SI units, symbols
and dimensioning

12

## Contents

Common pneumatic symbols ..... 459
Numbering of connections ..... 460
Thread sizes ..... 460
Expressions and definitions ..... 461
SI units and designations ..... 462
Units for flow ..... 463
Dimensioning ..... 465
Flow in tubing and fittings ..... 466
Average air consumption ..... 467
Maximum air flow ..... 469
Quick selection for choosing right flow ..... 470
Lifting force of vacuum pads ..... 471
Evacuation time of vacuum pads ..... 472
Mass moment of inertia ..... 474

## Common pneumatic symbols



Valve control, solenoid pilot valve

2/2 valve, normally closed, monostable, push button-controlled with spring return

3/2 valve, normally closed, monostable, pressure-controlled with spring return

3/2 valve, normally closed

3/2 valve, normally open

5/2 valve, bistable

5/2 valve, monostable

5/3 valve, closed center

5/3 valve, open center

5/3 valve, pressurized center

Double 3/2 valve,
normally closed/normally closed

Double 3/2 valve,
normally open/normally open

Double 3/2 valve,
normally closed/normally open

Single acting cylinder with spring return

## Double acting cylinder

Double acting cylinder with magnetic piston for sensors

Double acting cylinder with adjustable cushioning at both end positions

Double acting cylinder
with magnetic piston for sensors and adjustable cushioning at both end positions

Rotary actuator

## Numbering of connections

## Explanation of how the different connections on the pneumatic components are named.

## Port number:

1 (P) Inlet, usually related to mains air supply.
2 (B) Outlet to consumers.
3 (R, E) Drain exhaust.
4 (A) Outlet to consumers.
5 (R, E) Drain exhaust.
10 Connection for impulse that closes the valve. Only 3/2 N.O.
12 Connection for impulse that combines inlet 1 with outlet 2.
14 Connection for impulse that combines inlet 1 with outlet 4.

- Single digit even numbers indicates the outlet.
- Single digit odd numbers (except 1) indicate exhaust.
- Double digits indicating controlling connections.


Other definitions exist depending on the brand.

## Thread sizes

| Thread designation |  |  | Outside diameter | Inside diameter |
| :---: | :---: | :---: | :---: | :---: |
| M3 |  |  | 3 mm | 2.5 mm |
| M5 |  |  | 5 mm | 4.2 mm |
| 1/8" | 01 | R6 | 9.7 mm | 8.6 mm |
| 1/4" | 02 | R8 | 13.2 mm | 11.4 mm |
| 3/8" | 03 | R10 | 16.7 mm | 15 mm |
| 1/2" | 04 | R15 | 21 mm | 18.6 mm |
| 3/4" | 06 | R20 | 26.4 mm | 24.1 mm |
| 1" | 10 | R25 | 33.2 mm | 30.3 mm |
| 11/4" | 12 | R32 | 41.9 mm | 39.8 mm |
| 11/2" | 14 | R40 | 47.8 mm | 44.8 mm |
| 2" | 20 | R50 | 59.6 mm | 56.7 mm |



SMC's part number provides information on the thread. In chapter 10 you will find KQ2 fittings. The last positions in the order number indicate the type of thread. Here you can see what they stand for:

U01 UNI-thread. Fits tapered, NPT, straight threads. Disc for sealing.
01S Taper thread. Also fits straight thread. Sprayed PTFE on the threads to seal.
G01 Straight thread. Disc for sealing.
M3/M5 Metric thread. Disc for sealing.


# Expressions and definitions 

## A short glossary of common terms and definitions in pneumatics.

## Cylinders

Double acting cylinder where the piston movement in both directions occurs through the influence of pressurized medium.
Single acting cylinder where the piston movement in one direction is done by the influence of pressurized medium and in the other direction by some other force (spring).
Cylinder end cover the end caps that limit the piston movement in the cylinder.
Piston rod the part that is firmly connected to the piston and passes through one end or both ends.

Extension when the piston rod moves out of the cylinder.
Retraction when the piston rod moves into the cylinder.
Extended when the piston rod is in its outer end position.
Retracted when the piston rod is in its inner end position.
Plus chamber the cylinder chamber, which when pressurized generates extension.
Minus chamber the cylinder chamber, which when pressurized generates retraction.

## Valves

2/2 valve valve with an inlet and an outlet, can assume two different positions.
$3 / 2$ valve valve with an inlet, an outlet and an exhaust, can assume two different positions.
5/2 valve valve with one inlet, two outlets and two exhausts, can assume two different positions.
5/3 valve valve with one inlet, two outlets and two exhausts, can assume three different positions.

Normally closed valve (N.C.) If the valve is not activated, the connection between inlet and outlet is closed.
Normally closed valve (N.O.) If the valve is not activated, the connection between inlet and outlet is open.

Bistable valve Missing spring and remains in position until it is activated. Has two stable positions and "memory".
Monostable valve Has a spring and returns to its home position when it is not activated.

Directional control valve Valve that can control the flow of alternate routes, or open and close the flow path.
Flow control valve Valve that can regulate the flow volume.
Pressure control valve Valve that can regulate the pressure.

Direct operated The valve is direct activated by hand, foot, or by mechanical means.
Pilot operated The valve is indirect activated by compressed air through amplifying a manual, mechanical or electrical signal to the valve stem or spool. A small and easily adjustable valve controls the major valve.

# SI units and designations 

## The SI system is based on seven basic units that can be combined to derived units. Here are the units that are common in pneumatics.

n Europe, the SI system is used since a long time, and it is introduced in more than one hundred countries worldwide. The abbreviation "SI" is French and is read Système International d'Unités - that is "The International System of Units".

## Prefix

In the SI system, the units are made larger or smaller by using a prefix to indicate orders of magnitude.

Common prefixes are found in the table on the right.

## Units for pressure

Pressure in pascal (bar is an older term used less and less). $1 \mathrm{bar}=100000 \mathrm{~Pa}$ (pascal) $=100 \mathrm{kPa}$ (kilopascal) $=0.1 \mathrm{MPa}$ (megapascal).

## Pressure in physics

In physics, used absolute pressure ( $p a b s$ ), which means that the scale begins with zero point at absolute vacuum.

## Pressure in pneumatics

In pneumatics a scale is used where zero is at atmospheric pressure and -100 kPa at absolute vacuum. This is how we define air pressure in this product overview.

Air in the normal state is usually denoted by an $n$ after the device (for example In for normal liters). Normal air has an atmospheric pressure, is $20^{\circ} \mathrm{C}$ and has a relative humidity of $65 \%$. Popularly known as "air in the room environment".

| Exponent | Multiplier | Prefix | Symbol |
| :---: | :---: | :--- | :---: |
| $10^{-6}$ | 0.000001 | micro- | $\mu$ |
| $10^{-3}$ | 0.001 | milli- | m |
| $10^{-2}$ | 0.01 | centi- | c |
| $10^{-1}$ | 0.1 | deci- | d |
| $10^{1}$ | 10 | deca- | da |
| $10^{2}$ | 100 | hecto- | h |
| $10^{3}$ | 1000 | kilo- | k |
| $10^{6}$ | 1000000 | mega- | M |



| Quantity | Symbol | Unit symbol | Unit name | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Basic units |  |  |  |  |
| Mass | m | kg | kilogram |  |
| Length | s | m | meter |  |
| Time | t | s | second |  |
| Derived units |  |  |  |  |
| Area | A | $\mathrm{m}^{2}$ | square meter |  |
| Volume | V | $\mathrm{m}^{3}$ | cubic meter |  |
| Velocity | v | $\mathrm{m} / \mathrm{s}$ | meter per second |  |
| Acceleration | a | $\mathrm{m} / \mathrm{s}^{2}$ | meter per second squared |  |
| Inertia | J | $\mathrm{kgm}^{2}$ | kilogram square meter |  |
| Force | F | N | newton | $=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$ |
| Weight | G | N | newton | $=\mathrm{kg} \cdot 9.82$ |
| Energy (work) | W | J | joule (= newtonmeter) | $=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$ |
| Moment | M | Nm | newtonmeter |  |
| Effect | P | W | watt | $=\mathrm{J} / \mathrm{s}=\mathrm{Nm} / \mathrm{s}$ |
| Derived units related to compressed air |  |  |  |  |
| Pressure | p | Pa | pascal | $=\mathrm{N} / \mathrm{m}^{2}$ |
| Standard volume | $V_{n}$ | $\mathrm{m}^{3} \mathrm{n}$ | normal cubic meter |  |
| Volume flow | $Q_{n}$ | $\mathrm{m}^{3} / \mathrm{s}$ | normal cubic meter per second |  |

## Units for flow

## Comparison and conversion between different international flow units.

|n order to determine if a valve has sufficient output for a given application, requires more than knowing the maximum flow. You must also know how a value is measured in order to use it in the actual case.

A valve flow performance depends not only on the dimensions and geometry of the valve body. The following variables are significant:

- The pressure at the output port
- The pressure drop across the valve
- The relationship between this pressure and the primary pressure
- The temperature

In all cases, based on a data flow performance on the so-called normal volume. It is the volume of air occupied at atmospheric pressure, $20^{\circ} \mathrm{C}$ and relative humidity of $65 \%$ (normal air). This volume is frequently given in $\mathrm{I}_{\mathrm{n}}$ resp $\mathrm{Nm}^{3}$. Since newton (N) has been introduced as a unit of force, this writing is no longer correct. Since liter is not an Sl unit, volume should be given in $\mathrm{dm}^{3}{ }_{\mathrm{n}}$, and since that unit is unnecessarily complicated, we have chosen $\mathrm{I}_{\mathrm{n}}$ for simplicity.

In the adjacent chart is shown the international use of the units and their interrelationships. The arrows pointing to another unit states the conversion factor.

## $\mathrm{Q}_{\mathrm{n}}$ - normal flow rate

To roughly indicate flow, volume is currently used, i.e. the flow that the valve is performing at a primary pressure of 6 bar and 1 bar pressure drop across the valve. It is only a rough indication, because the measurement methods and conditions may vary from make to make.

## S - equivalent flow area

The value of $S$ in $\mathrm{mm}^{2}$ is the flow area (holes) in a measuring instrument that provides the same pressure drop as a valve or a system of components at the same output. SMC specifies this value for each component. It is measured with air as a medium and can be converted to other units, such as kv or Cv factor.


## C value

C value (conductance) is the unit that ISO and the current standard uses to indicate flow. One way to find out a product's $C$ value is dividing the product's maximum flow rate $\left(Q_{n}\right)$ with the absolute inlet pressure (P1a). The unit is liter/second/bar. $Q_{n} \approx C \cdot 270$. The factor 270 will vary depending on the product's $b$ value.

## $b$ value

A product's $b$ value is obtained by dividing the absolute outlet pressure (P2a) with the absolute inlet pressure (P1a), at the crossing between the upper and lower critical flow. The value is a number less than 1 and is without a unit as it indicates a relationship. The larger the number, the greater the flow. Two products can have the same $C$ value but different $b$ value. This means that the products have the same maximum flow rate $\left(Q_{n}\right)$, but different pressure drops in, for example, half the flow.

## kv value

Metric measurements in "normal liters per minute". This measurement is based on measurements of water. When a liter of water each minute passes with a pressure drop of 1 bar is defined $q$ value to 1 . There is thus a pure and dimensionless correlation factor.

## Kv value

As the kv value above, however, expressed in $\mathrm{m}^{3} / \mathrm{h}$, a measure that meets the SI standard.

## Cv factor

As the above value but based on the Anglo-Saxon system of measurement. It is related to US gallons (USG) per minute at a pressure drop of $1 \mathrm{psi}(0.07 \mathrm{bar})$ and a temperature of $60^{\circ} \mathrm{F}\left(15.6^{\circ} \mathrm{C}\right)$.

## f factor

As Cv factor but in Imperial gallons (gal) per minute.

## Dimensioning

## Get help to calculate the cylinder size that is best suited for each task.

Cylinder force can be determed by using the table or the following formulas below to calculate the theoretical cylinder power:

$$
F=P \cdot A \quad A=\frac{\pi \cdot \mathrm{d}^{2}}{4}
$$

$F=$ force (N)
$P=$ pressure (MPa)
$\mathrm{d}=$ cylinder bore ( mm )
$A=\operatorname{area}\left(\mathrm{mm}^{2}\right)$

At retraction, the force is lower because the rod reduces the available piston area.

Load rating should be around $70 \%$ for ordinary cylinder movements and around $50 \%$ for slow moving. Check available pressure (as a basic rule, SMC uses the column for 0.5 MPa ).

Example: For cylinder force 1000 N, choose cylinder bore $63 \mathrm{~mm}: 1000$ (force) $\div 0.7$ (maximum load rate $70 \%) \approx 1428$, the next higher cylinder force in the column for 0.5 MPa is 1559 N corresponding bore 63.

Calculation of theoretical cylinder force

| Nominal cylinder bore | Piston rod diameter | Operation | Effective piston area ( $\mathrm{cm}^{2}$ ) | Pressure (MPa), cylinder force in newton (N) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
| 6 mm | 3 mm | Extens. | 0.28 | 6 | 8 | 11 | 14 | 17 | 20 | - | - | - |
|  |  | Retract. | 0.21 | 4 | 6 | 8 | 11 | 13 | 15 | - | - | - |
| 10 mm | 4 mm | Extens. | 0.79 | 16 | 24 | 31 | 39 | 47 | 55 | - | - | - |
|  |  | Retract. | 0.66 | 13 | 20 | 26 | 33 | 40 | 46 | - | - | - |
| 12 mm | 6 mm | Extens. | 1.13 | 23 | 34 | 45 | 57 | 68 | 79 | 90 | 102 | 113 |
|  |  | Retract. | 0.85 | 17 | 25 | 34 | 42 | 51 | 59 | 68 | 76 | 85 |
| 16 mm | 6 mm | Extens. | 2.01 | 40 | 60 | 80 | 101 | 121 | 141 | 161 | 181 | 201 |
|  |  | Retract. | 1.73 | 35 | 52 | 69 | 86 | 104 | 121 | 138 | 155 | 173 |
| 20 mm | 8 mm | Extens. | 3.14 | 63 | 94 | 126 | 157 | 188 | 220 | 251 | 283 | 314 |
|  |  | Retract. | 2.64 | 53 | 79 | 106 | 132 | 158 | 185 | 211 | 238 | 264 |
| 25 mm | 10 mm | Extens. | 4.91 | 98 | 147 | 196 | 245 | 295 | 344 | 393 | 442 | 491 |
|  |  | Retract. | 4.12 | 82 | 124 | 165 | 206 | 247 | 289 | 330 | 371 | 412 |
| 32 mm | 12 mm | Extens. | 8.04 | 161 | 241 | 322 | 402 | 483 | 563 | 643 | 724 | 804 |
|  |  | Retract. | 6.91 | 138 | 207 | 276 | 346 | 415 | 484 | 553 | 622 | 691 |
| 40 mm | 16 mm | Extens. | 12.57 | 251 | 377 | 503 | 628 | 754 | 880 | 1005 | 1131 | 1257 |
|  |  | Retract. | 10.56 | 211 | 317 | 422 | 528 | 633 | 739 | 844 | 950 | 1056 |
| 50 mm | 20 mm | Extens. | 19.63 | 393 | 589 | 785 | 982 | 1178 | 1374 | 1571 | 1767 | 1963 |
|  |  | Retract. | 16.49 | 330 | 495 | 660 | 825 | 990 | 1155 | 1319 | 1484 | 1649 |
| 63 mm | 20 mm | Extens. | 31.17 | 623 | 935 | 1247 | 1559 | 1870 | 2182 | 2494 | 2806 | 3117 |
|  |  | Retract. | 28.03 | 561 | 841 | 1121 | 1402 | 1682 | 1962 | 2242 | 2523 | 2803 |
| 80 mm | 25 mm | Extens. | 50.27 | 1005 | 1508 | 2011 | 2514 | 3016 | 3519 | 4022 | 4522 | 5027 |
|  |  | Retract. | 45.36 | 907 | 1361 | 1814 | 2268 | 2722 | 3175 | 3629 | 4082 | 4536 |
| 100 mm | 30 mm | Extens. | 78.53 | 1571 | 2356 | 3141 | 3927 | 4712 | 5497 | 6282 | 7068 | 7853 |
|  |  | Retract. | 71.47 | 1429 | 2144 | 2859 | 3574 | 4288 | 5003 | 5718 | 6432 | 7147 |
| 125 mm | 32 mm | Extens. | 123 | 2450 | 3680 | 4910 | 6150 | 7360 | 8590 | 9820 | 11040 | 12270 |
|  |  | Retract. | 115 | 2294 | 3441 | 4588 | 5735 | 6882 | 8029 | 9176 | 10323 | 11470 |
| 140 mm | 36 mm | Extens. | 154 | 3080 | 4620 | 6160 | 7700 | 9240 | 10800 | 12300 | 13900 | 15400 |
|  |  | Retract. | 144 | 2880 | 4320 | 5760 | 7200 | 8640 | 10100 | 11500 | 13000 | 14400 |
| 160 mm | 40 mm | Extens. | 201 | 4020 | 6030 | 8040 | 10050 | 12060 | 14070 | 16080 | 18100 | 20110 |
|  |  | Retract. | 189 | 3770 | 5650 | 7540 | 9420 | 11310 | 13190 | 15080 | 16960 | 18850 |
| 180 mm | 45 mm | Extens. | 254 | 5080 | 7620 | 10200 | 12700 | 15200 | 17800 | 20300 | 22900 | 25400 |
|  |  | Retract. | 239 | 4780 | 7170 | 9560 | 12000 | 14300 | 16700 | 19100 | 21500 | 23900 |
| 200 mm | 50 mm | Extens. | 314 | 6280 | 9420 | 12600 | 15700 | 18800 | 22000 | 25100 | 28300 | 31400 |
|  |  | Retract. | 295 | 5900 | 8850 | 11800 | 14800 | 17700 | 20700 | 23600 | 26600 | 29500 |
| 250 mm | 60 mm | Extens. | 491 | 9820 | 14700 | 19600 | 24600 | 29500 | 34400 | 39300 | 44200 | 49100 |
|  |  | Retract. | 463 | 9260 | 13900 | 18500 | 23200 | 27800 | 32400 | 37000 | 41700 | 46300 |
| 300 mm | 70 mm | Extens. | 707 | 14100 | 21200 | 28300 | 35400 | 42400 | 49500 | 56600 | 63600 | 70700 |
|  |  | Retract. | 668 | 13400 | 20000 | 26700 | 33400 | 40100 | 46800 | 53400 | 60100 | 66800 |

## Flow in tubing and fittings

## A simple quick reference sheet to calculate the air flow in tubes of varying lengths and dimensions.

T:he table below shows the air flow in the different tube sizes and lengths. The upper value is only the tubing and lower is the tubing with a straight KQ2H fitting at one end and a KQ2L elbow fitting at the other end.

The flow $\left(Q_{n}\right)$ is given in $I_{n} / m i n$. i.e.: $I N=0,6 \mathrm{MPa}$ and OUT $=0,5 \mathrm{MPa}$.

| Tubing (outer/inner diam.) | $\mathbf{0 . 5} \mathbf{~ m}$ | $\mathbf{1} \mathbf{~ m}$ | $\mathbf{3} \mathbf{~ m}$ | $\mathbf{5} \mathbf{~ m}$ |
| :--- | ---: | ---: | ---: | ---: |
| $3.2 \mathrm{~mm} / 2 \mathrm{~mm}$ | 76 | 54 | 35 | 27 |
| with fittings | 61 | 48 | 33 | 26 |
| $4 \mathrm{~mm} / 2.5 \mathrm{~mm}$ | 134 | 101 | 61 | 48 |
| with fittings | 98 | 82 | 56 | 45 |
| $6 \mathrm{~mm} / 4 \mathrm{~mm}$ | 424 | 333 | 209 | 165 |
| with fittings | 314 | 272 | 191 | 156 |
| $8 \mathrm{~mm} / 5 \mathrm{~mm}$ | 722 | 581 | 374 | 297 |
| with fittings | 473 | 426 | 321 | 268 |
| $8 \mathrm{~mm} / 6 \mathrm{~mm}$ | 1105 | 906 | 596 | 476 |
| with fittings | 700 | 641 | 498 | 422 |
| $10 \mathrm{~mm} / 8 \mathrm{~mm}$ | 2156 | 1826 | 1251 | 1012 |
| with fittings | 1083 | 1056 | 958 | 879 |
| $12 \mathrm{~mm} / 9 \mathrm{~mm}$ | 2780 | 2387 | 1666 | 1355 |
| with fittings | 1662 | 1565 | 1419 | 1276 |

Note! If you choose tubing with the same flow as the selected valve, flow is reduced to $71 \%$ of valve capacity.

Example: A VZ3000-valve ( $196 \mathrm{I}_{\mathrm{n}} / \mathrm{min}$ ) with 3 meters of tube, diameter $6 \mathrm{~mm} / 4 \mathrm{~mm}$ ( $191 \mathrm{I}_{\mathrm{n}} / \mathrm{min}$ with fittings), provides a flow of about $140 \mathrm{I}_{\mathrm{n}} / \mathrm{min}$.

## Serial connection

w. same flow rates

$$
\begin{aligned}
1+1 & \Rightarrow 71 \% \\
1+1+1 & \Rightarrow 58 \% \\
1+1+1+1 & \Rightarrow 50 \%
\end{aligned}
$$

## Serial connection Parallel

 w. diff. flow rates connection$$
\begin{array}{ll}
2+1 \Rightarrow 89 \% & \\
3+1 \Rightarrow 9 \Rightarrow 2 \\
3+1 \Rightarrow 97 \% & \\
4+1+2 \Rightarrow 3 \\
4+3 \Rightarrow 4
\end{array}
$$

Example: If two components with the same flow (1) are serially connected, the flow is reduced to $71 \%$ of what a component normal has.

## Serial connection

$\frac{1}{\mathrm{~S}^{2}}=\frac{1}{\mathrm{~S}_{1}{ }^{2}}+\frac{1}{\mathrm{~S}_{2}{ }^{2}}+\frac{1}{\mathrm{~S}_{\mathrm{n}}{ }^{2}}$

## Parallel connection

$\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{\mathrm{n}}$

# Average air consumption 

## How to calculate the average air consumption of cylinders and air lines.

1ou need to know the average air consumption to determine the compressor size and running cost.
Here we show how to use the charts on this page to calculate the average air consumption of cylinders and air lines.

Single stroke (extension or retraction)


Double stroke $=$ cycle (extension and retraction)


## Example:

Cylinder bore: 50 mm
Stroke: 600 mm
Working pressure: 0.5 MPa
Work cycles: 5 cycles per minute
Air tubing inner diameter: 6 mm
Air tubing length: 2 m

## Air consumption of cylinder

1. Use chart 1 and find the point where the working pressure line ( 0.5 MPa ) crosses the stroke line $(600 \mathrm{~mm})$. See point A.
2. From point $A$, go straight up until you cross the bore line ( 50 mm ). See point $B$.
3. From there, go horizontally to the right or the left and find air consumption per cycle $\left(Q_{t}\right)=13 I_{n}$.
4. Since there are five working cycles per minute, multiply the air consumption per cycle $\left(Q_{t}\right)$ with 5 to get the actual average air consumption $\left(Q_{v}\right)$.
$Q_{v}=Q_{t} \cdot$ number of cycles per minute
$Q_{v}=13 I_{n} / \min \cdot 5$
$Q_{v}=65 I_{n} / \mathrm{min}$

Chart 1 - cylinder air consumption per cycle


## Air consumption for air tubing

5. Use chart 2 and find the point where the working pressure line ( 0.5 MPa ) crosses the line for air tubing length $(2 \mathrm{~m})$. See point $C$.
6. From point $C$, go straight up until you cross the line for air tubing inner diameter ( 6 mm ). See point $D$.
7. From there, go horizontally to the right or the left and find air consumption per cycle $\left(Q_{t}\right)=0.56 I_{n}$.
8. Since there are five working cycles per minute, multiply the air consumption per cycle $\left(Q_{t}\right)$ with 5 to get the actual average air consumption $\left(Q_{v}\right)$.
$Q_{v}=Q_{t} \cdot$ number of cycles per minute
$Q_{\mathrm{v}}=0.56 \mathrm{I}_{\mathrm{n}} / \mathrm{min} \cdot 5$
$\mathrm{Q}_{\mathrm{v}}=2.8 \mathrm{I} / \mathrm{min}$

## Total air consumption

The total average air consumption (Q) for the cylinder and air line is obtained by adding the two $Q_{v}$ values.
$Q=Q_{v}$ cylinder $+Q_{v}$ air tubing
$\mathrm{Q}=65 \mathrm{I} / \mathrm{min}+2.8 \mathrm{In} / \mathrm{min}$
$\mathrm{Q}=67.8 \mathrm{I}_{\mathrm{n}} / \mathrm{min}$

## Formulas

The average air consumption can also be calculated by the following formulas:

## Average air consumption for cylinder

$$
Q=\frac{D^{2} \cdot \frac{\pi}{4} \cdot H \cdot(p+0.1) \cdot n}{10^{5}}
$$

## Average air consumption for air tubing

$$
Q=\frac{\mathrm{ID}^{2} \cdot \frac{\pi}{4} \cdot \mathrm{~L} \cdot p \cdot \mathrm{n}}{10^{5}}
$$

$Q=$ Air consumption $\left(I_{n} / \mathrm{min}\right)$
$\mathrm{D}=$ Cylinder bore (mm)
$\mathrm{H}=$ Stroke (mm)
ID = Air tubing inner diameter (mm)
$\mathrm{L}=$ Air tubing length (mm)
$p=$ Working pressure (MPa)
$\mathrm{n}=$ Number of single strokes per minute

Air consumption - or flow - indicated in normal liters per minute $\left(l_{n} / \mathrm{min}\right)$. 1 normal liter is $1 \mathrm{dm}^{3}$ air at "room environment" (normal atmospheric pressure, temperature $20^{\circ} \mathrm{C}$ and a relative humidity of $65 \%$ ).

Chart 2 - air tubing air consumption per cycle


# Maximum air flow 

## How to calculate the maximum air flow in cylinders and air tubing.

t is necessary to know the maximum air flow in order to determine the size of the FRL, valves, tubings, and more. If the components are too small, the maximum/required cylinder speed is not achieved.

Here we show how to use the chart on this page to calculate the maximum air flow for a cylinder.

## Example:

Cylinder bore: 63 mm
Average piston speed: $355 \mathrm{~mm} / \mathrm{s}$
Working pressure: 0.6 MPa

## Maximum air flow for cylinder

1. Determine the maximum piston speed by multiplying the average speed of 1.41 .
$v$ max $=v$ average $\cdot 1.41$
$v \max =355 \mathrm{~mm} / \mathrm{s} \cdot 1.41=500 \mathrm{~mm} / \mathrm{s}$
2. Use chart 3 and find the point where the working pressure line ( 0.6 MPa ) crosses the line for maximum piston speed ( $500 \mathrm{~mm} / \mathrm{s}$ ). See point $E$.
3. From point $E$, go straight up until you cross the cylinder bore line ( 63 mm ). See point $F$.
4. From point $F$, go horizontally left or right and find the maximum air flow $(Q)=620 \mathrm{I}_{\mathrm{n}} / \mathrm{min}$.

## Formulas

The maximum air flow can also be calculated using the following formulas:

## Maximum air flow for cylinder

$$
Q=\frac{D^{2} \cdot \frac{\pi}{4} \cdot v \cdot(p+0.1) \cdot 60}{10^{5}}
$$

## Maximum air flow for air tubing

$$
Q=\frac{\mathrm{ID}^{2} \cdot \frac{\pi}{4} \cdot v_{1} \cdot p \cdot 60}{10^{5}}
$$

Chart 3 - cylinder maximum air flow

$Q=$ Air flow $\left(l_{\mathrm{n}} / \mathrm{min}\right)$
$\mathrm{D}=$ Cylinder bore (mm)
ID = Air tubing inner diameter ( mm )
$p=$ Working pressure (MPa)
$v=$ Max. speed $=$ average speed $\cdot 1.41(\mathrm{~mm} / \mathrm{s})$
$v_{l}=$ Max. speed of air movement in tubing

# Quick selection for choosing right flow 

## If you do not make an estimate of cylinder air consumption by the methods shown on previous pages, the following speed selection table provide benchmarks for dimensioning.

NThe table below shows the maximum air flow (in normal liters per minute [ $\left.l_{n} / \mathrm{min}\right]$ ) a cylinder needs. This value depends on the cylinder piston diameter and operating speed.

The table is applicable at a pressure of 0.5 MPa and the rate used is the maximum speed/end speed.

If you know the average speed and want to know the maximum speed you get a proxy if you multiply the average speed of 1.4.
$v$ max $\approx v$ average $\cdot 1.4$

## Example:

A cylinder with a bore of 32 mm is moving at max. $300 \mathrm{~mm} / \mathrm{s}$. According to the table, the cylinder needs a flow of 90 normal liters per minute.

Should you choose a suitable filter, regulator, valve and tubing you can not select these compo-
nents with a flow rate of about 90 normal liters per minute. If you do, the pressure drop is too large, and the flow into the cylinder is halved. Any components before the cylinder is like a long chain, producing constrictions and losses.

As a general rule you can say that the pressure drop is max. 0.03 MPa of each component. To get the right flow to the cylinder, each component must handle much more in flow. A rough guideline is that each component shall have four times greater flow than the cylinder needs.

Since $4 \cdot 90$ is 360 , the filter, the regulator and all the other components should have a flow of about 400 normal liters per minute.

The beginning of chapter 4 contains tables that can also be useful when dimensioning.

Air flow requirement for cylinder $-1_{n} /$ min, at a pressure of 0.5 MPa

| Bore |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{( m m )}$ | $\mathbf{1 0 0}$ | $\mathbf{2 0 0}$ | $\mathbf{3 0 0}$ | $\mathbf{4 0 0}$ | $\mathbf{5 0 0}$ | $\mathbf{6 0 0}$ | $\mathbf{7 0 0}$ | $\mathbf{8 0 0}$ | $\mathbf{9 0 0}$ | $\mathbf{1 0 0 0}$ |
| $\mathbf{2 0}$ | 10 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 120 |
| $\mathbf{2 5}$ | 20 | 40 | 60 | 70 | 90 | 110 | 130 | 140 | 160 | 180 |
| $\mathbf{3 2}$ | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 230 | 260 | 290 |
| $\mathbf{4 0}$ | 50 | 90 | 140 | 180 | 230 | 270 | 320 | 370 | 410 | 460 |
| $\mathbf{5 0}$ | 70 | 140 | 210 | 280 | 360 | 430 | 500 | 570 | 640 | 710 |
| $\mathbf{6 3}$ | 110 | 230 | 340 | 450 | 560 | 680 | 790 | 900 | 1010 | 1130 |
| $\mathbf{8 0}$ | 180 | 360 | 550 | 730 | 910 | 1090 | 1270 | 1450 | 1630 | 1810 |
| $\mathbf{1 0 0}$ | 290 | 570 | 850 | 1130 | 1420 | 1700 | 1980 | 2260 | 2550 | 2830 |
| $\mathbf{1 2 5}$ | 440 | 880 | 1320 | 1770 | 2210 | 2650 | 3090 | 3530 | 3970 | 4420 |
| $\mathbf{1 4 0}$ | 550 | 1110 | 1660 | 2220 | 2770 | 3320 | 3880 | 4430 | 4990 | 5540 |
| $\mathbf{1 6 0}$ | 720 | 1450 | 2170 | 2890 | 3620 | 4340 | 5060 | 5790 | 6510 | 7230 |
| $\mathbf{1 8 0}$ | 920 | 1830 | 2750 | 3660 | 4580 | 5490 | 6410 | 7320 | 8240 | 9160 |
| $\mathbf{2 0 0}$ | 1130 | 2260 | 3390 | 4520 | 5650 | 6780 | 7910 | 9040 | 10170 | 11300 |
| $\mathbf{2 5 0}$ | 1770 | 3530 | 5300 | 7070 | 8830 | 10600 | 12360 | 14130 | 15900 | 17660 |
| $\mathbf{3 0 0}$ | 2540 | 5090 | 7630 | 10170 | 12720 | 15260 | 17800 | 20350 | 22890 | 25430 |

# Lifting force of vacuum pads 

## How to calculate the theoretical lifting force of vacuum pads at different vacuum.

To be able to choose the correct dimensions on the vacuum pads, you should know the different vacuum pads theoretical lifting force at different vacuum levels. Here we present formulas and a table that you can use as a basis for your calculations.

## Formulas

## Vacuum in kPa

$$
\begin{array}{lr}
F=P \cdot A \cdot \frac{1}{\mathrm{t}} \div 10 & F=P \div 760 \cdot A \cdot \frac{1}{\mathrm{t}} \cdot 10.13 \\
P=\text { Vacuum }(\mathrm{kPa}) & P=\text { Vacuum }(\mathrm{mmHg})
\end{array}
$$

$F=$ Lifting force with safety factor (N)
$A=$ Pad area ( $\mathrm{cm}^{2}$ )
$\mathrm{t}=$ Safety factor (horizontal contact surface: 2-4; vertical contact surface: 4-8)

As a complement to these formulas, you can find the lifting force at different vacuum in the table below.

Note! The values you get from the table should be multiplied by $\frac{1}{\mathrm{t}}$ as in the above formulas.


## Calculation of theoretical lifting force

| Vacuum pad diameter |  | 2 mm | 4 mm | 6 mm | 10 mm | 16 mm | 20 mm | 25 mm | 32 mm | 40 mm | 50 mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vacuum pad area ( $\mathrm{cm}^{2}$ ) |  | 0.031 | 0.126 | 0.238 | 0.785 | 2.01 | 3.14 | 4.91 | 8.04 | 12.6 | 19.6 |
| $-86 \mathrm{kPa}$ | -650 mmHg | 0.27 N | 1.09 N | 2.45 N | 6.8 N | 17.4 N | 27.2 N | 42.5 N | 69.7 N | 109.2 N | 169.8 N |
| -80 kPa | -600 mmHg | 0.25 N | 0.98 N | 2.26 N | 6.3 N | 16.1 N | 25.1 N | 39.3 N | 64.3 N | 100.8 N | 156.7 N |
| ع -73 kPa | $-550 \mathrm{mmHg}$ | 0.23 N | 0.92 N | 2.07 N | 5.8 N | 14.7 N | 23 N | 36 N | 58.9 N | 92.4 N | 143.7 N |
| - 66 kPa | $-500 \mathrm{mmHg}$ | 0.21 N | 0.84 N | 1.89 N | 5.2 N | 13.4 N | 20.9 N | 32.7 N | 53.6 N | 84 N | 130.6 N |
| -0, -60 kPa | -450 mmHg | 0.19 N | 0.76 N | 1.7 N | 4.7 N | 12.1 N | 18.8 N | 29.5 N | 48.2 N | 75.6 N | 117.6 N |
| $>-53 \mathrm{kPa}$ | -400 mmHg | 0.17 N | 0.67 N | 1.51 N | 4.2 N | 10.7 N | 16.7 N | 26.2 N | 42.9 N | 67.2 N | 104.5 N |
| $-46 \mathrm{kPa}$ | $-350 \mathrm{mmHg}$ | 0.14 N | 0.59 N | 1.32 N | 3.7 N | 9.4 N | 14.6 N | 22.9 N | 37.5 N | 58.8 N | 91.5 N |
| -40 kPa | -300 mmHg | 0.12 N | 0.5 N | 1.13 N | 3.14 N | 8 N | 12.6 N | 16.9 N | 32.1 N | 50.4 N | 78.4 N |

$100 \mathrm{kPa}=0.1 \mathrm{MPa}=1 \mathrm{bar}=1000 \mathrm{mbar}$

## Evacuation time of vacuum pads

How to calculate evacuation time for vacuum pads, and choosing ejector and tubing.

Here we show, using formulas and charts, how to calculate how long it takes for a vacuum pad to achieve the desired vacuum level.

## Calculation of evacuation time

## Average suction flow in ejector

$$
Q_{1}=0.4 \cdot Q_{\max }
$$

## Tubing maximum flow

$$
Q_{2}=S \cdot 11.1
$$

Tubing volume between ejector and vacuum pad

$$
V=1 \div 1000 \cdot \pi \div 4 \cdot \mathrm{D}^{2} \cdot \mathrm{~L}
$$

Evacuation time

$$
\begin{gathered}
\mathrm{T} 1=V \cdot 60 \div Q \\
\mathrm{~T} 2=3 \cdot \mathrm{~T} 1
\end{gathered}
$$


$Q_{\max }=$ Ejector's maximum suction flow ( $1 / \mathrm{min}$ ), see the technical data
$\mathrm{S}=$ Tubing equivalent cross-sectional area $\left(\mathrm{mm}^{2}\right)$, see chart 4
$V=$ Tubing volume (I) between ejector and vacuum pad
T1 = Time (s) to reach 63\% of maximum vacuum level ( $\mathrm{Pv}_{\mathrm{v}}$ )
T2 = Time (s) to reach 95\% of maximum vacuum level ( $\mathrm{P}_{\mathrm{v}}$ )
$Q=$ The lowest of $Q_{1}$ and $Q_{2}$

## Example:

Ejector: ZH10BS-06-06
Max. vacuum $\left(\mathrm{P}_{\mathrm{v}}\right):-88 \mathrm{kPa}$
Max. suction flow ( $Q_{\text {max }}$ ): $24 \mathrm{I} / \mathrm{min}$
Tubing length (L): 1 m
Tubing inner diameter (D): 6 mm
Vacuum pad diameter: 10 mm
Necessary vacuum: $63 \%$ of $\mathrm{P}_{\mathrm{v}}$, no leakage

1. Calculate ejector's average suction flow $\left(Q_{1}\right)$ by multiplying the maximum suction flow by 0.4 .
$Q_{1}=0.4 \cdot 24 \mathrm{I} / \mathrm{min}=9.6 \mathrm{I} / \mathrm{min}$
2. Calculate maximum tubing flow $\left(Q_{2}\right)$ by finding the tubing's equivalent cross-sectional area (S) in chart 4 and multiplying this by 11.1.
$Q_{2}=18 \cdot 11.1=198 \mathrm{I} / \mathrm{min}$
3. Calculate tubing volume between ejector and pad.
$V=1 \div 1000 \cdot \pi \div 4 \cdot 6^{2} \cdot 1=0.028 \mathrm{I}$
4. Calculate evacuation time. Since $Q_{1}$ is lower than $Q_{2}$ this means $Q=Q_{1}$ i.e. $9.6 \mathrm{I} / \mathrm{min}$. The time to reach $63 \%$ of max. vacuum equals:

$$
\mathrm{T} 1=0.028 \cdot 60 \div 9.6=0.18 \mathrm{~s}
$$

Chart 4 -tubing equivalent cross-sectional area


## Connection examples



Individual control of ejector and release


Switching between vacuum and release


Switching between vacuum and release - on suction side

## Instructions

Supply connection (supply): Dimension supply line, valves and connections considering the ejector's air consumption (see technical data).

Vacuum ejector (vac): the tubing between ejector and vacuum pad should be as short as possible. Filters should be installed for use in dusty environment (dust).

Ejector exhaust connection (exh): Type B-do not block the silencer. Type $D$ - do not connect longer tubing that 0.5 meter (= pressure $<5 \mathrm{kPa}$ ).

Number of vacuum pads: One vacuum pad per ejector for maximum safety.

## Mass moment of inertia

When dimensioning a rotary actuator you must, in addition to necessary torque, also consider the load's mass moment of inertia. For your aid, please find the formulas below (dimensions in meters).

2. Thin axle,
centered suspension

$$
J=m \cdot \frac{\mathrm{a}^{2}}{12}
$$


3. Thin rectangular plate, on edge and centered

$$
J=m \cdot \frac{a^{2}}{12}
$$


7. Sphere (ball), centered

$$
J=m \cdot \frac{2 r^{2}}{5}
$$

## 9. Thin axle with mass

$J=m_{1} \cdot \frac{\mathrm{a}_{1}{ }^{2}}{3}+m_{2} \cdot \mathrm{a}_{2}{ }^{2}+\mathrm{K}$


When $m_{2}$ is spherical, $K$ equals, as in case 7:

$$
\mathrm{K}=m \cdot \frac{2 \mathrm{r}^{2}}{5}
$$



[^0]6. Thin disc,
lying down and centered
$$
J=m \cdot \frac{r^{2}}{2}
$$
8. Thin disc, on edge and centered
$$
J=m \cdot \frac{r^{2}}{4}
$$

## 10.Transmission

First calculate mass moment of inertia for gears $A$ and $B$ (as in case 6) and then:

$$
J=\left(\frac{\mathrm{a}}{\mathrm{~b}}\right)^{2} J_{\mathrm{B}}+J_{\mathrm{B}}
$$




[^0]:    If the axle is carrying a disc, calculate $K$ as in case 6 or 8.

