Signals, Circuits, and Computers Part A

Winncy Du Fall 2012

Based on Dr. Ping Hsu's original lecture notes

Types of Signals

• Analog:

An analog signal is a continuous signal and is often represented by a V(t).

E.g., a <u>dimmer</u> light switch continuously increases/decreases the current.

• Digital :

A digital signal is a binary signal.

E.g., an <u>On/Off</u> light switch applies a fixed, predetermined voltage.

Analog Signal

Digital Signal

Voltage Level vs. Logic State

Digital Signal has <u>a high noise immunity level</u> the level of noise that can be added to the signal without affecting its state.

Analog Signal vs. Digital Signal

1. Analog signals

Pros: high resolution, efficient transmission (1 wire, 1 signal), no delay, 'real world' signals.

Cons: Difficult to process (perform operations, storage), susceptible to noise.

2. Digital Signals

Pros: high immunity to noise, easy to process

Cons: needs a lot of 'bits' and circuits, data processing delay

Analog – Digital Conversion

- Q3. Which of the following is NOT an advantage of a digital signal:
 - A: Easy to perform math operation
 - B: Easy to store
 - C: High noise immunity
 - D: Need less circuitry.
 - E: All the above

Bits, Bytes and Words

<u>Bits: (2⁰)</u>

One 'bit' can only represent a binary state:

0 or 1, on or off, stop or go.

<u>Bytes</u>. (2³)

One byte consists of 8 bits.

Words: (2⁴ or 2⁵)

One word consists of 16 bits (or 32 bits, depending on the computer).

Number of bits	Number of different values that can be represented
4-bit (1 nibble)	2 ⁴ =16
8-bit (1 byte)	2 ⁸ = 256
10-bit	2 ¹⁰ = 1024
16-bit (1 word)	2 ¹⁶ =65536
32-bit	2 ³² =4294967296

A 4-bit binary number

Binary number: 0110 = (0x8)+(1x4)+(1x2)+(0x1)=6

Binary number: 1101 = 8+4+1=13

Q1: What is the decimal value of the 4-bit binary number 0101?

(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Q2. What do we call the bit that is in the leftmost position in a binary number?

- A: SNB
- B: LMB
- C: MSB
- D: LSB
- E: USB

Binary Code

In a computer, a binary number is used to represent:

- (1) Numerical values
- (2) Characters and symbols (A, a, ¥, +, , @, ...)
- (3) Picture, sound, video, etc.
- (4) Machine language (for math operations, etc.)
- (5) others ...

An example of a binary coding

4-bit Binary Code	Short hand Notation-HEX	Numerical value represented	Machine language represented
0000	0	0	NOOP
0001	1	1	ADD
0010	2	2	SUB
0011	3	3	MUL
:	:	:	:
1001	9	9	DIV
1010	Α	10	СОРҮ
1011	В	11	MOV
1100	С	12	AND
1101	D	13	OR
1110	E	14	SHIFT
1111	F	15	XOR

Digital Communication

Parallel connection: a dedicated wire for each bit (needs a lot of wires).

Digital Communication

Serial connection: bits are sent sequentially (takes long time).

Sending a byte or a word in parallel, sequentially (commonly used between circuits within a computer)

VEX Microcontroller

CPU: Executing instructions, performing arithmetic and logic operations. It is the 'brain' of the computer.Memory: Memory is for keeping program and data.

IO Port: Gateway to and from the external devices.

- Q4: What is the abbreviated name of the circuit in a computer that performs arithmetic operation?
 - A: USB
 - B: AOU
 - C: CPU
 - D: AIO
 - E: MOU

VEX controller IO Ports

Analog/Digital Port (16 ports)

Infrared Receiver Board

