
Database System Concepts, 5th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use "

©Silberschatz, Korth and Sudarshan"7.2"Database System Concepts - 5th Edition, Oct 5, 2006"

  Features of Good Relational Design!
  Atomic Domains and First Normal Form!
  Decomposition Using Functional Dependencies!
  Functional Dependency Theory!
  Algorithms for Functional Dependencies!
  Decomposition Using Multivalued Dependencies !
  More Normal Form!
  Database-Design Process!
  Modeling Temporal Data!

©Silberschatz, Korth and Sudarshan"7.3"Database System Concepts - 5th Edition, Oct 5, 2006"

  branch = (branch_name, branch_city, assets)!
  customer = (customer_id, customer_name, customer_street, customer_city)!
  loan = (loan_number, amount)!
  account = (account_number, balance)!
  employee = (employee_id. employee_name, telephone_number, start_date)!
  dependent_name = (employee_id, dname)!
  account_branch = (account_number, branch_name)!
  loan_branch = (loan_number, branch_name)!
  borrower = (customer_id, loan_number)!
  depositor = (customer_id, account_number)!
  cust_banker = (customer_id, employee_id, type)!
  works_for = (worker_employee_id, manager_employee_id)!
  payment = (loan_number, payment_number, payment_date, payment_amount)!
  savings_account = (account_number, interest_rate)!
  checking_account = (account_number, overdraft_amount)!

©Silberschatz, Korth and Sudarshan"7.4"Database System Concepts - 5th Edition, Oct 5, 2006"

  Suppose we combine borrower and loan to get !
bor_loan = (customer_id, loan_number, amount)!

  Result is possible repetition of information (L-100 in example below)!

©Silberschatz, Korth and Sudarshan"7.5"Database System Concepts - 5th Edition, Oct 5, 2006"

  Consider combining loan_branch and loan!
loan_amt_br = (loan_number, amount, branch_name)!

  No repetition (as suggested by example below)!

©Silberschatz, Korth and Sudarshan"7.6"Database System Concepts - 5th Edition, Oct 5, 2006"

  Suppose we had started with bor_loan. How would we know to split up
(decompose) it into borrower and loan?!

  Write a rule “if there were a schema (loan_number, amount), then loan_number
would be a candidate key”!

  Denote as a functional dependency: !
! ! loan_number → amount!
  In bor_loan, because loan_number is not a candidate key, the amount of a loan

may have to be repeated. This indicates the need to decompose bor_loan.!
  Not all decompositions are good. Suppose we decompose employee into!
! employee1 = (employee_id, employee_name)!
! employee2 = (employee_name, telephone_number, start_date)!
  The next slide shows how we lose information -- we cannot reconstruct the

original employee relation -- and so, this is a lossy decomposition.!

©Silberschatz, Korth and Sudarshan"7.7"Database System Concepts - 5th Edition, Oct 5, 2006"

©Silberschatz, Korth and Sudarshan"7.8"Database System Concepts - 5th Edition, Oct 5, 2006"

  Domain is atomic if its elements are considered to be indivisible units!
  Examples of non-atomic domains:!

 Set of names, composite attributes!
 Identification numbers like CS101 that can be broken up into

parts!
  A relational schema R is in first normal form if the domains of all

attributes of R are atomic!
  Non-atomic values complicate storage and encourage redundant

(repeated) storage of data!
  Example: Set of accounts stored with each customer, and set of

owners stored with each account!
  We assume all relations are in first normal form (and revisit this in

Chapter 9)!

©Silberschatz, Korth and Sudarshan"7.9"Database System Concepts - 5th Edition, Oct 5, 2006"

  Atomicity is actually a property of how the elements of the domain are
used.!
  Example: Strings would normally be considered indivisible !
  Suppose that students are given roll numbers which are strings of

the form CS0012 or EE1127!
  If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic.!
  Doing so is a bad idea: leads to encoding of information in

application program rather than in the database.!

©Silberschatz, Korth and Sudarshan"7.10"Database System Concepts - 5th Edition, Oct 5, 2006"

  Decide whether a particular relation R is in “good” form.!
  In the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that !
  each relation is in good form !
  the decomposition is a lossless-join decomposition!

  Our theory is based on:!
  functional dependencies!
  multivalued dependencies!

©Silberschatz, Korth and Sudarshan"7.11"Database System Concepts - 5th Edition, Oct 5, 2006"

  Constraints on the set of legal relations.!
  Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.!
  A functional dependency is a generalization of the notion of a key.!

©Silberschatz, Korth and Sudarshan"7.12"Database System Concepts - 5th Edition, Oct 5, 2006"

  Let R be a relation schema!
! ! α ⊆ R and β ⊆ R!
  The functional dependency!
! ! α → β 

holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes α, they also agree
on the attributes β. That is, !

! ! t1[α] = t2 [α] ⇒ t1[β] = t2 [β] !
  Example: Consider r(A,B) with the following instance of r.!

  On this instance, A → B does NOT hold, but B → A does hold. !

1  4!
1 5!
3! 7!

©Silberschatz, Korth and Sudarshan"7.13"Database System Concepts - 5th Edition, Oct 5, 2006"

  K is a superkey for relation schema R if and only if K → R!
  K is a candidate key for R if and only if !

  K → R, and!
  for no α ⊂ K, α → R!

  Functional dependencies allow us to express constraints that cannot
be expressed using superkeys. Consider the schema:!

! ! bor_loan = (customer_id, loan_number, amount).!
! We expect this functional dependency to hold:!
! ! ! loan_number → amount!
! but would not expect the following to hold: !
! ! ! amount → customer_name!

©Silberschatz, Korth and Sudarshan"7.14"Database System Concepts - 5th Edition, Oct 5, 2006"

  We use functional dependencies to:!
  test relations to see if they are legal under a given set of functional

dependencies. !
  If a relation r is legal under a set F of functional dependencies, we

say that r satisfies F.!
  specify constraints on the set of legal relations!

 We say that F holds on R if all legal relations on R satisfy the set of
functional dependencies F.!

  Note: A specific instance of a relation schema may satisfy a functional
dependency even if the functional dependency does not hold on all legal
instances. !
  For example, a specific instance of loan may, by chance, satisfy  

 amount → customer_name.!

©Silberschatz, Korth and Sudarshan"7.15"Database System Concepts - 5th Edition, Oct 5, 2006"

  A functional dependency is trivial if it is satisfied by all instances of a
relation!
  Example:!

  customer_name, loan_number → customer_name!
  customer_name → customer_name!

  In general, α → β is trivial if β ⊆ α  

©Silberschatz, Korth and Sudarshan"7.16"Database System Concepts - 5th Edition, Oct 5, 2006"

  Given a set F of functional dependencies, there are certain other
functional dependencies that are logically implied by F.!
  For example: If A → B and B → C, then we can infer that A → C!

  The set of all functional dependencies logically implied by F is the closure
of F.!

  We denote the closure of F by F+.!
  F+ is a superset of F.!

©Silberschatz, Korth and Sudarshan"7.17"Database System Concepts - 5th Edition, Oct 5, 2006"

  α → β is trivial (i.e., β ⊆ α)!
  α is a superkey for R!

A relation schema R is in BCNF with respect to a set F of
functional dependencies if for all functional dependencies in F+ of
the form !

 α→ β!

where α ⊆ R and β ⊆ R, at least one of the following holds:!

Example schema not in BCNF:!

! bor_loan = (customer_id, loan_number, amount)!

because loan_number → amount holds on bor_loan but loan_number is
! ! not a superkey!

©Silberschatz, Korth and Sudarshan"7.18"Database System Concepts - 5th Edition, Oct 5, 2006"

  Suppose we have a schema R and a non-trivial dependency α→β causes
a violation of BCNF.!

! We decompose R into:!
• (αU β)!
• (R - (β - α))!

  In our example, !
  α = loan_number!
  β = amount!
and bor_loan is replaced by!
  (αU β) = (loan_number, amount)!
  (R - (β - α)) = (customer_id, loan_number)!

©Silberschatz, Korth and Sudarshan"7.19"Database System Concepts - 5th Edition, Oct 5, 2006"

  Constraints, including functional dependencies, are costly to check in
practice unless they pertain to only one relation!

  If it is sufficient to test only those dependencies on each individual
relation of a decomposition in order to ensure that all functional
dependencies hold, then that decomposition is dependency
preserving.!

  Because it is not always possible to achieve both BCNF and
dependency preservation, we consider a weaker normal form, known
as third normal form.!

©Silberschatz, Korth and Sudarshan"7.20"Database System Concepts - 5th Edition, Oct 5, 2006"

  A relation schema R is in third normal form (3NF) if for all:!
! ! α → β in F+ 

at least one of the following holds:!
  α → β is trivial (i.e., β ∈ α)!
  α is a superkey for R!
  Each attribute A in β – α is contained in a candidate key for R.!
 (NOTE: each attribute may be in a different candidate key)!

  If a relation is in BCNF it is in 3NF (since in BCNF one of the first two
conditions above must hold).!

  Third condition is a minimal relaxation of BCNF to ensure dependency
preservation (will see why later).!

©Silberschatz, Korth and Sudarshan"7.21"Database System Concepts - 5th Edition, Oct 5, 2006"

  Let R be a relation scheme with a set F of functional
dependencies.!

  Decide whether a relation scheme R is in “good” form.!
  In the case that a relation scheme R is not in “good” form,

decompose it into a set of relation scheme {R1, R2, ..., Rn} such
that !
  each relation scheme is in good form !
  the decomposition is a lossless-join decomposition!
  Preferably, the decomposition should be dependency

preserving.!

©Silberschatz, Korth and Sudarshan"7.22"Database System Concepts - 5th Edition, Oct 5, 2006"

  There are database schemas in BCNF that do not seem to be
sufficiently normalized !

  Consider a database !
! ! classes (course, teacher, book)  

 such that (c, t, b) ∈ classes means that t is qualified to teach c, and b
is a required textbook for c!

  The database is supposed to list for each course the set of teachers
any one of which can be the courseʼs instructor, and the set of books,
all of which are required for the course (no matter who teaches it).!

©Silberschatz, Korth and Sudarshan"7.23"Database System Concepts - 5th Edition, Oct 5, 2006"

  There are no non-trivial functional dependencies and therefore the
relation is in BCNF !

  Insertion anomalies – i.e., if Marilyn is a new teacher that can teach
database, two tuples need to be inserted!

! ! (database, Marilyn, DB Concepts) 
! (database, Marilyn, Ullman)!

course! teacher! book!
database!
database!
database!
database!
database!
database!
operating systems!
operating systems!
operating systems!
operating systems!

Avi!
Avi!
Hank!
Hank!
Sudarshan!
Sudarshan!
Avi!
Avi !
Pete!
Pete!

DB Concepts!
Ullman!
DB Concepts!
Ullman!
DB Concepts!
Ullman!
OS Concepts!
Stallings!
OS Concepts!
Stallings!

classes!

©Silberschatz, Korth and Sudarshan"7.24"Database System Concepts - 5th Edition, Oct 5, 2006"

  Therefore, it is better to decompose classes into:!
course! teacher!

database!
database!
database!
operating systems!
operating systems!

Avi!
Hank!
Sudarshan!
Avi !
Jim!

teaches!
course! book!

database!
database!
operating systems!
operating systems!

DB Concepts!
Ullman!
OS Concepts!
Shaw!

text!
This suggests the need for higher normal forms, such as Fourth
Normal Form (4NF), which we shall see later.!

©Silberschatz, Korth and Sudarshan"7.25"Database System Concepts - 5th Edition, Oct 5, 2006"

  We now consider the formal theory that tells us which functional
dependencies are implied logically by a given set of functional
dependencies.!

  We then develop algorithms to generate lossless decompositions into
BCNF and 3NF!

  We then develop algorithms to test if a decomposition is dependency-
preserving!

©Silberschatz, Korth and Sudarshan"7.26"Database System Concepts - 5th Edition, Oct 5, 2006"

  Given a set F set of functional dependencies, there are certain other
functional dependencies that are logically implied by F.!
  For example: If A → B and B → C, then we can infer that A → C!

  The set of all functional dependencies logically implied by F is the closure
of F.!

  We denote the closure of F by F+.!
  We can find all of F+ by applying Armstrongʼs Axioms:!

  if β ⊆ α, then α → β (reflexivity)!
  if α → β, then γ α → γ β (augmentation)!
  if α → β, and β → γ, then α → γ (transitivity)"

  These rules are !
  sound (generate only functional dependencies that actually hold) and !
  complete (generate all functional dependencies that hold).!

©Silberschatz, Korth and Sudarshan"7.27"Database System Concepts - 5th Edition, Oct 5, 2006"

  R = (A, B, C, G, H, I) 
F = { A → B 
! A → C  
! CG → H  
! CG → I 
! B → H}!

  some members of F+!
  A → H !

 by transitivity from A → B and B → H!
  AG → I !

 by augmenting A → C with G, to get AG → CG  
 and then transitivity with CG → I !

  CG → HI !
 by augmenting CG → I to infer CG → CGI, !
 and augmenting of CG → H to infer CGI → HI, !
 and then transitivity!

©Silberschatz, Korth and Sudarshan"7.28"Database System Concepts - 5th Edition, Oct 5, 2006"

  To compute the closure of a set of functional dependencies F: 

 F + = F 
repeat 
! for each functional dependency f in F+ 
! apply reflexivity and augmentation rules on f 
! add the resulting functional dependencies to F + 
! for each pair of functional dependencies f1and f2 in F + 
! if f1 and f2 can be combined using transitivity 
! ! then add the resulting functional dependency to F + 
until F + does not change any further!

NOTE: We shall see an alternative procedure for this task later!

©Silberschatz, Korth and Sudarshan"7.29"Database System Concepts - 5th Edition, Oct 5, 2006"

  We can further simplify manual computation of F+ by using the
following additional rules.!
  If α → β holds and α → γ holds, then α → β γ holds (union)!
  If α → β γ holds, then α → β holds and α → γ holds

(decomposition)!
  If α → β holds and γ β → δ holds, then α γ → δ holds

(pseudotransitivity)!
The above rules can be inferred from Armstrongʼs axioms.!

©Silberschatz, Korth and Sudarshan"7.30"Database System Concepts - 5th Edition, Oct 5, 2006"

  Given a set of attributes α, define the closure of α under F (denoted by
α+) as the set of attributes that are functionally determined by α under
F!

  Algorithm to compute α+, the closure of α under F 

 ! result := α; 
! while (changes to result) do 
" " for each β → γ in F do 
" " " begin  
" " " " if β ⊆ result then result := result ∪ γ  
! ! ! end"

©Silberschatz, Korth and Sudarshan"7.31"Database System Concepts - 5th Edition, Oct 5, 2006"

  R = (A, B, C, G, H, I)!
  F = {A → B 

! A → C  
! CG → H  
! CG → I 
! B → H}!

  (AG)+!
1.! result = AG!
2.! result = ABCG! (A → C and A → B)!
3.! result = ABCGH! (CG → H and CG ⊆ AGBC)!
4.! result = ABCGHI! (CG → I and CG ⊆ AGBCH)!

  Is AG a candidate key? !
1.  Is AG a super key?!

1.  Does AG → R? == Is (AG)+ ⊆ R!
3.  Is any subset of AG a superkey?!

1.  Does A → R? == Is (A)+ ⊆ R!
2.  Does G → R? == Is (G)+ ⊆ R!

