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This paper describes the development of an approximate method for propagating un-

certainty through stochastic dynamical systems using a quadrature rule integration based

method. The development of quadrature rules for Gaussian mixture distributions is dis-

cussed. A numerical solution to this problem is considered that uses a Gram-Schmidt

process. Simulation results are presented where the quadrature points are calculated in

two different ways, one using an unscented transformation and the other using the method

discussed in this work. The proposed method outperforms the unscented transformation

and provides signs of optimism for improving nonlinear filtering.

I. Introduction

Accurate propagation of uncertainty through nonlinear dynamical systems is a central problem in many
applications in science and engineering. Filtering algorithms for state estimation, such as the extended
Kalman Filter1 (EKF), the Unscented Kalman Filter2 (UKF) and particle filters3 are commonly used to
both estimate hidden (indirectly observable) states and filter noisy measurements. The basic difference
between the EKF and the UKF results from the manner in which the state distribution of the nonlinear
models is approximated. The UKF, introduced by Julier and Uhlmann,2 uses a nonlinear transformation
called the unscented transform, in which the state probability density function (pdf) is represented by a
set of weighted sigma points (state vectors deterministically sampled about a mean). These are used to
parameterize the true mean and covariance of the state distribution.

When the sigma points are propagated through the nonlinear system, the posterior mean and covariance
are obtained up to second order for any nonlinearity. The EKF and UKF assume that the process noise terms
are represented by zero-mean Gaussian white-noise processes and the measurement noise is also represented
by a zero-mean Gaussian random variable. Furthermore both approaches assume that the a posteriori density
function is Gaussian in a linear domain. This is true given the previous assumptions but under the effect of
nonlinear measurement functions and system dynamics the initial Gaussian state uncertainty may quickly
become non-Gaussian.

Both filters only provide approximate solutions to the nonlinear filtering problem, since the a posteriori

density function is most often non-Gaussian due to nonlinear effects. The EKF typically works well only in
the region where the first-order Taylor-series linearization adequately approximates the non-Gaussian pdf.
The UKF provides higher-order moments for the computation of the a posteriori pdf without the need to
calculate Jacobian matrices as required in the EKF. This work seeks to make use of similar mathematical
technique to the unscented kalman filter to establish concepts for propagating uncertainty through nonlinear
and non-Gaussian stochastic systems. This work will study the problem of developing an unscented-like
transformation which can generate sigma points with respect to a Gaussian mixture probability distribution.
The technique behind the unscented transformation is related to Gaussian quadrature integration4 and will
be used in this work to extend the unscented transformation to Gaussian mixture distributions.

The problem studied here involves determining the following functional:

Q[f ] =

∫

f(x)w(x)dx (1)
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where it is desired to approximate this functional to help describe the probability space of x. Consider the
following dynamic system:

xk+1 = fk+1(xk) (2)

where xk describes the state of the system at some time tk, k denoting the time index in x. To completely
describe the probability space of xk+1 it would be sufficient to determine

µn =

∫

xn
k+1wk+1(xk+1)dxk+1 =

∫

fk+1(xk)wk(xk)dxk (3)

where n = 1, . . . ,∞, wk and wk+1 are the probability density functions at tk and tk+1 respectively. Therefore
computing µn of fk+1(xk) with respect to wk provides the probability space for xk+1. If it is possible to
calculate µn for all n then an exact representation of the probability law can be found using the insufficient
reason principle.5 The issue with this approach is that the integral in Eq. (3) is not generally solvable,
but can be approximated using approximation theory.6 One approximation, is the well known unscented
transformation2, 7–9 in which the integral is approximated by a weight sum of nodes. This approximation is
remarkably accurate and has the benefit of giving second order level of accuracy. The UKF concerns itself
with just the mean and covariance, modeling the pdf as a Gaussian. The accuracy for this transformation
is shown using a Taylor series expansion and it is shown to be accurate up to second order in terms of the
covariance calculation.9 The unscented transformation is based on Gaussian quadrature integration and this
theory allows one to approximate integrals with respect to a Gaussian distribution.4

Recent work on polynomial chaos expansions has provided accurate solutions to stochastic process estima-
tion problems where a polynomial expansion is considered that is orthogonal with respect to the underlying
probability measure.10 It has been shown that the error in the approximation converges exponentially to
the true stochastic process with increasing order of expansion if the orthogonal expansion is developed with
respect the underlining probability measure. This result is not unrelated to the theory behind quadrature
integration. The integration operator, like any other operator, can be decomposed into its Fourier compo-
nents and the action of the operator on functions can be represented by the action of the Fourier components
on functions. The convergence of this decomposition to the true operator is exponential and if the function
has nonlinearity of polynomial order, then the Fourier decomposition converges to the true operator with
finite terms.11

II. Orthogonal Polynomials

This section discusses orthogonal polynomials where a complete treatment on the subject can be found
in reference 12. A collection of functions {pn(x)}∞n=1 is said to form a orthogonal set if and only if

〈pi(x), pj(x)〉 =
{

τi if i = j

0 if i 6= j
(4)

where τi is a bounded constant and if τi = 1 for all i then the functions {pn(x)}∞n=1 form an orthonormal
set. Note that 〈·, ·〉 denotes an inner product. The inner product for continuous variables can be written as

〈pi(x), pj(x)〉 =
∫ b

a

pi(x)pj(x)w(x)dx (5)

where w(x) is a weighting function. For the case of uncertainty propagation w(x) is a probability distribution.
Then the orthogonal decomposition property of function spaces allows us to write any element in the function
space by linear combinations of the basis functions that form a maximal orthonormal set of the function
space. So any arbitrary element of the function space can be written as

f(x) =

∞
∑

k=1

akpk(x) (6)

To form an exact representation the sum must be taken to infinity. By truncating the sum at a finite number
n an approximation for f(x) can be formed and the series forms a basis for a subspace of the full function
space.
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There are a number of collections of functions that form an orthogonal basis but a particular useful set
are orthogonal polynomials. Consider a finite dimensional space, an nth order orthogonal polynomial pn(x)
is orthogonal with respect to the subspace

Pn−1 = span{1, x, ..., xn−1} (7)

of all polynomials of degree less than n. Note that pn(x) is orthogonal to Pn−1 with respect to the weighting
function w(x).

A Gram-Schmidt orthogonalization can be applied to form an orthonormal basis with respect to an inner
product. The Gram-Schmidt process is general and the same recursive relationship can be written for both
continuous and discrete inner products. Once the inner product has been defined the Gram-Schmidt process
can be written as

pn+1(x) =



xn −
n−1
∑

j=1

〈x, pj(x)〉
〈pj(x), pj(x)〉

pj(x)



 (8)

The Gram-Schmidt process gives a recursive mechanism to generate orthogonal polynomials with respect
to a predestined weighting function w(x).

Given that an orthogonal basis for any inner product space can be constructed, we can now form an
approximation of the function f by a set of orthogonal polynomials generated with respect the the inner
product 〈·, ·〉 up to a resolution n, where here n is the maximum degree of the orthogonal polynomials used
in the basis. An approximation of a function f(x) can be written as

f̂(x) =

n
∑

k=1

akpk(x) (9)

The constants ak can be found by minimizing the error f̂(x)− f(x). Then using the projection property the
approximation that minimizes the error can be written as

f̂(x) =
n
∑

k=1

〈f(x), pk(x)〉pk(x) (10)

The set of orthogonal polynomials with respect to a weighting function w(x) form an eigenspace for
integration with respect to w(x) and therefore are the best approximation of f(x). In the next section an
algorithm for calculating the roots of the nth order orthogonal polynomial is discussed. These roots are then
used as the quadrature points and numerical results are shown for approximating an integral using these
quadrature points for a Gaussian mixture model.

The orthogonal polynomials can be calculated using the moment relationship where the nth order or-
thogonal polynomial is calculated as

pk(x) = cndet
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(11)

where cn is a normalization constant and µi are given by

µi =

∫ b

a

xiw(x)dx (12)

III. Unscented Transformation

The UKF, introduced by Julier and Uhlmann,8 uses a nonlinear transformation called the scaled un-
scented transformation, in which the state probability distribution is represented by a set of weighted sigma
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points, which are used to parameterize the true mean and covariance of the state distribution. When the
sigma points are propagated through the nonlinear system, the posterior mean and covariance is obtained
up to second order for any nonlinearity.

Consider the following nonlinear system and measurement model:

xk+1 = f(xk) + zk (13a)

ỹk = h(xk) + vk (13b)

where zk and vk are zero-mean Gaussian noise processes with covariances Q and R, respectively. The
state vector is redefined in the UKF approach by augmenting the state vector to include noise variables,
where the augmented state vector is defined by xa

k = [xT
k zTk vT

k ]
T and the augmented state vector has

dimension Na = N + q+ l. All random variables in the UKF are assumed to be Gaussian random variables.
Therefore one can think of a joint distribution for the random variables, equivalent to the distribution of xa

k,
defining a multivariate Gaussian distribution given by w(xa

k) = w(xk, zk, vk). Then the joint distribution
is approximated by w(xk, zk, vk) ∼ N (xa

k, P
a). The mean augmented vector xa

k can written as µa =
[µT 0T

l×1 0T
q×1]

T , where µ is the state estimate. The covariance matrix, Pa, for the joint distribution can be
written as

Pa =







P Px z Px v

Pz x Q Pz v

Pv x Pv z R






(14)

Then the distribution is approximated as a set of symmetric selected scaled sigma points. The sigma
points are selected such that they are zero-mean, but if the distribution has mean µ, then simply adding
µ to each of the points yields a symmetric set of 2Na points having the same covariance as the initial
Gaussian distribution.8 The sigma points are selected to be along the principal axis direction of the Gaussian
distribution w(xa

k) or along the eigenvector directions of P
a
k. Then the augmented state vector and covariance

matrix is constructed by using the following sigma points

σk ← 2Na columns from
√

(na + λ)Pa
k (15a)

χ
a
k(0) = µk (15b)

χ
a
k(i) = σk(i) + µk (15c)

Therefore given an Na × Na covariance matrix Pa
k, a set of 2Na sigma points can be generated from

the columns of the matrices
√

(Na + λ)Pa
k, where

√
M is shorthand notation for a matrix Z such that

M = Z ZT . Using the notation of the augmented state vector the sigma point vector can be written as

χ
a
k(i) =







χ
x(i)

χ
z(i)

χ
v(i)






(16)

Then, given that these points are selected to represent the distribution of the augmented state vector, each
sigma point is given a weight that preserves the information contained in the initial distribution:

Wmean
0 =

λ

N + λ
(17a)

W cov
0 =

λ

N + λ
+ (1− γ2 + ξ) (17b)

Wmean
i = W cov

i =
λ

2(N + λ)
(17c)

where λ = γ2Na + κ − Na includes scaling parameters. The constant parameter controls the size of the
sigma point distribution and should be a small number 0 ≤ γ ≤ 1, and κ provides an extra degree of freedom
that is used to fine-tune the higher-order moments; κ = 3−Na for a Gaussian distribution, also ξ is a third
parameter that further incorporates higher-order effects by adding the weighting of the zeroth sigma point
to the calculation of the covariance; note ξ = 2 is the optimal value for Gaussian distributions.
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This paper will focus on the one dimensional unscented transformation, where λ = 2 and only uncertainty
in the state variable is considered. For this case the sigma points are given by

χk(0) = x̄ (18a)

χ(1) = x̄−
√
3σ (18b)

χ(2) = x̄+
√
3σ (18c)

here x̄ is the mean of the initial one dimensional Gaussian distribution.

IV. Quadrature Rule Integration

Gauss quadrature rules form an approximation of integrals with respect to a given weighting function.
For example consider the following integral of f(x) over the interval (xl, xu):

I(f) =

∫ xu

xl

w(x)f(x)dx (19)

where w(x) is a positive weighting function. Then a n-point numerical quadrature integration approximation
of the integral in Eq. 19 can be written in the following form

I(f) ≈
n
∑

i=1

wif(xi) (20)

Here, the xi are the quadrature points and wi are the associated weights. Given n distinct quadrature points,
the weights wi can be determined by first computing the moments µi using the following expression

µi =

∫ xu

xl

xiw(x)dx (21)

and then solving the following Vandermonde system of equations:13













1 1 . . . 1

x1 x2 . . . xn

...
...

. . .
...

xn
1 xn

2 . . . xn
n

























ω1

ω2

...

ωn













=













µ1

µ2

...

µn













(22)

The system of equations in Eq. 22 is called the system of moment equations. Orthogonal polynomials have
the property that they follow a three-term recurrence relationship by14

xpn(x) = αnpn+1(x) − βnpn(x) + γnpn−1(x) (23)

This equation differs from the traditional form of the three-term recurrence since we have solved for the term
xpn(x). This relationship can be written out for all polynomials in the series

xp0(x) = α1p1(x)− β1p0(x)

xp1(x) = α1p2(x)− β1p1(x) − γ1p0(x)

xp2(x) = α2p3(x)− β2p2(x) − γ2p1(x)

...

(24)

This series of equations can be written in matrix equation form

x



















p0(x)

p1(x)

...

pn−2(x)

pn−1(x)



















=



















β1 α1 0 . . . 0

γ2 β2 α2 . . . 0

...
...

. . .
...

...

0 0 . . . βn−2 αn−2

0 0 . . . γn−1 βn−1





































p0(x)

p1(x)

...

pn−2(x)

pn−1(x)



















+



















0

0

...

0

pn(x)



















(25)
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Then the three-term recursion in vector matrix form can be written as

xp(x) = Jp(x) + epn(x) (26)

where J is a tri-diagonal matrix or the Jacobi matrix, e = [0, . . . , 1], and the vector p(x) is given by
p(x) = [p0(x), . . . , pn−1(x)]. If the polynomials are orthogonal then the Jacobi matrix is systematic, we have
γn = αn−1. If J is not symmetric, then we may perform a diagonal similarity transformation, yielding a
symmetric Jacobi matrix J.12 This transformation yields the following expression

J =





















a0
√
b1 0 . . . 0√

b1 a1
√
b2 . . . 0

...
...

. . .
...

...

0 0 . . . an−2

√

bn−1

0 0 . . .
√

bn−1 an−1





















(27)

where an and bn are related to βn, αn, and γn. The coefficients an and bn are also related to the following
three-term relationship

pn+1(x) = (x− an)pn(x) − bnpn−1(x) (28)

where the equation above assumes that the leading coefficients are equal to one. To determine the optimal
n-point Gauss quadrature rule for the weighting function that corresponds to the orthogonal series above
we must first find the roots of the polynomial pn. This can be done by setting pn(xi) = 0 for roots xi and
then solving for the xi. Therefore we set pn(xi) = 0 and set all x = xi in Eq. 26 resulting in the following
equation

xip(xi) = Jp(xi) (29)

This is an eigenvalue/eigenvector problem where the roots xi are the eigenvalues of J and p(xi) are the
eigenvectors of J. For classical orthogonal polynomials, such as Hermite, Laguerre, and Jacobi, there exists
a simple three-term recursion relationships. For more complex weighting functions this may not be the case
and therefore the Gram-Schmidt process is used in this paper for Gaussian mixture weighting functions.
Orthogonal polynomials can be formed using the Gram-Schmidt process shown previously. For a single
Gaussian weighting function a closed-form expression for the three-term relation relationship exists and
therefore J is given in terms of Gaussian parameters µ and σ but in the case for Gaussian mixtures the
three-term relation relationship is not straightforward.

The terms ai and bi can be found from the following relationships:

bi =
〈xpi(x), pi(x)〉
〈pi(x), pi(x)〉

(30)

ai =
〈pi(x), pi(x)〉

〈pi−1(x), pi−1(x)〉
(31)

bo = 〈p0(x), p0(x)〉 (32)

These expressions are used to determine ai and bi, which are then used to compute J using Eq. 27. Following
this a eigenvalue/eigenvector decomposition is performed on J. The nodes are selected to be the eigenvalues.
Then the weights associated with xi can be determined using the following relationship:12

wip(xi)
Tp(xi) = 1 (33)

For orthogonal polynomials the weights are given by

wi = p(xi){1}
∫ b

a

w(x)dx (34)

where p(x){j} denotes the jth component of the vector p(x) = [p0(x), . . . , pn−1(x)]. In the case discussed

in this paper w(x) is a pdf,
∫ b

a
w(x)dx = 1, therefore the weights are simply wi = α0p(xi){1} = p(xi){1}.
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In the Gauss-Hermite quadrature rule, the weighting function is chosen to be the Gaussian density
with zero mean and unit variance N (x; 0, 1). The interval of integration is chosen to be (−∞,∞). In the
fundamental theorem of Gauss-Hermite quadrature, the quadrature points are chosen to be the zeros of
the nth order Hermite polynomial. The zeros of the Hermite polynomials are distinct. Hence the solution
vector {w1, ..., wn} is unique. The Hermit polynomials are chosen since they form the orthogonal set for
the Gaussian distribution. Since 2n unknown parameters are estimated in the Gauss-Hermite quadrature
rule (n quadrature points and n weights), the resulting quadrature rule is exact for all polynomials of degree
≤ (2n−1). In fact a quadrature rule using the general procedure discussed in this section will be exact for all
polynomials of degree ≤ (2n− 1). Therefore a nth order quadrature rule for Gaussian mixture distributions
formed using eigenvalues/eigenvectors of J is exact for all polynomials of degree ≤ (2n− 1).

V. Quadrature Point Calculation

In this section quadrature points are calculated using the methods described in section §IV. Four different
cases are considered: one, two, four and ten Gaussian components. The components are randomly generated
and for each case the quadrature points are found using the methods discussed in section §IV. The Unscented
Transformation (UT) is formed for each component (3 points per component) and the Gaussian Mixture
Quadrature (GMQ) is formed for the combined distribution in each case using 10 points for all cases. It
is seen from Figure 1(a) that for the one Gaussian component case the UT and GMQ approach are both
symmetric but since the GMQ has more points (10 points for GMQ vs 3 point for UT) it covers more of the
tail of the distribution.

For the case with two components, Figure 1(b), it is seen that the UT approach is centered around each
component and is symmetric about each component. On the other hand the GMQ approach is taking into
account the overlapping of component within distribution and spreading the points out more and covering
more of the tail of the distribution. For the four component case, Figure 1(c), we can start to see that
the UT approach is beginning to appear unstructured but the GMQ approach still takes into account the
overlapping information between components. Also, the UT has 12 total points (3 for each component)
but the GMQ approach only has 10 points and is more spread out covering more of the tail. Finally the
case with 10 components, Figure 1(b), really shows the power of the GMQ approach. Here the UT is very
unstructured but the GMQ approach still shows an optimal placement of points.

Figure V shows two Gaussian components that are slowly moved closer to each other over the index
k. The individual UT points for each distribution are shown in red and blue and the GMQ approach is in
black. It can be seen when the components are far apart the GMQ approach coincides with the UT since the
distribution are not overlapping and do not share much information. When the components become closer
the GMQ approach spreads out more to provide a more optimal coverage.

VI. Numerical Integration Example

In this section the Gaussian mixture quadrature is tested with polynomial integrand functions. The
performance of the proposed approach is shown for three represented functions. A simulation scenario is
considered where a Gaussian mixture model is used, given by

w(x) = 0.25w1(x) + 0.75w2(x) (35)

where wi(x) is a Gaussian Kernels given by

wi(x) =
1√
2πσi

e
−

(x−µi)
2

2σ2
i (36)

where σ1 = σ2 = 0.5, µ1 = −0.7 and µ2 = 0.7. The roots of each Gaussian component up to n = 3 are
calculated which coincide with the unscented transformation. Therefore the unscented transformation for
1-D weighting functions are equivalent to the Gaussian quadrature for up to n = 3. For the case of the
Gaussian mixture distribution from Eq. (35), the Gaussian quadrature points are found from the polynomial
roots of the nth order orthogonal polynomial with respect to the mixture w(x).

The GMQ is calculated for the case where n = 6 and therefore the integral should be exact for all 6th
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Figure 1. Quadrature Point Calculation
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Figure 2. Trajectory of Components and Gaussian Mixture Quadrature

order polynomial functions. The test scenario chosen is given by

I(xp) =

∫

∞

−∞

xpw(x)dx (37)
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This integral is the first moment of the function f(x) = xp and the second moment of f(x) is calculated as

I(xp) =

∫

∞

−∞

(xp − I(xp))
2
w(x)dx (38)

where I(xp) is the first moment calculated using the expression in Eq. 37.
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Figure 3. Numerical Integration Example Simulation Results

The results for the integration example are shown in Figures 3(a), 3(c), and 3(b). Figure 3(a) shows the
difference between the error in calculating Eq. 37 using the UT and the error in calculating Eq. 37 using the
GMQ, i.e. (UT True) − (GMQ True). Figure 3(c) shows the difference between the error in calculating
Eq. 38 using the UT and the error in calculating Eq. 38 using the GMQ. Figure 3(b) shows the UT points
and the GMQ points. From Figure 3(b) it is seen that the UT does not account for the shared information
between the two Gaussian elements and therefore will not provide the maximum accuracy for the given
number of points (6 points, UT uses 3 points for each Gaussian). The GMQ approach will provide a locally
and globally optimal approximation and therefore guarantees a higher order accuracy than that of the UT
approach for the same number of points.

In Figure 3(a) and 3(c) the difference between the UT and the GMQ is shown as a function of the order of
the integrand. The integrands are chosen to be polynomials of varying order from 1st order to 20th order. In
Figure 3(a) it is clear that for orders less than 5 both methods result in an exact integration with practically
zero error (machine precision) but for higher orders the GMQ method gives a better approximation. In
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Figure 3(c) both methods are exact for orders less than 2 but in this case the GMQ still out preforms the
UT. The UT uses 3 points for each component and is exact for all polynomials of degree ≤ (2n − 1) = 5
and therefore for the first moment it is accurate up to 5 order functions and for the second moment it is
accurate up to 2 order functions (since the second moment involves an additional square term besides the
f(x) function’s order). This is seen is both Figures 3(a) and 3(c).

VII. Conclusion

Quadrature rule integration was discussed and a general method for calculating the quadrature point
was outlined. This method was applied to a numerical example where a Gaussian mixture model was
considered and two integration rules were compared. The first approach was based on performing the
unscented transformation for each Gaussian component to compute the integral. The second approach was
based on the methods discussed in the paper which develop sigma points with respect to the Gaussian
mixture. It was shown that the method discussed in the paper outperformed the unscented transformation
and provides a means for developing an accurate sigma point transformation for Gaussian mixture models.
The method discussed in this paper may be useful for nonlinear filtering problems.
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