Signals, Circuits, and Computers Part A

Winncy Du
 Fall 2012

Based on Dr. Ping Hsu's original lecture notes

Types of Signals

- Analog:

An analog signal is a continuous signal and is often represented by a $V(t)$.
E.g., a dimmer light switch continuously increases/decreases the current.

- Digital :

A digital signal is a binary signal.
E.g., an On/Off light switch applies a fixed, predetermined voltage.

Analog Signal
Digital Signal

Voltage Level vs. Logic State

Digital Signal has a high noise immunity level the level of noise that can be added to the signal without affecting its state.

Analog Signal vs. Digital Signal

1. Analog signals

Pros: high resolution, efficient transmission
(1 wire, 1 signal), no delay, 'real world' signals.
Cons: Difficult to process (perform operations, storage), susceptible to noise.

2. Digital Signals

Pros: high immunity to noise, easy to process
Cons: needs a lot of 'bits' and circuits, data processing delay

Analog - Digital Conversion

Q3. Which of the following is NOT an advantage of a digital signal:

A: Easy to perform math operation
B: Easy to store
C: High noise immunity
D: Need less circuitry.
E : All the above

Bits, Bytes and Words

Bits: $\left(2^{0}\right)$

One 'bit' can only represent a binary state:
0 or 1,
on or off, stop or go.
Bytes. $\left(2^{3}\right)$
One byte consists of 8 bits.
Words: (2^{4} or 2^{5})
One word consists of 16 bits (or 32 bits, depending on the computer).

Number of bits	Number of different values that can be represented
4 -bit (1 nibble)	$2^{4}=16$
8 -bit (1 byte)	$2^{8}=256$
10 -bit	$2^{10}=1024$
16 -bit (1 word)	$2^{16}=65536$
32 -bit	$2^{32}=4294967296$

A 4-bit binary number

Binary number: $0110=(0 \times 8)+(1 \times 4)+(1 \times 2)+(0 \times 1)=6$
Binary number: $1101=8+4+1=13$

Q1: What is the decimal value of the 4 -bit binary number 0101?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Q2. What do we call the bit that is in the leftmost position in a binary number?

A: SNB
B: LMB
C: MSB
D: LSB
E: USB

Binary Code

In a computer, a binary number is used to represent:
(1) Numerical values
(2) Characters and symbols (A, a, $¥,+$, , @,)
(3) Picture, sound, video, etc.
(4) Machine language (for math operations, etc.)
(5) others ...

An example of a binary coding

4-bit Binary Code	Short hand Notation-HEX	Numerical value represented	Machine language represented
0000	0	0	NOOP
0001	1	1	ADD
0010	2	2	SUB
0011	3	3	MUL
$:$	$:$	$:$:
1001	9	9	DIV
1010	A	10	COPY
1011	B	11	MOV
1100	C	12	AND
1101	D	13	OR
1110	E	14	SHIFT
1111	F	15	XOR

Digital Communication

Parallel connection: a dedicated wire for each bit (needs a lot of wires).

Digital Communication

Serial connection: bits are sent sequentially

(takes long time).

Sending a byte or a word in parallel, sequentially (commonly

 used between circuits within a computer)

VEX Microcontroller

CPU: Executing instructions, performing arithmetic and logic operations. It is the 'brain' of the computer.
Memory: Memory is for keeping program and data.
IO Port: Gateway to and from the external devices.

Q4: What is the abbreviated name of the circuit in a computer that performs arithmetic operation?

A: USB
B: AOU
C: CPU
D: AIO
E: MOU

VEX controller IO Ports

Analog/Digital Port (16 ports)

Infrared Receiver Board

Tune to 1 kHz or 10 kHz
selector
Controller

