
Fall 2014:: CSE 506:: Section 2 (PhD)

Signals and
Inter-Process

Communication (IPC)

Nima Honarmand

(Based on slides by Don Porter and Mike Ferdman)

Fall 2014:: CSE 506:: Section 2 (PhD)

Outline
• Signals

– Overview and APIs

– Handlers

– Kernel-level delivery

– Interrupted system calls

• Interprocess Communication (IPC)
– Pipes and FIFOs

– System V IPC

Fall 2014:: CSE 506:: Section 2 (PhD)

What is a signal?
• Like an interrupt, but for applications

– < 64 numbers with specific meanings

– Sending: A process can raise a signal to another process or
thread

– Sending: Kernel can send signals to processes or threads

– Receiving: A process or thread registers a handler function

• For both IPC and delivery of hardware exceptions
– Application-level handlers: divzero, segfaults, etc.

• No “message” beyond the signal was raised
– And maybe a little metadata

• PID of sender, faulting address, etc.

Fall 2014:: CSE 506:: Section 2 (PhD)

Example

Pid 300

int main() {

...

signal(SIGUSR1, &usr_handler);

...

}

Register usr_handler() to handle SIGUSR1

Fall 2014:: CSE 506:: Section 2 (PhD)

Example

Pid 300

kill(300, SIGUSR1);

Send signal to PID 300

Pid 400

int main() {

...

}

int usr_handler() { …

PC

Fall 2014:: CSE 506:: Section 2 (PhD)

Basic Model
• Application registers handlers with signal() or

sigaction()

• Send signals with kill() and friends
– Or raised by hardware exception handlers in kernel

• Signal delivery jumps to signal handler
– Irregular control flow, similar to an interrupt

API names are admittedly confusing

Fall 2014:: CSE 506:: Section 2 (PhD)

Some Signal Types
• See man 7 signal for the full list: (varies by sys/arch)

SIGTSTP: Stop typed at terminal (Ctrl+Z)

SIGKILL: Kill a process

SIGSEGV: Segmentation fault

SIGPIPE: Broken pipe (write with no readers)

SIGALRM: Timer

SIGUSR1: User-defined signal 1

SIGCHLD: Child stopped or terminated

SIGSTOP: Stop a process

SIGCONT: Continue if stopped

Fall 2014:: CSE 506:: Section 2 (PhD)

Language Exceptions
• Signals are the underlying mechanism for

Exceptions and catch blocks

• JVM or other runtime system sets signal handlers
– Signal handler causes execution to jump to the catch

block

Fall 2014:: CSE 506:: Section 2 (PhD)

Signal Handler Control Flow

From Understanding the Linux Kernel

Fall 2014:: CSE 506:: Section 2 (PhD)

Alternate Stacks
• Signal handlers can execute on a different stack

than program execution.
– Why?

• Safety: App can ensure stack is actually mapped

– Set with sigaltstack() system call

• Like an interrupt handler, kernel pushes register
state on interrupt stack

– Return to kernel with sigreturn() system call

– App can change its own on-stack register state!

Fall 2014:: CSE 506:: Section 2 (PhD)

Nested Signals
• What happens when you get a signal in the signal

handler?

• And why should you care?

Fall 2014:: CSE 506:: Section 2 (PhD)

The Problem with Nesting
int main() {

/* ... */

signal(SIGINT, &handler);

signal(SIGTERM, &handler);

/* ... */

}

int handler() {

free(buf1);

free(buf2);

}

SIGINT

SIGTERM

Signal Stack

PC Calls
munmap()

Another signal
delivered on

return
Double free!

Fall 2014:: CSE 506:: Section 2 (PhD)

Nested Signals
• The original signal() specification was a total mess!

– Now deprecated---do not use!

• New sigaction() API lets you specify this in detail
– What signals are blocked (and delivered on sigreturn)

– Similar to disabling hardware interrupts

• As you might guess, blocking system calls inside of
a signal handler are only safe with careful use of
sigaction()

Fall 2014:: CSE 506:: Section 2 (PhD)

Application vs. Kernel
• App: signals appear to be delivered roughly

immediately

• Kernel (lazy):
– Send a signal == mark a pending signal in the task

• And make runnable if blocked with TASK_INTERRUPTIBLE flag

– Check pending signals on return from interrupt or syscall
• Deliver if pending

Fall 2014:: CSE 506:: Section 2 (PhD)

Example

Pid 300
RUNNING

kill(300, SIGUSR1);

Send signal to PID 300

Pid 400

int main() {

read();

}

int usr_handler() { …

PC

…

…

SIGUSR1Pid 300
INTERRUPTIBLE Block on disk

read!

Mark pending
signal,

unblock

What happens
to read?

Fall 2014:: CSE 506:: Section 2 (PhD)

Interrupted System Calls
• If a system call blocks in the INTERRUPTIBLE state, a

signal wakes it up

• Yet signals are delivered on return from a system
call

• How is this resolved?

• The system call fails with a special error code
– EINTR and friends

– Many system calls transparently retry after sigreturn

– Some do not – check for EINTR in your applications!

Fall 2014:: CSE 506:: Section 2 (PhD)

Default handlers
• Signals have default handlers:

– Ignore, kill, suspend, continue, dump core

– These execute inside the kernel

• Installing a handler with signal/sigaction overrides
the default

• A few (SIGKILL, SIGSTOP) cannot be overridden

Fall 2014:: CSE 506:: Section 2 (PhD)

RT Signals
• Default signals are only in 2 states: signaled or not

– If I send 2 SIGUSR1’s to a process, only one may be
delivered

– If system is slow and I furiously hit Ctrl+C over and over,
only one SIGINT delivered

• Real time (RT) signals keep a count
– Deliver one signal for each one sent

Fall 2014:: CSE 506:: Section 2 (PhD)

Other IPC
• Pipes, FIFOs, and Sockets

• System V IPC

Fall 2014:: CSE 506:: Section 2 (PhD)

Pipes
• Stream of bytes between two processes

• Read and write like a file handle
– But not anywhere in the hierarchical file system

– And not persistent

– And no cursor or seek()-ing

– Actually, 2 handles: a read handle and a write handle

• Primarily used for parent/child communication
– Parent creates a pipe, child inherits it

Fall 2014:: CSE 506:: Section 2 (PhD)

Example
int pipe_fd[2];

int rv = pipe(pipe_fd);

int pid = fork();

if (pid == 0) {

close(pipe_fd[1]); // Close unused write end

dup2(pipe_fd[0], 0); // Make the read end stdin

exec(“grep”, “quack”);

} else {

close (pipe_fd[0]); // Close unused read end …

Fall 2014:: CSE 506:: Section 2 (PhD)

FIFOs (aka Named Pipes)
• Existing pipes can’t be opened---only inherited

– Or passed over a Unix Domain Socket (beyond today’s lec)

• FIFOs, or Named Pipes, add an interface for opening
existing pipes

Fall 2014:: CSE 506:: Section 2 (PhD)

Sockets
• Similar to pipes, except for network connections

• Setup and connection management is a bit trickier
– A topic for another day (or class)

Fall 2014:: CSE 506:: Section 2 (PhD)

Select()
• What if I want to block until one of several handles

has data ready to read?

• Read will block on one handle, but perhaps miss
data on a second…

• Select will block a process until a handle has data
available

– Useful for applications that use pipes, sockets, etc.

Fall 2014:: CSE 506:: Section 2 (PhD)

Synthesis Example: The Shell
• Almost all ‘commands’ are really binaries

– /bin/ls

• Key abstraction: Redirection over pipes
– ‘>’, ‘<‘, and ‘|’implemented by the shell itself

Fall 2014:: CSE 506:: Section 2 (PhD)

Shell Example
• Ex: ls | grep foo

• Implementation sketch:
– Shell parses the entire string

– Sets up chain of pipes

– Forks and exec’s ‘ls’ and ‘grep’ separately

– Wait on output from ‘grep’, print to console

Fall 2014:: CSE 506:: Section 2 (PhD)

Job control in a shell
• Shell keeps its own “scheduler” for background

processes

• How to:
– How to suspend the foreground process?

• SIGTSTP handler catches Ctrl-Z

• Send SIGSTOP to current foreground child

– Resume execution (fg)?
• Send SIGCONT to paused child, use waitpid() to block until

finished

– Execute in background (bg)?
• Send SIGCONT to paused child, but block on terminal input

Fall 2014:: CSE 506:: Section 2 (PhD)

Other hints
• Splice(), tee(), and similar calls are useful for

connecting pipes together
– Avoids copying data into and out-of application

Fall 2014:: CSE 506:: Section 2 (PhD)

System V IPC
• Semaphores – Lock

• Message Queues – Like a mail box, “small”
messages

• Shared Memory – particularly useful
– A region of non-COW anonymous memory

– Map at a given address using shmat()

• Can persist longer than an application
– Must be explicitly deleted

– Can leak at system level

– But cleared after a reboot

