SIGNALING AND DIALING: WHERE THE MAGIC HAPPENS

Nick Ciesinski

University of Wisconsin - Whitewater

"The process of establishing connections between endpoints, or between an endpoint and a gatekeeper/registrar"

SIGNALING

signaling:	PROTOCOLS	
► H.323		
► SIP		
► MGCP		
SCCP (SKINNY)		
► DTMF		
► QSIG		
► Q.931		

SIGNALING: H323

- First published by the International Telegraph Union (ITU) in 1996
 - Current version approved in 2009
- Widely deployed and widely known
- Not as easy to troubleshoot as other protocols
- Common Terms
 - Terminals
 - Multipoint Control Units (MCU)
 - Gateways
 - Gatekeepers
 - Border Elements

SIGNALING: SIP

- Designed in 1996 and standardized in 1999 by IETF (RFC 2543)
 - Current version published in 2002 (RFC 3261)
- Gaining popularity in both voice and video
- Easy to troubleshoot
 - Text-based protocol
 - Uses many elements of HTTP and SMTP
- Media identification and negotiation uses Session Description Protocol (SDP)
- Common Terms
 - User Agent
 - Registrar & Proxy
 - Gateway
 - Session Border Controller & B2BUA

SIGNALING: GATEKEEPER

- Call Admission Control for H.323
 - Permit/Deny calls based on bandwidth, rules, etc.
- Translation services from E.164 to IP addresses
- Not required component of H.323
 - Generally seen in large H.323 deployments
- Does not do gateway functions but can be combined with gateway to be Session Border Controller

SIGNALING: REGISTRAR & PROXY

- Registrar: SIP endpoint (generally server) that accepts REGISTER requests
 - Puts registrations into a location service that links one or more IP addresses to the SIP URI of the user agent
- Proxy: SIP endpoint (generally server) that acts as both server and client for the purpose of making requests on behalf of other clients
- Generally registrar and proxy are the same server
- Not required in SIP deployments but highly recommended to ease issues. Some devices its required.

Some similarities to H323's gatekeeper

SIGNALING: GATEWAYS

▶ Used in both H323 and SIP to interface with another network. PSTN Sometimes will do protocol switching ▶ SIP -> H323 SIP -> ISDN ► H323 -> ISDN

SIGNALING: SESSION BORDER CONTROLLERS

- Similar to a gateway sometimes confused as the same thing
 - It is a device that exerts control over the signaling and possibly media
 - Generally found in telecommunication networks or at network borders to link multiple customers together.
- Functions of a SBC
 - NAT traversal
 - Normalization
 - IPv4 to IPv6 interworking
 - Protocol translations
 - QoS
 - Policing
 - Call Admission Control (CAC)
 - ToS/DSCP marking
 - Media transcoding
 - Statistics and billing info

SIGNALING: B2BUA

Back to Back User Agent (B2BUA)

- Operates in between both ends of a call
 - Each endpoints signaling terminates on the B2BUA
 - Often also media is terminated on B2BUA
- Useful for
 - Address hiding
 - Adding value-added features available during call
 - Giving full control over the session

SIGNALING: EXAMPLE

INVITE sip:johnsmith@university.edu SIP/2.0 Via: SIP/2.0/UDP registrar.university.edu;branch=z9hG4bK776asdhds Max-Forwards: 70 To: John Smith <sip:johnsmith@university.edu> From: Joe Brown <sip:joebrown@university.edu>;tag=1928301774 Call-ID: a84b4c76e66710@registrar. university.edu CSeq: 314159 INVITE Contact: <sip:johnsmith@registrar.university.edu> Content-Type: application/sdp Content-Length: 142

SIGNALING: SIP SDP

Format for describing streaming media initialization

Used in

- Real-Time Transport Protocol (RTP)
- Real-time Streaming Protocol (RTSP)
- ► SIP
- Standalone Multicast sessions

Media negotiation between endpoints in SIP is done with SDP
Like SIP also text based

SIGNALING: SDP EXAMPLE

v=0 o=CiscoSystemsCCM-SIP 575030 | IN IP4 10.246.200.21 s=SIP Call b=AS:4756 t=0 0 a=X-cisco-mux: cisco m=audio 27964 RTP/AVP 96 101 c=IN IP4 10.242.200.2 b=TIAS:256000 a=rtpmap:96 mpeg4-generic/48000 a=fmtp:96 profile-level-id=16;streamtype=5;config=B98C00;mode=AAChbr;sizeLength=13;indexLength=3;indexDeltaLength=3;constantDuration=480 a=rtpmap:101 telephone-event/8000 a=fmtp:101 0-15 a=mid:1 m=video 17322 RTP/AVP 97

DIALING

When designing your dial plan determine who you need to call

- Internal only or external?
- What protocols do I have to interwork with?
- How will external entities connect with me?
- What is the industry doing?
- What is easy for my users?
- What is easy for me the administrator?
- How can I future proof my dialing plan

common	dialing	schamas
	Ulaille	3011011103

URI
E.164
IP

URI

- 🕨 <u>username@domain.edu</u>
- Industry direction
- Simple, generally the same as e-mail address
- Not just SIP but H.323
 - H.323 Annex 0
- Requires the use of registrar/gatekeeper if using top level @domain.edu vs @IP Address
- Some devices do not support @ symbol on keypad

► E.164

- Plus (+) based dialing ex +15555551234
- Easy to use we all know how to dial a phone number, right?
- More common in voice then in video
- ENUM (E.164 Number to URI Mapping) Database
 - A common registry/database of numbers. There are several available and are managed by different entities and some have restricted access.
 - NRENum.net (Internet2)
 - ► EI64.org
- Device support for + key on keypad
 - System support for + in call signaling

► IP

- Easy for administrators but confusing for end users. What's a IP?
- More common in academia
 - Public vs Private IP's
- Many deployments have no gatekeeper and endpoints sit outside firewall
 - Toll Fraud targets
- Issues for SIP only endpoints
- What happens with IPv6?
 - That's one big number to dial
 - Device move generally requires a new IP and need to give new IP to users

ENUM

DNS lookup using NAPTR record type

Some systems do not support ENUM

Some systems may support ENUM but a different syntax

Need to setup what ENUM e.164 tree you are looking at

\$ORIGIN 2.4.2.4.5.5.5.5.5.5.1.e164.arpa. IN NAPTR 100 10 "u" "E2U+sip" "!^.*\$!sip:phoneme@example.net!".

PUTTING IT TOGETHER

Consider SIP if you have not already

- Future
- Easy troubleshooting
- Easy dialing
- Lots of registrar/proxy options available

Make use of gateway/SBC

- > Put endpoints behind firewall with no firewall holes let the gateway anchor media
 - Easier to deal with toll fraud attempts
 - Recommendation
 - Disable SIP UDP only use TCP on outside

PUTTING IT TOGETHER

This presentations description said something about where the magic happens, so where is the magic?

No real magic, just a few cheap parlor tricks

SCENARIO I

I have SIP devices connected to a SIP registrar/proxy and I need to make video calls to and from university A to university B. Both university A and university B only support E.164 dialing

University A and University B

- Can have some sort of gateway or SBC that supports ENUM
 - Calls are redirected to gateway or SBC and a DNS ENUM lookup is performed
 - Calls are sent to other universities gateway or SBC
- Can setup a direct SIP peer between registrar/proxy servers
 - Configure call routes for other universities E.164 numbers. Calls are redirected to other universities registrar/proxy server
 - Note, some proxy/registrar servers do not anchor media!

SCENARIO I

University A and University B

Can have some sort of gateway or SBC without ENUM

- Calls are redirected to gateway or SBC
 - Cheap Parlor Trick

Gateway or SBC is programmed to look for other universities E.164 numbers

Gateway/SBC appends @domain.edu to the dialed number

Call sent via standard SIP DNS SRV lookup to other university

SCENARIO 2

I have SIP devices connected to a SIP registrar/proxy and I need to make video calls to and from university A to university B, but university B only supports direct IP calling where we support only URI dialing

University A

Needs to have some sort of gateway or SBC to handle incoming H323 IP calls from university B.

Gateway/SBC needed to interwork H.323 and SIP calls

How to I convert a IP into a URI?

Cheap Parlor Trick:

- Remember H323 Annex 0?
 - Can they dial by URI?
 - No, they don't have a @ key on their keypad
 - Some devices support alternate URI dialing
 - IP Address Of Gateway##URI Username
 - 10.10.10.10##joeuser

SCENARIO 2

University A

- Needs to have a way to call outbound IP calls to University B
 - Gateway/SBC needed to interwork H.323 and SIP calls
 - Cheap Parlor Trick:
 - SIP requires the username and domain portion in the signaling how can I fake it out?
 - Create a dialing pattern you will modify at the gateway
 - 10.20.20.20@ip.address What???
 - At gateway/SBC strip bogus domain @ip.address off incoming calling string all that is left is the IP address and then gateway sends call to IP over H.323

INTERNET2 VIDEO EXCHANGE

Open to everyone even non-Internet2 members

- Some services only available to members
- Some services free others charged

Services

- Device registration
- Education community dialing
- Virtual meeting rooms (3+ participants)
- TATA Jamvee
- ENUM registration
- Support SIP and H.323E.164 and URI dialing plan

INTERNET2 VIDEO EXCHANGE

Infrastructure

Nort	h America										
	Cisco Video Communications System (VCS)									
	Cisco Conductor										
	Cisco Unified Communications Manager										
	Cisco Telepresence Server										
	Cisco Unified Border Element										
Asia	(Singapore)										
•	Cisco Video Communications System (VCS)									
•	Cisco Conductor										
	Cisco Unified Communications Manager										
	Cisco Telepresence Server										
	Cisco Unified Border Element										

Systems running latest versions of software to take advantage of the latest features.

INTERNET2 VIDEO EXCHANGE

How to get more information? Email: video-support@internet2.edu How to setup link to Internet2 video exchange? https://questionpro.com/t/AJDgFZPdcK How to subscribe to services? https://internet2.app.box.com/netplus-videoex-app

SIP TROUBLESHOOTING WHAT TO DO WHEN THINGS GO WRONG

Nick Ciesinski

University of Wisconsin - Whitewater

BASIC SIP REQUEST METHODS

- INVITE The invite to participate in a voice or video session
- ACK Confirmation that a device has received a response to a request
- BYE Terminates an existing session; can be sent by any device in a session
- CANCEL Cancels any pending requests
- OPTIONS Determines capabilities of systems. Can also be used for keep alive (OPTIONS PING)
- REGISTER Registers the device (user agent) with the server for the domain.
- INFO Send more information
- REFER To tell one user agent to communicate with another

SIP CALL

Call to III@bjn.vc

INVITE sip: I I @bjn.vc SIP/2.

Via: SIP/2.0/TLS | 40.146.20.8:5061;egresszone=TraversalZone;branch=z9hG4bK3e1cc481c02192d1e814d888fd09a483366117.b02f91f5cfb9b35bb7f747d133d42b4b;proxycall-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac;rport

Via: SIP/2.0/TCP 140.146.20.5:5062;branch=z9hG4bK673ed65ed1b5e;received=140.146.20.5;ingress-zone=CUCM

Call-ID: e27a8500-541135db-65b66-514928c@140.146.20.5

CSeq: 101 INVITE

Remote-Party-ID: "Nick Ciesinski" <sip:ciesinsn@uww.edu;x-cisco-number=7774>;party=calling;screen=yes;privacy=off

Contact: <sip:ciesinsn@140.146.20.5:5062;transport=tcp>;video;audio;+multiple-codecs-in-ans

From: "Nick Ciesinski" <sip:ciesinsn@uww.edu>;tag=64023402~6d045f31-1dfc-45b1-b614-164f86bd8be1-44940887

To: <sip: | | @bjn.vc>

Max-Forwards: 15

Record-Route: <sip:proxy-call-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac@140.146.20.8:5061;transport=tls;lr> Record-Route: <sip:proxy-call-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac@140.146.20.8:5060;transport=tcp;lr> Allow: INVITE,OPTIONS,INFO,BYE,CANCEL,ACK,PRACK,UPDATE,REFER,SUBSCRIBE,NOTIFY

User-Agent: Cisco-CUCM10.5

Expires: 180

Date:Wed, 29 Apr 2015 19:49:47 GMT

Supported: timer,resource-priority,replaces,X-cisco-srtp-fallback,X-cisco-original-called Session-Expires: 1800

SIP/2.0 100 Trying

Via: SIP/2.0/TLS 140.146.20.8:5061;egresszone=TraversalZone;branch=z9hG4bK3e1cc481c02192d1e814d888fd09a483366117.b02f91f5 cfb9b35bb7f747d133d42b4b;proxy-call-id=7dbff6b7-4e68-4deb-ae47d2b07495f3ac;received=140.146.20.8;rport=25026;ingress-zone=TraversalZone

Via: SIP/2.0/TCP 140.146.20.5:5062;branch=z9hG4bK673ed65ed1b5e;received=140.146.20.5;ingresszone=CUCM

Call-ID: e27a8500-541135db-65b66-514928c@140.146.20.5

CSeq: 101 INVITE

From: "Nick Ciesinski" <sip:ciesinsn@uww.edu>;tag=64023402~6d045f31-1dfc-45b1b614-164f86bd8be1-44940887

To: <sip:111@bjn.vc>

Server: TANDBERG/4130 (X8.5.2Alpha8)

Content-Length: 0

SIP/2.0 180 Ringing

Via: SIP/2.0/TLS 140.146.20.8:5061;rport=25026;received=140.146.20.8;branch=z9hG4bK3e1cc481c02192d1e814d888fd09a483366117.b02f91f5cfb9b35 bb7f747d133d42b4b;egress-zone=TraversalZone;proxy-call-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac;ingress-zone=TraversalZone Via: SIP/2.0/TCP 140.146.20.5:5062;received=140.146.20.5;branch=z9hG4bK673ed65ed1b5e;ingress-zone=CUCM Call-ID: e27a8500-541135db-65b66-514928c@140.146.20.5 CSeq: 101 INVITE

Contact: "BlueJeans" <sip:111@bjn.vc:5061;transport=tls>

From: "Nick Ciesinski" <sip:ciesinsn@uww.edu>;tag=64023402~6d045f31-1dfc-45b1-b614-164f86bd8be1-44940887

To: <sip:111@bjn.vc>;tag=0b9aefa1-82cb-4ec0-bc40-d905ca989b06

Record-Route: <sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:5061;transport=tls;lr> Record-Route: <sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:7001;transport=tls;lr> Record-Route: <sip:proxy-call-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac@140.146.20.8:5061;transport=tls;lr> Record-Route: <sip:proxy-call-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac@140.146.20.8:5060;transport=tls;lr> Allow: PRACK,INVITE,ACK,BYE,CANCEL,UPDATE,SUBSCRIBE,NOTIFY,INFO,OPTIONS Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/TLS 140.146.22.2:5061;rport=27229;received=140.146.22.2;branch=z9hG4bKe4ca822581768356c98e2f055606f490164599.51a33a259a017cb8400d654eb 9ef193d;egress-zone=DNSZone;proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19 Via: SIP/2.0/TLS 140.146.20.8; 5061; rport=25026; received=140.146.20.8; branch=z9hG4bK3e1cc481c02192d1e814d888fd09a483366117.b02f91f5cfb9b35bb7f747d133d42b4b; egress-zone=TraversalZone; proxy-call-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac; ingress-zone=TraversalZoneVia: SIP/2.0/TCP 140.146.20.5:5062;received=140.146.20.5;branch=z9hG4bK673ed65ed1b5e;ingress-zone=CUCM Call-ID: e27a8500-541135db-65b66-514928c@140.146.20.5 Contact: "BlueJeans" < sip: I I I @bjn.vc:5061;transport=tls> From: "Nick Ciesinski" <sip:ciesinsn@uww.edu>;tag=64023402~6d045f31-1dfc-45b1-b614-164f86bd8be1-44940887 To: <sip:111@bjn.vc>;tag=0b9aefa1-82cb-4ec0-bc40-d905ca989b06 Record-Route: <sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:5061;transport=tls;lr> Record-Route: <sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:7001;transport=tls;lr> Allow: PRACK, INVITE, ACK, BYE, CANCEL, UPDATE, SUBSCRIBE, NOTIFY, INFO, OPTIONS Supported: 100rel Content-Type: application/sdp Content-Length: 1074

SIP INVITE

ACK sip:111@bjn.vc:5061;transport=tls SIP/2.0

Via: SIP/2.0/TLS |40.|46.20.8:506|;egresszone=TraversalZone;branch=z9hG4bK7dd945b06c26fb98|b62ec5067df9e7a366||8.b02f9|f5cfb9b35bb7f747d|33d42b4 b;proxy-call-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac;rport

Via: SIP/2.0/TCP 140.146.20.5:5062;branch=z9hG4bK673ef1b208f6;received=140.146.20.5;ingress-zone=CUCM

Call-ID: e27a8500-541135db-65b66-514928c@140.146.20.5

CSeq: 101 ACK

From: "Nick Ciesinski" <sip:ciesinsn@uww.edu>;tag=64023402~6d045f31-1dfc-45b1-b614-164f86bd8be1-44940887

To: <sip: III@bjn.vc>;tag=0b9aefaI-82cb-4ec0-bc40-d905ca989b06

Max-Forwards: 69

Route: <sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:7001;transport=tls;lr>,<sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:5061;transport=tls;lr>

User-Agent: Cisco-CUCM10.5

Date: Wed, 29 Apr 2015 19:49:47 GMT

Allow-Events: presence

X-TAATag: 824826cf-561c-40a3-8de8-fc18000372c8

Content-Length: 0

SIP ACK

ACK sip:111@bjn.vc:5061;transport=tls SIP/2.0

Via: SIP/2.0/TLS 140.146.20.8:5061;egresszone=TraversalZone;branch=z9hG4bK7dd945b06c26fb981b62ec5067df9e7a366118.b02f91f5cfb9b35bb7f747d133d42b4 b;proxy-call-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac;rport

Via: SIP/2.0/TCP 140.146.20.5:5062;branch=z9hG4bK673ef1b208f6;received=140.146.20.5;ingress-zone=CUCM

Call-ID: e27a8500-541135db-65b66-514928c@140.146.20.5

CSeq: 101 ACK

From: "Nick Ciesinski" <sip:ciesinsn@uww.edu>;tag=64023402~6d045f31-1dfc-45b1-b614-164f86bd8be1-44940887

To: <sip: III@bjn.vc>;tag=0b9aefaI-82cb-4ec0-bc40-d905ca989b06

Max-Forwards: 69

Route: <sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:7001;transport=tls;lr>,<sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:5061;transport=tls;lr>

User-Agent: Cisco-CUCM10.5

Date: Wed, 29 Apr 2015 19:49:47 GMT

Allow-Events: presence

X-TAATag: 824826cf-561c-40a3-8de8-fc18000372c8

Content-Length: 0

SIP BYE

BYE sip: I I I @bjn.vc:5061;transport=tls SIP/2.0

Via: SIP/2.0/TLS 140.146.20.8:5061;egresszone=TraversalZone;branch=z9hG4bK6e6375cd10419701e6bbeaeaeb0808e0366119.b02f91f5cfb9b35bb7f747d133d42b4b;proxycall-id=7dbff6b7-4e68-4deb-ae47-d2b07495f3ac;rport

Via: SIP/2.0/TCP 140.146.20.5:5062;branch=z9hG4bK673f11b68b9c;received=140.146.20.5;ingress-zone=CUCM

Call-ID: e27a8500-541135db-65b66-514928c@140.146.20.5

CSeq: 102 BYE

From: "Nick Ciesinski" <sip:ciesinsn@uww.edu>;tag=64023402~6d045f31-1dfc-45b1-b614-164f86bd8be1-44940887

To: <sip: | | |@bjn.vc>;tag=0b9aefa |-82cb-4ec0-bc40-d905ca989b06

Max-Forwards: 69

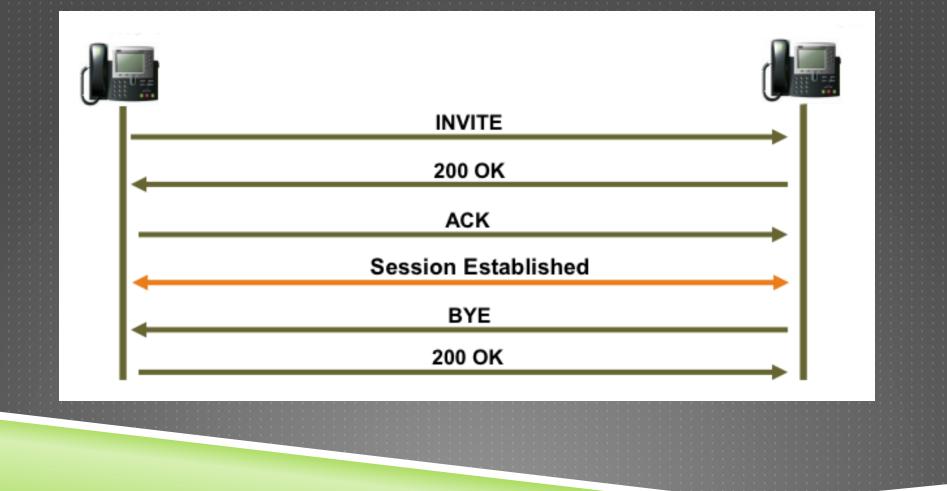
Route: <sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:7001;transport=tls;lr>,<sip:proxy-call-id=039ccdf1-5955-4e67-98c8-333d7086ac19@140.146.22.2:5061;transport=tls;lr>

User-Agent: Cisco-CUCM10.5

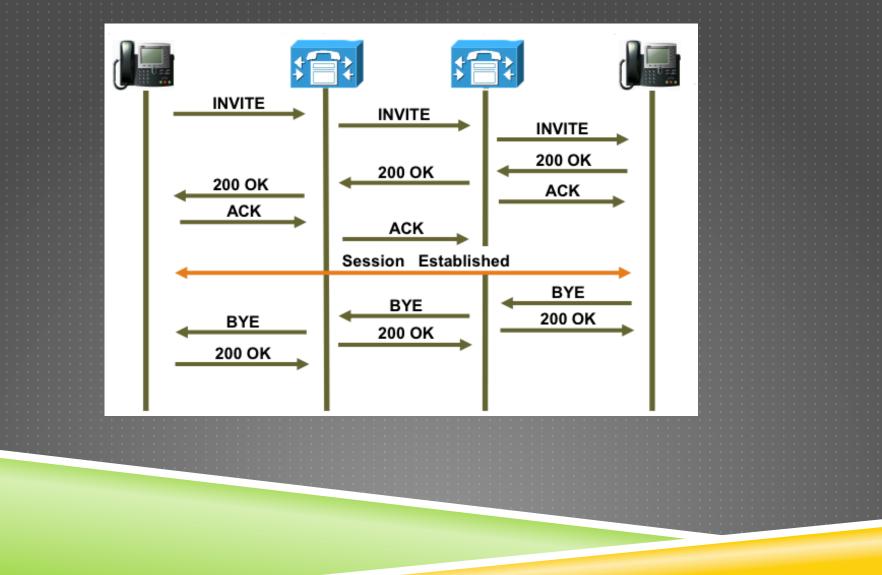
Date:Wed, 29 Apr 2015 19:49:47 GMT

P-Asserted-Identity: "Nick Ciesinski" <sip:ciesinsn@uww.edu>

X-TAATag: 824826cf-561c-40a3-8de8-fc18000372c8


Reason: Q.850 ;cause=

Content-Length: 0


SIP RESPONSES

► IXX – Informational ► 2XX – Success ▶ 200 OK ► 3XX – Redirect ▶ 301 Moved Permanently 302 Moved Temporarily ▶ 4XX – Client Error 404 Not Found ▶ 486 Busy Here ▶ 5XX – Server Error 503 Service Unavailable

BASIC CALL SETUP

COMMON CALL SETUP

SDP FIRST DEVICE SENDS ITS CODECS

m=audio 51050 RTP/AVP 107 108 109 110 9 104 105 0 8 15 18 101

b=TIAS:128000 a=rtpmap:107 MP4A-LATM/90000 a=fmtp:107 bitrate=128000;profile-level-id=25;object=23 a=rtpmap:108 MP4A-LATM/90000 a=fmtp:108 bitrate=64000;profile-level-id=24;object=23 a=rtpmap:109 MP4A-LATM/90000 a=fmtp:109 bitrate=56000;profile-level-id=24;object=23 a=rtpmap: 110 MP4A-LATM/90000 a=fmtp: 110 bitrate=48000;profile-level-id=24;object=23 a=rtpmap:9 G722/8000 a=rtpmap:104 G7221/16000 a=fmtp:104 bitrate=32000 a=rtpmap:105 G7221/16000 a=fmtp:105 bitrate=24000 a=rtpmap:0 PCMU/8000 a=rtpmap:8 PCMA/8000 a=rtpmap:15 G728/8000 a=rtpmap:18 G729/8000 a=rtpmap:101 telephone-event/8000 a=fmtp:101 0-15 a=trafficclass:conversational.audio.immersive.ag:admitted

m=video 51052 RTP/AVP 97 126 96 34 31

b=TIAS:5952000

a=label: | |

a=answer:full

a=rtpmap:97 H264/90000

a=fmtp:97 profile-level-id=420016;packetization-mode=0;maxmbps=245000;max-fs=9000;max-cpb=200;max-br=5000;max-rcmdnalu-size=3456000;max-smbps=245000;;max-fps=6000

a=rtpmap:126 H264/90000

a=fmtp:126 profile-level-id=428016;packetization-mode=1;maxmbps=245000;max-fs=9000;max-cpb=200;max-br=5000;max-rcmdnalu-size=3456000;max-smbps=245000;;max-fps=6000

a=rtpmap:96 H263-1998/90000

a=fmtp:96 QCIF=1;CIF=1;CIF4=1;CUSTOM=352,240,1

a=rtpmap:34 H263/90000

a=fmtp:34 QCIF=1;CIF=1;CIF4=1

a=rtpmap:31 H261/90000

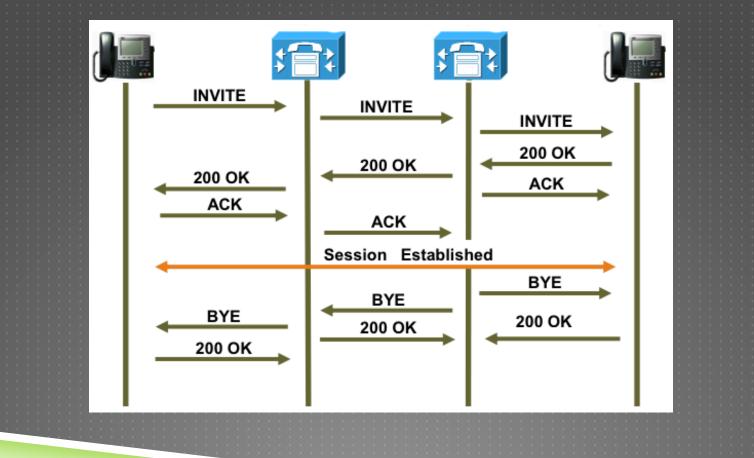
a=fmtp:31 CIF=1;QCIF=1

a=content:main

a=rtcp-fb:* nack pli

a=trafficclass:conversational.video.immersive.aq:admitted

m=application 51054 UDP/BFCP *


a=userid:182

SDP SECOND DEVICE RESPONDS WITH WHAT WILL BE USED

m=audio 5046 RTP/AVP 9 101 a=rtcp:5047 a=rtpmap:9 G722/8000 a=rtpmap:101 telephone-event/8000 a=fmtp:101 0-15 a=sendrecv

m=video 5048 RTP/AVP 126 b=TIAS:1472000 a=rtcp:5049 a=rtpmap:126 H264/90000 a=fmtp:126 profile-level-id=42801f;max-mbps=108500;maxfs=3600;packetization-mode=1 a=rtcp-fb:* nack pli a=rtcp-fb:126 nack a=rtcp-fb:* ccm fir a=rtcp-fb:* nack sli a=rtcp-fb:* ack rpsi a=rtcp-fb:* ccm tmmbr a=content:main a=label: | | a=sendrecv

COMMON SEEN ISSUE

WHERE TO START

Find the device that sent the BYE

- SIP messages may not give all the details to why a call failed on all hops in the call path
 - Especially in B2BUA sessions
- Turn debugging on (if not already) and do another call and capture traces from device sending the BYE
 - All devices have their own set of debug settings
 - Cisco CUBE
 - Debug ccsip messages (SIP messages)
 - Debug voip ccapi inout (Device messages)
 - Cisco/Tandberg VCS/Expressway
 - Maintenance -> Diagnostics -> Diagnostic Logging

COMMON ISSUES

404 Errors

- Wrong number dialed
- Incorrect translations taking place
- Media Negotiation Failure
 - One side set to delayed offer other side expecting early offer
 - Delayed offer
 - SDP offered by called device in 200 OK
 - Return SDP offered in ACK
 - Early offer
 - SDP offered by calling device in INVITE
 - Return SDP offered in 200 OK

COMMON ISSUES

Media Negotiation Failure

- No SDP media codecs in common
 - Verify settings and if devices support a common codec
 - Bandwidth restrictions set on server limit the use of certain codecs
- Codecs in common but no audio or video or one way
 - Verify in SDP that the IP listed in C= lines are actually accessible outside firewall
 - In NAT situations sometimes you must enable fixups to re-write the IP on the firewall/NAT device
 - Media does not have to be anchored by the signaling device
 - Verify media is flowing through, not around device and being caught by a firewall restriction

BIGGEST TIPS

- Look at things one hop at a time!
- Verify code versions of endpoints and registrars/proxy
 - Sometimes features are added that one side may not understand
 - iX Application Media

