SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE

Presented by: Jason Clemons

Overview

\square Motivation of Work
\square Overview of Algorithm
\square Scale Space and Difference of Gaussian
\square Keypoint Localization
\square Orientation Assignment
\square Descriptor Building
\square Application

Motivation

\square Image Matching
\square Correspondence Problem
\square Desirable Feature Characteristics
\square Scale Invariance
\square Rotation Invariance
\square Illumination invariance
\square Viewpoint invariance

Overview Of Algorithm

Constructing Scale Space

Scale Space

Constructing Scale Space

\square Gaussian kernel used to create scale space
\square Only possible scale space kernel (Lindberg '94)
$L(x, y, \sigma)=G(x, y, \sigma) * I(x, y)$,
where

$$
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 \sigma^{2}}
$$

Laplacian of Gaussians

\square LoG $-\sigma^{2} \Delta^{2} G$
\square Extrema Useful
\square Found to be stable features
\square Gives Excellent notion of scale
\square Calculation costly so instead....

Take DoG

Difference of Gaussian

Approximation of Laplacian of Gaussians

$$
\begin{align*}
& \sigma \nabla^{2} G=\frac{\partial G}{\partial \sigma} \approx \frac{G(x, y, k \sigma)-G(x, y, \sigma)}{k \sigma-\sigma} \\
& G(x, y, k \sigma)-G(x, y, \sigma) \approx(k-1) \sigma^{2} \nabla^{2} G
\end{aligned} \begin{aligned}
D(x, y, \sigma) & =(G(x, y, k \sigma)-G(x, y, \sigma)) * I(x, y) \\
& =L(x, y, k \sigma)-L(x, y, \sigma) .
\end{align*}
$$

DoG Pyramid

DoG Extrema

Locate the Extrema of the DoG

\square Scan each DOG image

- Look at all neighboring points (including scale)
- Identify Min and Max
- 26 Comparisons

Sub pixel Localization

Sub-pixel Localization

3D Curve Fitting
Taylor Series Expansion

$$
D(\mathbf{x})=D+\frac{\partial D^{T}}{\partial \mathbf{x}} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}} \mathbf{x}
$$

Differentiate and set to

$$
0
$$

$$
\hat{\mathbf{x}}=-\frac{\partial^{2} D^{-1}}{\partial \mathbf{x}^{2}} \frac{\partial D}{\partial \mathbf{x}} .
$$

to get location in terms of (x, y, σ)

Filter Responses

Filter Low Contrast Points

\square Low Contrast Points Filter
\square Use Scale Space value at previously found location

$$
D(\hat{\mathbf{x}})=D+\frac{1}{2}{\frac{\partial D^{T}}{\partial \mathbf{x}}}^{\hat{\mathbf{x}}} .
$$

The House With Contrast Elimination

Edge Response Elimination

\square Peak has high response along edge, poor other direction

\square Eigenvalues Proportional to principle Curvatures
\square Use Trace and Determinant

$$
\begin{aligned}
& \operatorname{Tr}(H)=D_{x x}+D_{y y}=\alpha+\beta, \operatorname{Det}(H)=D_{x x} D_{y y}-\left(D_{x y}\right)^{2}=\alpha \beta \\
& \frac{\operatorname{Tr}(H)^{2}}{\operatorname{Det}(H)}<\frac{(r+1)^{2}}{r}
\end{aligned}
$$

Results On The House

Apply Contrast Limit
Apply Contrast and Edge Response Elimination

Assign Keypoint Orientations

Orientation Assignment

\square Compute Gradient for each blurred image

$$
\begin{aligned}
m(x, y) & =\sqrt{(L(x+1, y)-L(x-1, y))^{2}+(L(x, y+1)-L(x, y-1))^{2}} \\
\theta(x, y) & =\tan ^{-1}((L(x, y+1)-L(x, y-1)) /(L(x+1, y)-L(x-1, y)))
\end{aligned}
$$

\square For region around keypoint

- Create Histogram with 36 bins for orientation
\square Weight each point with Gaussian window of 1.5σ
\square Create keypoint for all peaks with value>=. 8 max bin
■ Note that a parabola is fit to better locate each max (least squares)

Build Keypoint Descriptors

Building the Descriptor

\square Find the blurred image of closest scale
\square Sample the points around the keypoint
\square Rotate the gradients and coordinates by the previously computer orientation
\square Separate the region in to sub regions
\square Create histogram for each sub region with 8 bins
\square Weight the samples with $N(\sigma)=1.5$ Region width
\square Trilinear Interpolation (1-d factor) to place in histogram bins

Building a Descriptor

Image gradients

Keypoint descriptor
\square Actual implementation uses 4×4 descriptors from 16×16 which leads to a $4 \times 4 \times 8=128$ element vector

Illumination Issues

\square Illumination changes can cause issues
\square So normalize the vector
\square Solves Affine but what non-linear sources like camera saturation?
\square Cap the vector elements to .2 and renormalize
\square Now we have some illumination invariance

Results Check

\square Scale Invariance
\square Scale Space usage - Check
\square Rotation Invariance
\square Align with largest gradient - Check
\square Illumination Invariance
\square Normalization - Check
\square Viewpoint Invariance
\square For small viewpoint changes - Check (mostly)

Constructing Scale Space

Supporting Data for Performance

About matching...

\square Can be done with as few as 3 features.
\square Use Hough transform to cluster features in pose space
\square Have to use broad bins since 4 items but 6 dof
\square Match to 2 closest bins
\square After Hough finds clusters with 3 entries
\square Verify with affine constraint

Hough Transform Example (Simplified)

\square For the Current View, color feature match with the database image
\square If we take each feature and align the database image at that feature we can vote for the x position of the center of the object and the theta of the object based on all the poses that align

Hough Transform Example (Simplified)

Database Image

Current Item

Assume we have $4 \times$ locations
And only 4 possible rotations (thetas)
Then the Hough space can look like the Diagram to the left

Hough Transform Example (Simplified)

Hough Transform Example (Simplified)

Playing with our Features: Where's Traino and Froggy?

Here's Traino and Froggy!

Outdoors anyone?

Questions?

Credits

\square Lowe, D. "Distinctive image features from scaleinvariant keypoints" International Journal of Computer Vision, 60, 2 (2004), pp. 91-110
\square Pele, Ofir. SIFT: Scale Invariant Feature Transform. Sift.ppt
\square Lee, David. Object Recognition from Local Scale-Invariant Features (SIFT). O319.Sift.ppt
\square Some Slide Information taken from Silvio Savarese

