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Abstract 

 

Communications has tremendously evolved during last 30 years period with the goal to 

realize real-time communications wirelessly. As the communication is targeted to be real-time, 

there is always a need to achieve the maximum possible data rate. Moreover, link reliability 

should always be guaranteed to receive a reliable version of the transmitted signal. 

RF front-ends as the physical layer of the communication systems, suffer from non-

ideal behaviour of most of the actual electronic components which causes a nonlinear dynamics. 

Such systems introduce some amount of distortions to the signal.  

The other issue which has attracted much attention is the power efficiency which 

mainly deals with the cost and reliability as well as recently environmental impacts of the 

communication systems. This dissertation proposes a couple of novel signal processing 

techniques to overcome the problems associated with the single input single output (SISO) and 

multiple input multiple output (MIMO) radio systems.  

The first topic of this research is devoted to efficiently partition the linearization scheme 

between the base station and mobile terminal. Phase distortions are compensated at the base 

station transmitter and the compensation of amplitude distortions is devoted to the mobile 

terminal receiver. This technique improves the power efficiency of communication link and in 

particular the transmitter.  

Then, the above technique is extended to base stations to improve the efficiency while 

meeting the standard spectral requirements. This work employs a soft clipping technique coupled 

with digital predistortion such that the overall transmitter output spectrum passes the mask. The 

distortion in the signal amplitude is then compensated at the receiver side. 
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The other major topic of the present research thesis is the dimensionality problem in 

digital-predistorter design. The information criteria have been employed to consider error along 

with model complexity to estimate the optimum order. 

The last research topic carried on in this thesis is related to mitigating numerical 

instability during system identification of the nonlinear MIMO radio systems suffering from 

cross-talk. The numerical problem in fixed point processors is resolved using orthogonal 

memory polynomials. Moreover, a new identification procedure is proposed to reduce 

computational cost during MIMO digital predistortion identification. 
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Chapter One: Introduction 

Nowadays, wireless communications have become an unavoidable part of our life. 

Billions of mobile handsets and base stations are being shipped yearly all around the world  [1]. 

The industry surveys report a high volume of shipments of the latest technology wireless 

devices. Apart from the statistics, the importance and the growth of the applications of wireless 

technology can be intuitively felt in everyone’s daily life.  

To support the increasing demand for wireless communications and to provide better 

services to the customers, the designers have to consider some trade-offs. The trade-offs of 

digital communication can be summarized as follows: to maximize the transmission rate, to 

minimize probability of error (maintaining the signal quality), to minimize the required power 

(increasing the range), to minimize the required bandwidth, to maximize link reliability 

(providing reliable service to maximum number of users with minimum delay and with 

maximum robustness to interferences) and to minimize system complexity, cost and 

computations  [2].   

Along with the above mentioned goals, with the advent of new applications for wireless 

communications and the emergence of environmental considerations, more constraints need to be 

considered in the design of digital communication systems.  

Among these constraints, power consumption and efficiency play integral roles. To 

elaborate more, excluding the power consumed by users, a typical mobile network in the United 

Kingdom consumes around 40-50 MW. To power the mobile network, the operator has to burn 

more than one million gallons of diesel per day which in turn will generate large amounts of heat 

and CO2. The green radio program has been developed to control the power consumption in 
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wireless networks. To meet the considerations of green radio communications, power efficiency 

of the wireless transceivers has to be maximized to avoid CO2 emissions and heat dissipation  [3].  

With the evolution of wireless communications, a variety of radio access networks have been 

optimized to fit targeted applications. Subsequently, different standards with their own carrier 

frequency, bandwidth and modulation have emerged. This phenomenon has motivated the 

industry to look for a solution for access in different situations. Multi-standard, multi-band, 

multi-user systems and software defined radios (SDR) have been found as reasonable solutions 

to meet these requirements  [4].  

To achieve the above mentioned goals, digital communication design has evolved over the years. 

The development of first generation (1G) mobile systems dates back to the1970s and 1980s and 

includes Advanced Mobile Phone Services (AMPS), the Nordic Mobile Telephone (NMT) 

system and the Total Access Communication System (TACS) employing analog 

communications to transfer voice. During the1980s and 1990s, the 2G systems were released to 

the market which introduced digital technology such as Global System for Mobile 

Communications (GSM), Digital-AMPS (D-AMPS), Code-Division Multiple Access (CDMA) 

and Personal Digital Cellular (PDC). The 3G mobile system featuring high data rate was 

developed in the 1990s and is still under modification. 3G mobiles include three major standards 

wideband CDMA (WCDMA), time-division synchronous CDMA (TD-SCDMA) and cdma2000. 

The maximum data rate of this generation was 144 kbps for high mobility traffic, 384 kbps for 

low mobility traffic and 2 Mbps in proper conditions. The main constraints with 3G mobile are 

extending the data rate to 100 Mbps using CDMA and the difficulty in multi-rate services with 

different quality of services (QoSs). These limitations in 3G led to a new network called 4G 

which provides high data rates coupled with open network architecture. The main feature of 4G 
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is to provide reliable communication with high data rates ranging from 100Mbps for highly 

mobile applications and 1 Gbps for stationary applications. This architecture could improve 

spectral efficiency up to 10 bps/Hz  [5]. Based on the Third Generation Partnership Project 

(3GPP) Long Term Evolution (LTE) technology, the 4G broadband mobile system has found a 

total of 32 million subscribers and it is expected to grow to two billion users in 2018. Its first 

evolved version LTE-Advanced (LTE-A), could transmit wideband signals with bandwidth 

higher than 20 MHz, moreover the carrier aggregation feature could improve the spectrum 

flexibility. Having targeted the above mentioned specifications, 4G is going to employ 

bandwidth efficient modulations, Multiple Input Multiple Output (MIMO) and orthogonal 

frequency-division multiplexing (OFDM) techniques to realize systems meeting these 

specifications  [6].  

The 5G terminals employ software defined radios and modulation schemes along with error-

control schemes that are available in the internet. In 5G, handling user-mobility is the 

responsibility of each network, while the final choice will be made by the terminal among 

different wireless/mobile access network providers for a given service  [7].  

There is always a trade-off between bandwidth and the required signal-to-noise ratio. In the 

shadow of quadrature amplitude modulation (QAM), the required bandwidth can be reduced. 

Compared to M-ary phase shift keying (PSK), QAM provides a notably efficient exchange of the 

bandwidth in favor of signal-to-noise ratio  [2].   

Due to the limitations in bandwidth, as a valuable and critical resource, and also the 

destructive role of propagation, there is always a demand for high spectral efficiency and link 

reliability. MIMO wireless technology could successfully satisfy these requirements through 

spatial multiplexing and diversity gain. In spite of the fact that there are some open research 
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issues with MIMO systems, the technology seem to have enough theoretical and implementation 

background to enter the practical world  [8].  

MIMO technology can be employed in wideband systems that suffer from frequency 

selective multipath fading which in turn translates to inter-symbol interference (ISI). OFDM 

modulation is a smart way to deal with the ISI problem triggered by the fading problem. In fact 

OFDM cracks the frequency selective fading channel into a set of parallel flat fading channels 

and accordingly the equalization process is simplified  [8].  

As the state of the art techniques appear to resolve the wireless challenges, a number of 

practical issues arise. A major portion of these practical and implementation challenges deals 

with the radio frequency (RF) front-end performance. In fact, RF front-ends play an integral role 

in the overall performance of communication radio systems. A necessary condition for the above 

cited techniques to be effective is proper design and implementation of RF front-ends  [9].   

Due to the limitations in practical circuit design, some devices along RF front-ends 

behave nonlinearly, such that the overall transceiver can be considered as a nonlinear dynamic 

system. Hence, in addition to linear distortions, nonlinear non-idealities have to be compensated 

to maintain the quality of the received signal through the communication link.  

Among nonlinear devices in RF front-end, power amplifiers (PAs) effectively 

determine the power efficiency and the linearity of transmitters. The need for PA linearization 

stimulated a comprehensive research and, accordingly, diverse techniques in the analog and 

digital domain have been proposed in the literature. 

Digital predistortion (DPD) and post-distortion (DPoD) compensation techniques stand 

for promising ways of PA linearization. DPD and DPoD are actually models that behave as the 
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inverse of the PA nonlinearity. As a result, the combination of these models with PA should 

behave as a linear system  [9].  

This chapter introduces the background research covered in this thesis. First, PA 

nonlinear behaviour and distortion mechanisms are explained. Later the efficiency-linearity 

trade-off in designing PA is discussed. Subsequently, the concept and the design challenges of 

DPD and DPoD are addressed.   

The next section of this chapter deals with the problems associated with DPD 

implementation in mobile terminals. Then new transceiver architectures that resolve these issues 

are briefly explained. Finally, the research motifs and the organization of this thesis conclude this 

chapter. 

 

1.1 PA Nonlinear Behaviour and Modeling  

For performance evaluation of communication systems, some metrics have been 

evolved over the years in the literature. These measures quantify the common performance 

factors such as efficiency, linearity and quality of signal.  

1.1.1 Metrics and Some Definitions 

For efficiency, there are two major definitions: Drain Efficiency (DE) and Power Added 

Efficiency (PAE). Drain efficiency is defined as the ratio of output signal power to DC power 

consumption as follows: 

   
    

   
     

(1-1)  

PAE on the other hand excludes the input power as below: 



 

6 

    
        

   
     

(1-2)  

 

The linearity measures include Normalized Mean Square Error (NMSE), Error Vector 

Magnitude (EVM) and Adjacent Channel Power Ratio (ACPR) which can be used 

interchangeably with Adjacent Channel Leakage Ratio (ACLR) or Adjacent Channel Error 

Power Ratio (ACEPR).  

The definitions of linearity measures are listed below. If the transmitted signal and the 

received signal after a nonlinear channel, such as PA, are denoted by   and   respectively and 

     shows the expectation operator, then the NMSE can be defined as follows  [10]: 

                 (
  |   |  

  | |  
) 

(1-3)  

in which it is assumed that the output signal is normalized to the small signal gain. If 

     represents the transmitted baseband symbols and       represents the received baseband 

symbols then error power and signal power (    and   ) can be defined as below:   

       (|         |
 
) 

(1-4)  

     (|    |
 
) 

(1-5)  

The EVM can be obtained in dB or in percentile as follows: 

                 (
    

  
) 

(1-6)  

           √
    

  
     

(1-7)  
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If        represents the Power Spectral Density (PSD) of  ,   ,   and    denote the 

carrier frequency, offset frequency and signal bandwidth, then the ACPR can be formulated as 

follows  [10]: 

 

                    

         (
∫         

          

          
 ∫         

          

          

∫         
       

       

) 
(1-8)  

For evaluating the quality of signal or link throughput, the number of erroneous bits 

versus signal-to-noise is the most commonly used performance measure. Bit error rate (BER) is 

the ratio of corrupted bits to the total number of bits and signal-to-noise ratio (SNR) is defined as 

the ratio of signal power to noise power:    

                                                (1-9)  

Among the components in the communication link, this thesis is focused on the most 

significant source of distortions which is the PA. 

 

 

 

 

 

 

 

 

 



 

8 

1.1.2 PA classes of Operation and Doherty PA 

As shown in Figure  1-1, a linear PA includes input and output matching networks, bias 

networks and a transistor  [10]. The first step in PA design is to stabilize the transistor in the 

desired frequency band by attaching a stabilizing network to the transistor. The matching 

networks are usually designed to provide maximum power for the load at the output of the PA. 

The bias networks provide DC currents and voltages for the transistor to generate amplification 

gain  [12]. PAs are classified based on their bias conditions. The seminal parameter that 

determines PA class of operation is conduction angle which is mainly a function of gate bias 

voltage. For a transistor with pinch-off voltage,   , bias voltage,   , and maximum forward 

voltage,   , the conduction angle,  , for maximum swing can be calculated as follows  [12]: 

       (
     

     
) 

(1-10)  

  

Figure  1-1 General simplified block diagram of a single-ended amplifier  [11] 
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Table  1-1- Power amplifier classes of operation 

Class Operation C B AB A 

Conduction Angle   
 

 
   

 

 
 

 

 
         

 

Table  1-1 lists classes of operation versus conduction angle. Actually, classes other than 

A are considered as efficiency enhancement classes. Figure  1-2 shows maximum efficiency of 

the above mentioned classes as a function of the conduction angle  [12]. 

Doherty PA on the other hand combines powers of one class AB (Carrier) and one class 

C PA (Peaking). The class AB PA works continuously, but the class C PA works only during the 

6dB high power part of the signal.  Over this last 6 dB range, the theoretical efficiency of 

Doherty PA is close to the maximum of the carrier and the peaking amplifiers efficiencies.  

Figure  1-2- Maximum drain efficiency versus conduction angle [11] 
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Hence, the efficiency of Doherty PAs shows an improvement compared to their conventional 

class AB counterparts  [12].   

There are two main categories of circuits: linear or nonlinear and memory or memory-

less  [14]. Power amplifiers are categorized as nonlinear memory circuits. Nonlinear memory 

systems include nonlinear and memory introducing components. Figure  1-3 depicts the input-

output of linear and nonlinear systems. 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, memory effect can be assigned to energy storage elements. Memory 

effect is considered as the dependence of the output signal on the past values in a linear or 

nonlinear way  [14].    

 

 

Figure  1-3- Linear and nonlinear systems  [14] 
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Power amplifiers generally include memory nonlinear components. Accordingly, the 

I/V curves of PA become nonlinear due to the nonlinear components and dynamic load lines of 

PA show hysteresis due to memory effect  [14].  

The nonlinear behaviour of PA is classified into weak and strong cases. The small 

signal PA exhibit nonlinear behaviour around the bias point and is called weak nonlinearity. This 

nonlinear behaviour can cause different effects on signals, such as AM-AM compression, AM-

PM conversion, harmonic generation and intermodulation distortions  [15].  

There exist generally three main categories of PA characterization models: physical 

models, equivalent circuit models and behavioural modeling. Most of the CAD tools use second 

and third trends for modeling purposes  [12]. This dissertation mainly deals with the behavioural 

modeling of PA, which has been used as a basic and powerful tool for designing linear efficient 

transmitters. Weak nonlinearities have been reported to be modeled effectively by Volterra-based 

models  [12]. For modeling the strong nonlinear behaviour of PAs, which is caused by their 

limiting behaviour (saturation) [12], several models have been reported in the literature. 

Behavioural models of PA include static models, such as look up tables, static polynomials and 

dynamic models like Wiener, Hammerstein, Memory Polynomial (MP), Generalized Memory 

Polynomial (GMP) and Radial Basis Function Neural Networks (RBFNN). Inherently, PA 

models can be categorized into three major families: Volterra-based, box-based and neural-based 

models. Recent comparative studies  [16] indicate that  box-based Wiener and Hammerstein 

models perform close to static models and hardly can model the dynamic nonlinear memory 

effects of PAs. On the other hand, MP, GMP and RBFNN show superior performance in terms 

of NMSE and ACPR. MP also favors a higher robustness in validation tests  [16]. GMP results in 

a better performance at the cost of more complexity. Consequently MP exhibits the best 
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performance (NMSE and ACPR) with the lowest complexity  [17], and therefore, is the most 

commonly used model in practice. 

1.2 Efficiency and Linearity Trade-off 

The efficiency of PAs plays a key role in transmitter design. The amount of output 

signal power to the DC consumption has been defined as the Drain Efficiency (DE) of the PA. 

This is the efficiency that determines the battery life of a cell phone or any portable device. 

One of the draw-backs of modern communication signals is their high peak to average 

power ratio (PAPR). The PAPR of a signal is defined as the ratio of peak power to mean power 

of the signal measured in dB. This high PAPR increases the amount of power back-off needed 

for driving PAs. The higher back-off means lower mean power which in turn degrades the 

efficiency  [18]. As can be seen from Figure  1-4, the measurement results confirm that the 

average efficiency is a decreasing function of the PAPR. There are some models describing the 

average efficiency behaviour as a function of PAPR. In  [19] an approximate model has been 

proposed to formulate this behaviour: 

                     
(1-11)  

where       stands for the peak efficiency and   stands for a constant that depends on 

PA class. Therefore, it can be concluded that PA efficiency is highest at peak power when PA 

works in its nonlinear region. On the other hand, gain compression of PA due to saturation 

phenomenon introduces distortion to signal. Accordingly, PA linearization is an effective and 

promising way for improving efficiency while maintaining the quality of signal  [9].   
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1.3 Digital Predistortion (DPD) 

Digital predistortion is one of the favorable techniques for linearizing PAs. Through 

linearization, gain and phase compressions of a PA are compensated and the linear region of the 

PA is extended. Subsequently, efficiency improves without distorting the signal  [9]. 

The first step in designing a DPD is to select a model. As described above, DPD can be 

realized in a variety of models. Among them, MP has been found to be more reliable. It has the 

ability to capture the nonlinear dynamics of a PA  [9].  

The MP model of a PA, with   and   denoting the discrete time input and output signals 

respectively, can be described as below  [9]:  

 

Figure  1-4- Measured gain and efficiency variation versus input power of a 

transmitter with a typical class AB PA [11] 
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      ∑ ∑                |      |    

 

   

 

   

 (1-12)  

 

where  ,   and             are the nonlinearity order, the memory depth and the 

complex parameters of the MP model, and |      | is the envelope of the input signal to the 

PA at     time step. 

The main task of a DPD is to compensate for the AM-AM and AM-PM distortions of a 

PA. To accomplish this task the DPD should behave as the inverse of the PA gain compression 

such that the overall function of DPD+PA becomes a linear system  [9]. 

1.4 DPD Challenges and the Organization of the Dissertation  

As discussed earlier, the PA efficiency is one of the important concerns in radio 

communications. The first issue in the application of complex DPD in mobile cell phones, for the 

up-link communications, is its computational cost which usually requires more power 

consumption by digital signal processors and additional power back due to higher PAPR of the 

driving signal resulting from the complex DPD. These effects increase the power consumption   

of the mobile terminal and make complex DPD implementation less attractive for the up-uplink 

application. 

In chapter two, a novel transceiver architecture for linearization and efficiency 

enhancement purposes is proposed. This architecture calls for it joint-deployment deployed and 

partition between   the base station and the mobile terminal. In the proposed new architecture, the 

phase nonlinearity is compensated first at the transmitter of the mobile terminal using phase-only 

DPD which does not change the PAPR of the signal and, the amplitude nonlinearity will be 

compensated at the base station using CDF estimation.  Consequently, the overall efficiency 
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improves. The distortion-free amplitude of the signal is then recovered at the receiver using CDF 

estimation, which does not rely on a training sequence. As a result, the efficiency of the 

transmitter shows a notable improvement compared to DPD and conventional back-off 

techniques.  

From the handset vendor’s point of view, this technique improves the efficiency of the mobile 

terminal transceiver and increases the battery life of mobile handsets. The other important issue 

is that this technique does not require additional hardware since it is fully software based it can 

be implemented in the existing processors of the handset. 

From the network provider’s point of view, this technique will require the additional 

implementation of a relatively simple and low complexity algorithm to estimate the CDF of the 

received signal and compared with distortion free signal CDF. This technique does not rely on a 

training sequence and feedback loop for compensating the PA distortion of the handset terminal.  

As this technique does not need any training sequence, accordingly, the latency of the 

network does not degrade. The CDF is estimated using a given frame and distortion 

compensation is applied for the subsequent frame.  Herein we assume that the characteristic of 

the PA of the mobile terminal does not change in significant manner within two successive 

frames.  . In terms of hardware, the proposed partitioned compensation method does not need 

any feedback loop. This aspect of the technique is attractive, since, in the full adaptive complex 

digital pre-distortion technique a feedback loop for PA characterization is needed this will add a 

complexity burden to the system. This work was submitted to the IEEE Transactions on 

Microwave Theory and Techniques  [P3].  

As a matter of fact, PA gain starts compressing before saturation. Consequently, DPD 

expands peaks such that the compression transforms them to their initial linear desirable 
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condition. This expansion in amplitude increases the PAPR of the signal applied to the PA. The 

higher PAPR of the pre-distorted signal increases the required power back-off and limits the 

amount of improvement in efficiency using DPD. This problem is the second issue which is 

considered in this thesis.  

In chapter three, a new crest factor reduction (CFR) technique is presented which is 

then combined with full DPD to optimize the PAPR and hence the efficiency while meeting the 

spectral constraints. The algorithm uses a post-distortion compensation approach to recover the 

amplitude nonlinearity of the CFR at the receiver. This technique can be employed by base 

stations to improve the efficiency while passing ACPR and EVM requirements. The soft clipping 

crest factor reduction technique which is recommended for base stations reduces the PAPR of the 

signal in addition to the improvement in efficiency and signal quality. As a result of the PAPR 

reduction due to soft clipping, the peak power requirement of the base station PA decreases.  

Hence less powerful PAs can be used for the same base station while keeping the same coverage. 

This can be very beneficial in reducing the cost of deployment of the network (capital expenses) 

as well as the operating expenses for the network operator.  This work was also submitted to the 

IEEE Transactions on Microwave Theory and Techniques  [P4].  

The third issue regarding DPD is the dimensionality of the model used in DPD design. 

Conventional techniques are established based on sweeping the orders and memory taps to find 

saturation in the NMSE trend. This technique lacks an optimum point and is computationally 

inefficient.   

In chapter four, new model order selection approaches are proposed which are based on 

information criteria. Using these criteria, the complexity of the model is also considered in model 

order selection. This means that there is a minimum in the dimensions space that can be 
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estimated using mixed integer nonlinear programming techniques. This approach employs an 

optimization which can be performed much faster than the brute force dimension sweeping 

technique along with NMSE monitoring. This work was published in the International Journal of 

Microwave and Wireless Technologies  [P1]. 

The rest of this thesis deals with nonlinearity in MIMO systems and specifically 

nonlinear cross-talk. Due to practical limited isolations in integrated MIMO PAs, it is probable 

that the inputs cross-talk with each other by a coupling factor. If this phenomenon happens at the 

inputs of the chip, then the cross-talk will be considered nonlinear. This type of cross-talk can be 

compensated using Cross-over DPD (Co-DPD)  [20]. The first problem arising in the Co-DPD 

implementation occurs when the precision is limited, i.e., in fixed point arithmetic in processors 

such as FPGAs. The numerical problems associated with the conventional MP matrix inversion 

result in poor estimate of the DPD coefficients and cause a divergence in the algorithm for higher 

nonlinearity orders. 

Chapter five shows the superior performance of orthogonal polynomials (OP) over MP 

is shown. The coefficients of OP are then extracted using LU decomposition and triangular 

matrix inversion. This technique converges even for high nonlinearity orders. This work was 

published in the International Journal of Electronics and Communications and IEEE CAMAD 

2010 conference  [P2],  [P5]. 

The last issue concerning Co-DPD is that the estimation algorithm seems inefficient. In 

chapter five a new streamlined technique is proposed. This technique has the same performance 

in terms of the amount of distortions, while taking around half of the computational burden. This 

work was accepted for publication in the RWS 2014 conference  [P6].   
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1.5 Research Focus 

Due to the non-ideal behaviour of components in the transmission and reception chain, 

the overall system can be considered a nonlinear dynamic system. Consequently, to avoid signal 

degradation and maintain an acceptable signal quality, compensation techniques have to be 

considered and included in the chain. 

This dissertation mainly proposes advanced statistical signal processing techniques to 

compensate the nonlinearities in modern communication systems. The main contributions of this 

thesis can be summarized as follows: 

 A partitioned compensation technique is proposed to compensate the PA 

nonlinear AM-AM and AM-PM distortions. The compensation is distributed 

between transmitter and receiver. The phase and amplitude nonlinearities are 

compensated at the transmitter and the receiver sides respectively. The advantages of 

the technique can be considered as an improvement in efficiency and eliminating the 

need for training sequences. The proposed technique can easily be implemented in 

cell phones  [P3]. 

 It is widely known that DPD increases the PAPR which subsequently 

limits the efficiency improvement. A new CFR technique is proposed in this thesis 

which is then combined with DPD, such that maximizes the efficiency subject to 

spectral mask constraints. This technique is useful for base stations  [P4].    

 One of the major problems in DPD design is the model orders. To 

overcome this problem, a new method is proposed in this thesis which is based on 

the Akaike and Bayesian Information Criteria (AIC and BIC)  [P1]. 
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 MIMO systems also suffer from nonlinearities of integrated PA chips. The 

other issue is the numerical problems in the DPD implementation in fixed point 

arithmetic. This thesis proposes the application of orthogonal polynomials and LU 

decomposition in DPD design  [P2],  [P5].  

 The nonlinear cross-talk adds distortions to MIMO systems and has been 

shown to be compensated by Co-DPDs. This dissertation proposes a simplified 

estimation technique that can be used in Co-DPD estimation  [P6]. 
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Chapter Two: Linearization of mobile stations using partitioned compensation technique 

2.1 Introduction 

The performance of a communication system is notably limited by the amount of 

distortions produced by non-ideal behaviour of the devices in the transceiver chain. The 

nonlinear distortions caused by the transmitter, and in particular PA, can be considered as a 

major problem in signal transmission.  

As far as the power efficiency is concerned, it is necessary to drive the PA into its 

compression region, which in turn introduces considerable distortions to the signal. 

Consequently, to maintain an acceptable BER at the receiver end, the use of linearization 

techniques seems to be inevitable for compensating these distortions while preserving high 

power efficiency  [21]. DPD  [10] and post-compensation at the receiver side  [22], stand for the 

most commonly used linearization techniques. When no linearization technique is applied, it is 

mandatory to consider a power back-off at the transmitter for the BER considerations  [23], 

assuming that the channel equalization is perfect at the receiver side and that the receiver is fully 

linear.  

The DPD consists of applying a gain, with inverse amplitude and phase behaviour than 

the complex gain behaviour of the PA, to the signal which precedes the PA. The overall 

behaviour of the cascade of the predistortion function and the PA is, therefore, linear versus 

input power.  

As a result of compensating for the gain compression of the PA near saturation, the 

signal PAPR increases  [21]. Due to the limitation in the maximum power of the input signal, an 

increase in the PAPR forces a decrease in the mean input power (typically 2-4 dB). Therefore, 
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this power back-off degrades the drain efficiency of the PA  [21],  [24]. On the other hand, DPD 

performance degrades notably by the impairments in the up and down-conversion circuits (the 

feedback path components such as mixers, filters, quadrature modulator and demodulator).  

These impairments highly result in a poor estimation of the inverse function of the PA 

behaviour  [25],  [26]. 

In the case of techniques other than DPD, it is compulsory to consider training 

sequences to characterize the PA nonlinearity  [22]. In one of these approaches, a training 

sequence is placed in each frame and is sent to the receiver. Firstly, the effect of the channel is 

removed by equalization techniques. The resulting signal is then used as the replica of the signal 

at the output of the PA for DPD estimation. Based on the training sequence data known at the 

receiver side, the DPD function is then extracted. The model is then passed to the transmitter for 

compensation  [22].  

The limitation in the efficiency improvement is the common disadvantage among all 

current predistortion techniques, since the signal predistortion precedes the power amplifier, 

which results in an increase in the PAPR of the signal.  

This chapter proposes a new linearization technique that compensates for the transmitter 

amplitude nonlinearity in the receiver side in order to maintain high power efficiency in the PA. 

Cumulative distribution function (CDF) based algorithm is employed to estimate the PA AM-

AM nonlinearity. The estimation for nonlinearity using CDF has been limited in previous works 

to predistortion in the transmitter side  [27],  [28] and amplitude-only compensation 

techniques  [29],  [30]. This chapter combines the transmitter phase-predistortion idea along with 

the receiver CDF-based amplitude post-compensation technique to maintain the improvement in 

overall efficiency and result in an acceptable BER performance of the transceiver in a radio link. 
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In this chapter first, the motivation of compensating for the amplitude nonlinearity in 

the transmitter and the concept of the new distributed distortion compensation approach is 

explained. Then the details of the theoretical analysis of the proposed approach are discussed. 

The simulation and measurement results and the performance of the proposed linearization 

technique are provided.     

2.2 Distributed Distortion Compensation 

In systems deploying standards such as WCDMA, LTE and WiMAX, the handset PAs 

are usually operated in quasi-linear region. They are mostly designed to be linear at specific 

back-off power  [31].  

To avoid nonlinear distortions in the transmission of high PAPR signals, PAs are 

usually biased at class A or class AB. Furthermore a large back-off from the saturation power 

should be considered for the PA to work linearly  [12]. This large back-off causes degradation in 

the power efficiency improvement and hence worsens the heat dissipation.   

Nonlinear distortion in the cell phone can be compensated using digital signal 

processing. The nominal power consumption of these processing modules may exceed 1 

Watt  [32]. Base stations on the other hand consume around 85% of the total energy of the 

communication network and their power consumption depending on the size, coverage and 

technology and  ranges from 147 Watts to 10 KWatts  [33], [34]. Hence implementing the PA 

nonlinearity compensation at the base station will rarely impact the overall efficiency of the 

network markedly. The gain expansion of DPD increases the PAPR and limits the efficiency 

achievement of the linearization. Conversely, the phase nonlinearity compensation by itself does 

not affect the PAPR, and therefore does not degrade the efficiency of mobile handset.  
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Having known the distribution function of the original OFDM signal  [35], the 

amplitude nonlinearity of the PA can be estimated at the receiver side through a comparison 

between the distribution of the original signal before PA amplification and the received signal.  

Doherty PAs show better power efficiency in back-off compared to their class AB 

counterparts  [12]. Nevertheless, for high PAPR signals, they exhibit highly nonlinear 

behaviour  [36].   

2.3 Amplitude and Phase Nonlinearity Compensation in the Distributed Distortion 

Compensation 

The main concept of the proposed partitioned distortion compensation technique 

consists of transmitting the signal through PA amplification after pre-distorting the phase 

nonlinearity. Provided reasonable amplitude nonlinearity, the transmitted signal should meet the 

spectral mask requirements.  

After equalizing the channel effects at the receiver side, the baseband equalized signal is 

used to estimate the amplitude nonlinear distortion by estimating the empirical CDF of  

 

 

 

Figure  2-1- The proposed architecture 
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the received signal amplitude. Then the transmitter amplitude nonlinearity is 

compensated for at the receiver side. Figure  2-1 depicts the block diagram of the whole 

transceiver. The spectrum of the received signal with and without Phase-DPD and the spectral 

mask are shown in  

Figure  2-2. It can be seen that in both cases, the transmitted signal spectrum passes the 

mask requirements.  

2.1.1 Amplitude Nonlinearity Estimation 

If x and y denote the complex input and output signals, respectively, of a PA and if    

and    are their corresponding amplitudes, the static PA behaviour can be modeled as: 

           (      )   
(2-1)  

where F and G are the amplitude and phase compression functions of the PA, 

respectively, which depend on the amplitude of the input signal. 

If the input signal distribution is known, then by estimating the empirical CDF of the 

output signal, the amplitude nonlinearity can be obtained. 

If   denotes the nonlinear function relating the amplitude of the output signal to the 

amplitude of the input, then: 

                (2-2)  

where, for simplicity, r is used instead of    .  

If       and       denote the CDFs of the output and input signals respectively, It is 

established from  [37] that the following relationship holds between the distribution of the output 

amplitude and the input signal distribution 
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Figure  2-2- Received signal spectrum and spectral mask for WiMAX 

 

   (  )        
(2-3)  

Using (2-2) and (2-3), the nonlinearity can be estimated as follows: 

     
           

(2-4)  

   
  (  )    

           
(2-5)  

In  [35] it has been shown that most of OFDM based signals follow a Rayleigh, a 

generalized Rician, or Weibull distribution.  

In the following, the equations for the Rayleigh, Rician and Weibull distributions are 

given [32, 34, 35]. The Rayleigh distribution is given by: 
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(2-6)  

in which    is the scale parameter of the distribution, The Rician distribution is given 

by: 
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(2-7)  

where    accordingly, is an indication of the distance between the reference point and 

the center of the bivariate distribution and    is the scale parameter, and       denotes the Bessel 

function of the first kind. 

The Weibull distribution is given by: 
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(2-8)  

Weibull distribution is a two parameter distribution with   as the shape and   as the 

scale parameters. 

In the case of Rayleigh and Weibull assumptions for the input signal, the amplitude 

nonlinearity can be estimated using the following formulas as provided in  [29]:  

     
  (  )  √    

    (    (  ))  (2-9)  

     
  (  )    (    (    (  )))

    

 (2-10)  

In the case of Rician distribution, the inverse CDF is hard to find in closed form. Once, 

the distribution parameters have been estimated for the input signal, the inverse CDF can be 

evaluated at the signal values by interpolation.  
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Figure  2-3- The AM/AM of the received and the compensated signal along with the 

estimated nonlinearity 

From (2-4), it can be inferred that the nonlinearity of the amplitude can be estimated by 

obtaining the CDF of the received signal. The AM/AM of the estimated nonlinearity and the 

linearized system are shown in  

Figure  2-3. 

The first step in estimating the AM/AM is to fit a parametric CDF to the transmitted 

signal amplitude. The Maximum Likelihood estimation (MLE) of the parameters can be obtained 
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-10

-5

0

5

10

-20 -10 0 10 20

Received Signal 
Compensated Signal
Estimated Nonlinearity

A
M

/A
M

 [
d
B

]

Normalized Input Power [dBm]



 

28 

samples of the transmitted frame and           , then the MLE estimated values (indicated 

by   ̂) for the Weibull parameters can be obtained as below:    

  ̂  [
∑   

 ̂   
 
   

∑    
̂  

   

  ̅]

  

 (2-11)  

  ̂  (
 

 
∑  

 ̂ 

 

   

)

   ̂ 

 (2-12)  

 where    ̅̅ ̅̅ denotes the average value. The second step in estimating the AM/AM 

nonlinearity of PA, is to estimate the CDF of the received signal. Empirical methods should be 

employed to obtain the CDF. Among empirical CDF estimation techniques, Kaplan-Meier has 

been found simple and accurate  [38]. In this approach the survival function is estimated, which is 

defined as: 

             (2-13)  

where       denotes the CDF of random variable  . 

To estimate the survival function, the scale is divided to   intervals namely: 

                . Then      can be estimated as below: 

      ∏ (
     

  
)

    

 
(2-14)  

where    is the number of samples greater than      and   represents the number of 

observations that are greater than      but smaller than   . 
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2.3.1 The Phase Nonlinearity problem 

The estimation of the phase nonlinearity is not a trivial task. If    and    represent the 

phases of the input and output signals, respectively, and      is the phase distortion for given 

amplitude r, for the amplifier model represented by (2-1), then: 

                  
(2-15)  

If a uniform phase distribution is assumed for a given input signals level, the output signal phase 

also has a uniform distribution for which the maximum likelihood (ML) estimate will be zero. 

As it has been shown in [39], a complex Gaussian process has a uniform distributed phase. This 

uniform phase distribution holds for any given amplitude. At constant signal amplitude, the 

phase distortion according to the complex gain model of the PA will be a constant value. Hence 

the output signal phase distribution given the amplitude will be uniform and there is no way to 

estimate the phase compression function through the CDF of phase.  
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Figure  2-4- The convolution of input phase distribution with the PDF of 
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The PDF of sum of two independent random variables is the convolution of their PDFs.  

If it is assumed that the phase distortion is distributed between       and      , then for the 

output phase distribution two cases are possible. In the first case which is shown in Figure  2-4 as 

case A it can be concluded that 
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 (2-16)  

In case B the PDF is the summation of two parts: 
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(2-17)  

According to the above mentioned reason, it was decided to proceed with phase 

distortion compensated at the transmitter. This phase DPD does not deteriorate the efficiency 

since the PAPR does not change and there is no need for a power back-off. Another advantage of 

the proposed method is that, in general, the phase nonlinearity is less sensitive to the PAPR of 

the signal as reported in [36]. The phase DPD can be implemented independently from the signal 

characteristics without being adaptive. 
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In this chapter the phase nonlinearity is compensated in the transmitter side using a 

simple LUT [40], [41] which can be estimated using a high PAPR signal and then plugged for 

other standards and with any PAPR. 

As mentioned above, the phase-only DPD does not change the PAPR. According to the complex 

gain model of the PA which is described in (2-1), the Phase-pre-distorted signal can be 

represented as follows: 

      (      )   (2-18)  

Then the PAPR of the pre-distorted signal    can be obtained as: 

                (
         

      
) (2-19)  

where     stands for the complex conjugate operator. 

Then based on the fact that  

     (   (      )  )
 
(   (      )  )      (2-20)  

the PAPR of the signal after phase pre-distortion does not change.  
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2.4 Measurement Results  

2.4.1 Measurement Setup 

In this section, the measurement results for different linearization techniques, i.e. DPD, 

PBO and distributed distortion compensation, are discussed. The performances of these 

approaches are then compared in terms of DE, NMSE, EVM and ACPR.  

The measurement setup, consisting of a vector signal generator, a driver amplifier, a 

PA, an attenuator and a vector signal analyzer (VSA), is shown in Figure  2-5.  

The excitation signals are uploaded to the signal generator using a general-purpose 

interface bus (GPIB). The specifications of these excitation signals for system identification and 

evaluation are summarized in Table  2-1. 

The first device-under-test (DUT) is composed of a cascade of a class-A driver and a 

class-AB PA, which is biased at a gate-to-source voltage (Vgs) of 10.3 V and a drain-to-source 

voltage (Vds) of 28 V. Both amplification blocks were designed using a TF10107 LDMOS 

transistor.  

This PA works at carrier frequency of 1.96GHz. The second DUT includes a class-A 

driver and a Doherty PA. The Peaking PA was biased at Vgs of -5.5 V and the Carrier PA at -2.8 

V. The Vds was set to 28 V. The Doherty PA was designed using CGH40010, 10W GaN HEMT 

transistors. The center frequency for this PA is 2.425GHz.  

The third DUT is a 0.5 Watts PA, proper for mobile applications. The center frequency 

for this PA was set to 900MHz. The device is biased at Vgs of -1.2V and Vds of 8V. The 

quiescent current was obtained 118mA. 27.52dBm output power was obtained at a maximum 

drive of 11.5dBm. The maximum measured CW efficiency was 54.74%.  
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2.4.2 Results and Discussion 

The simulation and measurement results are divided into three different cases. In 

section 2.4.2.1, the results for an ideal line of sight channel for high power PAs (i.e. the first and 

the second PAs introduced in 2.4.1) are provided. In section 2.4.2.2, measurement results for the 

ideal channel and a low power PA (i.e. the third PA) is discussed. In the last section, fading and 

AWGN noise is applied to the signal after PA and the simulation results of different techniques 

are presented. 

2.4.2.1 Measurements: Ideal Channel case, high power PAs 

The signals in Table  2-1 have been used in these measurements to evaluate the 

performance of the proposed CDF-based distributed distortion compensation technique. The 

performance of the proposed technique is then compared to DPD and back-off methods. 

In this subsection the channel is assumed to be ideal and the DUT is the class AB PA. 

Five different cases are compared using six different signals.   

Case 1: In the first case no linearization technique is applied.  

Case 2: In the second case, the proposed distributed distortion compensation with look 

up table; In this case, a LUT has been built for each signal using its own measured data (DPD1) 

based phase pre-distortion along with the CDF-based amplitude compensation is applied. 

Case 3: The third case consists of using the proposed distributed distortion 

compensation technique where the LUT is obtained using the highest PAPR signal (signal 

number 2) and applied for all six signals (DPD2).  

Case 4: In the fourth case a memory polynomial DPD has been used to compensate for 

the phase and amplitude distortion in the transmitter (Conventional DPD).  
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Case 5: Case number five consists of backing off the signal to avoid the nonlinear distortions in 

the compression region of the PA. 

Table  2-2 and Table  2-3 summarizes the measurement results for the above mentioned 

cases. It can be concluded that the distributed distortion compensation technique provides 

enough accuracy in the compensation (NMSEs are similar to the memory polynomial DPD and 

back-off techniques), however the efficiency is significantly higher in the proposed distributed 

distortion compensation technique (nearly the double).        

 

 

 

 

 

                   

Table  2-1-   Parameters of the modulated signals 

Signal 

Number 

Standard 

PAPR 

(dB) 

Bandwidth 

(MHz) 

Sampling 

Frequency(MHz) 

1 WiMAX 10.2 5 92.16 

2 WiMAX 12.7 5 92.16 

3 LTE 10.4 5 61.44 

4 LTE 12.4 5 61.44 

5 WCDMA 9 3.84 92.16 

6 WCDMA 10.9 3.84 92.16 
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Table  2-2- Measurement results for the first 3 cases 

Signal Number Case DE(%) NMSE(dB) Distribution 

1 

 

Case1: No Compensation 17.2 -17.8 Ideal channel 

Case 2: DPD1 17.9 -38 Weibull 

Case 3:DPD2 18 -38 Weibull 

2 

 

Case1: No Compensation 13.2 -18.7  

Case 2:DPD1 13.2 -35 Weibull 

Case 3:DPD2 13.2 -35 Weibull 

3 

 

Case1: No Compensation 19.6 -16.9  

Case 2:DPD1 19.3 -42 Weibull 

Case 3:DPD2 19.6 -42 Weibull 

4 

 

Case1: No Compensation 15 -17.8  

Case 2:DPD1 15 -37 Weibull 

Case 3:DPD2 15 -37 Weibull 

5 

 

Case1: No Compensation 22.3 -16.5  

Case 2:DPD1 22.3 -37 Rice 

Case 3:DPD2 22.2 -37 Rice 

6 

 

Case1: No Compensation 18 -16.9  

Case 2:DPD1 18 -37 Weibull 

Case 3:DPD2 17.9 -37 Weibull 
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Table  2-3- Measurement results for the cases 4 and 5 

Signal Number Case DE(%) NMSE(dB) 

3 

Case 4: MP DPD 11.8 -42 

Case 5: Back off 0.8 -37 

4 

Case 4: MP DPD 8.4 -42 

Case 5:Back off 0.8 -36 

5 

Case 4: MP DPD 13.9 -42 

Case 5: Back off 0.8 -35 

6 

Case 4: MP DPD 9.7 -39 

Case 5: Back off 0.8 -36 

 

It can be observed as well that the phase DPD in the second and the third cases have 

similar DE and NMSE performance. Therefore, it can be concluded that the phase distortion is 

relatively insensitive to the signal characteristics and non-adaptive phase predistortion is 

sufficient to achieve good linearity. 

In the second set of measurements, two PAs have been considered. The first PA is the 

class AB PA used in the previous set of measurement, while the second PA is a Doherty PA as 

described in the measurement setup. The performance of the proposed partitioned distortion 

compensation technique in terms of power efficiency and linearity is compared to the PBO 

technique in practical scenarios for uplink transmissions. Indeed, given that the proposed 

technique is targeted for uplink applications, where no adaptive DPD is assumed to be used in 

the transmitter side to simplify the implementation in mobile terminals. Therefore, the use of 
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Doherty PAs is not preferred, since the linearity requirements cannot be met without 

predistortion in this case.    

Table  2-4 shows the DE and NMSE of the Doherty PA when using the partitioned 

distortion compensation technique and compares it to the DE and NMSE of the class AB PA 

when PBO is used. The DE of the Doherty PA using the proposed distributed distortion 

compensation technique is considerably higher compared to the conventional class AB PA with 

3dB back-off, while the performance in terms of NMSE are  comparable for both techniques.    

 

 

 

Table  2-4- Measurement results for partitioned compensation and the conventional 

transceiver 

Signal Number Power Amplifier DE(%) NMSE(dB) 

4 Case 2: Doherty-Distributed Distortion Compensation 18.7 -33 

4 Case 5:Class AB@3dB B.O. 3.1 -34 

5 Case 2: Doherty- Distributed Distortion Compensation 27.3 -26 

5 Case 5:Class AB@3dB B.O. 6.2 -30 

 

2.4.2.2 Measurements: Ideal Channel case, low power PA 

To further clarify the effectiveness of the proposed technique, another set of 

measurements was performed using a low power PA which is proper for the targeted application. 
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Two standards were considered in this course of measurements: WiMAX and LTE. Table  2-5 

summarizes the specifications of the above mentioned standards.  

Table  2-5- Standard specifications 

Standard 

Bandwidt

h 

(MHz) 

Occupied  

Bandwidth(MH

z) 

ACPR1 

dBc@5MH

z 

ACPR2 

dBc@10MH

z 

EV

M 

(%) 

Sampling 

Frequenc

y (MHz) 

WiMAX(Uplin

k) 
5 4.75 30 44 3.2 92.16 

LTE(Uplink) 5 4.5 33 36 3.2 61.44 

 

To compare the performance of the proposed method, three other cases were 

considered. No-compensation, DPD and back-off are the three other cases that were studied. 

Tables 2-6 and 2-7 list the performances of these systems for WiMAX and LTE standards.  

 

Table  2-6- Measurement results for the WiMAX signal 

Technique for 

WiMAX 

Signal 

PAPR 

(dB) 

PAPR 

before 

PA(dB) 

ACPR1 

(dBc)L,H 

ACPR2 

(dBc)L,H 

EVM 

(%) 

Efficiency 

(%) 

No 

Compensation 
11.4 11.4 

-37.7 

-38.2 

-57.1 

-57.6 
3.4 10.8 

DPD 11.4 15.4 
-46.5 

-46.9 

-56.9 

-57.3 
0.8 4.4 

BO@3dB 11.4 11.4 
-45.1 

-45.6 

-60 

-60.2 
1.3 5.6 

PC 11.4 11.4 
-38.7 

-39.1 

-57.5 

-58.2 
1.2 10.8 

 

As can be seen from Table  2-6, it is clear that the Phase-only DPD does not change the 

PAPR of the signal, hence, does not affect the efficiency. All the cases, the spectrum as well as 

the EVM requirements are satisfied and the ACPRs are below the mask except for the no-

compensation case. However, the efficiency shows a noticeable improvement in the case of the 
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partitioned compensation technique. The PDF of the input data was assumed to be Rician for this 

case. 

Table  2-7  lists the performances for the LTE signal. To pass the mask in this case 1dB 

back-off was considered for the proposed technique. The input data distribution was assumed to 

be Weibull.  

 

Table  2-7- Measurement results for the LTE signal 

Technique for 

LTE 

Signal 

PAPR 

(dB) 

PAPR 

before 

PA(dB) 

ACPR1 

(dBc)L,H 

ACPR2 

(dBc)L,H 

EVM 

(%) 

Efficiency 

(%) 

No 

Compensation 
7.8 7.8 

-30 

-30.5 

-44 

-44.5 
5.9 23.4 

DPD 7.8 11.4 
-42.5 

-43.3 

-51.5 

-51.7 
0.6 11 

BO@2.5dB 7.8 7.8 
-37.1 

-37.8 

-50.7 

-51.1 
1.7 14 

PC@1dB BO 7.8 7.8 
-33.8 

-34.4 

-48.9 

-49.5 
1.7 19.2 

  

2.4.2.3 Standard channel model simulations 

In the previous section it was assumed that the channel is ideal and its effect was not 

account for in simulations and measurements. This paragraph provides the simulation results for 

the previously mentioned structures in the presence of a non-ideal channel. For the proposed 

technique, DPD and back-off methods a LUT based model for the PA with around 4.5dB gain 

compression was applied. 

The applied signals in these simulations were generated using Advanced Design System 

(ADS) 2009 Update 1. The length of the signal was considered to be 50ms (five farmes) with 3 

MHz bandwidth, 64QAM modulation coding rate of 4/5 and an oversampling ratio of 8.  
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The applied channel is an ITU channel model which has been provided in ADS along 

with the additive white Gaussian noise (AWGN). The pedestrian, channel A with Doppler 

frequency of 0.1 Hz was chosen to model the fading effects of the wireless channel coupled with 

AWGN channel.  The channel applied herein, has a delay spread of 410ns and Doppler spread  

 

 

 

 

 

 

 

 

 

 

 

of 0.1Hz, accordingly, the channel is a multipath, Doppler flat, frequency selective and 

stationary one. Among channel equalization techniques for the OFDM data, the minimum mean 

square estimation (MMSE) method which was implemented in ADS was applied in this work. 

Figure  2-6- BER versus SNR for the proposed method for LUT-based PA with no 

compensation (black solid line), the conventional DPD (red circle), the proposed method 

(green diamond) and phase-only DPD (blue square) 
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Finally, the CDF-based post compensation technique was implemented in MATLAB and was 

linked to the ADS simulation.  

Figure  2-6 shows the receiver BER results versus SNR. As shown in Figure  2-5 the 

performance of the proposed method for a LUT-based PA model could reasonably compensate 

for the distortions at high SNRs. To obtain a BER of 10
-4

, compared to the DPD and BO, 5 dB 

more SNR is required. The increase in the required SNR for an acceptable BER will reduce the 

maximum range of the transceiver. This in turn means that this technique trades the maximum 

range to get an improvement in efficiency. By adopting a better equalization technique such 

decision feedback equalization, it is anticipated that a significant improvement of the BER by 2-

3 orders of magnitude will be achieved for the proposed partitioned compensated technique  [42]. 

In such case, it is anticipated that the SNR corresponding to 10
-4

 will be reduced by 2-3 dB. 

It can be concluded that the proposed distributed distortion compensation approach 

provides the same NMSE and reasonable BER with improved efficiency among all the compared 

techniques.  

2.5 Conclusion 

In this chapter, a new architecture for PA distortion compensation has been proposed 

for uplink applications. In the proposed distributed distortion compensation technique, the 

conventional class AB PAs was replaced with high efficiency Doherty PAs. The proposed 

configuration compensates for the phase distortions using non-adaptive LUT-based phase DPD 

at the transmitter of the mobile terminal. The amplitude nonlinearity was compensated at the 

receiver of the base station after channel equalization and it does not require any training 

sequence. It was shown that the distributed distortion compensation provides almost the same 
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linearity and reasonable BER performance as conventional techniques, but with considerably 

improved DE. 
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Chapter Three: Efficient combination of crest factor reduction, DPD and post distortion 

compensation techniques to linearize transmitters 

3.1 Introduction 

As previously discussed, modern wireless telecommunication standards such as 

WCDMA, WiMAX and LTE have been suggested to improve the data rate while conserving 

spectral efficiency. These achievements are obtained at the cost of a considerably high PAPR of 

the signal. PA efficiency decreases as the power back-off increases. In most cases the amount of 

required back-off, when driving wireless transmitters with modulated signals having a given 

PAPR, equals to the PAPR of the signal. Therefore, PAPR reduction techniques offer an 

effective way to improve the PA efficiency and hence minimize energy dissipation of 

transmitters.  

Many PAPR reduction techniques have been proposed in the literature  [43],  [44]. These 

techniques include clipping, coding schemes, phase optimization, nonlinear companding 

transforms, tone reservation, tone injection, constellation shaping, partial transmission sequence 

and selective mapping  [43],  [44]. 

Among the above mentioned techniques, Clipping-and-Filtering has found many 

applications due to its simplicity  [43]. Clipping is applied at the transmitter side and produces in-

band and out-of-band distortions. However, these distortions can hardly be compensated for. 

Generally, clipping along with the out-of-band distortion filtering degrades the BER performance 

of the system.  To mitigate this degradation in signal quality, some iterative methods have been 

proposed in the literature  [15]; however, the computational burden of these methods seems high. 

On the other hand, soft clipping has the possibility to be compensated for at the receiver. This 
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compensation can be performed using Cumulative Distribution Function (CDF) based blind 

compensation technique  [45]. 

The problem with clipping-and-filtering lies in the hard clipping part of the method. 

Despite soft clipping, which is invertible, it is difficult to compensate for the distortions hard 

clipping produces. As a result, two soft clipping methods have been proposed in  [46], [47]. Both 

of the methods were built based on the Saleh model of PA which has only two 

parameters  [46], [47]. The limited number of parameters of the function restricts the performance 

of the clipping. 

First, in this chapter, the hard clipping problem is studied and a closed form expression 

for the clipping threshold is proposed. Then, a new soft clipping technique is suggested which is 

based on a polynomial model. The identification of the clipping function is cast as a constrained 

optimization problem. To minimize the PAPR while meeting the standard spectral mask 

requirements a closed form expression for the output spectrum is first derived based on some 

approximations on the signal spectrum. Following that, the ACPRs are obtained through the 

output spectrum. The PAPR is then minimized such that the ACPRs pass the standard.  

3.2 Clipping-and-Filtering 

The traditional crest factor reduction technique relies on two steps: hard clipping and 

filtering. Hard clipping reduces the PAPR and the filtering is required to regulate the out of band 

distortions such that it passes the standard mask. The clipping function generally produces in 

band and out of band distortions. Filtering can reduce the out-of-band distortion to maintain 

spectral efficiency, but in band distortion remains almost unaffected, even with filtering. This 

uncompensated distortion reduces signal quality and therefore increases the BER at the receiver. 

The Clipping-and-Filtering (CLF) technique improves the efficiency by reducing the PAPR of 
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the signal. However, this improvement is obtained at the cost of degradation in signal quality 

which can be regarded as information loss. Some remedial techniques have been suggested in the 

literature  [15] to cope with the information loss in CLF, but the majority of them are iterative 

methods with high computational complexities. 

The other problem in applying the CLF technique is the uncertainty in the PAPR of the 

clipped signal. Since hard clipping is followed by filtering, the PAPR obtained from clipping will 

change by filtering. Thus, to obtain a certain PAPR, one should iterate the CLF procedure.  

Although the CLF technique is well-known, there is no systematic method to obtain the 

clipping threshold. Therefore, in this section, a method to obtain the desired PAPR by clipping is 

proposed. Filtering will change this PAPR, and the desired PAPR after filtering can be obtained 

by brute forcing the clipping level and the filter length.   

 The clipping function can be described as: 

   {
                      | |   

                  | |   
 

(3-1)  

where c stands for the clipping threshold, x and y denote the complex input and output 

signals respectively, and    represents the phase of the input signal. 

To set the threshold, one can use the Probability Density Function (PDF) of the input 

signal to obtain a certain PAPR. As is widely known, modern communication signals can be 

regarded as circular complex processes and in most cases close to complex Gaussian random 

variables  [49].  
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Based on the Gaussian assumption for the distribution, the envelope and the power of 

the signal follow Rayleigh and exponential distributions respectively. To obtain the PAPR in 

terms of the clipping parameter c, the distribution of the power   should first be estimated. The 

exponential distribution with 
 

 
 as its mean can be described as: 

                    
(3-2)  

Figure  3-1shows the details of the clipping method. If the maximum input power is 

considered to be   , and the clipping power as    for a 50 ohm system, the average power can be 

obtained as follows: 

Figure  3-1- Threshold selection for the CLF method 
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 (3-3)  

 

 
      ∫             ∫             

  

  

  

 

 
(3-4)  

       
 

 
                             (3-5)  

Hence, the PAPR becomes  

      
  

 
 

                         
 

(3-6)  

 

To obtain a certain PAPR, PAPR_dB, in dB one can solve the following equation for   : 

   
       

  (
 

 
                            )       

(3-7)  

Thus, by solving this equation, one can find the clipping level    for a certain PAPR in 

the CLF technique.   

3.3 Optimized soft clipping technique 

In  [46] and  [47], two Soft Clipping Crest Factor Reduction (SCCFR) techniques have 

been proposed, however, little information was provided about the spectral performances of the 

proposed techniques. Also, there has been little research done on the PAPR of the resulting 

signal.  

Therefore, the main objective of this chapter is to propose a CFR technique that 

minimizes the PAPR of the signal such that the output spectrum of the PA meets the ACPR 

requirements. To this end, it is assumed that the combination of the DPD and the PA behaves as 

a linear system. Hence, the nonlinear distortion of the transmitter output is only due to the CFR 
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function. To reduce the signal PAPR subject to the ACPR constraints, it is necessary to apply a 

nonlinear function to the input signal. Consequently, the next step is to evaluate the spectrum of 

the resulting signal and there are two ways to perform this step. In the first technique, one can 

apply the nonlinear function to the whole length of the signal and then estimate the PAPR, 

spectrum and ACPR. Through an optimization process, the optimized CFR function can then be 

obtained. The possible main critique to this technique is its computational complexity, as the 

nonlinearity should be applied to the whole data length. 

The other possible technique is to analyze the problem mathematically, and find the 

desired variables, i.e. PAPR and ACPR, analytically as a function of CFR parameters. To 

approach this target, in this chapter the CFR function is first assumed to follow a memory-less 

MP model with real coefficients and only odd order terms. The real nature of the coefficients 

causes the CFR function to be an amplitude-only gain compression with no phase distortion. The 

next key modeling assumption of this chapter is that the spectrum of modern communication 

signals has been assumed to have a rectangular pulse shape. Then, based on the theorem relating 

the output of such a nonlinear function to the input spectrum, which is assumed herein to be a 

pulse in the frequency domain, the analytic form of the output spectrum and hence, the ACPR as 

a function of frequency and CFR parameters are obtained. Later, the PAPR is calculated as a 

function of CFR parameters. Having the PAPR and the ACPR of the function obtained, one can 

run the optimization much faster than the previous technique, as it is not necessary to apply the 

function to the whole data.   

Figure  3-2 depicts the block diagrams of the transceivers that are compared. The 

combination of the DPD and the PA is considered herein as a linear system, and it is assumed 
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that the PA nonlinearity is fully compensated by the DPD. Since, the CFR technique reduces the 

PAPR of the signal, hence the DPD avalanche problem, as reported in  [48], is not an issue.   

Based on the above discussion, in this section a polynomial based soft clipping 

technique is proposed. The closed form expression of the spectrum of the soft clipped signal is 

then derived. Additionally, the PAPR of the signal is achieved in terms of the nonlinear soft 

clipping function parameters. 

 

Figure  3-2- The block diagrams of the transceivers 

 

Consequently, to minimize the PAPR, an optimization is performed. The major 

advantage of the soft clipping technique is that it can be easily compensated for at the receiver by 

blind CDF estimation. Since, the soft clipping function includes only amplitude compression, 

then CDF based techniques, which is effective for amplitude-only distortion, can be employed to 

recover the signal quality at the receiver side.    

The proposed crest factor reduction technique relies on a polynomial based compressing 

function as below: 
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          ∑      |    |  

 

   

 
(3-8)  

The soft clipping function has to be determined such that the resulting signal has the 

minimal PAPR subject to the ACPR constraints. As a result, the problem of minimizing the 

PAPR with a controlled ACPR can be cast as a nonlinear optimization, and can be formulated as 

follows: 

         
 

    (      )                      
(3-9)  

in which                denotes the coefficients vector and 

         ∑      | |  

 

   

 
(3-10)  

The first step in this optimization problem is to find the PAPR and ACPR1 and ACPR2 

(adjacent and alternate channel power ratios for the adjacent and alternate channels) in terms of 

the function parameters.  

In  [49], the general spectrum and the covariance function of the output of a polynomial 

nonlinearity driven by a circular complex signal have been derived. It has been shown that the 

output covariance of a polynomial nonlinearity of type (3-8),       , can be related to the 

coefficients of the nonlinear function and the input covariance,       , as  [37] [49]: 

        ∑            |      |
  

 

   

 
(3-11)  

where  
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and the output spectrum of the nonlinearity can be obtained as below  [37]: 

 

       ∑                     ⏟            
   

 

   

                  ⏟              
 

 

(3-13)  

A useful approximation to obtain a closed form expression of the output spectrum is 

assuming a rectangular pulse shape for the input signal spectrum. As one of the main 

considerations in modern communication signal design is to maximize the spectral efficiency, 

the spectrum is localized and this approximation seems valid for most of the standards such as 

WCDMA and WiMAX. To consider the effect of noise, the whole spectrum is assumed to be the 

summation of two pulses as is shown in Figure  3-3. 

To summarize the results of the analysis, just the final expressions for the spectral 

density is provided here, and the full mathematical analysis is explained in appendix A of this 

thesis.   

As can be concluded from appendix A, the overall spectrum will take the following 

form: 

        ∑      
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(3-14)  

Based on the output spectrum the ACPR1 and ACPR2 can be calculated through the 

following equations: 
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(3-16)  

where      denotes the expectation operator,  is the bandwidth of the signal and 

        and          are the offset frequencies from the carrier frequency in which the ACPRs 

should be calculated, and depends on the standard.   

Once the output spectrum has been obtained, the next step is to find the PAPR of the 

output signal. As can be concluded from (3-11) the mean power of the output signal can be 

obtained as  [49]: 

Figure  3-3- Pulse approximation of the input signal spectrum 
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          | |          ∑            |      |  

 

   

 
(3-17)  

The next problem is to find the maximum power of the output signal. In the 

optimization problem a constraint can be applied on the derivatives of the nonlinearity such that 

the nonlinearity is always a monotonic function. In this thesis, however the maximum of the 

output signal has been checked at the extreme values of the output signal (roots of the first 

derivative of the power). 

To obtain the maximum power of the output, first the derivative of the output power 

versus input power should be calculated. As we know from (3-8) 

    ∑      | |  

 

   

 
(3-18)  

subsequently, for the power of the output signal, the expression should be multiplied by 

its complex conjugate value: 
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(3-22)  

Therefore, the next step is to find the roots of the derivative polynomial to find the 

maximum points. The real roots of this polynomial are called    , where h is the number of real 

positive roots. To make the algorithm more robust, the value of the nonlinearity at maximum 

input power has been calculated, and compared to the value of the function at extreme points, i.e. 

the roots of the derivative. The maximum power has been calculated as: 

                | |         (            | |      ) 
(3-23)  

Accordingly, the PAPR of the nonlinearity is: 

     (      )         (
     

      
) 

(3-24)  

Once all the optimization variables have been calculated in terms of the nonlinearity 

coefficients, the optimization problem can be performed. As shown in (3-9) the PAPR 

minimization subject to ACPR constraints can be formulated as below: 

         
 

    (      )                      
(3-25)  

The reason behind the spectrum estimation algorithm is that this algorithm reduces the 

complexity of the ACPR evaluation, and hence decreases the running time of the optimization 

algorithm. One can apply the nonlinearity on the data and calculate the spectrum using spectrum 

estimation functions. Since spectrum estimation, convolution, polynomial root finding and 

polynomial evaluation were used in the algorithm, the complexity follows           where   
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denotes the length of the data. In this technique, to evaluate the ACPR, the PSD expression has 

to be evaluated at around 1024 points of the baseband spectrum.   

As previously discussed, one can apply the CFR function to the whole data length, and 

evaluate the ACPR by estimating the PSD of the resulting data. The complexity of the 

polynomial evaluation and spectrum estimation is also          . Subsequently, the only 

difference is that for this technique, the whole length of the data should be used which includes 

200000 samples. This fact shows that the complexity of the proposed method is much lower than 

the traditional technique for spectrum estimation. 

3.4 Post-compensation at the receiver 

Based on the fact that the polynomial SCCFR function coefficients are real, the 

nonlinear function can be considered as an amplitude-only nonlinearity. To compensate for this 

distortion, CDF based nonlinearity compensation technique can be employed  [29]. The theorem 

that best describes this technique was explained in section  2.1.1. By estimating the distribution of 

the received signal, one can compensate for the amplitude distortion, which is the case in the 

described SCCFR method. 
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Figure  3-4- Estimated spectrums: Empirical estimate (red square) and approximation (blue 

circle) 

3.5 Performance evaluation of SCCFR and CLF techniques 

In this section, the results of the previously described algorithms i.e. SCCFR and CLF 

are compared. Simulations and measurements are performed to evaluate the performances of the 

two PAPR reduction techniques.  

Before providing the results of the two CFR techniques, the estimated spectrum should 

be confirmed. To validate the performance of the closed-form expression for the output spectrum 

as described in (3-14), simulation result of the SCCFR method is shown in Figure  3-4. The 

output spectrum at the output of a polynomial nonlinearity following the expression (3-8), which 

was the optimized SCCFR polynomial, is compared to the exact spectrum. As shown in 

Figure  3-4, the estimated spectrum seems to fit the exact spectrum.     



 

57 

3.5.1 Simulation and measurement Setup 

The excitation signals for system identification and evaluation are modulated Wideband 

Code Division Multiple Access (WCDMA) with signal bandwidth of 3.84 MHz.  Waveform is 4-

ms long (245883 samples) and is sampled at 61.44 MHz. Table  3-1 summarizes the signal 

specifications for the WCDMA signal. For modeling purposes 8000 points of the signals were 

used.  

 

Table  3-1- Parameters of the modulated signal 

WCDMA Parameters 

Band width = 3.84 MHz 

Chips per Slot = 2560 

Modulation=16QAM 

Samples per Chip = 16 

PAPR=9.9 dB 

 

3GPP Test Model 5 

 

 

All the simulations were performed in MATLAB. The simulated ACPR results for both 

SCCFR and CLF methods were obtained assuming an ideal linear PA. This assumption can be 

realized in practice using a full DPD preceding the PA.  
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For the measurements, one class AB PA was used in the course of experimental 

evaluation. The PA block is a cascade of a class A driver and a class AB PA biased at 

Vgs=9V,Vds=28V. Both blocks are designed using the TF10107 LDMOS transistor from 

Ericsson Inc. The output signals were attenuated and captured by vector signal analyzer 

(VSA89650S from Agilent Inc). 

The simulation and measurement set-ups follow the block diagram in Figure  2-5. The  

Digital Predistortion (DPD) is applied after PAPR reduction such that the overall combination of 

the DPD and the PA becomes a linear system. The channel herein is considered to be an ideal 

channel (i.e. line of sight).  

3.5.2 Simulation and measurement results 

As reported in  [51] the standard specifications of WCDMA mobile user equipment can 

be summarized as Table  3-2.  

 

Table  3-2- Standard requirements for WCDMA 16QAM 

Standard ACPR1(dBc) ACPR2(dBc) 

EVM 

(%) 

                  

WCDMA(16QAM) 33 43 12.5 5MHz 5MHz 

 

 

 

Based on the standard requirements, the optimization was performed for the SCCFR 

method. The minimum PAPR acquired by the SCCFR, while passing all the standard constraints, 

is found to be 5.5 dB.  This optimization could decrease the PAPR around 4.4 dB from an initial 
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PAPR of 9.9 dB. The resulting simulated ACPR1 and ACPR2 are reported in Table  3-3. To 

compare both methods, the Clipping-and-Filtering threshold was set to 5.5 dB. The resulting 

ACPRs passed the mask, hence, there was no need for filtering.   

    

Table  3-3- Simulation results for SCCFR and CLF methods 

Method PAPR(dB) ACPR1(dBc) ACPR2(dBc) 

SCCFR 5.5 33.3 58.5 

CLF 5.5 33.8 49.1 

 

To validate the concepts by measurements, memory polynomial DPDs with memory 

depth of 3 and nonlinearity degree of 12 were applied to the SCCFR and CLF signals. The 

signals were then passed through the PA.  

Table  3-4 summarizes the measurement results. As shown in this table, the ACPRs pass 

the standard constraints in both methods, and the PAPRs are close to the simulated values. 

 

Table  3-4- Measurement results for SCCFR and CLF methods 

Method PAPR DPD PAPR PA ACPR1L ACPR1H ACPR2L ACPR2H 

SCCFR 8.8 5.6 34 34.3 55.8 56.5 

CLF 8.4 5.7 33.8 34.3 47.8 47.7 
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 Table  3-5 reports the results of the efficiency and the EVM of both techniques. For the 

SCCFR method, the EVM reported herein is after post compensation, but in the case of CLF no 

post compensation can be employed theoretically.  

It is evident from the table that with the same efficiency, SCCFR provides substantial 

and non-negligible improvement in the EVM. 

Table  3-5- Efficiency and EVM for SCCFR and CLF methods 

Method Efficiency (%) EVM (%) 

SCFR 36.1 1.25 

CLF 36 4.52 

 

3.6 Performance evaluation of the cascade structure 

In the second method of benchmarking the algorithms, the SCCFR method was 

combined with the CLF method to reduce the PAPR while satisfying the                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

spectral requirements. It is shown in this chapter that by employing the CDF based compensation 

at the receiver side; the EVM requirement of the standard is passed. Meanwhile, the CLF method 

with a PAPR higher than what is obtained through combined structure does not pass the standard 

EVM.  The simulation and measurement set-up remains the same as the section V, however, the  

SCCFR is replaced with the combined structure namely SCCFR-CLF block.  
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Figure  3-5 illustrates the block diagram of the SCCFR-CLF technique. As previously 

mentioned, the DPD+PA cascade is considered to be fully linear.   

To compare SCCFR-CLF with CLF-only technique, first the CLF was applied on the 

signal with a clipping threshold of 2.8 dB and a filter length of 13. The resulting PAPR, ACPR1 

and ACPR2 were 3.65dB, 33.3 dBc and 76.2dBc respectively. 

 

 

 

 

 

To combine the CLF technique with SCCFR, the out of band distortions should be 

filtered such that the spectrum resembles a pulse. A FIR filter of length 800 and with 5 MHz 

bandwidth is applied on the CLF output. 

 

 

S C C F R + C L F D P D

P
A

C h a n n e l

R e c ie v e r  w i t h  

C D F  b a s e d  p o s t -
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A
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Figure  3-5- The transceiver block diagram for the combined CFR technique and 

CLF 
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The PAPR of the signal increased to 5dB. Then the optimization was carried out to 

reduce the PAPR using SCCFR technique. This technique could reduce the PAPR to 3.4 dB with 

33.2 dBc ACPR1 and 58.9 dBc ACPR2. In the CLF method the clipping threshold was set to 3.6 

dB with a filter length of 11, resulting in 4.2 dB PAPR, 33.8 dBc ACPR1 and 75.6 dBc ACPR2. 

Table  3-6 reports the simulation results. Figure  3-6 illustrates the SCCFR-CLF algorithm and the 

resulting transceiver architecture.  

Table  3-6- -Simulation results for SCCFR-CLF and CLF methods 

Method PAPR(dB) ACPR1(dBc) ACPR2(dBc) 

SCCFR-CLF 3.4 33.2 58.9 

CLF 4.2 33.8 75.6 

 

Figure  3-6- The general block diagram of SCCFR-CLF transceiver 
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The measurement results are listed in Table  3-7. As can be seen the output spectrums 

meet the ACPR requirements. Table  3-8 reports the EVM and the efficiency for both structures. 

 

Table  3-7- Measurement results for SCCFR-CLF and CLF methods 

Method PAPR DPD PAPR PA ACPR1L ACPR1H ACPR2L ACPR2H 

SCCFR-CLF 6.1 3.4 33.2 33.4 55.6 56.5 

CLF 6.7 4.3 34 34.3 61 60 

 

The reason why the CLF threshold was set to 3.6 dB is that, as can be seen from 

Table  3-8, this threshold cannot pass the EVM requirement. While meeting the standard EVM, 

the combined structure results in a remarkable improvement in efficiency. Since the part of the 

nonlinearity of the combined structure can be compensated, the CDF based post-distortion could 

reduce the EVM down to the standard requirement, while for the CLF technique no post 

compensation technique has been proposed in the literature.  

  

Table  3-8- Efficiency and EVM for SCCFR-CLF and CLF methods 

Method Efficiency (%) EVM (%) 

SCCFR-CLF 45.4 11.56 

CLF 42.3 12.7 
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3.7 Conclusion 

In this chapter, a new soft clipping (spectrum constrained) technique using polynomial 

function was proposed. The resulting spectrum and PAPR were then calculated in closed form 

based on the polynomial parameters. The polynomial coefficient extraction was performed using 

PAPR minimization subject to spectral constraints.  It has been shown that the proposed 

technique could result in improvements in efficiency and EVM. Using CDF based post-distortion 

compensation; the SCCFR method could improve the EVM while having the same efficiency as 

CLF. To further decrease the PAPR, SCCFR were combined with CLF which resulted in lower 

PAPR and higher efficiency. The most important issue is that the combined structure using CDF 

based post compensation can pass the EVM requirement. However the CLF method with a 

higher PAPR could not meet the EVM threshold.  
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Chapter Four: Optimization of model orders for DPD design and PA modeling purposes: 

SISO and MIMO 

4.1 Introduction 

Nonlinear distortion in the transmitter chain is mainly due to PA stage. Compensation 

of nonlinear distortion is of major concern in linear transmitter design. DPD has been shown to 

be a powerful tool among digital linearization techniques for which the memory polynomials 

(MP) successfully model PA behaviour  [16]. A DPD is commonly designed based on a 

parametric model for the PA. 

A range of parametric models have been proposed in the literature for PA. These 

models can be categorized into three classes: Volterra-based models, box-based models and 

neural networks. Recent studies show that MP is one of the most computationally efficient 

methods, which can model the dynamics of the PA accurately with least complexity  [16], [17]. 

Another advantage of the MP model is that it is linear with respect to the model parameters, 

meaning that the MP model identification problem can be solved as a linear regression problem. 

When identifying a model the number of parameters or the model dimensions should be known a 

priori. Hence model order selection is the next step in DPD design and it is mostly built based on 

minimizing the NMSE  [9], [10], [53]. The NMSE measure is monotonic versus the model 

dimensions. In  [10], a threshold is defined for the NMSE and the order of the model is swept till 

the NMSE meets the threshold. This procedure is time-consuming since the model has to be 

identified for all the orders. In addition, it can only be done manually and there is no systematic 

approach for trading off small improvements in NMSE versus significant increases in 

computational complexity. To automate the model order selection process and to decrease the 
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number of iterations, an appropriate model order selection criterion, which considers the NMSE 

as well as the computational complexity of the system, has to be adopted. 

The application of information theoretical criteria in PA modelling has been limited to 

memory depth estimation only. An embedding dimension estimation procedure has been 

developed in  [9] for memory depth estimation based on the mutual information concept.  

Akaike information criterion (AIC) and Bayesian information criterion (BIC) were 

proposed in  [55] and  [56] for model order selection of linear models. Indeed, AIC and BIC has 

found diverse applications in the literature for model order selection. In fact, most of the linear 

models, such as autoregressive (AR), moving average (MA) and autoregressive moving average 

(ARMA) models, have their orders selected based on AIC and BIC in most cases. However 

model order selection of nonlinear systems can be considered as a linear regression problem if 

the nonlinear system can be modelled using a parametric model linear in its parameters. As 

mentioned previously, the first step in system identification problems is to select the model 

orders or number of parameters. These integer-valued numbers, which determine the complexity 

of the model, should be set in the beginning of the statistical model identification procedure  [57]. 

The main objective is to find the “best approximating” model for a given dataset. The selected 

model is chosen among some competing models with different number of parameters. To select 

the model there should be a criterion that includes the mean square error and the complexity of 

the model  [58]. In  [58] AIC has been used for polynomial regression. Order estimation before 

AIC was considered to be a hypothesis testing procedure. The null hypothesis was the lowest 

dimension model, which was compared against higher dimension models based on the model 

significance level. With the introduction of AIC the problem was then formulated as an 

estimation procedure. This estimation is done based on the maximum likelihood (ML) algorithm. 
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In reality likelihood function of the parameters is the most sensitive quantity to the deviations of 

the parameters with respect to the true values  [55]. 

In spite of the fact that AIC is the optimal rule under ML estimation, always there is a 

probability of over fitting the model due to the fact that the complexity term is trivial when 

compared to the error term. BIC on the other hand maximizes the Maximum A Posteriori (MAP) 

probability of estimation and the probability of correct detection tends to unity when the number 

of samples is high  [57].  

In  [59] the problems of over-fitting and under-fitting were addressed and the 

performance of AIC was evaluated based on the Eigen-values of signal and noise.  

By using the AIC and BIC in determining the model order in PA modeling and 

predistortion, the order selection of the model is automated in comparison to previous works in 

this area. This automation was possible because the criterion has a global optimum in contrast to 

NMSE, which is monotonic. The optimum order can then be found by optimization algorithms 

such as gradient descent for modeling the SISO systems, and simulated annealing for modeling 

the MIMO systems, for which the model has higher number of parameters and the information 

criteria are generally a non-convex function.  

4.1 SISO Model Order Selection Techniques 

4.1.1 Power Amplifier Modeling 

In a typical transmitter a PA represents the last active stage. To improve efficiencies in 

PAs it is generally accepted to drive them close to the saturation region. Accordingly PA can be 

viewed as a nonlinear system and be modeled by a nonlinear function as follows: 

          
(4-1)  
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where   and   represent the system output and input respectively and   denotes the 

residual uncorrelated error assumed herein having a Gaussian distribution and f is a complex 

nonlinear function, modeling the PA complex response. 

In addition to the dependency of the output signal on the current input signal, there is a 

dependency from the previous input samples, which is known in the literature as a memory 

effect  [10]. The most commonly used model for PA is the memory polynomial, which can be 

formulated as shown below: 

 

 (        )  ∑ ∑                 |     
   

 
   

  |                               
(4-2)  

where         is the                vector,  ,   and are the nonlinearity 

order, the memory depth and            are the complex parameters of the memory 

polynomial model, and      is the complex envelope of the signal. In literature, no automated 

method for choosing the optimal order       has been proposed. In the following, Akaike 

information criterion and Bayesian information criterion (BIC) will be discussed. 

4.1.2 AIC and BIC 

AIC and BIC are obtained through the Kullback–Leibler (KL) distance, which measures 

the difference between two probability distributions. AIC and BIC belong to a family of model 

order selection rules in which the KL measure is minimized. KL measure is defined as 

below  [57]: 

                          
(4-3)  

where          represents the output vector, N denotes the data length,   is the true 

PDF of the data,        is the PDF of the model and       is the expectation operator that is 
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calculated over  the true PDF      . Since the model likelihood (PDF) is not available, 

assumptions have to be made, which will contribute in determining the model order selection 

criterion  [57].  

The vector of model parameters is denoted by           , where  , is the standard 

deviation of the error,  , and: 

   [                          ]
 
   [                          ]

 
  

The likelihood function of the output vector   is denoted by         , which depends 

on the parameter vector  . The ML estimate of the parameters will be  [57]: 

  ̂         
 

                
(4-4)  

Based on the Gaussianity of the residuals and by considering the fact that for complex 

data the data length will be   , the likelihood of the parameters for the nonlinear model follows 

the form below  [57]: 

          
 

        
      (

‖      ‖ 

   
)  

(4-5)  

Therefore, at the ML estimate of the parameters  ̂, the following relation is 

satisfied  [57]: 

     (   (   ̂))                 ̂   
(4-6)  

In the definition of information criteria the Fisher information matrix plays a critical 

role. The fisher information matrix is defined as: 

     {
               

     
} 

(4-7)  
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where      indicates the expectation. .Using this matrix, the AIC has been defined as 

below  [57]: 

         (   (   ̂))       (  (      
  ))  

(4-8)  

 

In which  is the Fisher information matrix at the ML estimate of the parameters and 

equals to    . In fact   is the Fisher matrix for a fictitious data with the same length and the same 

PDF but independent from y, from which the ML estimate of the parameters are obtained. Hence 

AIC will take the following form  [57]: 

         (   (   ̂))     
(4-9)  

where             is the number of parameters. Equation (8) can be 

reformulated as: 

           ̂      
(4-10)  

The effect of finite sample size on AIC can be considered as reported in  [57]: 

           ̂   
  

      
   

(4-11)  

In  [57] it was shown that the PDF of  ̂ under regularity conditions is as follows: 

    ( ̂)  
 

       |   |   
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( ̂   )

 
 ( ̂   )) 

(4-12)  

In the same work, it was also shown that the unconditional PDF for the output signal 

will be: 

           (   ̂)     ̂        |   |    
(4-13)  

and the Bayesian information criterion will be: 
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(4-14)  

where: 

 

    (      )    (   (   ̂))        ( ̂)  
 

 
       

 

 
             

(4-15)  

By considering that      ̂  and 
 

 
       are not functions of  , and by considering 

high values of  , these two terms can be neglected. The Bayesian information criterion can then 

be approximated to: 

     (   (   ̂))  
 

 
           

(4-16)  

The Fisher information matrix ( ) was approximated in  [56] for large   as below: 

              (   ( 
 

 
 ))            

(4-17)  

By using (4-6), (4-15) and (4-16), the expression of the BIC is given in  [57] can be 

written as follows: 

          ̂          
(4-18)  

4.1.3 SISO system model order optimization 

In the cases of AIC and BIC for SISO systems, optimization method such as Gradient 

descent can be employed to find the optimum dimensions of the model. If the criterion is called 

by      for the data length of  , and          then the idea of Gradient descent is to move in 

the direction of 
      

  
. However, the parameters       are integer valued and the steps are 

discrete.      is defined as a monotonic function and   is a scale parameter. If we define the 

forward difference vector as below: 
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(4-19)  

Then     is defined as below: 

 

          (
| |

‖ ‖
) (        | | )         

(4-20)  

wherein ‖ ‖is the norm function. The term 
| |

‖ ‖
 generates a normalized positive 

displacement. This function makes suitable steps for large and small D. For large D the 

logarithm term dominates and for small D the         term dominates.  

The method used in this work consists of measuring the forward difference instead of the 

derivative and then rounding the value to the nearest integer to make the discrete step.  

                              
(4-21)  

Figure  4-1 shows the general algorithm of gradient descent. In the following section, the 

generalization of the criteria to the MIMO system will be studied. 

4.2 Matrix Memory Polynomial Model Order Selection in MIMO Transmitters 

4.2.1  MIMOAIC and MIMOBIC 

The matrix memory polynomial (MMP) technique has been developed to accurately 

model MIMO transmitters. The MMP model considers the effect of RF crosstalk between the 

two branches of the MIMO transmitter in addition to the transmitter nonlinearities  [20],  [60]. 

Figure  4-2 shows the architecture of the MMP model, in which the output of each branch is a 

function of both input signals as follows: 

           
          

            
(4-22)  
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where        are nonlinear functions of the input signals, identified using both inputs 

and outputs of the MIMO transmitter. Using the modified Volterra series  [61] for nonlinear 

functions, the expressions in (4-21) can be written as: 

    (    )  ∑ ∑             |      |   

    

   

    

   

 (4-23)  

 

Figure  4-1- Gradient descent algorithm 

  

where           are the nonlinearity order and the memory depth of the memory 

polynomial used in (21) and        is the complex coefficient. 

Considering the fisher information matrices of each branch of the MIMO transmitter as 

  and    and the fisher information of the overall system as  , it was shown in Appendix B that 

the following approximation is valid: 

M is the maximum number of iteration 

Initialize the model with    

Measure the cost function E 

For k= 1 to M 

Consider the    as the move vector 

Update the parameters                  

If      then accept the move and update parameters 

and increase   

If      then decrease   

If      check the neighborhood 

End for loop 
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                    (     )    (   (     ))            
(4-24)  

where       and       are matrices as defined in Appendix B. 

 

Using (4-23), the BIC in (4-17) can be extended for the 2x2 MIMO system, and the new 

MIMOBIC is as follows: 

                ̂ 
                       

(4-25)  

In which              

 

 

 

 

 

 

 

 

Figure  4-2- Matrix memory polynomial model for MIMO transmitters. 

 

By similar analysis it can be deduced that for the general     MIMO system the 

MIMOBIC can be generalized: 
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(4-26)  

And for the AIC we will have: 

                ̂ 
   

  

     ∑   
 
   

 (  ∑  

 

   

) 
(4-27)  

 

4.2.2 MIMO system model order optimization 

Obtaining the optimum degree for matrix memory polynomial models addressed in the 

paper necessitates minimizing MIMOAIC and MIMOBIC. Optimization of these integer 

variables            using a double-precision cost function can be cast as a mixed integer 

nonlinear programming problem. 

In the case of MIMO system the situation is different. First, the problem may no longer 

be convex, since we have a larger number of parameters. As a result, alternative methods such as 

Branch and bound, cutting plane, dynamic programming, implicit enumeration, and Lagrangian 

relaxation and simulated annealing were proposed in the literature  [61],  [62] to solve this type of 

problem. Simulated annealing was shown to be a powerful method for optimizing mixed 

nonlinear integer programming. In this paper simulated annealing was used to optimize the 

MIMOAIC and MIMOBIC to obtain the optimum degrees and memory depths in the memory 

polynomial based models. Although the problem is not generally convex, the gradient descent 

algorithm was also applied. It was shown that the gradient descent could find a local optimum 

for which the performance of the estimated model is very close to the optimum value. This may 

come from the fact that the non-convexity of the problem is mostly due to the limitations arising 
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from the accuracy of the measurement set up. The gradient descent could find the local optimum 

in a few numbers of iterations and the results are provided to compare them with simulated 

annealing.   

Simulated annealing first evaluates the cost function for an initial configuration. Then it 

perturbs the initial point with a random perturbation. Two cases will happen: the cost function 

will decrease which in this case, it will be considered as an acceptable movement. On the other 

hand if the cost function increases by    then it will be accepted with probability    
  

  
  . This 

property in simulated annealing avoids the algorithm to be trapped in local optimums. After each 

iteration, the temperature cools down with a scheme which limits uphill jumps at lower 

temperatures  [62].The modified Simulated Annealing algorithm for integer parameters is 

explained in Figure  4-3. [62] 

For our case where the variables are integers, each move should be integer too. 

Therefore, for the configuration update the following expression was used: 

                (4-28)  

In which   is a zero mean vector Gaussian random variable normalized by its norm. 

After checking the bounds on the parameter vector again, the integer part of the new parameters 

is used. The initial temperatures were set to T0 = 100 and the cooling scheme was selected to be 

              [62]. 

4.3 MEASUREMENT RESULTS 

4.3.1 Measurement Setup 

The excitation signals for system identification and evaluation are modulated Wideband 

Code Division Multiple access (WCDMA) with signal bandwidth of 3.84 MHz.  Four different 

signals with different number of carriers, and therefore different bandwidths, denoted as 1, 11, 
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111, 1111, have been used in the measurement validation. All these waveforms are 2-ms long 

and are sampled at the same frequency, 92.16 MHz. Table  4-1 summarizes the signal 

specifications for each carrier of these WCDMA signals. For modeling purposes 8000 points of 

the signals were used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-3-Simulated Annealing algorithm 

M is the maximum number of iteration 

   is the current temperature 

Initialize the model with    

Measure the cost function E 

For k= 1 to M 

Generate a zero mean Gaussian random vector     

Consider the        as the move vector 

Update the parameters                

If      then accept the move and update parameters and 

temperature 

If      then accept the move with probability  ( 
  

  
)  and 

update the parameters and temperature 

End for loop 
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Two different PAs, one class AB and one Doherty amplifier, are used in the course of 

measurement and performance evaluation. 

Table  4-1- Modulated signals parameters 

WCDMA Parameters 

Band width = 3.84 MHz 

Chips per Slot = 2560 

Samples per Chip = 16 

3GPP Test Model 1, 

As suggested in 

3GPPTS 25.141 V3.9.0 

 

The DUT in the class AB PA case is a cascade of a class A driver and a class AB PA 

biased at Vgs=9V,Vds=28V. Both blocks are designed using the TF10107 LDMOS transistor. 

The output signals were attenuated and captured by vector signal analyzer (VSA89650S). 

The DUT in the Doherty case is a high power high efficiency Doherty PA designed by 

LDMOS transistors provided by Powerwave Technologies. It has a peak power of 300 W and its 

small signal gain is 61dB. The operating frequency is in the 2110–2170-MHz frequency band. 

The measurement setup for the SISO and MIMO system are shown in Figure  2-5 and 

Figure  4-4, respectively. For the SISO system in Figure  2-5, it consists of a signal generator, a 

driver PA, PA, an attenuator and a vector signal analyzer (VSA) and for the MIMO case in 

Figure  4-4, it consists of two signal generators (ESG4438C), cascade of two amplifiers (Class A 

and Class AB) and a VSA (89650S). The two signals are downloaded to the signal generators 

using GPIB interface.  
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4.3.2 Results and discussion 

The performance of AIC, BIC and the 2x2 MIMOAIC and MIMOBIC are examined 

and evaluated over single-branch and dual-branch PAs respectively.  

 Table  4-2 and Table  4-3 compares the performance of the memory polynomial model 

with the nonlinearity and memory depth order selected based on the AIC, BIC and maximum 

order of nonlinearity order of 16 and memory depth of 7 for class AB PA and Doherty PA. The 

maximum order is set to be greater than what was reported in  [17]. 

 

Figure  4-4- MIMO measurement setup 

The calculated Normalized Mean Square Error (NMSE) and Adjacent Channel Error 

Power Ratio (ACEPR) metrics show that the performance of the model order selection based on 

BIC is very close to the maximum model order, but with less number of coefficients and 

processing complexity. The AIC criterion exhibits signs of over fitting.  The ACEPRs are 

calculated based on the following formula: 
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∫ |    |   

       

      

∫ |    |   
      

      

 
(4-29)  

                     
∫ |    |   

      

       

∫ |    |   
      

      

   
(4-30)  

As can be seen from Table  4-2 and Table  4-3, when the number of carriers increases the 

order decreases but the memory effect increases. The models with optimized orders using the 

BIC criterion showed linearity results very close to the models with maximum order (K=16,Q=7) 

while reducing the complexity considerably. Compared to AIC, this method estimates more 

efficient orders. The AIC most of the time over-estimates the orders. As can be seen from 

Table  4-2 and Table  4-3 the same performance can be obtained by lower orders than what is 

estimated by BIC. This proves the validity of the new automated optimization approach. 
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Table  4-2- NMSE and ACEPR mesurements for the models with optimal orders compared 

to higher order models for class AB PA 

PA Type Class-AB 

WCDMA Signal Type 1 11 111 1111 

Signal PAPR [dB] 10.7 10.4 10.6 11.2 

Compression [dB] 4 4 3.5 4 

AIC 

(K, Q) (11,6) (11,5) (12,6) (11,6) 

# unknown 77 66 84 77 

NMSE -46.7 -46.7 -46.1 -45.3 

ACEPR -60.1 -52.0 -49.1 -47.8 

BIC (K,Q) (11,2) (11,4) (11,5) (10,6) 

 # unknown 33 55 66 70 

 NMSE -46.6 -46.7 -46.0 -45.3 

 ACEPR -60 -52.0 -49.0 -47.8 

Maximum 

(K=16,Q=7) 

(K, Q) (16,7) (16,7) (16,7) (16,7) 

 # unknown 128 128 128 128 

 NMSE -46.7 -46.7 -46.1 -45.4 

 ACEPR -60.1 -52.1 -49.1 -48.0 
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Table  4-3- NMSE and ACEPR mesurements of the the optimum models compared to the 

higher order models for Doherty PA 

PA Type Doherty 

WCDMA Signal Type 1 11 111 1111 

Signal PAPR [dB] 10.7 10.3 10.6 11.2 

Compression [dB] 4.5 4.5 4.5 4.5 

AIC 

(K, Q) (10,3) (9,5) (9,5) (10,6) 

# unknown 40 54 54 70 

NMSE -39.5 -39.3 -38.3 -36.7 

ACEPR -50.0 -44.9 -42.7 -40.9 

BIC 

(K, Q) (10,3) ( 9 ,4) (9,4) (10,5) 

# unknown 40 45 45 60 

NMSE -39.5 -39.3 -38.2 -36.6 

ACEPR -50.0 -44.9 -42.6 -40.9 

Maximum 

(K=16,Q=7) 

(K, Q) (16,7) (16,7) (16,7) (16,7) 

# unknown 128 128 128 128 

NMSE -39.6 -39.3 -38.3 -36.7 

ACEPR -50.0 -45.0 -42.7 -40.9 

 

When the number of carriers increases, the higher bandwidth induces more memory 

effect. As can be seen form Table  4-2 the proposed optimization algorithm was able to predict 
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this difference and same nonlinearity order but higher memory depth (10,6) was obtained as the 

optimal model order for the four-carrier case. 

Similarly, Table  4-4 summarizes the results for MIMOAIC and MIMOBIC with the 

cross-over model of the dual-branch transmitter in the presence of 15, 20 and 30 dB nonlinear 

crosstalk. The NMSE and ACEPR of the model selected based on MIMOAIC and MIMOBIC 

are compared with the maximum model order of nonlinearity order of 13 and memory depth of 

6. 

From the results presented, it is clear that the optimization using MIMOBIC was able to 

obtain very similar linearity performance compared to the maximum order (K=13,Q=6), while 

reducing the complexity of the  models considerably. In Table  4-4  nonlinearity order 1 and 

memory depth 1 are the nonlinearity order and memory depth of the model 1-1 and nonlinearity 

order 2 and memory depth 2 are the nonlinearity order and memory depth of the model 1-2 in 

Figure  4-2.  

When the cross-talk is low (-30dB), the model behaviour is close to a SISO system. For 

the -15 dB crosstalk case the memory effect is more noticeable. The reason for lower 

nonlinearity order comes from the fact that a smoother curve is enough to fit the data in the case 

of -15 dB crosstalk but more dispersion is generated by the PAs, which requires higher memory 

order. The amount of AM-AM compression which is the difference in dB between input and 

output peak amplitudes is reported in Table  4-4. 

It is important to mention that not only the new optimization criteria is able to provide 

the user with an automated optimal order selection algorithm for any given amplifier, which 

guarantees a trade-off between linearity and complexity, it also allows to use an optimization 

algorithm to reduce considerably the number of iterations of finding this optimal value. Indeed,  
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Figure  4-5- Doherty PA AM/AM for (top) one carrier and (bottom) four carrier signals 

by using Gradient descent in the SISO case the number of iterations was reduced from 

128 to maximum 30. In the case of MIMO system by using simulated annealing the number of 

iterations was reduced from 4096 to around 300 for the MIMO case. Using gradient descent for 

MIMO case shows that, although the global optimum could not be found, the performance of the 

local optimum is very close to the global optimum performance. The results of gradient descent  
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Table  4-4- NMSE of the optimum models compared to the higher order models for 2x2 

MIMO systems 

Crosstalk  -15dB -20dB -30dB 

MIMOAIC 

Order1 10 12 12 

Memory Depth1 9 5 8 

Order2 7 12 7 

Memory Depth2 9 7 7 

NMSE1 -36.0 -36.4 -43.5 

ACEPR -47.6 -47.5 -56.3 

MIMOBIC 

Order1 10 8 11 

Memory Depth1 4 4 2 

Order2 7 6 2 

Memory Depth2 4 2 0 

NMSE1 -35.7 -36.1 -43.1 

ACEPR -47.1 -47.3 -55.3 

Maximum 

(K=13,Q=6) 

Maximum NMSE1 -36.0 -36.4 -43.5 

Maximum ACEPR -47.3 -47.5 -56.0 

Signal PAPR [dB] 10.00 10.7 10.7 

PAPR with X-talk [dB] 10.4 10.7 10.7 

Compression [dB] 2.5 2 4 
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Table  4-5- NMSE of the optimum models obtained using gradient descent for 2x2 MIMO 

systems 

Crosstalk  -15dB -20dB -30dB 

MIMOBIC 

Order1 10 8 10 

Memory Depth1 6 2 2 

Order2 7 3 2 

Memory Depth2 5 2 0 

 

NMSE -35.8 -35.9 -43.1 

ACEPR -47.2 -47.0 -55.3 

GD # unknown 112 33 32 

SA # unknown 85 58 35 

 

are compared to simulated annealing in Table  4-5. This optimum search algorithm 

reduces the number of iterations to 50 from 4096. Therefore, it is recommended to use the 

gradient descent even in the MIMO case.   

4.4 Conclusion 

In this chapter, the application of information criteria, namely AIC and BIC for model 

order selection in SISO and MIMO transmitters was presented. New criteria based on AIC and 

BIC, which includes model complexity as well as the NMSE metric, were proposed for MIMO 

dynamic nonlinear systems. To obtain the optimum model orders two optimization algorithms 

were used for SISO and MIMO systems. In the SISO case, a modified gradient descent algorithm 

was used. For the MIMO system since the problem is not generally convex and the number of 



 

87 

parameters was higher, the simulated annealing algorithm was applied first and its performance 

was compared to the gradient descent algorithm. It was shown that the gradient descent in 

MIMO was able to obtain a local minimum with performance very close to the global optimum. 

It was also shown that AIC based criteria over-estimates the orders and is not efficient. Also, it 

was shown that with a negligible difference in NMSE and ACEPR, the model complexity is 

considerably reduced using BIC based criteria. As a conclusion, using the proposed criteria and 

the gradient descent optimum search algorithm, the optimum model order can be extracted 

automatically without the need for a complete order sweep. The number of iterations is therefore 

reduced from 128 to 30 for the SISO systems and from 4096 to 300 for the MIMO systems. 
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Chapter Five: Estimation of Crossover DPD Using Orthogonal Polynomials in Fixed Point 

Arithmetic 

 

5.1 Introduction 

To guarantee high quality service and reliability of links for the customers, modern 

communication systems demand higher channel capacity. MIMO systems have been considered 

as one of the most promising solutions to increase the channel capacity and/or improve the link 

availability  [63],  [64],  [65].  

In MIMO systems multiple transmitters have to be integrated on a single chip. 

However, due to the imperfect isolation of integrated microwave components of the transmitters, 

unwanted effects occur which degrade system performance. Crosstalk is one of the major effects 

that limit the output spectral efficiency. The effects of crosstalk on the overall performance of the 

system and that of the linearization process of the 2x2 MIMO systems have been explained 

in  [20],  [66],  [67].  

PA nonlinearity increases the bit error rate of communication systems, due to both in-

band and out-of-band distortions. DPD techniques have been proved to be powerful tool in the 

literature and have been used in commercial products to resolve the PA nonlinearity 

problem  [9],  [68],  [69].  

It was shown that the joint effect of radio frequency (RF) nonlinear crosstalk and PA 

nonlinear distortion can considerably degrade the performance of MIMO transmitters  [20]. To 

address this problem, a Co-DPD architecture has been presented and developed  [20]. This 

architecture can simultaneously compensate for the crosstalk and PA nonlinearities in the MIMO 

transmitter.  
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The crossover DPD scheme is established based on the memory polynomial model. 

However, it has been shown that the matrix inversion of memory polynomial based models 

suffer from an inherent instability issue  [70],  [71]. In this regard, orthogonal polynomials have 

been advised as the best solution to the rank deficient least squares (LS) estimation  [70],  [71]. 

The extension of orthogonal polynomials to the crossover DPD model was developed and tested 

for floating-point digital signal processors (DSPs)  [60]. 

Fixed-point processors have been widely used in many digital signal processing 

applications and include a large portion of DSPs. Fixed-point processors have benefits 

comparing to their floating-point counterparts, in terms of cost, speed, power consumption, 

precision, volume and complexity of the mathematical operation  [72].  

This chapter investigates the implementation of crossover DPD based on conventional 

memory and orthogonal polynomial models in fixed-point processors. It is revealed that, in 

fixed-point arithmetic, the orthogonal polynomial resolves the numerical instability problem 

which occurs when the memory polynomial is used. To implement the matrix inversion in fixed 

point, LU decomposition was employed. Then using a triangular matrix inversion algorithm the 

inverse matrix was calculated  [73],  [74],  [75]. 

The other issue regarding the Co-DPD is that the coefficient extraction method is not 

well-organized and it is feasible to simplify the algorithm. In this chapter, the cross-over DPD 

estimation algorithm is simplified such that the overall computational complexity is improved to 

the half of the conventional technique complexity. The performance of the new algorithm is then 

compared to cross-over DPD.   
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5.2 Modeling Nonlinearities in MIMO Systems 

5.2.1 Fixed-point digital signal processors 

Choosing the proper arithmetic for digital signal processing applications is not a trivial 

task. Several factors can help in selecting the optimal processor, among which the sampling rate, 

the complexity of the algorithm, the dynamic range and the production volume are the most 

effective ones.  

It is well known that fixed-point arithmetic is optimum for simple algorithms with low 

sampling rates. On the other hand, more complicated algorithms with higher sampling rates 

performs better with floating-point representation. For higher dynamic range numbers, a 

floating-point DSP is the best choice; and, for a smaller chip size of the product, a fixed-point 

DSP should be used.  

Some other metrics must be considered carefully when comparing the performance of 

different systems. Cost, speed and power consumption are the most important factors.  Due to the 

more complex mathematical operations, floating-point processors are more expensive than their 

fixed-point counterparts. When the data can be handled within the acceptable limit of a fixed-

point DSP, it is the best choice according to the speed; otherwise, the extra cost of a floating-

point DSP should be paid, in order to achieve an acceptable speed. Due to simpler mathematical 

operations and less complicated hardware, the power consumption in fixed-point DSPs is less 

than floating-point DSPs,  [72].  

Based on the above discussion, fixed-point signal processing brings about a fairly high 

processing speed, lower cost, lower device volume, lower power consumption and likely 

satisfying precision when the data can be scaled to be within the range of a fixed-point DSP.  
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5.2.2 Power amplifier model identification 

The most influential factor in the overall signal quality of a transmitter is the linearity of 

the PA. As mentioned earlier, DPD is an effective and practical way to compensate for nonlinear 

distortion of the PA. The DPD technique consists of three major stages: 1) proper selection of the 

nonlinear behaviour model for the nonlinear PA; 2) model coefficients’ estimation and extraction 

based on captured data from the PA; and, finally, 3) predistortion of the input signal using the 

estimated inverse model. 

5.2.3 Linear and nonlinear crosstalk 

To take advantage of MIMO transceivers, some vendors provide integrated multiple 

transmitters on a single chip. The limited isolation between different ports of microwave 

components causes crosstalk in the transmitting signals. The crosstalk can cause in-band and out-

of-band distortions. Linear crosstalk never passes through nonlinear components. On the other 

hand, nonlinear crosstalk is a coupling that passes through nonlinear components and introduces 

both in-band and out-of-band distortions. The effect of linear crosstalk can be canceled out by 

linear matrix inversion, and the nonlinear crosstalk effect can be effectively compensated using 

the crossover DPD model  [19].  

5.2.4 Orthogonal polynomials 

There are two classes of methods in designing DPDs: recursive and estimate-plug 

methods. Recursive methods are based on recursive least squares (RLS) estimations and employ 

QR decomposition. Recursive methods are useful for non-stationary environments. When the 

system can be considered stationary, DPD can be designed in the same way as Wiener filters are 

designed. The estimation of the crossover DPD model can be obtained using the LS solution. 

However, the matrix inversion step inherent in the LS estimation can be numerically unstable for 
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crossover DPDs designed based on conventional memory polynomials  [70],  [71]. The solution 

for this problem is the orthogonal polynomial crossover DPD described in this chapter. 

5.3 Modeling MIMO Systems using Orthogonal Polynomials        

The effect of crosstalk at the output of 2x2 nonlinear MIMO transmitters with a 

coupling factor of α can be modeled as follows: 

 

              

              
(5-1)  

where x1 and x2 are the baseband input signals to the MIMO transmitter, and y1 and y2 

are the signals at the output of the MIMO transmitter. 

The crossover DPD was introduced in  [20] which can compensate for both the crosstalk 

and the nonlinear effects of each branch of the MIMO transmitter. The crossover DPD was 

extended to the orthogonal polynomial based model for floating-point DSPs in  [60]. 

Considering both nonlinear crosstalk and PA nonlinearity, the crossover DPD, as shown in  

Figure  5-1, can be implemented to simultaneously compensate for both sources of 

distortions. The crossover DPD consists of four sub-blocks. Each of these sub-blocks is a 

nonlinear function of one of the inputs. 

In this case, the pre-distorted signals at the output of the crossover DPD are as follows: 

 

                   

                   
(5-2)  

Based on our choice for the nonlinearity model, an orthogonal polynomial the general 

form is of        can be expressed by 
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Figure  5-1- The architecture of the 2x2 nonlinear MIMO transmitters in the presence of 

nonlinear crosstalk 

 

      ∑ ∑   ∑            |      |   

 

   

 

   

 

   

 (5-3)  

where      is the input signal,     is the output complex signal,    s are the 

polynomial coefficients of the i
th

 degree with a memory depth of  ,   denotes the maximum 

polynomial order, and   denotes the maximum memory depth of the polynomial. The above 

representation is the general form of the polynomial model. It will be the orthogonal polynomial 

model when        is considered as  [70]: 
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and the memory polynomial model when it is considered as: 

               
(5-5)  

where the        is the Dirac delta function. 

In this thesis, the crossover DPD models based on both the memory polynomial and 

orthogonal polynomial models are compared; and, the advantages of the orthogonal polynomial 

over the memory polynomial in fixed-point analyses are explored. 

The critical operations in the crossover DPD model identification are the coefficient 

extraction and matrix inversion. The maximum likelihood (ML) nonlinear model identification 

problem can be cast as a LS problem when the model error is considered as a Gaussian random 

process. Wideband modulated signals, such as WCDMA signals, can be assumed as Gaussian 

distributed signals; therefore, it is acceptable to treat the error as a Gaussian process. In this case, 

the LS estimation of the polynomial model would be an optimal solution in the ML sense.  

For the 2x2 MIMO system, the estimation equations can be developed as follows: 

                  [
      

      
] 

(5-6)  

where                  

 

  [                           ] 

      
      

   

  
  [

                 
   

                   
] 

(5-7)  

Where  
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   (    )  ∑          |    |   

 

   

 
(5-8)  

 

5.4 LS Estimation Problems using the Conventional Polynomial Model 

The LS estimation of the model parameters in (5-6) is an over-determined system of 

equations: 

      
(5-9)  

For the full rank   matrix, the solution is a projection of vector y onto the vector space 

of the   columns and the estimation is: 

              
(5-10)  

In the case of orthogonal polynomials, the   matrix is diagonal and is almost full rank 

[64, 65]. However, in the case of memory polynomials, it is a Hilbert matrix, which is a well-

known rank deficient matrix.  

Figure  5-2 compares the rank versus matrix size of the       matrix for both 

memory and orthogonal polynomials. For the orthogonal polynomial based matrix, the rank of 

the     matrix increases linearly with the matrix size; whereas, for the memory polynomial 

case, the rank of the matrix is bounded to 30 for a matrix size greater than 30. These results 

indicate that the orthogonal polynomial based matrices are close to full rank and, in fact, 

invertible. 

Based on these facts, it can be deduced that the orthogonal polynomial compensates for 

the numerical instability problems caused by practical applications of DPD design based on 

conventional memory polynomials. In fixed-point processors, there are a fixed number of bits to 
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represent numbers, so dealing with matrix inversions with high condition numbers is a critical 

issue in fixed-point arithmetic. 
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5.5 Matrix inversion  

Matrix inversion problem is the main issue in obtaining LS solution. A variety of matrix 

inversion techniques have been proposed in the literature which are based on matrix 

decompositions  [73]. These decompositions include LU, QR and SVD. Among these methods, 

LU and QR seem to be the simplest decomposition algorithms  [73].  

LU decomposition results in lower and upper triangular matrices. For a rectangular 

matrix   with size n the LU decomposition algorithm  [73] is shown in Figure  5-3. All the 

operations are done using fixed point arithmetic. Other factorization methods, such as QR 

factorization using Gram-Schmidt or House-Holder transforms  [73], were also tested. However 

the results of the QR factorization based inversion were unsatisfactory. On the other hand LU 

decomposition could successfully perform the matrix inversion task.   
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 In this chapter, the LU decomposition is utilized for the matrix inversion problem; and, 

by using an algorithm for triangular matrix inversion implemented in fixed point arithmetic, the 

coefficients of the orthogonal polynomial model were successfully extracted. 

The matrix inversion is accomplished as follows: 

 
         

                         
(5-11)  

Where         denotes the fixed point matrix inversion operator and          represents 

the fixed point triangular matrix inversion operator. The results indicate that the LU 

decomposition is the most robust solution. 

 

5.6 Measurement Setup and Results  

The measurement setup included two baseband time-aligned signal generators 

(ESG4438C), two sets of PAs and a spectrum analyzer (E4440A) and a vector signal analyzer 

(VSA89650S). Two sets of modulated 3.84 MHz 3GPP signals were used for the measurement. 

The signals’ length was 100,000 symbols, in which 8,000 symbols around the maximum 

magnitude were employed in the model identification; and, the rest of the symbols were used in 

the measurement evaluation 

The fixed-point toolbox of MATLAB was used for fixed-point processing of the DPD 

linearization technique. 
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The results shown in this section are based on 64-bit fixed-point processing with 32-bit 

fractional length. The normalized mean square error (NMSE) of the inverse model based on 

memory and orthogonal polynomials for different orders of nonlinearity are shown in Figure  5-4. 

It is clear from the NMSE results that, for memory polynomials, increasing the nonlinearity order 

led to divergence of the inverse modeling and unacceptable NMSE performance. However, the 

NMSE of the orthogonal polynomial model monotonically decreased when the nonlinearity 

order was increased.  
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Figure  5-3- LU decomposition algorithm 
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The performance of the orthogonal polynomial model was verified for nonlinear 

distortion compensation of a dual-branch transmitter in the presence of -30 and -15 dB nonlinear 

crosstalk. Crossover DPD linearization based on both memory and orthogonal polynomials were 

compared for a nonlinearity order of 8 and 13 and a memory depth of 5. 

Figure  5-5and Figure  5-6 show the power spectrum density (PSD) of one of the 

branches of the dual-branch MIMO transmitter. The PSD of the following scenarios have been 

plotted: 1) the input of the transmitter (green); 2) the output of the nonlinear transmitter (blue); 3) 

the output of the linearized transmitter using memory polynomial crossover DPD (black); and, 4) 

the output of the linearized transmitter using orthogonal polynomials (red). In Figure  5-5and 

Figure  5-6, the nonlinear crosstalk was -30 dB and -15 dB, respectively. 
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The results in Figure  5-5and Figure  5-6 demonstrate the fact that, in fixed-point 

processing, the rank deficiency and matrix instability of the memory polynomial model 

significantly reduced the linearization performance. Moreover, increasing the nonlinearity order 

for the memory polynomial model had double effects. It helped to get better estimates, but 

simultaneously accelerated the matrix instability issue. Some oscillations in the NMSE could be 

seen, indicating these two effects. However, this was not the case for crossover DPD 

linearization based on orthogonal polynomials, since for higher nonlinearity orders, the  

 

 

 

 

 

 

 

 

 

linearization performance improved. Finally, Table  5-1 lists the measured ACPR of the 

output signal at 5 MHz frequency offset. In the table, the measured ACPR decreases from -42.28 

dBc for the nonlinear transmitter to -51.62dBc and -52.03 dBc for the orthogonal polynomial 

model with nonlinearity orders of 8 and 13, respectively. In contrast, the measured ACPR rank 

deficiency of the  
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Figure  5-5- PSD of the amplifier with/without linearization for -30 dB crosstalk 
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increases to -33.03 dBc and -42.73 dBc for the memory polynomial model with 

nonlinearity orders of 8 and 13, respectively. The measured ACPR values show that the memory 

polynomial based crossover DPD model in fixed-point realization degraded the linearity of the 

system and also introduced additional out-of-band distortions. 

Table  5-1-The measured ACPR at 5 MHz frequency offset for memory and orthogonal 

polynomial models with fixed-point arithmetic 

ACPR 

[dBc] 

No Linearization 

Memory Polynomial Orthogonal Polynomial 

order 

8 

order 

13 

order 

8 

order 

13 

Lower Band -42.28 -33.03 -42.73 -51.62 -52.03 

Upper Band -42.6 -35.84 -44.76 -52.83 -54.66 
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Figure  5-6- PSD of the amplifier with/without linearization for -15 dB crosstalk 
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5.7 The Simplification of Co-DPD Parameter Extraction  

Based on the feedback from the pilot study, it was concluded that the identification 

algorithm of the Co-DPD is not computationally efficient. To circumvent this computational 

complexity, the model was reorganized to take the advantage of possible simplifications. Let’s 

denote the DPD output by  , the PA output by   and the input signal to the DPD by  , then for 

the output signals we have:  

 

              

              
(5-12)  

After inverting the functions it can be written as follows: 

 

         
       

         
       

(5-13)  

By solving the linear system it can be concluded that:  

 

   
 

    
   

          
        

   
 

    
   

          
        

(5-14)  

When the DPD compensates the MIMO system distortions then the output will be 

similar to the input signal and we will have: 

 

   
 

    
   

          
        

   
 

    
   

          
        

(5-15)  

This analysis show that the 2x2 DPD can be estimated by proper combinations of two 

1x1 DPDs. The main issue about this method lies in this fact that the coupling factor should be 

assessed prior to 2D DPD estimation. To solve this problem, we suggested estimating the 
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coupling factor, from undistorted part of the output signals. At sufficient back off, PA can be 

considered linear, one can find the coupling factor through least squares.  

 

  ́    ́     ́ 

  ́    ́     ́ 
(5-16)  

where the prime represents the undistorted part of the signal.  

To compare the computational cost of the proposed technique alongside the 

conventional technique, algorithm complexities should be calculated. As demonstrated in  [73] 

the number of flops of Singular Value Decomposition (SVD) for     matrix is of order 

      . Considering the fact that the matrix size for the proposed technique is half of the 

conventional one, the number of flops reduces from          or         to        .  

5.7.1 Simulation and Measurement Results 

Many challenges appear in MIMO system integration. Among them nonlinear cross-talk 

along with the PA nonlinearity plays an integral role in performance degradation. To avoid this 

degradation, predistortion seems to be crucial. Among 2x2 DPDs, the Co-DPD proposed in  [20] 

has been found a promising tool for compensating the above mentioned distortions. However, 

the identification process looks inefficient. In order to simplify the coefficient extraction method, 

the problem has been reformulated. It is shown that the 2x2 DPD can be built using 2 1x1 DPDs. 

The main advantage of this simplification can be sensed in the computation time of the DPD 

estimation process which is close to one fourth of the conventional technique. Although the 

proposed approach is faster but the accuracy of the new DPD is not compromised.   

A. Simulation and measurement Setup 
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The measurement setup included two baseband time-aligned signal generators 

(ESG4438C), two sets of PAs and a spectrum analyzer (E4440A) along with a vector signal 

analyzer (VSA89650S). Two sets of modulated 3.84 MHz 3GPP signals were used for the 

measurement. The length of the signals was 100,000 symbols sampled at 61.44MHz, in which 

8,000 symbols around the maximum magnitude were employed in the model identification; and, 

the rest of the symbols were used to evaluate the measurements. The DUTs are two class AB 

PAs designed by CGH40010 ,10W GaN transistors and biased at -2.7V, with a Vds of 28V. 

Figure  4-4 illustrates the measurement set up used for MIMO nonlinear system modeling and 

compensation. 

 

B. Simulation and measurement results 

 

Table  5-1 and Table  5-2 list the performances of the previously mentioned methods. 

The comparison has been made for two levels of cross-talk 20 dB and 10 dB. Table  5-2 

compares the NMSEs after linearization. It is evident that the proposed technique could 

reasonably compensate for the distortions. The 3dB difference in the NMSE comparing to the 

conventional technique can be assigned to the error in the coupling factor estimation. The results 

of the ACPR are shown in Table  5-3.  

The ACPR results show that the proposed technique could notably compensate for the 

out of band distortions and the results seem close to the conventional Co-DPD.  

Overall, the proposed technique could show a performance close to the conventional 

Co-DPD; however by taking half of the computational resource. 
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Table  5-2-NMSE results for the new DPD and the conventional DPD 

 

 

 

 

Table  5-3- ACPR results for the new DPD and the conventional DPD 

 

 

 

 

 

 

 

 

5.8 Conclusions 

This chapter has explored the effect of fixed-point implementation on the performance 

of crossover DPD linearization. The memory and orthogonal polynomial based basis functions 

have been considered and compared. It was shown that, in fixed-point processors, the problem of 

estimating the inverse function for nonlinear distortion compensation can be achieved by using 

orthogonal polynomial basis functions. It was shown that the orthogonal polynomial model is 

close to full rank, but the memory polynomial model is rank deficient. The measured ACPR 

 New CoDPD CoDPD 

NMSE(dB) 20dB Xtalk -40.4 -39.4 

NMSE(dB) 10dB Xtalk -29 -32 

 New CoDPD CoDPD No DPD 

ACPR H(dBc) 20dB Xtalk -62 -62 -42.5 

ACPR L(dB) 20dB Xtalk -61.5 -61.5 -41.9 

ACPR H(dBc) 10dB Xtalk -59.5 -60.7 -41.2 

ACPR L(dB) 10dB Xtalk -60.2 -61.4 -41.6 
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decreased from -42.28 dBc to -52.03dBc for the orthogonal polynomial model, but increased to   

-33.03dBc for the memory polynomial model. The results indicate that, using fixed-point 

arithmetic, orthogonal polynomial crossover DPD had improved the linearity of the signal, while 

the memory polynomial model was unable to properly linearize the MIMO system. 

Later in this chapter, the Co-DPD parameter extraction method was simplified. It was 

shown that the performance of the proposed technique is advantageous over the conventional one 

according to accuracy and computational cost. 
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Chapter Six: Conclusion 

6.1 Summary and Final Remarks 

This dissertation has presented and proposed several innovative signal processing 

techniques suitable for the estimation and compensation of different types of distortions and 

nonlinearities in SISO and MIMO wireless transceivers. 

In chapter Two a new architecture for PA distortion compensation has been proposed 

for uplink applications. In the proposed distributed distortion compensation technique, the 

conventional class AB PA was substituted with high efficiency Doherty PA. The proposed 

configuration compensates for the phase distortions using non-adaptive LUT-based phase-only 

DPD at the transmitter. The amplitude nonlinearity was compensated at the receiver after 

channel equalization and it does not require any training sequence. It was shown that the 

distributed distortion compensation provides almost the same linearity and reasonable BER 

performance as conventional techniques, but with considerably improved DE. 

Chapter Three presents a new soft clipping technique using polynomial function. This 

study has been shown that the proposed technique could result in improvements in both 

efficiency and EVM. The SCCFR method could improve the EVM while having the same 

efficiency as CLF. To further decrease the PAPR, two methods were combined which resulted in 

lower PAPR and higher efficiency. The most important finding is that the combined structure 

using CDF based post compensation could pass the EVM requirement. However, the CLF 

method with a higher PAPR could not meet the EVM threshold. 
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The techniques proposed in the second and third chapters to compensate for the 

nonlinear distortion and enhance the power efficiency, namely the partitioned distortion 

compensation technique between the transmitter and receivers for the uplink scenario   and the 

soft clipping CFR technique for the transmitter in the downlink scenario   can be implemented in 

existing networks without the need to upgrade the hardware of existing transceivers since both 

methods are fully software based.   Since these techniques all fully implemented in the software 

on the I and Q base-band waveforms subsequent to the coding and modulation processing at the 

transmitter and/or preceding to the de-coding and de-modulation processing in the receiver, they 

can be practically implemented in the wireless radios regardless of the standard. Considering this 

fact, all the current and future standards such 3G, 4G and 5G can employ and benefit from the 

proposed techniques.  

In chapter Four the application of information criteria, AIC and BIC for model order 

selection in SISO and MIMO transmitters was presented. New criteria based on AIC and BIC, 

which includes model complexity as well as the NMSE metric, were proposed for MIMO 

dynamic nonlinear systems. To obtain the optimum model orders two optimization algorithms 

were used for SISO and MIMO systems. Based on the convexity of the problem in the SISO 

case, a modified gradient descent algorithm was used. For the MIMO system since the problem 

is not generally convex and the number of parameters was higher, the simulated annealing 

algorithm was applied first and its performance was compared to the gradient descent algorithm. 

It was shown that the gradient descent in MIMO was able to obtain a local minimum with 

performance very close to the global optimum. It was also shown that AIC based criteria over-

estimates the orders and is inefficient. Also, it was shown that with a negligible difference in 

NMSE and ACEPR, the model complexity is considerably reduced using BIC based criteria. As 
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a conclusion, using the proposed criteria and the gradient descent optimum search algorithm, the 

optimum model order can be extracted automatically without the need for a complete order 

sweep. The number of iterations is therefore reduced from 128 to 30 for the SISO systems and 

from 4096 to 300 for the MIMO systems. 

Chapter Five has investigated the effect of fixed-point implementation on the 

performance of crossover DPD linearization. The memory and orthogonal polynomial based 

basis functions have been considered and compared. It was shown that, in fixed-point processors, 

the problem of estimating the inverse function for nonlinear distortion compensation can be 

accomplished by using orthogonal polynomial basis functions. It was shown that the orthogonal 

polynomial model is full rank, but the memory polynomial model is rank deficient. The 

measured ACPR decreased from -42.28 dBc to -52.03dBc for the orthogonal polynomial model, 

but increased to -33.03dBc for the memory polynomial model. The results indicate that using 

fixed-point arithmetic, orthogonal polynomial crossover DPD had a positive impact on the 

linearity of the signal, while the memory polynomial model was unable to properly linearize the 

MIMO system. 

Later in chapter Five, a simplified Co-DPD extraction technique is proposed. Although 

the new coefficient extraction method has less computational cost the accuracy is not 

compromised. The performance of the new estimation technique is compared to the conventional 

approach.    

6.2 Recommendations for Future Work 

The main focus of this dissertation is to provide practical solutions to compensate for 

PA nonlinear distortions. The motivation of this dissertation was to improve the overall 

performance of the transceiver through digital signal processing techniques. Therefore the 
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present thesis can help researchers working in both academia and industry employ novel 

practical and effective tools for compensating the non-ideal behaviour of RF front ends. These 

signal processing techniques improve the quality of the signal while preserving power and 

spectral efficiencies in SISO and MIMO systems. The possible future directions of this thesis 

should focus on employing advanced DSP techniques to improve the performance of the 

proposed ideas. 

The performance of the partitioned distortion compensation technique proposed in 

chapter one, highly depends on the channel equalization accuracy. The channel equalization 

technique discussed in section  2.4.2.3 can be replaced with a more accurate approach to enhance 

the overall performance of the method. 

The optimized crest factor reduction method described in chapter Three, assumed an 

ideal line of sight channel. The extension of this idea to the fading plus AWGN channel will be 

promising.  

In chapter Four new model order selection has been proposed which are based on 

information criteria. The error term associated with the criteria can be limited to in-band or out-

of-band distortions. The other possibility is to apply it on subspace methods. 

Chapter Five mainly deals with MIMO nonlinear systems. The fixed point performance 

of the    Co-DPD algorithm showed a good indication for possible FPGA implementation.     
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APPENDIX A 

 

As discussed in chapter three the spectrum of a modern communication signal is 

considered to be the summation of two pulses. Accordingly the problem of predicting the 

spectrum after nonlinearity will result in finding the 2m+1 times convolution of a pulse. To 

obtain the 2m+1
th

 order convolution of a pulse, two different theories were employed. The first 

expression originates from the Irwin-Hall distribution function. The Irwin-Hall distribution is 

actually the PDF of the sum of n independent uniform random variables, distributed uniformly 

between 0 and 1. Since the PDF of sum of random variables is the convolution of their 

PDFs  [49], then the 2m+1
th

 order spectrum can be obtained from the Irwin-Hall distribution  [50]. 

The Irwin-Hall theorem states that the PDF of a summation of n uniform random 

variables   with uniform distribution      , will take the following form  [50]: 
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Hence the n
th

 order spectrum of a pulse approximated signal spectrum can be described 

as below: 
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where         denotes the n
th

 order spectrum of   . 
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where   is the average amplitude of the spectrum of the input signal, measured in the 

occupied bandwidth,    is the sampling frequency of the input signal and    is the occupied 

bandwidth of the signal. 

The overall spectrum can be obtained using the following expression: 
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(A-4)  

The only problem in this spectrum is that it does not consider the noise level. To 

overcome this problem the spectrum of the signal has been considered as a summation of two 

pulses as shown in Figure  3-3.  

For the noise model considered herein a simpler approximation has been used for the 

spectrum of the nth order nonlinearity of noise. This approximation relies on the Fourier 

transform of the nth power of a sinc function and is obtained based on random walk  [51].  

Since the noise spectrum has been considered to be a pulse then its Fourier transform 

will be a sinc function and the convolution of a pulse m times will be the inverse Fourier 

transform of the m
th

 power of a sinc function. 
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This expression has been approximated using central limit theorem in  [51] as below: 
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For a pulse with amplitude   and width of   the m
th

 order spectrum will take the 

following form: 
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(A-7)  

if we call the overall signal plus noise as v, the following equation is valid and is known 

as binomial expansion: 
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On the other hand based on the independency of signal and noise, the spectrum of v can 

be described as below: 

                      
(A-9)  

Then from (3-13): 
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From the rectangular approximation it can be inferred that: 

                
(A-11)  

                
(A-12)  

Hence: 

                
(A-13)  

So (A-10) can be reformulated as below: 
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From (A-9) and (A-14) it can be concluded that 
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By using (A-8) (the binomial theorem), (A-4) and (A-7) the overall spectrum will take 

the following form 
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APPENDIX B 

For the MIMO system the error will be as below: 
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For each branch: 
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By approximating this equation the cost function will be: 
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To obtain the Fisher information matrices   and    four cases should be considered. If 

we classify the coefficients to (11), (12) for the first branch and (21) and (22) for the second 

branch, then each Fisher information matrix will have 4 blocks. Among them there are two 

distinct cases: 
               

            
 , 

               

            
. The first one will be the    which is the Fisher 

information matrix of the SISO system with input      . The second one will be approximately 

zero because: 
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The overall Fisher information matrix for each branch will be as below: 
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(B-6)  

The determinant of the overall fisher information matrix will be: 

                          
(B-7)  

By applying the logarithmic function to (B-7), we can write: 

                                        
(B-8)  

Therefore,    will be as below: 

                                       
(B-9)  

 

 



 

3 

List of Publications 

Journal and conference papers: 

[P1]  M.V. Amiri, S.A. Bassam, M. Helaoui and F.M. Ghannouchi, New order 

selection technique using information criteria applied to SISO and MIMO systems 

predistortion. International Journal of Microwave and Wireless Technologies, 5, pp 123-

131, March 2013. 

[P2]  M.V. Amiri, S.A. Bassam, M. Helaoui, Fadhel M. Ghannouchi, 

Estimation of crossover DPD using orthogonal polynomials in fixed point arithmetic, 

AEU - International Journal of Electronics and Communications, Volume 67, Issue 11, 

Pages 905-909, ISSN 1434-8411 November 2013.     

[P3]  M.V. Amiri, S.A. Bassam, M. Helaoui, Fadhel M. Ghannouchi," 

Efficient Partition of Distortion Mitigation in Radio Link at the Transmitter and the 

Receiver  ," Submitted to the IEEE Transactions on Microwave Theory , August 2013. 

[P4] M.V. Amiri, M. Helaoui, Fadhel M. Ghannouchi, "Optimized Soft 

Clipping Crest Factor Reduction Technique Using Polynomial," Submitted to the IEEE 

Transactions on Microwave Theory and Techniques, January 2013.   

[P5]  M.V. Amiri, S.A. Bassam, M. Helaoui, Fadhel M. Ghannouchi, "Matrix-

based orthogonal polynomials for MIMO transmitter linearization," Computer Aided 

Modeling, Analysis and Design of Communication Links and Networks (CAMAD), 2010 

15th IEEE International Workshop on , vol., no., pp.57-60, 3-4 Dec. 2010. 



 

4 

[P6]  M.V. Amiri, M. Helaoui, Fadhel M. Ghannouchi, "Streamlined MIMO 

Cross-Over Digital Predistortion," IEEE Radio and Wireless Symposium (RWS), 2013, 

accepted.   

  



 

5 

 

References 

[1] J. Gozalvez, "Green Radio Technologies [Mobile Radio]," Vehicular 

Technology Magazine, IEEE , vol.5, no.1, pp.9,14, March 2010. 

[2] B. Sklar, "Digital Communications Fundamentals and Applications," 

second ed. Prentice Hall, 2001, 382-383,409. 

[3] Congzheng Han, Harrold T., Armour, S., Krikidis, I., Videv, S., Grant, 

Peter M., Haas, H., Thompson, J.S., Ku, I., Cheng-Xiang Wang, Tuan Anh Le, Nakhai 

M.R.,  Jiayi Zhang, Hanzo L., "Green radio: radio techniques to enable energy-efficient 

wireless networks," Communications Magazine, IEEE , vol.49, no.6, pp.46,54, June 

2011. 

[4] Bagheri Rahim, Mirzaei A., Heidari M.E., Chehrazi S., Minjae Lee, 

Mikhemar M., Tang W.K., Abidi A.A., "Software-defined radio receiver: dream to 

reality," Communications Magazine, IEEE , vol.44, no.8, pp.111,118, Aug. 2006. 

[5] Hongwei Yang, "A road to future broadband wireless access: MIMO-

OFDM-Based air interface," Communications Magazine, IEEE, vol.43, no.1, pp.53, 60, 

Jan. 2005. 

[6] Astely D., Dahlman E., Fodor G., Parkvall S., Sachs J., "LTE release 12 

and beyond [Accepted From Open Call]," Communications Magazine, IEEE , vol.51, 

no.7, pp., July 2013. 

[7] Janevski T., "5G Mobile Phone Concept," Consumer Communications and 

Networking Conference, 2009. CCNC 2009. 6th IEEE, vol., no., pp.1,2, 10-13 Jan. 2009. 



 

6 

[8] Bolcskei H., "MIMO-OFDM wireless systems: basics, perspectives, and 

challenges," Wireless Communications, IEEE, vol.13, no.4, pp.31, 37, Aug. 2006. 

[9] Ghannouchi F.M., Hammi O., "Behavioural modeling and 

predistortion," Microwave Magazine, IEEE , vol.10, no.7, pp.52,64, Dec. 2009. 

[10] Hammi O., Younes M., Ghannouchi F.M., "Metrics and Methods for 

Benchmarking of RF Transmitter Behavioural Models With Application to the 

Development of a Hybrid Memory Polynomial Model," Broadcasting, IEEE Transactions 

on , vol.56, no.3, pp.350,357, Sept. 2010. 

[11] Bassam S. A. (2011), "Advanced signal processing techniques for 

impairments compensation and linearization of SISO and MIMO transmitters," (Order 

No. NR75271, University of Calgary (Canada)). 

[12] Steve C. Cripps, "RF Power Amplifiers for Wireless Communications," 

Second Edition (Artech House Microwave Library (Hardcover)), Artech House, Inc., 

Norwood, MA, 2006. 

[13] Bumman Kim, Jangheon Kim, Ildu Kim, Jeonghyeon Cha, "The Doherty 

power amplifier," Microwave Magazine, IEEE , vol.7, no.5, pp.42-50, Oct. 2006 

[14] Joel Vuolevi, Timo Rahkonen, "Distortion in RF power amplifiers," 

Artech House microwave library 2003. 

[15] S. Maas, "Nonlinear Microwave and RF Circuits," Artech House, 

Norwood, MA, 2003. 

[16] Tehrani A.S., Haiying Cao, Afsardoost S., Eriksson T., Isaksson M., Fager 

C., "A Comparative Analysis of the Complexity/Accuracy Tradeoff in Power Amplifier 



 

7 

Behavioural Models," Microwave Theory and Techniques, IEEE Transactions on , 

vol.58, no.6, pp.1510-1520, June 2010. 

[17]  Isaksson M., Wisell D., Ronnow D., "A comparative analysis of 

behavioural models for RF power amplifiers," Microwave Theory and Techniques, IEEE 

Transactions on , vol.54, no.1,pp.348-359, Jan. 2006 

[18] Bae H.G.,  Helaoui M., Seregin A., Boumaiza S., Ghannouchi F.M., 

"Blind Peak-to-Average Power Ratio Reduction Technique for WiMAX RF Front-end," 

36th European Microwave Conference, 2006, pp. 149–152, 10-15 Sept. 2006. 

[19] Wulich D., "Definition of efficient PAPR in OFDM," Communications 

Letters, IEEE , vol.9, no.9, pp.832,834, Sep 2005. 

[20] S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, "Crossover Digital 

Predistorter for the Compensation of Crosstalk and Nonlinearity in MIMO Transmitters", 

IEEE Trans. On Microwave Theory and Techniques, vol. 57, issue: 5, part: 1, May 2009, 

pp. 1119-1128.  

[21] Bae H.G.,  Helaoui M., Seregin A., Boumaiza S., Ghannouchi F.M., 

"Blind Peak-to-Average Power Ratio Reduction Technique for WiMAX RF Front-end," 

36th European Microwave Conference, 2006, pp. 149–152, 10-15 Sept. 2006. 

[22] Zeleny J., Rosson P., Dehos C., Kaiser A., "Digital compensation of the 

power amplifier nonlinearities at relay station receivers in 802.16j very high data rate 

systems," 2010 IEEE Radio and Wireless Symposium (RWS), pp. 244–247, 10-14 Jan. 

2010 



 

8 

[23] Gang Liu, Haldi P., Tsu-Jae King Liu, Niknejad A.M., "Fully Integrated 

CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off," IEEE 

Journal of Solid-State Circuits, vol. 43, no. 3, pp. 600-609, March 2008 

[24] Muruganathan S.D., Sesay A.B., "A QRD-RLS-Based Predistortion 

Scheme for High-Power Amplifier Linearization," IEEE Transactions on Circuits and 

Systems II: Express Briefs, vol. 53, no. 10, pp. 1108–1112, Oct. 2006. 

[25] Lei Ding, Zhengxiang Ma, Morgan D.R., Zierdt M., Tong Zhou G., 

"Compensation of Frequency-Dependent Gain/Phase Imbalance in Predistortion 

Linearization Systems," IEEE Transactions on Circuits and Systems I: Regular Papers, 

vol. 55, no. 1, pp. 390–397, Feb. 2008. 

[26] Koeppl H., Singerl P., "An Efficient Scheme for Nonlinear Modeling and 

Predistortion in Mixed-Signal Systems," IEEE Transactions on Circuits and Systems II: 

Express Briefs, vol. 53, no. 12, pp. 1368–1372, Dec. 2006. 

[27] Xinping Huang, Caron M., "Performance of a type-based digital 

predistorter for solid-state power amplifier linearization," 2005 IEEE International 

Symposium on Circuits and Systems (ISCAS 2005), vol. 2, pp. 1710–1713, 23-26 May 

2005. 

[28] Lou Jingyi, Gao Jun, Qu Xiaoxu, Chen Lin, "Improved CDF predistortion 

method and experimental results for HF power amplifier," 2010 International Conference 

on Wireless Communications and Signal Processing (WCSP), pp. 1–4, 21-23 Oct. 2010 

[29] Congying Xia, Jacek Ilow F., "Blind Compensation of Memoryless 

Nonlinear Effects in OFDM Transmissions Using CDF", Communication Networks and 

Services Research Conference, 2003. 



 

9 

[30] Dongliang Huang, Xinping Huang, Henry Leung , "Nonlinear 

Compensation of High Power Amplifier Distortion for Communication Using a 

Histogram-Based Method," Signal Processing, IEEE Transactions on , vol.54, no.11, 

pp.4343-4351, Nov. 2006 

[31] Franco M.J., "Mobile handset power amplifiers," Microwave Magazine, 

IEEE , vol.10, no.7, pp.16-19, Dec. 2009 

[32] Linear Technology, "Digital Predistortion uModule Receiver Simplifies 

Base station Design," MILPITAS, CA, July 2009. [Online]. Available: 

http://cds.linear.com/docs/en/press-release/LTM9003.pdf 

[33] Hikuma A., Fuke Y., Nakaminami N., Ohyane H. and Kobayashi H., 

"Radio Base Stations Equipments toward Economical Expansion of FOMA Coverage 

Areas, " NTT DoCoMo Technical Journal Vol. 6 No.1 

[Online].Available:http://www.nttdocomo.co.jp/english/binary/pdf/corporate/technolog

y/rd/technical_journal/bn/vol6_1/vol6_1_052en.pdf 

[34] Maruyama S., Tanahashi K., Higuchi T. , "Base Transceiver Station for 

W-CDMA System," FUJITSU Sci. Tech. J., 38,2,pp.167-173, Dec. 

2002.[Online].Available:http://www.fujitsu.com/downloads/MAG/vol38-2/paper07.pdf 

[35]  Y. Maghsoodi, "Exact distributions of envelopes of sums of stochastic 

sinusoids with general random amplitudes and phases, " Scinance Analytics, Nov. 2004. 

[36] Hammi, O., Carichner, S., Vassilakis, B., Ghannouchi, F.M., "Synergetic 

Crest Factor Reduction and Baseband Digital Predistortion for Adaptive 3G Doherty 

Power Amplifier Linearizer Design," Microwave Theory and Techniques, IEEE 

Transactions on , vol.56, no.11, pp.2602-2608, Nov. 2008 

http://cds.linear.com/docs/en/press-release/LTM9003.pdf
http://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol6_1/vol6_1_052en.pdf
http://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol6_1/vol6_1_052en.pdf
http://www.fujitsu.com/downloads/MAG/vol38-2/paper07.pdf


 

10 

[37]  Papoulis A., "Probability, Random Variables and Stochastic Processes," 

Third edition, Mc Graw-Hill, 1991. 

[38] Kaplan EL, Meier P., "Nonparametric estimation from incomplete 

observations," J. Am. Stat. Assoc. 1958;53:457-481. 

[39] Krishnamoorthy K., "Handbook of Statistical Distributions with 

Applications," Chapman & Hall/CRC, 2006 

[40] Wan-Jong Kim, Stapleton S.P., Jong Heon Kim, Edelman C., "Digital 

predistortion linearizes wireless power amplifiers," Microwave Magazine, IEEE , vol.6, 

no.3, pp. 54- 61, Sept. 2005 

[41] Altera White Papers, " Implementing Digital IF & Digital Predistortion 

Linearizer Functions with Programmable Logic," May 2003, ver. 1.0. 

[42] Ilic J., Strohmer T., "Sparsity Enhanced Decision Feedback 

Equalization,"  IEEE Transactions on Signal Processing, vol.60, no.5, pp.2422,2432, May 

2012. 

[43] Tao Jiang, Yiyan Wu, "An Overview: Peak-to-Average Power Ratio 

Reduction Techniques for OFDM Signals," Broadcasting, IEEE Transactions on , vol.54, 

no.2, pp.257-268, June 2008 

[44] Seung Hee Han, Jae Hong Lee, "An overview of peak-to-average power 

ratio reduction techniques for multicarrier transmission," Wireless Communications, 

IEEE , vol.12, no.2, pp. 56- 65, April 2005. 

[45] Dukhyun Kim, Stuber, G.L., "Clipping noise mitigation for OFDM by 

decision-aided reconstruction," Communications Letters, IEEE , vol.3, no.1, pp.4-6, Jan. 

1999. 



 

11 

[46] Heung-Gyoon Ryu,  Byoung-Ii Jin, In-Bae Kim , "PAPR reduction using 

soft clipping and ACI rejection in OFDM system ," Consumer Electronics, IEEE 

Transactions on , vol.48, no.1, pp.17-22, Feb 2002. 

[47] Fujiwara, T., Tomisato S., Hata M., Fujii H., Asai T., Okumura Y., "An 

adaptive soft clipping method for spectrum sharing OFDMA systems," Personal, Indoor 

and Mobile Radio Communications, 2009 IEEE 20th International Symposium on , vol., 

no., pp.305-309, 13-16 Sept. 2009. 

[48] Nader C., Landin P.N., Van Moer W., Bjorsell N., Handel P., Ronnow D., 

"Peak-Power Controlling Technique for Enhancing Digital Pre-Distortion of RF Power 

Amplifiers," Microwave Theory and Techniques, IEEE Transactions on , vol.60, no.11, 

pp.3571,3581, Nov. 2012. 

[49] G. Tong Zhou and Raviv Raich., "Spectral analysis of polynomial 

nonlinearity with applications to RF power amplifiers, " EURASIP J. Appl. Signal 

Process.,  1831-1840 January 2004. 

[50] Jonhson N.L., Kotz S., Balakrishnan, "Continuous Univariate 

Distributions, " Volume 2, 2nd Edition, Wiley, 1995. 

[51] R. E. Crandall, "Note on sinc-kernel sums and Poisson transformation, " 

(preprint, 15 June 2007). Available at http://www.reed.edu/~crandall. 

[52]  3GPP TS 36.104 V9.13.0 (2012-09). 

[53] Younes M., Hammi O., Kwan A., " Ghannouchi, F.M., "An Accurate 

Complexity-Reduced “PLUME” Model for Behavioural Modeling and Digital 

Predistortion of RF Power Amplifiers," Industrial Electronics, IEEE Transactions on , 

vol.58, no.4, pp.1397-1405, April 2011 

http://www.reed.edu/~crandall


 

12 

[54] Wood J., LeFevre  M., Runton  D., Nanan  J.-C., Noori  B.H., Aaen P.H., 

"Envelope-domain time series (ET) behavioural model of a Doherty RF power amplifier 

for system design," Microwave Theory and Techniques, IEEE Transactions on , vol.54, 

no.8, pp.3163-3172, Aug. 2006 

[55] Akaike, H., "A new look at the statistical model identification," Automatic 

Control, IEEE Transactions on , vol.19, no.6, pp. 716- 723, Dec 1974 

[56] Schwarz G., "Estimating the Dimension of a Model," The Annals of 

Statistics,Vol. 6, No. 2 pp. 461-464 Mar.1978 

[57] Stoica, P., Selen, Y., "Model-order selection: a review of information 

criterion rules," Signal Processing Magazine, IEEE , vol.21, no.4, pp. 36- 47, July 2004 

[58] Bozdogan H., "Model Selection and Akaikeʼs Information Criterion 

(AIC): The General Theory and Its Analytical Extensions, " Psychometrika, 52(3), 345-

370, 1987. 

[59] Liavas A.P., Regalia P.A., "On the behaviour of information theoretic 

criteria for model order selection," Signal Processing, IEEE Transactions on , vol.49, 

no.8, pp.1689-1695, Aug 2001 

[60] Amiri M.V., Bassam S.A., Helaoui M., Ghannouchi F.M., "Matrix-based 

orthogonal polynomials for MIMO transmitter linearization," Computer Aided Modeling, 

Analysis and Design of Communication Links and Networks (CAMAD), 2010 15th IEEE 

International Workshop on , vol., no., pp.57-60, 3-4 Dec. 2010 

[61] Arora J. S.,Huang M. W.,Hsieh C. C., "Methods for optimization of 

nonlinear problems with discrete variables: A review", Structural and Multidisciplinary 

Optimization, Volume 8, Numbers 2-3 (1994), 69-85 

http://www.springerlink.com/content/1615-147x/8/2-3/


 

13 

[62] Rutenbar, R.A., "Simulated annealing algorithms: an overview," Circuits 

and Devices Magazine, IEEE , vol.5, no.1, pp.19-26, Jan 1989 

[63] J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, "An overview of 

MIMO communications—A key to gigabit wireless," Proceeding of IEEE, vol. 92, no. 2, 

pp. 198–218, Feb. 2004. 

[64] Y. Palaskas, A. Ravi, S. Pellerano, B. R. Carlton, M. A. Elmala, R.Bishop, 

G. Banerjee, R. B. Nicholls, S. K. Ling, N. Dinur, S. S. Taylor, and K. Soumyanath, "A 

5-GHz 108-Mb/s 2x2 MIMO transceiver RFIC with fully integrated 20.5-dBm power 

amplifiers in 90-nmCMOS," IEEE Journal in Solid-State Circuits, vol. 41, no. 12, pp. 

2746–2756, Dec. 2006. 

[65] W.C. Hua, P.T. Lin, C.P. Lin, C.Y. Lin, H.L. Chang, C. W. Liu, T.Y. 

Yang, and G.K. Ma, "Coupling effects of dual SiGe power amplifiers for 802.11n MIMO 

applications, " in IEEE Radio Freq. Integr. Circuits Symposium, Jun. 11–13, 2006. 

[66] Sulyman and M. Ibnkahla, "Performance of MIMO Systems with Antenna 

Selection over Nonlinear Fading channels," IEEE Journal on Selected Topics in Signal 

Processing, vol. 2, pp. 1–12, Apr. 2008. 

[67] S. A. Bassam, M. Helaoui, F. M. Ghannouchi, "BER Performance 

Assessment of Linearized MIMO Transmitters in Presence of RF Crosstalk," IEEE Radio 

and Wireless Symposium (RWS'2010), pp. 33–36, New Orleans, LA, USA, Jan. 10–14. 

2010. 

[68] P. Midya, "Polynomial predistortion linearizing device, method, phone 

and base station, " U.S. Patent 6 236 837, July 30, 1998. 



 

14 

[69] P. Midya and J. Grosspietsch, "Scalar cost function based predistortion 

linearizing device, method, phone and base station, " U.S. Patent 6 240 278, July 30, 

1998. 

[70] R. Raich, H. Qian, and G. T. Zhou, "Orthogonal polynomials for power 

amplifier modeling and predistorter design," IEEE Transactions on Vehicular 

Technology., vol. 53, no. 5, pp. 1468–1479, Sep. 2004. 

[71] R. Raich, H. Qian, and G. T. Zhou, "Digital baseband predistortion of 

nonlinear power amplifiers using orthogonal polynomials, " the 2003 IEEE International 

Conference on Acoustics, Speech, and Signal Processing (ICASSP '03), vol. 6, pp. VI- 

689-92, Apr. 6–10, 2003. 

[72] Inacio and D.Ombres, "The DSP decision: fixed point or floating?, " IEEE 

Spectrum, vol. 33, no. 9, pp. 72–74, Sep. 1996. 

[73] G. Golub and C. Van Loan, "Matrix Computations," 2nd ed. Johns 

Hopkins University Press, Baltimore, MD, 1989. 

[74] Rajopadhye S.V., "Systolic arrays for LU decomposition," Circuits and 

Systems, 1988, IEEE International Symposium on, vol., no., pp.2513-2516 vol.3, 7-9 Jun 

1988. 

[75] B. Louka, M. Tchuenté, "Triangular matrix inversion on systolic arrays," 

Parallel Comput. 14 (2), 223_228, 1990. 


