dashed lines correspond to the paths with and without the 2017 tax reform,

respectively.

The top left panel in figure 3 shows the path for the cost of robots. The top right

panel shows that as these costs fall, automation rises. The bottom left panel shows

that net output rises. The gains from technical progress are unevenly distributed.

The bottom right panel shows that wages fall for those who are in routine occupa-

22We describe the full set of equilibrium conditions and the numerical method in the appendix.
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Figure 3: Status quo equilibrium A
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Notes: This figure plots the status quo equilibrium for the calibrated economy starting from 1987. The
first and second panels show the evolution of robot costs, φt, and automation, mt, respectively. The
third and fourth panel plot the equilibrium levels of net output and wages for the two worker types,
respectively. In each panel, solid lines represent the equilibrium with the 2017 tax change which
lowered capital income taxes, while dashed lines represent the counterfactual equilibrium without
the 2017 tax change. See text for details.

tions and rise for those in non-routine occupations.

Turning to the effects of the 2017 tax reform, we see that the reduction in capital

income taxes increases automation, and, as a result, net output is higher than without

the tax reform. The reduction in robot taxes leads to a fall in routine wages and a rise

in non-routine wages.
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Figure 4: Status quo equilibrium B
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Notes: This figure plots the status quo equilibrium for the calibrated economy starting from 1987.
The first and second panels show the equilibrium levels of average labor supply and consumption
in the cross section, respectively. The third panel plots the equilibrium levels of utility, gross of skill-
acquisition costs, for the generation born in the period. Finally, the fourth panel shows the share of
newborns who choose non-routine skills, πn,t, and the share of non-routine workers in the workforce,
πn,t. In each panel, solid lines represent the equilibrium with the 2017 tax change which lowered
capital income taxes, while dashed lines represent the counterfactual equilibrium without the 2017
tax change. See text for details.

The top two panels in Figure 4 show the cross-sectional average of labor sup-

ply and consumption for routine and non-routine workers, computed as follows:

Cj,t ≡ ∑L−1
a=0 πj,t−aca

j,t/ ∑L−1
a=0 πj,t−a and Lj,t ≡ ∑Lw−1

a=0 πj,t−ala
j,t/ ∑Lw−1

a=0 πj,t−a. Because

our model has preferences that are consistent with balanced growth, labor supply is

fairly constant and close to 0.33. The top right panel shows that consumption rises

for non-routine workers and falls for routine workers. The third panel plots the level

of utility, gross of skill-acquisition costs, for newborn workers in non-routine and
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routine occupations. Technical progress increases the utility of non-routine workers

and reduces that of routine workers. The 2017 tax reform widens consumption and

utility inequality in this model by reducing the implied tax on robots.

The lower right panel of Figure 4 plots the time series for the share of newborn

workers who are non-routine, πn,t, and the share of non-routine workers in the labor

force, π j,t ≡ ∑Lw−1
a=0 πj,t−a/Lw. As routine wages decline, more agents decide to be-

come non-routine workers . However, the share of non-routine workers in the labor

force, π, responds sluggishly. This inertia reflects the inability of older generations

to reoptimize their skill choices.

5.3 Mirrleesian optimal taxation

In this section, we discuss the properties of the Mirrleesian optimal plan for the

calibrated economy. We solve numerically for the optimal tax policy starting in 2018,

assuming that the planner assigns equal current-value weights to all workers. The

solid and dashed lines in Figures 5 and 6 display the optimal Mirrleesian allocation

and the status quo equilibrium with the 2017 tax reform, respectively.

Optimal robot taxes in the Mirrleesian plan are slightly higher than in the status

quo equilibrium for the first two decades. They are 5.15, 2.18, and 0.62 percent for

the decades that start in 2018, 2028, and 2038, respectively. The optimal tax rate is

zero after three decades.

The fourth panel of Figure 5 shows that these higher robot taxes lower the non-

routine wage premium relative to the status quo. This wage compression loosens

the incentive constraint of non-routine workers, which makes it easier for the gov-

ernment to redistribute income from non-routine to routine workers in the initial

older generations (i.e., those with ã ≥ 1). As discussed before, the direct redistribu-

tion mechanism is always optimal for the initial old generations because they cannot

change their skills.

After these initial periods, the tax on robots falls permanently to zero. The reason
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Figure 5: Mirrleesian optimal taxation A
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Notes: This figure plots the allocations in the Mirrleesian optimal plan for the calibrated economy
starting from 2018. These quantities are shown in solid lines. For comparison, we also plot the status
quo equilibrium in dashed lines. The first and second panels show the evolution of robot taxes, τx

t ,
and automation, mt, respectively. The third and fourth panels plot the equilibrium levels of net output
and wages for the two worker types, respectively.

for this result is twofold. First, after the first three decades, the initial old generations

are no longer active in the labor force. Second, after three decades, automation costs

become relatively low. As a result, the Mirrleesian planner finds it optimal to use the

indirect redistribution mechanism exclusively. Given that robot taxes play no role in

this mechanism, they are set to zero.

Compared to the status quo equilibrium, the Mirrleesian optimal plan induces

more workers to choose non-routine skills. Table 2 compares the composition of the

labor force in the status quo equilibrium and the Mirrleesian optimal plan for the

initial periods. It shows the share of workers who become non-routine workers in

the newborn population, πn,t, and the share of workers who are non-routine in the
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Figure 6: Mirrleesian optimal taxation B
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Notes: This figure shows the allocations in the Mirrleesian optimal plan for the calibrated economy
starting from 2018. These quantities are shown in solid lines. For comparison, we also plot the status
quo equilibrium in dashed lines. The first and second panels show the equilibrium levels of average
labor supply and consumption in the cross section, respectively. The third panel plots the equilibrium
levels of utility for both agents. Finally, the fourth panel shows the share of newborns who choose
non-routine skills, πn,t, and the share of non-routine workers in the workforce, πn,t.

labor force, πn,t.

We can see that the share of non-routine workers is more than 10 percentage

points higher in the Mirrleesian optimal plan relative to the status quo equilibrium.

This higher share reflects the proclivity of new generations for non-routine occu-

pations. The model is consistent with the finding in ADÃO et al. (2018) of a weak

response of old generations and a strong response of new generations to changes in

wages across occupations. Redistribution through occupation choice, which we call

the indirect redistribution mechanism, plays an important role in these results. The
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Table 2: Labor force composition

Non-routine share 2018–2027 2028–2037 2038–2047 2048–2057

Status quo Newborn 0.71 0.74 0.77 0.80
Labor force 0.63 0.67 0.71 0.76

Mirrleesian plan Newborn 0.88 0.88 0.88 0.90
Labor force 0.67 0.75 0.82 0.88

Note: This table compares the share of non-routine workers in the newborn population, πn,t, and in
the labor force, πn,t for the first four periods of the status quo equilibrium and Mirrleesian optimal
taxation in the calibrated economy.

planner designs allocations with little direct redistribution between worker types so

that a higher share of workers in the new generations acquires non-routine skills.

Consequently, the intensive-margin incentive constraint no longer binds. Because

robot taxes should be used only insofar as they help to loosen the intensive-margin

incentive constraint, robot taxes fall to zero.

Table 2 also shows that, despite large changes in the composition of the newborn

population, the composition of the labor force changes slowly. This inertia reflects

the inability of older workers to change occupations. Despite large differences in

the composition of the newborn population, the share of non-routine workers in

the labor force in the period 2018–2027 is only 4 percentage points higher in the

Mirrleesian optimal plan relative to the status quo economy. This gap finally reaches

12 percentage points in the fourth period, 2048–2057, at which point all workers in

the labor force were born after the initial date of 2018.

Because workers born before 2018 cannot readjust their skill choices, the govern-

ment can only use the direct redistribution mechanism to improve their welfare. As a

result, there is a reason to tax robots initially in order to loosen the intensive-margin

constraint of those non-routine workers. This is why robot taxes are positive ini-

tially. As time goes by, the share of workers who did not readjust their skill choices
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decreases, which implies that there is less of a reason to distort robot use. As a result,

the tax on robots declines over these initial periods. After these workers leave the

labor force, there’s no longer any reason to tax robots.

Robustness We calibrate the model to be consistent with the past evolution of the

non-routine wage premium. This calibration implies a relatively slow rate of decline

in robot costs, as compared to the price of other forms of capital. Our baseline policy

assumes that future technical progress occurs at the same pace.

We now consider a scenario in which future robot prices decline on average at

the same rate as the producer price index for computer and peripheral equipment

between 1995 and 2015, computed by the Bureau of Labor Statistics. We call this

alternative calibration the “Moore’s law scenario.” Table 3 reports our results. We

focus on the implications for the optimal robot tax, the share of non-routine work-

ers in the newborn population, and the non-routine wage premium. The faster pace

of technical progress leads to a faster decline in the wages received by the initial

generations of routine workers, creating more inequality. For this reason, the plan-

ner implements a higher initial robot tax. In the optimal plan, almost all newborn

workers become non routine.

In the second decade, the optimal robot tax is close to zero. Two main forces

drive this result. First, since robot costs are lower and there is more non-routine

labor supply, the costs of distorting production are higher. Equation (31) shows that

the marginal loss in production associated with an increase in τx is proportional to

total labor supply by non-routine workers.23 It is also inversely proportional to φ
1−α

α .

Both the increase in total non-routine labor supply and the fall in automation costs

imply that optimal robot taxes should be lower.

Second, as robots become cheaper, it is efficient to have routine workers supply

23Equation (31) pertains to the static model, but an analogous version applies to the calibrated
dynamic model. In the latter version, πjlj is replaced by total labor supply in each occupation Nj,t.
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Table 3: Robustness

2018–2027 2028–2037 2038–2047

Baseline
gφ = 0.02

Robot tax (%) τx
t 5.1 2.2 0.6

Newborn non-routine πn,t 0.88 0.88 0.88
Wage premium wn,t/wr,t 1.38 1.52 1.63

Moore’s
law scenario

gφ = 0.29

Robot tax (%) τx
t 5.7 0.2 0.0

Newborn non-routine πn,t 0.99 1.00 1.00
Wage premium wn,t/wr,t 1.36 2.79 5.12

Note: This table reports features of the Mirrleesian optimal plan for different configurations of parameters.
The baseline parameters are reported in Table 1. For comparison purposes, we start by reporting the baseline
results.

fewer hours. Lower labor supply by the routine worker reduces the informational

gains from distorting relative wages. It follows that robot taxes are less useful as a

tool for improving income redistribution.

We perform other robustness exercises, which are reported in Appendix A.4. In

particular, we consider alternative parameter values for the elasticity of skill acqui-

sition, σ, and the levels of robot costs, φ̃. We also consider smaller perturbations in

the pace of technical progress, gφ.

We vary the level of robot costs by increasing/decreasing φ̃ by a factor corre-

sponding to a decade’s worth of technical progress. In general, lower robot costs

lead to slightly lower tax rates and a higher share of workers in the newborn gen-

erations who choose to acquire non-routine skills. Finally, we consider a case with

lower elasticity of skill acquisition by increasing the variance of the θ distribution.

Because the costs of skill acquisition become higher, the optimal Mirrleesian policy

features a lower share of newborn non-routine workers and slightly higher robot

taxes. Optimal robot taxes are only moderately affected by small perturbations in

the pace of technical progress. As above, higher gφ implies higher robot taxes in the

initial period, but lower robot taxes from the second period on.
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Finally, we compute the optimal Mirrleesian plan starting in 1988, at the onset

of the automation era. Optimal robot taxes are 9.1, 2.9, and 0.7 percent in the first,

second, and third decades, respectively. The optimal robot tax is zero from 2018 on.

The two main drivers of the higher initial robot taxes are the higher robot costs and

the higher share of routine workers in the initial old generations in 1988, which leads

to more direct redistribution.

How large are the welfare gains from the robot tax? To answer this question, we

compare the utility levels obtained in the Mirrleesian optimal plan above with those

that would be obtained with an optimal Mirrleesian income tax system in which the

robot tax is constrained to be zero. By comparing these two allocations, we isolate

the effect of the robot tax from the welfare gains of moving to a more efficient income

tax system.

Figure 7: Consumption-equivalent welfare gains
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Notes: This figure shows the consumption-equivalent welfare gains of the optimal robot tax. On the
x-axis we vary the agent’s birth year, with 0 corresponding to the agent being born one period before
the initial date. These welfare gains are computed gross of skill-acquisition costs.

We compute the welfare gains in terms of a consumption equivalent — that is, the
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proportional increase in consumption that compensates the agents from not moving

to the optimal robot tax plan. In terms of utilitarian social welfare, the optimal robot

tax leads to a consumption-equivalent gain of 0.21 percent.

Figure 7 shows that the main beneficiaries of the robot tax are the routine workers

in the initial old generations, and the main losers are the initial non-routine workers.

The welfare gains of the initial old generations of routine workers are as high as 2.2

percent of consumption. The losses for the initial non-routine workers are of the

same order of magnitude. The non-routine workers born in the initial period, who

are able to choose their skills, benefit from the robot tax, albeit less than the routine

workers born in that same period. Once robot taxes are no longer used, from period

4 onward, the welfare differences between the two plans are essentially zero.

The role of endogenous skill acquisition To isolate and clarify the effects of the

endogenous nature of skill acquisition on the design of the tax system, we consider

a model in which the number of routine and non-routine workers follows an ex-

ogenous path. This path coincides with the equilibrium evolution of the number of

routine and non-routine workers in our benchmark dynamic model.

Figure 8 compares the paths for the economies with endogenous and exogenous

skill acquisition, which we call ES and XS, respectively. This figure shows that rou-

tine workers receive a better allocation of consumption and hours worked in the

exogenous skills economy. The reason for this property is that, in the endogenous

skills economy, improving the allocation of routine workers reduces the incentive of

the new generations to acquire non-routine skills.24

When skills are exogenous, the planner taxes robots at higher rates than when

skills are endogenous. With endogenous skills, robot taxes become zero after 2048. In

contrast, with exogenous skills, the tax rate on robots converges to zero only asymp-

24Indeed, if we were to fix the allocations of the XS economy but allow skill supply to be endoge-
nous, the non-routine share in the young generations would drop by almost 40 percentage points.

46



totically. These properties follow from the fact that only the direct redistribution

mechanism is relevant in the economy with exogenous skills.

Figure 8: Mirrleesian optimal taxation: endogenous (ES) and exogenous skills (XS)
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Notes: This figure compares the Mirrleesian optimal allocations in the baseline economy with endoge-
nous skill acquisition (ES) with those of a counterfactual economy in which skills evolve exogenously
(XS), but such that the shares of routine and non-routine workers are the same in the two economies.
The first and second panels show the optimal robot tax and the level of automation in each economy,
respectively. The third and fourth panels show the equilibrium levels of average labor supply and
consumption in the cross section, respectively.

Time inconsistency In our model, optimal policy must take into account the effect

of redistribution on workers’ skill choices. In our calibration, we find that optimal

direct redistribution is limited in order to induce more agents to invest in non-routine

skills.

This optimal plan is inherently time inconsistent. Since skills are chosen once and

for all when workers are young, older workers cannot readjust their skills. As a
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result, a plan that promises low redistribution to favor the acquisition of non-routine

skills is only optimal ex ante, that is, before skill decisions have been made. The

same planning problem starting at a later date would deviate from the original plan

and would use the direct redistribution mechanism to redistribute income toward

older routine workers (the extensive margin would no longer be relevant for those

workers). As a result, robots would be taxed initially.

6 Conclusions

Our analysis suggests that without changes to the current U.S. tax system, a sizable

fall in the costs of automation will lead to a massive rise in income inequality.

We study the problem of a planner that implements a nonlinear income tax sys-

tem and linear robot taxes. Our model has an overlapping-generations structure

that incorporates the life-cycle aspects of labor supply. Before entering the labor

force, workers choose whether to acquire routine or non-routine skills. The cost of

becoming a non-routine worker is heterogeneous across the population.

Designing an optimal tax system involves balancing two objectives. First, the

planner wants to give the young generations incentives to invest in skills and be-

come non-routine workers. Second, the planner wants to redistribute income toward

routine workers, since their wages fall as robots become cheaper. Taxing robots re-

duces the non-routine wage premium and helps redistribute income toward routine

workers.

In our calibrated economy, we find that it is optimal to tax robots while the initial

old generations of routine workers are in the labor force. Once they retire, optimal

robot taxes are zero. In other words, it is optimal to tax robots in the short run but

not in the long run.

The world economy has undergone many structural changes that destroyed some

jobs while creating others. Isn’t the advent of robotization just another one of these
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changes? Why should public policy intervene this time? What makes this time dif-

ferent is the speed with which automation can occur. Many of the prior structural

changes occurred slowly. The older generations kept their jobs, and it was their chil-

dren who had to adapt to the brave new world. Automation can destroy many of the

jobs held by the older generations and lead to a dramatic rise in income inequality.

Public policy can avoid turning modern economies into the bleak world described

in Kurt Vonnegut’s Player Piano.
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A Appendix

A.1 Appendix to Section 3

A.1.1 The first-best allocation

We define the first-best allocation in this economy as the solution that maximizes

welfare, defined in equation (27), absent informational constraints. This absence

implies that the planner can perfectly discriminate among agents and enforce any

allocation that satisfies the aggregate resource constraint. The optimal plan solves

the following problem

W = max ωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn + G ≤ A

[ˆ m

0
xρ

i di +
ˆ 1

m
nρ

i di

] 1−α
ρ

(πnln)
α − φ

ˆ m

0
xidi, [µ],

ˆ 1

m
nidi = πrlr, [η].

The first-order conditions with respect to ni and xi are

µ(1− α)A

[ˆ m

0
xρ

i di +
ˆ 1

m
nρ

i di

] 1−α
ρ −1

(πnln)
α nρ−1

i = η, ∀i ∈ (m, 1]

(1− α)A

[ˆ m

0
xρ

i di +
ˆ 1

m
nρ

i di

] 1−α
ρ −1

(πnln)
α xρ−1

i = φ, ∀i ∈ [0, m].

The first equation implies that the marginal productivity of routine labor should

be constant across the activities that use routine labor. This property means that

(1−m) ni = πrlr for i ∈ (m, 1] and ni = 0 otherwise. The same property applies

to robots used in the activities that are automated, xi = x for i ∈ [0, m] and xi = 0

otherwise.
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To characterize the optimal allocations, we replace ni and xi in the planner’s prob-

lem, which can be rewritten as

W = max ωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn + G ≤ A
[

mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ

(πnln)
α − φmx, [µ].

The first-order conditions with respect to x and m are, respectively,

(1− α)A
[

mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ −1

Nα
n xρ−1 = φ,

1− α

ρ
A
[

mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ −1

Nα
n

[
xρ − (1− ρ)

(
πrlr

1−m

)ρ]
= φx.

The ratio of these two equations implies that if automation is positive, m ∈ (0, 1),

then x = πrlr/(1−m). Using this condition, we obtain

W = max ωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn + G ≤ A
(

πrlr
1−m

)1−α

(πnln)
α − φm

πrlr
1−m

, [µ].

The first-order condition with respect to the level of automation implies that

(1− α)A
1

(1−m)2−α
(πrlr)

1−α (πnln)
α−φ

πrlr
(1−m)2 = 0⇔ m = 1−

[
φ

A(1− α)

]1/α πrlr
πnln

,

provided that m is interior. Then,

m = max

{
1−

[
φ

A(1− α)

]1/α Nr

Nn
, 0

}
.

The first-order conditions with respect to cr, cn, lr, ln, and G are

ωruc(cr, lr) = µ,

ωnuc(cn, ln) = µ,
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ωrul(cr, lr) ≥
µ

πrlr
(1− α)(1−m)Y,

ωnul(cn, ln) = µ
αY

πnln
,

v′(G) = µ.

The first-order condition with respect to Nr is presented with inequality because the

constraint Nr ≥ 0 may bind when automation costs are low. The combination of the

first two equations implies that

ωruc(cr, lr) = ωnuc(cn, ln).

The optimal marginal rates of substitution are given by the combination of the marginal

utility of consumption and leisure for each individual

ul(cr, lr)
uc(cr, lr)

≥ (1− α)(1−m)
Y

πrlr
,

ul(cn, ln)
uc(cn, ln)

= α
Y

πnln
.

Finally, from the first-order conditions for G and cr it follows that

v′(G) = ωru′(cr). (52)

A.1.2 Necessity and sufficiency in the static model

Worker optimality implies that the utility associated with the bundle of consump-

tion and income assigned to agent j, {cj, lj}, must be at least as high as the util-

ity associated with any other bundle {c, l} that satisfies the budget constraint c ≤
wjl − T(wjl), implying that u(cj, lj) ≥ u(c, l). In particular, routine workers must

prefer their bundle, {cr, lr}, to the bundle that they would get if they pretended to

be non-routine workers while keeping the routine wage, {cn, wnln/wr}. Similarly,

non-routine workers must prefer their bundle, {cn, ln}, to the bundle they would
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get if they pretended to be routine workers, {cr, wrlr/wn}. These requirements cor-

respond to the two incentive constraints (IC), (29) and (30), so these conditions are

necessary.

We show in the Appendix that equation (28) is necessary by combining the first-

order conditions to the firms’ problems with the resource constraint, (11). In ad-

dition, we show that conditions (28), (29), and (30) are also sufficient. To see that

equations (29) and (30) summarize the worker problem, note that it is possible to

choose a tax function such that agents prefer the bundle
{

cj, lj
}

to any other bundle.

For example, the government could choose a tax function that sets the agent’s after-

tax income to zero for any choice of wjl different from wjlj, j = n, r. These results are

summarized in the following proposition.

Lemma 3. Equations (28), (30), and (29) characterize the set of implementable allocations.

These conditions are necessary and sufficient for a competitive equilibrium.

In an equilibrium, robot producers set the price of robots equal to their marginal

cost

pi = φ. (53)

Optimality for final goods producers implies that

xi =

{
πr lr
1−m , i ∈ [0, m],
0, otherwise

(54)

ni =

{
πr lr
1−m , i ∈ (m, 1],
0, otherwise

(55)

m = max

{
1−

[
(1 + τx)φ

(1− α)A

]1/α πrlr
πnln

, 0

}
, (56)

Y = A

[ˆ m

0
xρ

i di +
ˆ 1

m
nρ

i di

] 1−α
ρ

(πnln)
α , (57)
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wr = (1− α)(1−m)
Y

πrlr
, (58)

wn = α
Y

πnln
. (59)

The resource constraint is

πrcr + πncn + G ≤ Y−
ˆ m

0
φxi. (60)

We can let equation (53) define the price of robots, let equation (54) define xi, and

let equations (55), (56), and (57) determine ni, m, and Y, respectively. Assuming that

m is interior, the wage equations (58) and (59) can be written as (14) and (15). These

equations can be used to solve for the equilibrium wage rates. Combining the results

above, we can write the resource constraint as

πrcr + πncn + G ≤ α
A1/α(1− α)

1−α
α

[(1 + τx)φ]
1−α

α

τx + α

α(1 + τx)
πnln + φπrlr.

Replacing the wage rates, we can write

πrcr + πncn + G ≤ πnwnln
τx + α

α(1 + τx)
+

πrwrlr
1 + τx . (61)

This derivation makes it clear that the resource constraint (61) summarizes the equi-

librium conditions of the production side of the economy.

Worker optimality requires that

u
(
cj, lj

)
≥ u (c, l) , ∀(c, l) : c ≤ wjl − T(wjl).

The following incentive constraints are necessary conditions:

u (cn, ln) ≥ u
(

cr,
wr

wn
lr

)
u (cr, lr) ≥ u

(
cn,

wn

wr
ln

)
.
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These are also sufficient conditions because the planner can set the tax schedule T(·)
such that for all Y 6∈ {Yn, Yr}, the allocation is worse for both agents than their

respective allocation. This goal can be accomplished by setting

T(y) = y−max
{

c|u(ci, li) ≥ u
(

c,
y
wi

)
, for i = r, n

}
.

Since the government can choose an arbitrary tax function, it is bound only by

the incentive constraints that characterize the informational problem. This property

means that the income tax function that is assumed here to implement the optimal

allocation is without loss of generality. Any other implementation would at least

have to satisfy the same two incentive constraints.

A.1.3 Proof of Proposition 1

The allocations solve the original optimization problem, or equivalently they solve

W(τx) = max πrωru(cr, lr) + πnωnu(cn, ln) + v(G)

subject to

[ηrπr] u(cr, lr) ≥ u
(

cn,
wn

wr
ln

)
,

[ηnπn] u(cn, ln) ≥ u
(

cr,
wr

wn
lr

)
,

[µ] πrcr + πncn + G ≤ πnwnln
τx + α

α(1 + τx)
+ πr

wrlr
1 + τx .

Assume that the routine IC does not bind, then ηr = 0. The envelope condition is

W ′(τx) = −ηnπnul

(
cr,

wr

wr
lr

)
d log (wr/wn)

d log(1 + τx)

1
1 + τx

wrlr
wn

+µ

 πnwnln τx+α
α(1+τx)2

[
d log wn

d log(1+τx)
+ 1−α

τx+α

]
+πr

wr lr
(1+τx)2

[
d log wr

d log(1+τx)
− 1
]  .
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Using the wages, we have that

wr = φ(1 + τx)⇒ d log wr

d log (1 + τx)
= 1,

wn = α
A1/α (1− α)

1−α
α

[(1 + τx)φ]
1−α

α

⇒ d log wn

d log (1 + τx)
= −1− α

α
,

wr

wn
=

[(1 + τx)φ]
1
α

αA1/α (1− α)
1−α

α

⇒ d log wr/wn

d log (1 + τx)
=

1
α

.

Plugging these conditions into the envelope condition, we obtain

W ′(τx) = −ηnπnul

(
cr,

wr

wn
lr

)
1

α (1 + τx)

wrlr
wn

+ µπnwnln
τx + α

α(1 + τx)2

[
−1− α

α
+

1− α

τx + α

]
=

1
α (1 + τx)

[
−ηnul

(
cr,

wr

wn
lr

)
wrlr
wn
− µπnwnln

τx

1 + τx
1− α

α

]
.

Because µ > 0, then if τx ≤ 0 we obtain that

W ′(τx) > 0,

so that the planner always improves its objective by marginally increasing τx. Since

optimality implies that W ′(τx) = 0, then the optimal tax on robots satisfies the fol-

lowing condition:

τx

1 + τx =
α

1− α

ηn

(
−ul

(
cr, wr

wn
lr
)

wr lr
wn

)
µwnln

.

The first-order condition with respect to lr implies that

−ηn

µ
ul

(
cr,

wr

wr
lr

)
wrlr
wn

=
ω̃rπrul (cr, lr) lr + πrwr lr

1+τx

πn
=

πrφlr
πn

[
1− ω̃r (−ul (cr, lr))

φ

]
,

where ω̃r = ωr/µ. Replacing this equation in the optimal condition for τx we obtain

τx

1 + τx =
α

1− α

πrφlr
πnwnln

[
1− ω̃r (−ul (cr, lr))

φ

]
.
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A.1.4 The full automation case (m = 1, lr = 0)

If the optimal plan features lr = 0, then it must be that ln > 0. This result implies

that ψ = 0. From the envelope condition, we can see that

W ′(τx) = − µ

α (1 + τx)
πnwnln

τx

1 + τx
1− α

α
= 0⇔ τx = 0. (62)
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A.2 Appendix to Section 4

A.2.1 Proof of Lemma 1

The extensive-margin incentive compatibility constraints can equivalently be written

as

Uθ,t ≥ Uθ′,t + θ(sθ,t − sθ′,t) (63)

for all t and θ, θ′ ∈ Θ.

Suppose that conditions (63) are satisfied. Then, take θ, θ′ ∈ Θr,t, that is, such that

st(θ) = st(θ′). As a result, those conditions imply

Ut(θ) ≥ Ut(θ
′)

Ut(θ
′) ≥ Ut(θ),

which is equivalent to Ut(θ) = Ut(θ′). This condition must hold for all θ, θ′ ∈ Θj,t

for j = n, r. Then, define Uj,t ≡ Ut(θ) for θ ∈ Θj,t, which implies that Ut(θ) = Uj,t

for all θ ∈ Θj,t. Then, define θ∗t ≡ Un,t −Ur,t. For all θ < θ∗t we have

Un,t − θ > Ur,t, (64)

which implies that st(θ) = 1. For all θ > θ∗ we have

Un,t − θ < Ur,t, (65)

which implies that st(θ) = 0.

To show the reverse implication, suppose that the conditions in the lemma hold.

Then, for all θ ∈ Θn,t we have

Uθ,t = Un,t = Uθ′,t, ∀θ′ ∈ Θn,t

Ũθ,t = Un,t − θ ≥ Un,t − θ∗ = Ur,t = Ũθ′,t, ∀θ′ ∈ Θr,t.

Instead, if θ ∈ Θr,t, then

Uθ,t = Un,t = Uθ′,t, ∀θ′ ∈ Θr,t

Ũθ,t = Ur,t = Un,t − θ∗ ≥ Un,t − θ = Uθ′,t − θ, ∀θ′ ∈ Θn,t.
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As a result, the allocation is extensive-margin incentive compatible (i.e., it satisfies

(63)).

A.2.2 Proof of Lemma 2

The proof strategy is as follows: take an allocation for which the properties in the

lemma do not hold, and show that there exists a perturbation that strictly improves

welfare. We start by showing that this allocation frees up resources, then show that

it can deliver an increase in government spending that improves utility. Finally, we

check that it still satisfies all constraints.
Define Ωj,t ≡ πj,tωj,t, for t = 2 − L, ..., 0, Ωj,t ≡

´
Θj,t

ωθ,th(θ)dθ, and Ωt =

∑L−1
a=0 ∑j=n,r Ωj,t. We can write the optimal program as

max
∞

∑
t=2−L

∑
j=n,r

βmax{0,t−1}Ωj,tÛj,t +
∞

∑
t=1

βt−1Ωtv(Gt)−
∞

∑
t=1

ˆ θ∗t

0
βt−1ωθ,th(θ)θdθ (66)

Ûn,1−ã ≥ Ûr,1−ã +
Lw−1

∑
a=ã

βa−ã
[

ψ
(
la
r,1+a−ã

)
− ψ

(
Fr,1+a−ã

Fn,1+a−ã
la
r,1+aã

)]
, ã = 1, ..., Lw − 1 (67)

Ûr,1−ã ≥ Ûn,1−ã +
Lw−1

∑
a=ã

βa−ã
[

ψ
(
la
n,1+a−ã

)
− ψ

(
Fn,1+a−ã

Fr,1+a−ã
la
n,1+aã

)]
, ã = 1, ..., Lw − 1 (68)

Ûn,t ≥ Ûr,t +
Lw−1

∑
a=0

βa
[

ψ
(
la
θ,t+a

)
− ψ

(
Fr,t+a

Fn,t+a
la
θ,t+a

)]
, θ ∈ Θr,t, t = 1, 2, ... (69)

Ûr,t ≥ Ûn,t +
Lw−1

∑
a=0

βa
[

ψ
(
la
θ,t+a

)
− ψ

(
Fn,t+a

Fr,t+a
la
θ,t+a

)]
, θ ∈ Θn,t, t = 1, 2, ... (70)

θ∗t = Ûn,t − Ûr,t, t = 1, 2, ... (71)

Ûj,1−a =
L−a

∑
t=1

βt−1u
(

ca+(t−1)
j,t

)
−

Lw−a

∑
t=1

βt−1ψ
(

la+(t−1)
j,t

)
, a = 1, .., L− 1, j = n, r (72)

Ûj,t =
L−1

∑
a=0

βau
(
ca

θ,t+a
)
−

Lw−1

∑
t=1

βaψ
(
la
θ,t+a

)
, θ ∈ Θj,t, t = 1, 2, ..., j = n, r, (73)

plus the resource constraint (38).

Labor supply Take an allocation that satisfies all the constraints and for which

there exists a triplet (t, a, j) such that for every θ ∈ Θj,t−a, there exists a subset
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Θ∗ ⊂ Θj,t−a, such that: (i) la
θ,t 6= la

θ′,t, for all θ′ ∈ Θ∗, and (ii)
´

Θj
h(θ)dθ > 0. The

first property simply requires some dispersion in allocations and the second prop-

erty requires that this set has a non-null measure.

Consider the following perturbation: for all θ ∈ Θj,t−a, define their new labor

supply as la
θ,t = la

j,t ≡
´

Θj,t−a
la
j,t

h(θ)´
Θj,t−a

h(θ)dθ
dθ. Then, construct their new consumption,

ca
θ,t = ca

j,t, such that if

Uθ,t−a︸ ︷︷ ︸
=Uj,t

+u(ca
j,t)− u(ca

θ,t)−ψ(la
j,t)+ψ(la

θ,t) = Uj,t ⇔ u(ca
j,t)− u(ca

θ,t) = ψ(la
j,t)−ψ(la

θ,t),

(74)

that is, such that their utility is unchanged. Integrating on both sides, we obtain

u(ca
j,t)−

ˆ
Θj,t−a

u(ca
θ,t)

h(θ)´
Θj,t−a

h(θ)dθ
dθ = ψ(la

j,t)−
ˆ

Θj,t−a

ψ(la
θ,t)

h(θ)´
Θj,t−a

h(θ)dθ
dθ. (75)

Since u is concave and ψ is convex, we know that

ˆ
Θj,t−a

u(ca
θ,t)

h(θ)´
Θj,t−a

h(θ)dθ
dθ ≤ u

(ˆ
Θj,t−a

ca
θ,t

h(θ)´
Θj,t−a

h(θ)dθ
dθ

)
ˆ

Θj,t−a

ψ(la
θ,t)

h(θ)´
Θj,t−a

h(θ)dθ
dθ > ψ

(ˆ
Θj,t−a

la
θ,t

h(θ)´
Θj,t−a

h(θ)dθ
dθ

)
= ψ(la

j,t).

As a result,

u(ca
j,t) =

ˆ
Θj,t−a

u(ca
θ,t)

h(θ)´
Θj,t−a

h(θ)dθ
dθ + ψ(la

j,t)−
ˆ

Θj,t−a

ψ(la
θ,t)

h(θ)´
Θj,t−a

h(θ)dθ
dθ

< u

(ˆ
Θj,t−a

ca
θ,t

h(θ)´
Θj,t−a

h(θ)dθ
dθ

)

which implies that

ca
j,t <

ˆ
Θj,t−a

ca
θ,t

h(θ)´
Θj,t−a

h(θ)dθ
dθ, (76)

because u is increasing.

64



Intuitively, these results tell us that this perturbation leads to the same Ûj,t−a for

all agents but relaxes resources in the economy. There is no change in aggregate labor

supply by the workers, but aggregate consumption is strictly lower. As a result, the

government can increase spending,

Gt = Gt +

[ˆ
Θj,t−a

ca
θ,t

h(θ)´
Θj,t−a

h(θ)dθ
dθ − ca

j,t

]
> Gt,

which leads to an increase in welfare while still satisfying the resource constraints.

It remains to be shown that this allocation satisfies all other implementability

conditions. Because we hold fixed {Ûn,t, Ûr,t}, the equations in (71) are satisfied for

all t. Since we did not change allocations for agents born prior to t = 1, then (67),

(68), and (72) are still satisfied. The equations in (73) are still satisfied because we

imposed them to construct ca
j,t.

We just need to show that the intensive-margin incentive constraints, (70) and

(71), are still satisfied. Because allocations do not change for other workers, they are

satisfied for all workers not in occupation j and for all workers in occupation j born

in periods other than t− a. So, we only need to show that

Û−j,t−a ≥ Ûj,t−a +
Lw−1

∑
a′=0

βa

[
ψ
(

la′
θ,t−a+a′

)
− ψ

(
Fj,t−a+a′

F−j,t−a+a′
la′
θ,t−a+a′

)]
(77)

for all θ ∈ Θj,t−a, where la
θ,t = la

j,t and la′
θ,t−a+a′ = la′

θ,t−a+a′ for a′ 6= a.

Define Ψj,t(l) ≡ ψ (l) − ψ
(

Fj,t
F−j,t

l
)

. By convexity of ψ, Ψj,t is increasing in l if

Fj,t/F−j,t < 1 and decreasing if Fj,t/F−j,t ≥ 1. Then, if Fj,t/F−j,t ≥ 1 take θ′ ∈ Θj,t−a

such that la
θ′,t < la

θ′,t, or if Fj,t/F−j,t < 1 take θ′ ∈ Θj,t−a such that la
θ′,t > la

θ′,t. This

result implies that Ψ
(

la
θ′,t

)
> Ψ

(
la
j,t

)
.

Since for the original allocations

Û−j,t−a ≥ Ûj,t−a +
Lw−1

∑
a′=0

βa

[
ψ
(

la′
θ,t−a+a′

)
− ψ

(
Fj,t−a+a′

F−j,t−a+a′
la′
θ,t−a+a′

)]
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holds for all θ ∈ Θj,t−a, then

Û−j,t−a ≥ Ûj,t−a +
Lw−1

∑
a′=0

βa

[
ψ
(

la′
θ′,t−a+a′

)
− ψ

(
Fj,t−a+a′

F−j,t−a+a′
la′
θ′,t−a+a′

)]

= Ûj,t−a +
Lw−1

∑
a′=0

βa

[
ψ
(

la′
θ′,t−a+a′

)
− ψ

(
Fj,t−a+a′

F−j,t−a+a′
la′
θ′,t−a+a′

)]
+
[
Ψ
(

la
θ′,t

)
−Ψ

(
la
j,t

)]
︸ ︷︷ ︸

≥0

≥ Ûj,t−a +
Lw−1

∑
a′=0

βa

[
ψ
(

la′
θ′,t−a+a′

)
− ψ

(
Fj,t−a+a′

F−j,t−a+a′
la′
θ′,t−a+a′

)]
.

Consumption We showed that if sθ,t = sθ′,t, then la
θ,t+a = la

θ′,t+a, for a = 0, 1, ..., Lw−
1. We now want to show that the same property holds for consumption. This result

can be most easily seen from the first-order conditions, which imply that

u′(c0
θ,t)

u′(ca
θ,t+a)

=
u′(c0

θ′,t)

u′(ca
θ′,t+a)

(78)

for all θ, θ′. These equations, combined with the fact that (73) implies that

L−1

∑
a=0

βau
(
ca

θ,t+a
)
=

L−1

∑
a=0

βau
(

ca
θ′,t+a

)
(79)

for θ, θ′ such that sθ,t = sθ′,t, delivers the intended result.

A.2.3 Proof of Proposition 2

Denote by βt−1µt the multiplier for period t’s resource constraint and βmin{0,t−1}ηj,t

the multiplier on period t ∈ {2− L, ..., 0, 1, 2, ...} for workers in occupation j’s intensive-

margin incentive constraint.

The first-order condition with respect to Xt is given by

µt [FX,t − φt] +
Lw−1

∑
a=0

ηn,t−aψ′
(

Fr,t

Fn,t
la
r,t

) d Fr,t
Fn,t

dXt
la
r,t +

Lw−1

∑
a=0

ηr,t−aψ′
(

Fn,t

Fr,t
la
r,t

) d Fn,t
Fr,t

dXt
la
n,t = 0.

(80)
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If the incentive constraints of routine workers do not bind, then ηr,t−a = 0. If the

incentive constraints of at least one routine worker binds, then at least one ηn,t−a > 0,

which implies that
Lw−1

∑
a=0

ηn,t−a

µt
ψ′
(

Fr,t

Fn,t
la
r,t

)
la
r,t > 0.

As a result,

FX,t = φt −
d Fr,t

Fn,t

dXt

Lw−1

∑
a=0

ηn,t−a

µt
ψ′
(

Fr,t

Fn,t
la
r,t

)
la
r,t > φt, (81)

because d Fr,t
Fn,t

/dXt < 0.

A.2.4 Normalizing the dynamic model

In Table 3, we define the normalized variables, which are constant in the steady state

Table 4: Detrended variables

Parameter/Variable Original Variable Normalized Variable

Consumption ca
j,t = φ

− 1−α
α

t ca
j,t ca

j,t = φ
1−α

α
t ca

j,t

Government spending Gt = φ
− 1−α

α
t Gt Gt = φ

1−α
α

t Gt

Robots Xt = φ
− 1

α
t Xt Xt = φ

1
α
t Xt

Output Yt = φ
− 1−α

α
t Yt Yt = φ

1−α
α

t Yt

Net output NYt = φ
− 1−α

α
t NYt NYt = φ

1−α
α

t NYt

Non-routine wage Fn,t = φ
− 1−α

α
t Fn,t Fn,t = φ

1−α
α

t wn,t

Routine wage Fr,t = φ
− 1−α

α
t Fr,t Fr,t = φ

1−α
α

t Fr,t

With this normalization, we can write output, net output, and wages, relative
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wage, marginal productivity of robots, and automation as follows:

Yt = A
[

Xε
+ φ

ε
α
t Nε

r,t

] 1−α
ε

Nα
n,t, NYt = Yt − Xt,

Fn,t = αA
[

Xε
+ φ

ε
α
t Nε

r,t

] 1−α
ε

Nα−1
n,t , Fr,t = (1− α)A

[
Xε

+ φ
ε
α
t Nε

r,t

] 1−α
ε

Nα
n,tφ

ε
α
t Nε−1

r,t ,

Fr,t

Fn,t
=

1− α

α

φ
ε
α
t Nε

r,t

Xε
+ φ

ε
α
t Nε

r,t

Nn,t

Nr,t
, FX,t = (1− α)A

[
Xε

+ φ
ε
α
t Nε

r,t

] 1−α
ε

Nα
n,tX

ε−1
t ,

mt =
Xε

t

Xε
+ φ

ε
α
t Nε

r,t

.

The detrended optimization problem Define Ωj,t ≡ πj,tωj,t, for t = 2 − L, ..., 0,
Ωj,t ≡

´
Θj,t

ωθ,th(θ)dθ, and Ωt = ∑L−1
a=0 ∑j=n,r Ωj,t. We can define the optimal pro-

gram as

max

{
L−1

∑
ã=1

∑
j=n,r

Ωj,t−ã

{
L−1

∑
a=ã

βa−ãu
(

ca
j,1+a−ã

)
−

Lw−1

∑
a=ã

βa−ãψ
(

la
j,1+a−ã

)}

+
∞

∑
t=1

∑
j=n,r

βt−1Ωj,t

{
L−1

∑
a=0

βau
(

ca
j,t+a

)
−

Lw−1

∑
t=1

βaψ
(

la
j,t+a

)}

+
∞

∑
t=1

βt−1Ωtv(Gt)−
∞

∑
t=1

ˆ θ∗t

0
βt−1ωθ,th(θ)θdθ

}
s.to

[ηj,1−a]
L−1

∑
a=ã

βa−ãu
(

ca
j,1+a−ã

)
−

Lw−1

∑
a=ã

βa−ãψ
(

la
j,1+a−ã

)
≥

L−1

∑
a=ã

βa−ãu
(

ca
−j,1+a−ã

)
−

Lw−1

∑
a=ã

βa−ãψ

(
F−j,1+a−ã

Fj,1+a−ã
la
−j,1+a−ã

)

[βt−1ηj,t]
L−1

∑
a=0

βau
(

ca
j,t+a

)
−

Lw−1

∑
t=1

βaψ
(

la
j,t+a

)
≥

L−1

∑
a=0

βau
(

ca
−j,t+a

)
−

Lw−1

∑
a=0

βaψ

(
F−j,t+a

Fj,t+a
la
−j,t+a

)
[βt−1ξt] θ∗t = Ûn,t − Ûr,t

[βt−1µt]
L−1

∑
a=0

∑
j=n,r

πj,t−aca
j,t + Gt = A

[
Xε

+ φ
ε
α
t Nε

r,t

] 1−α
ε Nα

n,t − Xt,

We define the Lagrange multipliers in parentheses.
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A.2.5 Optimal policy steady state

In what follows, we derive the steady state for all variables assuming that the aggre-

gate allocations converge, that is, assume that the allocations for aggregate consump-

tion, Ct, aggregate labor supply N j,t for j = n, r, robots Xt, and θ∗t , and government

spending converge to an interior steady state.

Since θ∗t → θ∗, then πn,t = H(θ∗t ) → H(θ∗) ≡ πn, and πr,t → πt ≡ 1 − πn.

Furthermore, since

Ωtv′(Gt) = µt,

and both Ωt → Ω and Gt → G, then µt → µ.

Along the balanced-growth path, φt → 0 and Fr,t/Fn,t → 0. As a result, the

incentive compatibility of routine workers can never bind. This property is shown

in the following lemma.

Lemma 4. Suppose that the allocations converge to a steady-state growth path with interior

automation, then ηr,t−a → 0, for all a.

Proof. Since φt → 0, the optimal labor supply by agents with routine skills is lr,t = 0.

This property implies that the utility of a worker with routine skills converges to

Ur,t →
L−1

∑
a=0

βa [u(ca
r ) + v(G)]−

Lw−1

∑
a=0

βaψ(0) ≡ Ur,

while the utility from mimicking a non-routine worker converges to −∞ since it

must be that ln > 0:

lim
t→∞

L−1

∑
a=0

βa [u(ca
n,t+a) + v(G)

]
−

Lw−1

∑
a=0

βaψ

(
Fn,t+a

Fr,t+a
la
r,t+a

)
= −∞,

as Fn,t
Fr,t
→ +∞.

The first-order conditions with respect to consumption when young are given by

u′(ca
n,t)[Ωn,t + (ξt−a + ηn,t−a)] = µtπn,t

u′(ca
r,t)[Ωr,t − (ξt−a + ηn,t−a)] = µtπr,t
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Using these expressions, we can make two important observations. First,

u′(c0
j,t)

u′(ca
j,t+a)

=
µt

µt+a
→ 1,

which implies that in the steady state, ca
j = c0

j for all a = 1, ..., L− 1. Second, these

expressions imply that ψt + ηn,t → κ, for some κ ∈ R.

Because the detrended marginal productivity of routine workers falls to zero,

then la
r,t → 0 for all a. As a result, in the steady state, the labor supply of non-routine

workers of age τ is given by the following condition:

v′(la
n)(Ωn + ξt + ηn,t︸ ︷︷ ︸

=κ

) = πnµFnea.

As a result, la
n,t → la

n.

The marginal condition with respect to robots is simply

FX = 1⇔ Xt = [(1− α)A]1/α Nn,

and

Fn = αA1/α(1− α)
1−α

α .

From the first-order condition, we then obtain that ξt → ξ, which solves

ξ = h(θ∗)µ

[
L−1

∑
a=0

βa (ca
r − ca

n) +
Lw−1

∑
a=0

βaFneala
n

]
,

which also implies that ηn,t → ηn.

The necessary and sufficient conditions to solve for an interior steady state are

the following.

1. Consumption and government spending:

u′(ca
r )(Ωr − ξ − ηn) = µπr, u′(ca

n)(Ωn + ξ + ηn) = µπn (82)

and

C = ∑
a=0

(ca
r + ca

n), Ωv′(G) = µ. (83)
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2. Labor supply:

la
r = 0, ψ′(la

n)(Ωn + ψ + ηn) = µFnπnea. (84)

and

Nr = 0, Nn =
Lw−1

∑
a=0

πneala
n (85)

3. Robots:

X = [(1− α)A]1/α Nn. (86)

4. Skill acquisition cutoff θ∗

ξ = h(θ∗)µ

[
L−1

∑
a=0

βa (ca
r − ca

n) +
Lw−1

∑
a=0

βaFneala
n

]
,

5. Intensive-margin incentive compatibility, which need not necessarily bind:

θ∗ ≥ 0, ηn ≥ 0, ηnθ∗ = 0. (87)

6. Extensive-margin incentive compatibility:

θ∗ =
L−1

∑
a=0

βa [u(ca
n)− u(ca

r )]−
Lw−1

∑
a=0

βa [ψ (la
n)− ψ(0)] . (88)

7. Resource constraint:

C + G = FnNn. (89)

We have 9 + 2L + 2Lw equations in

{{ca
n, ca

r}a=0,...,L−1, {la
n, la

r }a=0,...,Lw−1, C, G, Nr, Nn, X, θ∗, µ, ψ, ηn},

which are 9 + 2L + 2Lw unknowns.
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A.2.6 Proof of Proposition 3

In the balanced-growth path, we have that ηr,−a = 0 and la
r = 0. As a result,

µ
[
FX − 1

]
+

Lw−1

∑
a=0

ηn,−aψ′
(

Fr

Fn
la
r

) d Fr
Fn

dXt
la
r +

Lw−1

∑
a=0

ηr,−aψ′
(

Fn

Fr
la
n

) d Fn
Fr

dXt
la
n = 0

reduces to

FX = 1.
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A.3 Appendix to Section 5

A.3.1 Status quo equilibrium equations

Below, we summarize the equilibrium equations for our model. We define the fol-

lowing variables:

qt,t+a ≡
a−1

∏
s=0

R−1
t+s, (90)

for a > 0, and qt,t ≡ 1.

Workers born at t ≥ 1 The consumption policy function is

ca
j,t+a =

βa

qt,t+a

1− β

1− βTW
0
i,t (91)

for t ≥ 0 and a = 0, ..., L− 1. Here,

W0
j,t ≡

Lw−1

∑
a=0

qt,t+aλt+a

(
wj,t+aeala

j,t+a

)1−γ
. (92)

The labor supply is given by

la
j,t+a =

[
qt,t+a

βa

λt+a
(
wj,t+aea

)1−γ

λt
(
wj,te0

)1−γ

] 1
ν+γ

l0
j,t (93)

and

l0
j,t =

1− βL

1− β

1− γ

ζ

1

∑Lw−1
s=0 β−a 1−γ

ν+γ

[
qt,t+sλt+s(wj,t+ses)

1−γ

λt(wj,te0)
1−γ

] 1+ν
ν+γ


1

1+ν

(94)

for t ≥ 0 and a = 0, ..., Lw − 1.

Solving for ca
j,t+a and la

j,t+a we can compute asset holdings recursively,

ba
j,t+a = Rt+a

[
ba−1

j,t+a−1 + λt+a

(
wj,t+aeala

j,t+a

)1−γ
− ca

j,t+a

]
(95)
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for a = 0, 1, ..., Lw − 1 using the fact that b−1
j,t−1 = 0, and

ba
j,t+a = Rt+a

[
ba−1

j,t+a−1 − ca
j,t+a

]
(96)

for a = Lw, ..., L− 1.

Skill acquisition is determined by a threshold rule, which implies that the share

of non-routine workers is given by

πn,t = H(θ∗t ), πr,t = 1− πn,t, (97)

where

θ∗t =
L−1

∑
a=0

βa log ca
n,t+a −

Lw−1

∑
a=0

βav
(
la
n,t+a

)
−

L−1

∑
a=0

βa log ca
r,t+a +

Lw−1

∑
a=0

βav
(
la
r,t+a

)
. (98)

Workers born at t = 2− Lw, ..., 0 The consumption policy function is

ca+s−1
j,s =

βs−1

q1,s

1− β

1− βL−aW
a
j,1, (99)

for s = 1, ...., L− a and a = 1, ..., Lw − 1, where

W a
j,1 =

Lw−a

∑
s=1

q1,sλs

(
wj,sea+s−1la+s−1

j,s

)1−γ
+ R0ba−1

j,0 . (100)

Here, ba−1
j,0 denotes the exogenous level of financial wealth with which these agents

enter the economy.

Labor supply is given by

la+s−1
j,s =

[
q1,s

βs−1

λs
(
wj,sea+s−1

)1−γ

λ1
(
wj,1ea

)1−γ

] 1
γ+ν

la
j,1, (101)

for s = 1, ...., Lw − a and a = 1, ..., Lw − 1, and

la
j,1 =


1− γ

ζ

1− βL−a

1− β

1

∑Lw−a
s=1 β−(s−1) 1−γ

γ+ν

[
q1,s

λs(wj,sea+s−1)
1−γ

λ1(wj,1ea)
1−γ

] 1+ν
γ+ν

+
ba−1

j,0

λ1

(
wj,1eala

j,1

)1−γ



1
1+ν

,

(102)
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for a = 1, ..., Lw − 1.

Solving for ca
j,t+a and la

j,t+a we can calculate asset holdings recursively,

ba+s−1
j,s = Rs

[
ba+s−2

j,s−1 + λs

(
wj,sea+s−1la+s−1

j,s

)1−γ
− ca+s−1

j,s

]
(103)

for s = 1, ..., Lw − a using the fact that ba−1
j,0 is exogenous, and

ba+s−1
j,s = Rs

[
ba+s−2

j,s−1 − ca+s−1
j,s

]
(104)

for s = Lw − a + 1, ..., L− a. This procedure is used for a = 1, ..., Lw − 1.

Workers born at t = 2− L, ..., 1− Lw The consumption policy function is

cã−1+s
j,s =

βs−1

q1,s

1− β

1− βL−ã bã−1
j,0 , (105)

for s = 1, ..., L− ã and ã = Lw, ...L− 1.

We can solve for asset holdings recursively,

bã+s−1
j,s = Rs

[
bã+s−2

j,s−1 − cã+s−1
j,s

]
(106)

using the fact that bã−1
j,0 is exogenous, for s = 1, ..., L− ã. This procedure is used for

ã = 1, ..., Lw − 1.

Firm’s problem The first-order conditions with respect to routine labor, robots

and non-routine labor are as follows:

wr,t = (1− α) A
[

X
ε−1

ε
t + N

ε−1
ε

r,t

] ε
ε−1 (1−α)−1

Nα
n,tN

− 1
ε

r,t , (107)

φt = (1− α) A
[

X
ε−1

ε
t + N

ε−1
ε

r,t

] ε
ε−1 (1−α)−1

Nα
n,tX

− 1
ε

t , (108)

wn,t = αA
[

X
ε−1

ε
t + N

ε−1
ε

r,t

] ε
ε−1 (1−α)

Nα−1
n,t . (109)
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Government’s budget constraint

Gt + Bt−1 =
Lw−1

∑
a=0

∑
j=n,r

πt−a

{
wj,teala

j,t − λt

(
wj,teala

j,t

)1−γ
}
+ τxφtXt +

Bt

Rt
. (110)

Market clearing The market-clearing condition for aggregate labor supply is

Nj,t =
Lw−1

∑
a=0

πj,t−aeala
j,t. (111)

Aggregate consumption, Ct, is given by

Ct =
L−1

∑
a=0

∑
j=r,n

πj,t−aca
j,t. (112)

The goods market-clearing condition is

Ct + Gt = F(Xt, Nr,t, Nn,t)− φtXt. (113)

The asset market-clearing condition is

L−2

∑
a=0

∑
j=n,r

πj,t−aba
j,t = Bt. (114)

Table 5 lists the normalized variables used in our analysis.
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Table 5: Normalized variables

Parameter/Variable Original Variables Normalized variables

Tax level λt = φ
−γ 1−α

α
t λt λt = φ

γ 1−α
α

t λt

Government bonds Bt = φ
− 1−α

α
t+1 Bt Bt = φ

1−α
α

t+1Bt

Government bonds 2 Bt
Ct

= bt
Bt
Ct

= bte−
1−α

α gφ

Real interest rate Rt = egφ
1−α

α Rt Rt = e−gφ
1−α

α Rt

Discount factor qt,t+a = e−gφ
1−α

α qt,t+a qt,t+a = eagφ
1−α

α qt,t+a

Initial period assets ba−1
j,0 = φ

− 1−α
α

1 b
a−1
j,0 b

a−1
j,0 = φ

1−α
α

1 ba−1
j,0

Initial government bonds B0 = φ
− 1−α

α
1 B0 B0 = φ

1−α
α

1 B0

Present value wealth W a
j,t = φ

− 1−α
α

t W a
j,t W a

j,t = φ
1−α

α
t W a

j,t

Pre-automation steady state We start by solving for the non-detrendred variables

in a steady state with X = 0. For this initial steady state, we take occupations as

being exogenous and set πn = 0.4356 constant across generations to match the data

on occupations. We also set G/C = 0.2126 and B/C = 0.0427.

We use a root finding algorithm to calibrate the discount factor β, the labor disu-

tility parameter ζ, the share of non-routine workers in production α, and the steady-

state interest rate R, so that

βR = 1,
Lw−1

∑
a=0

∑
j=n,r

πjla
j = 1/3,

wn

wr
= 1.1943.

The assumption that βR = 1 is consistent with GOURINCHAS and PARKER (2002),

the second condition implies that the average labor supply is equal to one-third, and

the final condition implies that the non-routine wage premium matches that in the
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data.

Transition dynamics First, we solve for the final steady state equilibrium. In this

steady state, πn = 1 and lτ
r for all τ. As a result,

X = [(1− α) A]1/α Nn,

and

wr = 0, wn = αA1/α(1− α)
1−α

α .

Computing this steady state requires iterating on the equilibrium real interest rate.

In checking for a steady-state equilibrium, we always look for a solution that satis-

fies asset market clearing rather than goods market clearing. From Walras’ law, if the

asset market clears, then so does the goods market. AUCLERT and ROGNLIE (2018)

note that searching for a solution that only satisfies the goods market clearing con-

dition can be problematic. The reason is that, in a steady state, satisfying the goods

market clearing and every budget constraint implies asset market clearing only if

the interest rate is not one (i.e., R 6= 1).

We use the transition to calibrate the parameters {φ̃, gφ, ε, µ, σ}. These parame-

ters are chosen so that the competitive equilibrium matches the wage premium and

occupation shares. The calibration procedure minimizes a sum of square deviations

between the equilibrium and the data.

To solve for the equilibrium, we take the asset distribution and occupation shares

in the initial steady state and compute a perfect foresight transition to this final

steady state. We assume that convergence occurs after T periods (for our baseline

exercise, we set T = 50). Given {wn,t, wr,t, Rt, λt}T
t=0, we can solve every household

problem to obtain consumption and labor at all periods and ages. As a result, we

can also solve for θ∗t for all t, and then πn,t and πr,t. We can also back out bτ
j,t.

Aggregating these variables, we obtain Ct = ∑L−1
τ=0 ∑j=n,r πj,t−τcτ

j,t and Nj,t =

∑L−1
τ=0 πj,t−τeτlτ

j,t. Because we fixed the ratio of spending to consumption and the
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ratio of debt to consumption, we can use Ct to also back out Gt and Bt for all t. We

can also use the first-order condition with respect to robots to solve for Xt.

Given these solutions and the initial guesses {wn,t, wr,t, Rt, λt}T
t=0, we check a set

of four equations in every period:

∆1,t ≡ wr,t − φ
ε
α
t (1− α) A

[
Xε

t + φ
ε
α
t Nε

r,t

] 1−α
ε −1

Nα
n,tN

ε−1
r,t ,

∆2,t ≡ wn,t − αA
[

Xε
t + φ

ε
α
t Nε

r,t

] 1−α
ε

Nα−1
n,t ,

∆3,t ≡ Gt + τxXt + Bt−1 −
Lw−1

∑
a=0

∑
j=n,r

πt−a

{
wj,teala

j,t − λt

(
wj,teala

j,t

)1−γ
}
− Bt

Rt
,

∆4,t ≡
L−2

∑
a=0

∑
j=n,r

πj,t−ab
a
j,t − Bt.

Formally, the model provides a mapping from X ≡ {wn,t, wr,t, Rt, λt}T−1
t=0 to ∆ ≡

{∆1,t, ∆2,t, ∆3,t, ∆4,t}T−1
t=0 , and we denote this mapping by M : R4T → R4T. An equi-

librium is X such that M(X) = 0.

A.3.2 Optimal Mirrleesian policy

Because our calibration procedure yields ε = 1, we specialize this presentation to

this case. Assuming that automation is interior (which we verify ex post), we can

change variables as in the static model; that is, instead of Xt we use the variable τx
t ,

which is such that

Xt =

[
(1− α)A

1 + τx
t

]
Nn,t − φ1/α

t Nr,t.

This change of variables also implies that

NYt = A
1
α
(1− α)

1−α
α

(1 + τX)
1−α

α

τx
t + α

1 + τx
t

Nn,t + φ
1
α
t Nr,t
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and that relative wages are

Fr,t

Fn,t
=

1− α

α
φ

1
α
t

[
1 + τx

t
(1− α) A

] 1
α

.

The optimal plan solves the following problem:

max
∞

∑
t=1

βt ∑
i=r,n

{
L−1

∑
a=0

βtπi,t−a log
(
ca

i,t
)
−

Lw−1

∑
a=0

βtπi,t−av
(
la
i,t
)}
−

∞

∑
t=1

βt
ˆ θ∗t

−∞
h (θ) θdθ +

∞

∑
t=1

βtLχ log
(
Gt
)

[
βtµt

]
∑

i=r,n

L−1

∑
a=0

πi,t−aca
i,t + Gt ≤ A

1
α

[
1− α

1 + τx
t

] 1−α
α τx

t + α

1 + τx
t

Nn,t + φ
1
α
t Nr,t

[
βtψt

]
θ∗t =

{
L−1

∑
a=0

βt log
(
ca

n,t+a
)
−

Lw−1

∑
a=0

βtv
(
la
n,t+a

)}
−
{

L−1

∑
a=0

βt log
(
ca

r,t+a
)
−

Lw−1

∑
a=0

βtv
(
la
r,t+a

)}

[βηn,1−ã]
L−1

∑
a=ã

βa−ã log
(
ca

n,1+a−ã
)
−

Lw−1

∑
a=ã

βa−ãv
(
la
n,1+a−ã

)
≥

L−1

∑
a=ã

βa−ã log
(
ca

r,1+a−ã
)
−

Lw−1

∑
a=ã

βa−ãv
(

Fr,1+a−ã

Fn,1+1−ã
la
r,1+a−ã

)
[
βtηn,t

] L−1

∑
a=0

βa log
(
ca

n,t+a
)
−

Lw−1

∑
a=0

βav
(
la
n,t+a

)
≥

L−1

∑
a=0

βa log
(
ca

r,t+a
)
−

Lw−1

∑
a=0

βav
(

Fr,t+a

Fn,t+a
la
r,t+a

)

[βηr,1−ã]
L−1

∑
a=ã

βa−ã log
(
ca

r,1+a−ã
)
−

Lw−1

∑
a=ã

βa−ãv
(
la
r,1+a−ã

)
≥

L−1

∑
a=ã

βa−ã log
(
ca

n,1+a−ã
)
−

Lw−1

∑
a=ã

βa−ãv
(

Fn,1+a−ã

Fr,1+1−ã
la
n,1+a−ã

)
[
βtηn,t

] L−1

∑
a=0

βa log
(
cτ

r,t+a
)
−

Lw−1

∑
a=0

βav
(
la
r,t+a

)
≥

L−1

∑
a=0

βa log
(
ca

n,t+a
)
−

Lw−1

∑
a=0

βav
(

Fn,t+a

Fr,t+a
la
n,t+a

)
,

where we write the Lagrange multipliers in parentheses.

80



Optimality conditions We assume and later verify later that the intensive-margin
incentive compatibility of routine workers never binds.

1. First-order conditions with respect to ca
j,t for ã ≥ Lw (those who are retirees):

ca
j,t =

1
µt

.

2. First-order conditions with respect to ca
j,1+a−ã for 1 ≤ ã ≤ Lw − 1, which are (these do

not have an extensive-margin IC):

πr,1−ã − ηn,1−ã

ca
r,1+a−ã

= µ1+a−ãπr,1−ã ⇔ cr,1+a−ã =
1− ηn,1−ã

πr,1−ã

µ1+a−ã

πr,1−ã + ηn,1−ã

ca
n,1+a−ã

= µ1+a−ãπr,1−ã ⇔ cn,1+a−ã =
1 + ηn,1−ã

πr,1−ã

µ1+a−ã
.

3. First-order conditions with respect to la
i,1+a−ã for 1 ≤ ã ≤ Lw − 1. For routine workers:

v′
(
la
r,1+a−ã

)πr,1−ã − ηn,1−ã

(
Fr,1+a−ã

Fn,1+a−ã

)1+ν
 = πr,1−ãeaµ1+a−ãEr,1+a−ã.

For non-routine workers:

v′
(
la
n,1+a−ã

)
[πn,1−ã + ηn,1−ã] = πn,1−ãeaµ1+a−ãEn,1+a−ã.

4. Consumption ca
i,t+a (i.e., for those born in period t ≥ 1). For routine workers:

πr,t − ψt − ηn,t

ca
r,t+a

= µt+aπr,t ⇔ ca
r,t+a =

1− ψt+ηn,t
πr,t

µt+a
.

For non-routine workers:

πn,t + ψt + ηn,t

ca
n,t+a

= µt+aπn,t ⇔ ca
n,t+a =

1 + ψt+ηn,t
πn,t

µt+a
.

5. Government spending Gt:
Lχ

Gt
= µt ⇔ Gt =

Lχ

µt
.
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6. Labor supply la
i,t+a (i.e., for those born in period t ≥ 1). For routine workers:

v′
(
la
r,t+a

)
(πr,t − ψt)− ηn,tv′

(
Fr,t+a

Fn,t+a
la
r,t+a

)
Fr,t+a

Fn,t+a
= eaπr,tµt+aEr,t+a

v′
(
la
r,t+a

) (
πr,t − ψt − ηn,t

(
Fr,t+a

Fn,t+a

)1+ν
)

= eaπr,tµt+aEr,t+a.

For non-routine workers:

v′
(
la
n,t+a

)
[πn,t + ψt + ηn,t] = eaπn,tµt+aEn.

7. First-order condition with respect to the tax rate, τx,t:

Lw−1

∑
a=0

βt−aηn,t−aβav′
(

Fr,t

Fn,t
la
r,t

)
la
r,t

Fr,t

Fn,t
= µt

[
A

1
α (1− α)

1
α

τX,t

(1 + τX,t)
1
α

]
Nn,t.

8. First-order condition with respect to θ∗t :

ψt = h (θ∗t )

[
L−1

∑
a=0

βaµt+a
(
ca

r,t+τ − ca
n,t+a

)
+

Lw−1

∑
a=0

βaµt+a
(
Eneala

n,t+a − Er,teala
r,t+a

)]
.

9. We then need to add the intensive-margin IC for a = 1, ..., Lw − 1 in t = 1 (i.e., assume
that ηn,1−a > 0):

L−1−a

∑
s=0

βs log
(

ca+s
n,1+s

)
−

Lw−1−a

∑
s=0

βsv
(
ls
n,1+s

)
=

L−1−a

∑
s=0

βs log
(

ca+s
r,1+s

)
−

Lw−1−a

∑
s=0

βsv
(

Fr,1+s

Fn,1+s
la+s
r,1+s

)
.

This condition can be written as
L−1−a

∑
s=0

βs log

{
ca+s

n,1+s

ca+s
r,1+s

}
=

Lw−1−a

∑
s=0

βs
{

v
(
ls
n,1+s

)
− v

(
Fr,1+s

Fn,1+s
la+s
r,1+s

)}
.

10. This optimization requires ηn,t ≥ 0 for t ≥ 1, so we need to add the extra-conditions
(here, we write these equations only for t ≥ 1 as those are the ones for which the
extensive-margin IC may mean that the intensive-margin IC does not bind)

L−1

∑
a=0

βa log
(
ca

n,t+a
)
−

Lw−1

∑
a=0

βav
(
la
n,t+a

)
≥

L−1

∑
a=0

βa log
(
ca

r,t+a
)
−

Lw−1

∑
a=0

βav
(

Fr,t+a

Fn,t+a
la
r,t+a

)
ηn,t ≥ 0

ηn,t

[
L−1

∑
a=0

βa log
(
ca

n,t+a
)
−

Lw−1

∑
a=0

βav
(
la
n,t+a

)
−

L−1

∑
a=0

βa log
(
ca

r,t+a
)
+

Lw−1

∑
a=0

βav
(

Fr,t+a

Fn,t+a
la
r,t+a

)]
= 0.
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11. Intensive-margin IC:

θ∗t =

{
L−1

∑
a=0

βt log
(
ca

n,t+a
)
−

Lw−1

∑
a=0

βtv
(
la
n,t+a

)}
−
{

L−1

∑
a=0

βt log
(
ca

r,t+a
)
−

Lw−1

∑
a=0

βtv
(
la
r,t+a

)}

πn,t = H(θ∗t ).

12. Resource constraint:

∑
i=r,n

L−1

∑
a=0

πi,t−aca
i,t + Gt︸ ︷︷ ︸

L(1+χ)
µt

=
αA

1
α (1− α)

1−α
α

(1 + aX,t)
1−α

α

aX,t + α

α (1 + aX,t)
Nn,t + φ

1
α
t Nr,t.

We start by solving these equations to obtain the steady state, as described in

appendix A.2.5. For our calibration, the intensive-margin constraint is not binding

in the steady state.

Next, we use a root finding algorithm to solve for the transition to this steady

state. We assume that convergence to steady state occurs after T = 50 periods. To

simplify the computational process, we proceed in steps. We first search for a solu-

tion that disregards all intensive-margin incentive constraints (i.e., such that ηn,t = 0

for all t = 2− L, 3− L, ...). We check that, in this solution, the intensive-margin con-

straints of the old generations at time 1 are violated. We then use this solution as an

initial guess for a computational algorithm that includes these constraints for every

old generation in period 1 (i.e., ηn,t > 0 for t = 1− L, ..., 0). Next, we sequentially

check whether the intensive-margin constraints are violated for the generations at

time t ≥ 1 and add these constraints to the problem if they are. In our calibration,

these constraints do not bind.
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A.4 Robustness exercises

A.4.1 Mirrleesian optimal taxation from 1988

We solve for the optimal tax system starting in 1988. Figures 9 and 10 display our re-

sults. As in the optimal plan discussed in Section 5, we see that robots are taxed only

while the initial old generations of routine workers are in the labor force. Optimal

robot taxes in this plan are 9.1 percent between 1988 and 1997, 2.9 percent between

1998 and 2007, and 0.7 percent between 2008 and 2017.

Figure 9: Mirrleesian optimal taxation A
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Notes: The solid lines show the allocations for a Mirrleesian optimal plan that starts to be implemented
in 1988. The dashed lines correspond to the status quo equilibrium. The first and second panels show
the evolution of robot taxes, τx

t , and automation, mt, respectively. The third and fourth panels plot
the equilibrium levels of net output and wages for the two worker types, respectively.

A.4.2 Robustness to parameters

Table 6 summarizes key properties of the optimal plan for different parameter choices.
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Figure 10: Mirrleesian optimal taxation B
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Notes: The solid lines show the allocations for a Mirrleesian optimal plan that starts to be implemented
in 1988. The dashed lines correspond to the status quo equilibrium. The first and second panels show
the equilibrium levels of the average across agents of the labor supply and consumption, respectively.
The third panel plots the equilibrium levels of utility for both agents. Finally, the fourth panel shows
the share of newborns who choose non-routine skills, πn,t, and the share of non-routine workers in
the workforce, πn,t.
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Table 6: Robustness

2018–2027 2028–2037 2038–2047

Baseline
Robot tax (%) τx

t 5.1 2.2 0.6
Newborn non-routine πn,t 0.88 0.88 0.88
Wage premium wn,t/wr,t 1.38 1.52 1.63

High cost
level

φ̃ = 0.44

Robot tax (%) τx
t 5.7 2.4 0.7

Newborn non-routine πn,t 0.84 0.85 0.86
Wage premium wn,t/wr,t 1.31 1.45 1.56

Low cost
level

φ̃ = 0.42

Robot tax (%) τx
t 4.5 2.0 0.6

Newborn non-routine πn,t 0.92 0.90 0.90
Wage premium wn,t/wr,t 1.45 1.58 1.69

Low skill
elasticity
σ = 1.23

Robot tax (%) τx
t 5.9 2.9 0.9

Newborn non-routine πn,t 0.54 0.62 0.63
Wage premium wn,t/wr,t 1.36 1.50 1.62

Faster
tech. progress

gφ = 0.036

Robot tax (%) τx
t 5.2 1.8 0.4

Newborn non-routine πn,t 0.91 0.93 0.94
Wage premium wn,t/wr,t 1.37 1.59 1.76

Slower
tech. progress

gφ = 0.009

Robot tax (%) τx
t 5.1 2.4 0.8

Newborn non-routine πn,t 0.86 0.85 0.84
Wage premium wn,t/wr,t 1.38 1.48 1.56

Note: This table summarizes key properties of the Mirrleesian optimal plan for different parameter configu-
rations. The baseline parameters are reported in Table 1. For comparison purposes, we start by reporting the
baseline results. For the first two robustness exercises, we vary the rate of technical progress gφ fixing the level
of φt in 2018. For the next two exercises, we consider changes in the level φ̃. In the final two exercises, we
consider two economies with a higher variance of θ.
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