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ABSTRACT
Micro-aerial vehicle (MAV) swarms are an emerging class of mo-
bile sensing systems. Simulation and staged deployment to proto-
type testbeds are useful in the early stages of large-scale system
design, when hardware is unavailable or deployment at scale is
impractical. To faithfully represent the problem domain, a MAV
swarm simulator must be able to model the key aspects of the sys-
tem: actuation, sensing, and communication. We present Simbee-
otic, a simulation framework geared toward modeling swarms of
MAVs. Simbeeotic enables algorithm development and rapid MAV
prototyping through pure simulation and hardware-in-the-loop ex-
perimentation. We demonstrate that Simbeeotic provides the appro-
priate level of fidelity to evaluate prototype systems while main-
taining the ability to test at scale.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications; I.2.9 [Artificial
Intelligence]: Robotics—Autonomous Vehicles

General Terms
Design, Experimentation, Measurement

Keywords
Swarm, Micro-Aerial Vehicle, Simulation, Testbed

1. INTRODUCTION
Simulation is often used in systems research for rapid prototyp-

ing, emulation of future architectures, and testing at scale. In this
paper we present a simulator and hardware testbed that facilitate
the development of micro-aerial vehicle (MAV) swarms.

MAV swarms are an emerging class of mobile sensing systems.
As opposed to a single, more capable robot, MAV swarms employ a
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group of autonomous micro-robots to accomplish a common goal.
Research platforms include quadrotors [15], fixed-wing aircraft [9],
small “flying motes” [20], and insect-scale ornithopters [25]. Like
sensor networks, MAV swarms rely on spatial diversity and collec-
tive sensing to explore a target area. However, MAVs must also be
concerned with classic robotics challenges such as obstacle avoid-
ance, navigation, planning, and environmental manipulation.

Our research is focused on MAV swarms comprised of thousands
of smaller, less capable vehicles [21]. In this subset of the MAV
swarm space the challenges faced by individual MAVs are simi-
lar to those of static sensor network nodes; computation is limited,
sensing is minimal, and energy is scarce. However, there are differ-
ences between the two domains that invalidate some of the assump-
tions made in static sensor network deployments. For example, the
radio is no longer the primary energy sink – it is dwarfed by the en-
ergy needed for actuation. Additionally, duty cycling the hardware
to save energy is not an option when the vehicle is in flight. We
contend that conducting research in this domain necessitates treat-
ing autonomous mobility as a first class concern in simulation tools
and testbeds.

The main contribution of this work is a new simulation envi-
ronment and MAV testbed. The core requirements for building a
holistic MAV swarm simulator in the vein of other simulators [13]
are defined as follows:

• Scalability The simulator must be able to simulate thousands
of MAVs in a single scenario. Scale of deployment is an im-
portant aspect of swarm research. Without the ability to study
algorithms at true swarm scale, some of the hard problems
will be missed.

• Completeness Simulations should model as much of the prob-
lem domain as possible. Though research may be conducted
on a subset of swarm design (e.g. flight control or network-
ing), it is advantageous to construct a holistic view of the
problem in which complex interactions are revealed. For MAV
swarms, this means modeling actuation, sensing, and com-
munication for each application.

• Variable Fidelity The desire to improve the accuracy of mod-
els is often at odds with simulation performance (scalability
in this case). Users should be free to construct models with
the appropriate level of fidelity to capture the subtleties of
their problem. For example, researchers working on emer-
gent algorithms may not require realistic flight control loops,



whereas those working on controls will require accurate sen-
sor and flight dynamics models but may not be concerned
with network protocols. Using the same simulator, these re-
searchers can work to improve the modeling of their domain
while retaining the ability to combine their efforts and simu-
late the system as a whole.

• Staged Deployment No matter how detailed, simulation can-
not completely capture every situation that will be encoun-
tered in the real world. While the ultimate goal is to de-
ploy a swarm of MAVs, building hardware can be expensive
and time consuming. The simulator can facilitate the devel-
opment of control software and inform the hardware design
process by providing a staged deployment feature, allowing
prototype hardware to respond to both real and simulated in-
puts.

We present Simbeeotic, a simulation framework constructed from
the above requirements. Simbeeotic supports both pure simulation
and hardware-in-the-loop (HWIL) experimentation with a radio con-
trolled (RC) helicopter testbed. The simulator relies on modular
software design principles and a commitment to deployment-time
configuration to provide modeling flexibility and ease of use. It
is highly extensible and is designed for repeated experimentation.
With Simbeeotic we demonstrate that whole-system modeling is
feasible for the MAV swarm domain. The primary contribution of
Simbeeotic is the tool itself, which is available to the community at
http://robobees.seas.harvard.edu.

2. RELATED WORK
The MAV swarm domain intersects with other research areas, in-

cluding biologically-inspired algorithms, robotics, and sensor net-
works. There are high fidelity simulators that exist in each of these
communities. Prior to implementing Simbeeotic, we investigated
the possibility of using these tools. In general, we were unable to
find a simulator that satisfied our completeness requirement. We
considered combining multiple simulators to satisfy this goal, but
determined that performance would suffer due to the high fidelity
of some of the tools. Each simulator uses considerable machine re-
sources to model its own domain for thousands of agents, making
our scalability goal untenable with this approach. Finally, we con-
sidered the engineering cost of repurposing multiple simulators to
be too high, given that these tools are written in a number of lan-
guages and are not uniformly maintained.

Implementing a new simulator has several advantages. We can
ensure that our requirements are satisfied and make design deci-
sions that suit our needs. Our approach also allows us to evolve
the fidelity of each subdomain (e.g. actuation, sensing, communi-
cation) as more accuracy is needed. However, we do not want to
reinvent what is considered state-of-the-art in each domain. When-
ever possible, we leverage open source tools and learn from existing
models to avoid duplication of effort. In the rest of this section we
discuss the relevant simulation tools from the swarm intelligence,
robotics, and sensor networking communities.

The first set of tools considered come from the multi-agent sys-
tems and swarm intelligence communities. These simulators are
appealing because they can generally model thousands of agents
at once. Swarm [10], MASON [14] are two such tools. The main
drawback of these simulators is that the they do not faithfully model
the environment and actuation, opting for cell-based or 2D contin-
uous worlds. In Swarm and MASON, a significant amount of ef-
fort would be put into modeling a three dimensional, physics-based
world that is accurate enough to support the staged deployment re-
quirement. MASON provides a builtin 3D space (known as a field

in MASON-speak), but leaves manipulation of objects in the field
(e.g. kinematics, collision detection) to the modeler. Breve [12] is
very similar to Simbeeotic in that it is a discrete event simulator
with an embedded physics engine. Unfortunately, models are writ-
ten in a domain specific language called Steve (there is limited sup-
port for Python), which hinders adoption and limits the number of
existing math and science packages available to modelers.

The robotics community has long used simulators as design tools
since building hardware is often expensive and time consuming. In
many cases, the hardware and software are co-designed, driving the
need for accurate modeling of the physical environment. Thus, the
strength of robot simulators is generally in modeling the interaction
of the robot with the environment (e.g. actuation and sensing). Two
commonly used tools are Webots [17] and Player-Stage [5] [23].
Webots models the environment as a three dimensional continu-
ous space and has physics-based sensor models. It is an excellent
teaching tool with support for many commercial robot platforms,
but fails to meet our scalability requirements. In addition, its com-
mercial nature does not allow for arbitrary modification, as would
likely be the case for modeling communication networks and bridg-
ing with our testbed. Player-Stage consists of a robot driver inter-
face, Player, and a simulated environment, Stage. Player is used in
a client/server fashion to control robot and sensor hardware. Stage
is used to simulate robots in a virtual environment, but exports a
Player interface so that code can be migrated to a hardware plat-
form. Stage is a 2.5D simulator that scales to handle hundreds of
robots in real time for realistic workloads and thousands of robots
for simple workloads. Its key limitation as mentioned by the au-
thors [23] is that it is a first-order geometric simulator that does not
model acceleration or momentum. Our approach to MAV swarm
simulation requires a more comprehensive treatment of vehicle dy-
namics.

The Robot Operating System (ROS) is a collection of hardware
drivers, algorithms, and tools for building robotic applications [22].
ROS users compose agent behaviors from a large set of open source
packages that provide functionality for data acquisition and pro-
cessing, planning, and locomotion. For the most part, ROS is a
complementary technology to Simbeeotic. It is primarily used to
construct a fully functioning software stack that can be deployed
on one or more robots. There are packages that integrate ROS with
simulators (including Player-Stage) to execute a robot in a virtual
world, but these packages are insufficient for our needs due to short-
comings mentioned above. However, it should be possible to in-
tegrate ROS with our simulator in a similar way - a topic that is
discussed further in Section 6.

The construction of the GRASP Micro UAV Testbed [16] is sim-
ilar to Simbeeotic in that an offboard computer remotely controls
the vehicles, relying on accurate position and orientation informa-
tion from a motion capture system. One difference between the two
testbeds is fidelity. The researchers using the GRASP testbed are
interested in vehicle control, so the simulation includes a dynamics
model and accounts for aerodynamic effects. Though we have per-
formed a system identification on our helicopters and constructed
a dynamics model, our efforts in simulation have focused on mod-
eling larger swarms with lower fidelity vehicle movements. If re-
searchers are interested in the aggregate behavior of a large swarm,
foregoing the simulation of control loops can significantly improve
simulation scalability.

The wireless networking and sensor network communities have
invested heavily in simulation tools. GloMoSim [26] and ns-3 [19]
are widely adopted simulators that model the OSI seven layer archi-
tecture. While they do an excellent job of implementing RF propa-
gation, radio models, and network protocols, these tools are singu-
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Figure 1: The Simbeeotic architecture. Domain models are plugged into a discrete event simulation engine. The kinematic state of
models with physical presence is managed by an integrated physics engine. Several levels of abstraction in the model layer provide
flexibility and convenience to modelers. The simulation architecture can be augmented by user-supplied plugin components.

larly focused on networking. A significant effort would be needed
to model actuation and sensing to meet our completeness require-
ment. Rather, our approach is to start with a physical simulation
and add networking fidelity as needed. This strategy allows us to
selectively integrate the parts of these tools that are useful in our
domain.

TOSSIM [13] and EmStar [6] are two popular wireless sensor
network simulators. TOSSIM takes the completeness and bridging
requirements to an extreme by providing a virtual environment in
which the embedded mote software (running TinyOS) is executed.
Though the whole-system approach is appealing, TOSSIM restricts
users to writing applications in TinyOS. We borrow the idea of
staged deployment from EmStar, which allows virtual models (e.g.
radios) to be replaced by physical hardware in a testbed. Our staged
deployment goal is derived from a desire to iterate on software and
hardware designs using virtualized representations prior to building
a deployable system. We do not consider EmStar a viable starting
point for a MAV swarm simulator because the software is no longer
maintained.

3. SIMULATOR DESIGN
At its core, Simbeeotic is a general purpose discrete event sim-

ulator. A simulation execution consists of one or more models that
schedule events to occur at a future point in time. The virtual time
of the simulation is moved forward by an executive that retrieves
the next event from a queue of causally ordered pending events and
passes it to the intended recipient for processing. In effect, time
passes in between events – the events themselves represent discrete
points in time. Since we are interested in modeling the MAV swarm
domain, Simbeeotic builds upon the basic discrete event mecha-
nism to provide convenient abstractions for building MAV swarm
simulations, such as a virtual environment, robotic platforms, sen-
sors, and radios.

Simbeeotic is written in the Java programming language. Java
was chosen for a number of reasons. First, it is widely understood
amongst our team and easily learned by neophytes. Second, it is
for the most part a cross-platform language. We have confidence
that Simbeeotic can be compiled on or distributed in binary form
with little effort to the most popular (and some esoteric) operat-
ing systems. Third, there exists a large repository of high quality,

open source libraries that can be leveraged by our modelers. At
present, Simbeeotic consists of 13,387 lines of Java code in 148
classes and 506 lines of XML schema. Of this code base, 48%
makes up the core (including the simulation executor, modeling in-
terfaces, base classes, and common model implementations), 26%
is for testbed integration, 13% is example code, 6% defines tools
that generate random enclosed environments (such as mine shafts
and office buildings), 6% is for visualization components, and 1%
is for the main entry point. This codebase builds atop a collection
of open source libraries that provide support for physics simula-
tion, linear algebra, statistics, 3D visualization, plotting, message
serialization, code generation, and logging.

3.1 Architecture
We have constructed Simbeeotic to fulfill the requirements es-

tablished in Section 1 (scalability, completeness, variable fidelity,
and staged deployment). In addition, we are careful to provide re-
peatability and promote ease of use and extensibility throughout
our design. Scenario repeatability is of utmost importance; exper-
iments must be reproducible given identical inputs. As such, our
framework provides seeded random number streams to models and
causally orders scheduled events using a set of deterministically
generated tiebreak fields. Ease of use improvements include the
elimination of boilerplate code through convenience mechanisms
and a simple configuration system.

Figure 1 shows an overview of the simulation architecture (left-
hand side) and a partial class diagram of the modeling abstractions
(righthand side). The heart of the simulation is the simulation en-
gine, which manages the discrete event queue and dispatches events
to models, pushing virtual time forward. Prior to the start of the
scenario, the simulation engine populates the virtual world from a
supplied configuration and initializes all of the models by calling a
model-specific initialization routine. The simulation engine is also
responsible for answering queries about the model population. It
provides an API for locating models based on type or ID.

The model layer sits on top of the simulation engine. The major-
ity of user-supplied code will use model layer interfaces to imple-
ment features of the target domain. Simbeeotic employs a layered
strategy to provide extension points within the model space. The
layered approach API is one way that Simbeeotic fulfills the vari-



compass = getSensor("compass", Compass.class);

// a timer that takes a compass reading periodically
Timer compTimer = createTimer(new TimerCallback() {

public void fire(SimTime time) {

float h = compass.getHeading();
...

}
}, 0, TimeUnit.SECONDS,
sensorTimeout, TimeUnit.MILLISECONDS);

Figure 2: A code snippet from a model initialization routine
demonstrating how to query for attached equipment and sched-
ule a periodic timer (starting immediately and firing every
sensorTimeout ms).

able fidelity design goal outlined in Section 1. Modelers introduce
new functionality by building on layer with the interface that most
closely matches the desired level of fidelity of the new model.

At the very bottom are the Model and Event interfaces. All
models implement the Model interface, but few do so directly. The
AbstractModel base class provides a default implementation that
introduces other useful mechanisms, such as a seeded random num-
ber generator and a timer abstraction. We have committed to a con-
tinuous, three dimensional representation of space in Simbeeotic.
The PhysicalEntity interface is defined to standardize the rep-
resentation of a physical object (its size, shape, and mass), the in-
formation that can be queried about its kinematic state, and how
its state can be manipulated (by applying forces, torques, and im-
pulses). While it is possible for users to directly implement the
PhysicalEntity interface, there exists a base class, Abstract-
PhyscicalEntity, that implements the interface by delegating to
a rigid body physics engine (described below).

The next level of abstraction, the GenericModel class, treats the
established physical body as a robotic platform, allowing equip-
ment (e.g. sensors and radios) to be associated with the platform.
The attached equipment models do not implement the Physical-
Entity interface. Rather, they are granted access to the host plat-
form’s physical presence and are attached using a body-relative po-
sition and orientation (e.g. antenna position and pointing direction).
It is possible for a modeler to develop a new robotic platform by
extending GenericModel, attaching sensors and radios, and defin-
ing custom agent logic using the timer mechanism. We introduce
a final abstraction layer with the SimpleBee base class. This class
provides a simple actuation API (e.g. turn, setLinearVelocity,
setHovering) that makes the simulation more accessible to mod-
elers who do not require high fidelity actuation modeling. The Sim-
pleBee carries out the actuation commands with an internal kine-
matic update loop, translating the desired motion into the appropri-
ate forces and torques and applying them to the body.

Modelers do not generally use the event scheduling mechanism
directly. Rather, they implement agent logic using the Timermech-
anism introduced by the AbstractModel class. Timers are a famil-
iar abstraction that most modelers are comfortable using. Timers
can be scheduled periodically or for single use. A custom callback
is provided by the modeler, to be fired when the timer expires (Fig-
ure 2). Timers are implemented with a self-scheduled TimerEvent
under the covers.

We also discourage the use of events for inter-model communi-
cation. We feel that in-domain communication mechanisms (e.g.

the radios) should be used for the sake of realism and consistency.
These mechanisms expose a familiar API to the modeler and are
implemented internally with events.

In addition to building models in the target domain, users can
extend the functionality of the simulator by providing components.
Component implementations can interact with the simulation en-
gine and physics engine directly, or with models by scheduling
events. Two components that have received heavy use in our re-
search are the 3D visualization component and a component used
to communicate with our MAV testbed (discussed in Section 4).
Component instances are created prior to model initialization and
can operate in a separate thread of execution. This way it is possible
to provide asynchronous I/O components, such as buffered loggers.

The final piece of the Simbeeotic architecture is the physics en-
gine. As described above, the physics engine is used as the back-
ing implementation for the PhysicalEntity interface, which is
implemented by all models with a physical presence in the sim-
ulation. The physics engine we use is JBullet [11], a six degrees
of freedom (6DoF) rigid body physics engine written in pure Java.
JBullet provides a number of features that are useful in modeling
MAV swarms at high fidelity:

• Rigid Bodies The MAV platforms and the virtual environ-
ment are composed from simple shapes (e.g. box, sphere,
cone) and complex geometries (e.g. convex hull, triangular
mesh).

• Dynamics Modeling The kinematic state of every object is
maintained by integrating the forces and torques (e.g. rotor
thrust, gravity, wind) applied to physical entities over time.

• 3D Continuous Collision Detection Physical interactions
between objects, such as environmental manipulation by a
robot or bump sensors, are easily modeled.

• Ray Tracing Used primarily to implement sensors, such as
range finders and optical flow.

When a descendant of AbstractPhysicalEntity is initialized,
a representative rigid body is registered with the physics engine.
The information associated with the body include its size, shape,
mass, inertial properties, initial position, and orientation. As the
rigid body is manipulated over time, its kinematic state is updated.
During the course of an event, a model can query the kinematic
state of an AbstractPhysicalEntity, which delegates the re-
quest to the rigid body. The simulation engine invokes JBullet in
between events to push the dynamics simulation forward to the time
of the next discrete event. We modified the JBullet library to break
out of the dynamics simulation if a collision is detected during an
update. In this case, the simulation engine checks a registry of in-
terested collision listeners (registered by the models). If found, an
event is generated to inform the listener (e.g. a bump sensor) of the
collision. If no listener is interested in the collision, the dynamics
simulation is resumed.

JBullet integration enables high fidelity actuation and sensor mod-
els, but this fidelity comes at a cost. Most of the routines in JBullet
execute sequentially, therefore the performance of the simulator is
explicitly coupled with the size of the swarm and complexity of
the environment (i.e. the number of states that must be integrated
and bodies checked for collisions). Section 5.1 evaluates the effect
of environmental complexity and swarm size on simulation perfor-
mance. Our conclusion is that the performance tradeoff is accept-
able given the corresponding increase in fidelity.



Figure 3: A class diagram for the RF communications package
in Simbeeotic. The abstraction defines a physical layer packet-
driven radio.

3.2 MAV Domain Models
Modelers contribute new functionality to the community code-

base using the extension points described above. Simbeeotic con-
structs the virtual world from the rigid bodies defined by the physi-
cal entities and object definitions supplied in a world configuration
file. The configuration file contains definitions of obstacles, struc-
tures, and environmental features to be inserted into the environ-
ment. Weather is modeled in the simulation by an abstract model
(one without physical presence) that can be queried for the current
weather state with respect to location. High fidelity models can sim-
ulate the effects of weather on themselves (e.g. by applying a wind
force to a physical entity) or other models using the information
provided (e.g. wind speed and direction).

Most of the builtin sensors provided by Simbeeotic are based on
information provided by the physics engine. At present, interfaces
and default implementations exist for inertial (accelerometer, gy-
roscope, optical flow), navigational (position, compass), and envi-
ronmental (camera, range, bump) sensors. The inertial and naviga-
tional sensors use the kinematic state of the host platform, whereas
the environmental sensors (and the optical flow sensor) use ad-
vanced features of the physics engine, such as ray tracing and col-
lision detection. All of the default sensor models can be configured
to produce inaccurate readings from truth state using a Gaussian
noise model. Modelers can introduce new implementations of sen-
sors that closely reflect the accuracy, precision, and error profile of
real hardware.

Modeling RF communication is something that is done well by
community standard simulators [19]. As such, the philosophy for
RF in Simbeeotic has been to implement the smallest portion of the
OSI seven layer architecture as possible and evolve the fidelity of
the models (or integrate another simulator) when the need arises.
Figure 3 shows a class diagram for the communications package
in Simbeeotic. We implement a simple physical layer abstraction
that includes the radio, antenna, and path loss model interfaces.
Modelers are free to implement layers on top of the packet-driven
radio abstraction.

3.3 Software Engineering Tricks
Simbeeotic relies on two features of the Java programming lan-

guage, reflection and runtime annotation processing, to provide con-
venient interfaces to the end user. Though not necessary to achieve
our original design goals, these features provide usability improve-
ments over alternative implementations.

@Inject
private double maxVel;
private boolean useRadio = false;

@Inject(optional=true)
public void setUseRadio(@Named("use-radio")

boolean use) {
this.useRadio = use;

}

Figure 4: A code snippet demonstrating the usage of the
@Inject annotation for model parameterization.

Both reflection and runtime annotation processing are used to
provide a flexible configuration system in Simbeeotic. Our design
treats models and components as plugins to the simulator and con-
figures them through dependency injection. Specifically, we use
Java reflection to construct scenarios from an arbitrary number and
type of models. We define an XML schema for our scenario config-
uration file that allows users to specify the fully qualified name of
Java classes they wish to load and execute. When the scenario file
is parsed, the user supplied type is checked for compliance (that it
implements the required interfaces) and the specified number of in-
stances are instantiated, registered with the simulation engine, and
initialized. Other simulation frameworks, such as Player-Stage, al-
low for an arbitrary number of user defined scenarios to be loaded
based on a configuration file. However, users are restricted to a pre-
existing set of known model types. By using reflection, any class
or component on the Java classpath is eligible for inclusion in the
simulation.

The second part of configuration is parameterization. As a con-
venience to the user, we allow for a set of key-value pairs to be
associated with each model or component definition in the scenario
file. We use an open source dependency injection library, Google
Guice [7] to configure the newly instantiated objects using the sup-
plied parameters. After an object is instantiated, Guice inspects the
instantiated class for injection sites (annotated fields or setters). To
identify parameters for a model or component, users simply anno-
tate their classes with the @Inject annotation, which can be at-
tached to fields and methods. Guice uses the type of the field or
method argument to match the injection site with a supplied con-
figuration parameter. An additional @Named annotation that is used
to disambiguate between parameters of the same type. Figure 4 de-
picts the usage of these annotations on fields and methods to pre-
pare a model for parameter injection. With the ability to load ar-
bitrary model and component implementations and inject parame-
ters, many decisions regarding scenario construction can be pushed
to deployment time.

Figures 11 and 12 of Appendix A list example Java model code
and scenario configuration XML that leverage many of the features
mentioned above. More comprehensive examples are available in
the Simbeeotic source code.

4. HELICOPTER TESTBED
In addition to Simbeeotic, we maintain an indoor MAV testbed

for conducting small-scale experiments. The testbed is primarily
used to test algorithms in a more realistic environment. Despite our
best effort, the simulator cannot form a complete representation of
the real world. Our approach is to develop new systems and algo-
rithms at scale in simulation and experiment with smaller deploy-
ments in the testbed.



We chose the E-flite Blade mCX2 [4] RC helicopter as the aerial
platform for the testbed. The mCX2 is a low cost ($100), off-the-
shelf vehicle. The mCX2 is quite limited in its capabilities; it has
a payload of up to 5 grams and a flight time on the order of 5-10
minutes. It carries a proprietary control board that processes RC
commands and stabilizes flight with an embedded gyroscope (yaw
axis only). As a stock system it has no other processors, sensors, or
radios. There are several advantages to using this platform. First,
building a swarm from these helicopters is not prohibitively expen-
sive. Second, the small size (20cm in length) allows multiple heli-
copters to be flown in our 7m x 6m laboratory space. The helicopter
serves as a convincing prototype for the intended target of our re-
search, insect-scale MAVs, in terms of flight time and capability.
One disadvantage of the mCX2 is that it is a toy, not a research
robot. Processing, sensing, and communication hardware must be
added to make the vehicle into an autonomous swarm agent.

4.1 Remote Control
The helicopter testbed is instrumented with a Vicon [24] mo-

tion capture system. The Vicon sensors are capable of capturing
the position and orientation of an object (adorned with reflective
markers) in our testbed with sub-millimeter accuracy at 100Hz.
This information is made available to programs that remotely con-
trol the helicopters. We achieve computer control by disassembling
the supplied joystick and removing the radio transmitter daughter-
board. Though the wireless protocol between the transmitter and
helicopter is proprietary, the transmitter board is driven by a serial
interface. The input signal to the transmitter is composed of four
RC command values; yaw, pitch, roll, and throttle. We connect the
transmitter to a PC with a USB-serial cable and allow the RC com-
mands to be generated programmatically.

A testbed gateway machine mediates access to the observed he-
licopter state and RC transmitters. For helicopter state (measured
by Vicon) the gateway provides a publish-subscribe mechanism
for pushing updates to interested clients. Clients receive updates
via messages that are serialized using Google Protocol Buffers [8].
The information in each update includes the Vicon frame number
(essentially a timestamp) along with the object’s identifier, posi-
tion, orientation, and an occlusion flag (indicating that Vicon has
lost track of the object in this frame). The gateway also provides a
server for controlling each helicopter, which accepts <yaw, pitch,
roll, throttle> command tuples. The server ensures that at
most one client is connected to each helicopter and sends the latest
RC commands to the transmitter at the required 50Hz. Clients com-
municate with the testbed gateway machine over a Gigabit Ethernet
LAN.

4.2 Simbeeotic Integration
It is possible to write a standalone program that communicates

with the testbed gateway to control the helicopters in the testbed.
However, we realize that writing such programs would result in sig-
nificant overlap with Simbeeotic, given that virtual sensor outputs
would need to be constructed from the absolute position and ori-
entation information provided by Vicon. We chose instead to inte-
grate the helicopter testbed with Simbeeotic, allowing the modeler
to leverage the virtual sensor implementations that already exist and
conduct hybrid experiments with simulated and real MAVs. We re-
fer to this operating mode as hardware-in-the-loop (HWIL) simula-
tion. This technique is similar to the staged deployment mechanism
in EmStar [6], which allows a simulated network to be transpar-
ently backed by real hardware.

We accomplish the testbed integration, depicted in Figure 5, by
introducing ghost models in the simulator for physical objects that
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Figure 5: The HWIL cycle in Simbeeotic. Vicon cameras track
the position and orientation of a helicopter and push frames
to a tracking server (1), which pushes updates (2) to registered
clients. A Vicon input component in Simbeeotic receives the up-
date and overrides the kinematic state (3) of the corresponding
object in the physics engine. When the ghost model executes an
event (4) it has the most recent state of the helicopter. If a com-
mand is issued, it is sent to the RC command server (5) where
it is dispatched by the RF transmitter (6) to the helicotper.

are tracked by Vicon. The ghost models implement the same Phy-
sicalEntity interface as the simulated models, so interaction be-
tween the two is unchanged. The difference is that the ghost model’s
kinematic state is derived from the Vicon input, not the physics en-
gine. However, the virtual sensors and other models that interro-
gate the virtual environment rely on the presence of an object in
the physics engine for every physical entity. To fulfill this require-
ment, we simply create an object with the correct size, shape, and
mass in the physics engine and periodically override its kinematic
state with the information from Vicon. We introduce a new compo-
nent that is responsible for connecting to the testbed gateway and
receiving state updates. The simulation allows for the internal state
of tracked objects in the physics engine to be updated prior to ex-
ecuting each event. Thus, whenever an event is executed, the state
of all physical entities in the simulation is correctly represented by
the physics engine. Some minor modifications to JBullet were re-
quired to allow the state to be set and to integrate the new state
forward correctly in between Vicon updates.

Sending RC commands is similar. Upon initialization, each ghost
MAV model opens a socket that connects to the testbed gateway.
The RC commands are fed over the wire to the transmitter, which
controls the helicopter in turn. The effects of the commands are
witnessed by the Vicon, and the loop is closed.

Simbeeotic processes events as fast as possible when executing
a pure simulation. However, the simulator must make an effort to
run in realtime when hardware is attached. We make the assump-
tion that the wallclock time necessary to execute an event is less
than the virtual time between the current event and its immediate
successor. If this assumption holds then it is trivial to maintain a
soft realtime schedule by delaying the processing of an event until
a corresponding system time has passed. When event processing
violates this assumption, events are processed as fast as possible
to catch up. This approach works in practice, though it compels
modelers to keep events simple (arguably a good thing) and avoid
scheduling simultaneous events.



4.3 HWIL Discussion
The testbed integration allows us to fly real vehicles using virtual

sensors in a simulated environment. This arrangement allows us to
transform our laboratory space into an arbitrarily complex prov-
ing ground, with virtual obstacles and features. One advantage of
this setup is the ability to test the limits of proposed hardware and
software payloads. The physics engine cannot always capture sub-
tleties like aerodynamic ground effects and servo actuation error.
The HWIL tests can aid in the iterative design process by observ-
ing these phenomena early on.

Our HWIL arrangement has some disadvantages as well. First
and foremost, we are completely coupled to Vicon. Without a very
accurate measurement of position and orientation, we would not
be able to write sensors that convey the truth about the physical
object. Second, we cannot fly outdoors. This is not a severe limi-
tation at the moment, but our laboratory can only accommodate a
handful of physical helicopters. Third, the control software for the
helicopter is running in the simulator on a PC-class system. We run
the risk of developing software that uses far too many resources
for the eventual platform to handle. A TOSSIM-like approach to
whole-system simulation may be needed to keep the modelers hon-
est. Finally, our current setup does not allow for any processing or
sensing to occur on the physical helicopter. This is why we refer
to the remote-control HWIL solution as staged deployment. It is
merely a stepping stone to truly autonomous MAVs. Section 6 dis-
cusses the possibility of extending the HWIL approach to commu-
nication hardware and how Simbeeotic can facilitate a move toward
autonomous MAVs.

There are multiple sources of latency in the HWIL loop described
above, including capture and processing time for Vicon frames, the
transmission of MAV tracks to Simbeeotic over the LAN, process-
ing events in Simbeeotic, sending RC commands to the testbed
gateway over the LAN, and broadcasting the RC commands via the
wireless link. If needed, the tracking server, RC server, and simu-
lation could be co-located, eliminating the LAN. However, our ex-
periments have shown that the round-trip loop latency in the testbed
does not cause control instability or a substantive delay in MAV
reaction time. We speculate that the latency introduced by the pro-
cessing loop is absorbed by the relatively slow update rate of the
RC helicopters (50Hz). In addition, if a command is delayed there
is not a noticeable impact on the position and orientation of the
MAV. Unlike the GRASP testbed, which focuses on fast, compli-
cated maneuvers, our MAVs typically move at a rate of 0.5–1.0 m

s .
At this velocity a 20ms latency might result in a positional drift of
a few centimeters. Since the HWIL loop latency is not an observ-
able hindrance to our experiments, little effort has been put into
characterizing and minimizing the delay in our testbed.

When we first integrated the testbed MAVs into Simbeeotic we
defined a common helicopter interface with the intention of creat-
ing HWIL-agnostic control behaviors. We defined two implemen-
tations of the interface, one that is purely simulated and one that
interacts with the testbed hardware. The simulated helicopter im-
plements control commands by applying a force (derived from a
dynamics model) on its body in the physics engine. The HWIL
helicopter implementation forwards the command to the testbed
gateway as described above. However, our users never embraced
the simulated helicopter model, preferring to try new behaviors at
scale atop models based on SimpleBee and produce a separate be-
havior that interacts with the helicopter interface (for HWIL ex-
periments) if needed. We conclude that the fidelity afforded by the
simulated helicopter implementation is not required for the swarm
experiments conducted by most members of our group.
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Figure 6: The overhead of collision detection in Simbeeotic. A
fixed number of MAVs are simulated with a varying number of
static obstacles. The amount of time to execute the event logic
is constant. The number of required collision checks between
MAVs and obstacles (and the time spent in the physics engine)
grows linearly as obstacles are introduced.

5. EVALUATION
We have used Simbeeotic for over two years (one year with

HWIL) to conduct research on MAV swarms. In this section we
evaluate the performance of the simulator and present two applica-
tions that use Simbeeotic to explore the MAV swarm domain.

5.1 Simulation Performance
Since Simbeeotic is used in daily experimentation, we can state

from experience that the tool meets our needs. However, it is ben-
eficial to know the limits of the simulator, how modeler and user
decisions can impact performance, and how the tool might be im-
proved with future work. We evaluate the performance of the sim-
ulator and our ability to meet our scalability objectives based on
three challenges:

• Environment Complexity The number of objects defined in
the environment (e.g. obstacles, structures) determines how
much collision checking is necessary during each physics up-
date. Complicated scenarios can slow down the simulator.

• Swarm Size As more MAVs are introduced there is more
work to be done by the physics engine to maintain the kine-
matic states of the moving objects. In addition, each new
MAV represents an additional workload (events to process)
to execute the agent’s logic.

• Model Complexity Higher fidelity agent logic is likely to
impact performance since complex events take longer to sim-
ulate.

Defining a single performance goal for the simulator is difficult
given that modelers can construct scenarios that contain models of
varying fidelity and execute in arbitrarily complex environments.
Our motivation for constructing the simulator was to study large
swarms of less capable MAVs. Thus, we focus on a performance
goal of simulating one thousand MAVs executing a typical work-
load in soft realtime or better1. Our experiments show that Simbee-
otic is capable of simulating thousands of MAVs executing a typical
workload and hundreds of MAVs executing a complex workload in
1The scalability goal is lowered for HWIL scenarios to ensure that
RC commands are issued as close as possible to a realtime schedule
(i.e. the helicopters do not crash).
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Figure 7: The number of events to process and kinematic states
to integrate increases linearly with swarm size. The corre-
sponding event and physics execution times reflect this increase.
The dashed vertical line indicates the point above which soft re-
altime cannot be achieved with this workload (3,074 MAVs).

soft realtime. As with other discrete event simulators, Simbeeotic is
capable of simulating faster than realtime when there is no testbed
hardware in the loop.

We define a typical MAV workload to consist of a random walk
(10Hz kinematic update rate) and a periodic sensor reading (1Hz
compass). In all of the following experiments the MAVs operate for
100 virtual seconds and start from random locations within 20m of
the origin. We instrument Simbeeotic to record the amount of wall-
clock time necessary to simulate the physics (in between events)
and run the agent logic (the events themselves). All measurements
are taken on a 2.2GHz quad-core laptop with 8GB of RAM using
the HotSpot JVM version 1.6.0_26.

We begin with an experiment that addresses the environmental
complexity challenge. We measure the overhead of collision detec-
tion by simulating a small swarm (32 MAVs) executing the work-
load defined above. A variable number of static obstacles are in-
troduced into the environment at each iteration of the experiment.
As the number of obstacles grows, we expect the collision detec-
tion routines to take more time. Performing naive collision detec-
tion is O(n2) in time. Fortunately, JBullet employs more sophisti-
cated collision detection routines that reduce the number of com-
pared objects. Since the kinematic state of a static object in JBul-
let is not integrated forward at each time step, we can attribute
any increase in the physics simulation time to increased collision
checks (and likely some added overhead). Further, we expect this
increase to be linear with respect to the number of obstacles (as
opposed to quadratic) because two statically placed objects are not
checked for collisions. Thus, the only collisions being checked are
between the MAVs and the obstacles. The results in Figure 6 show
that the amount of time to execute the events (agent logic) is con-
stant through the course of the experiment (the swarm size does
not change). However, the overall time spent in the physics simula-
tor increases linearly with the number of objects introduced. MAV
swarm modelers must be informed that environmental complexity,
not just swarm size, can have a significant impact on the perfor-
mance of the simulation.

The next experiment aims to characterize the scalability of the
simulator with respect to swarm size. With each iteration of this
experiment we vary the number of MAVs deployed into a constant
environment (no obstacles). The MAVs execute the typical work-
load defined above. We expect increased collision checks (between
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Figure 8: The simulation runtime does not increase linearly for
the broadcast scenario. A nontrivial amount of work is under-
taken for each radio transmission event, which may also gen-
erate reception events on all other MAVs. The event execution
time dominates this scenario as the swarm scales. The dashed
vertical line indicates the point above which soft realtime can-
not be achieved with this workload (550 MAVs).

MAVs) and a linear increase in the time needed to update the kine-
matic states of the MAVs. Figure 7 shows the results of this ex-
periment. The simulation scales roughly linearly as the swarm size
is increased. The number of events (and the corresponding event
execution time) scales linearly as well. Using this workload, it is
possible to simulate 3,074 MAVs in soft realtime. These scalability
results are comparable to the performance of Player-Stage using a
similarly defined “simple” workload [23].

We address the final performance challenge, model complexity,
by introducing an additional element to the workload – each MAV
broadcasts a radio message at 1Hz. The result of this addition is
a significant increase in the event execution time. The increase in
event time has two main causes, event complexity and message ex-
plosion. The former refers the nontrivial amount of work that must
be done to send each packet. The propagation model considers ev-
ery other radio-equipped model as a potential recipient and per-
forms path loss calculations between the two radios. This includes
determining the antenna positions and orientations, extracting the
gains from the antenna patterns, and computing the signal strength
at the recipient. Though there is a cutoff distance in the path loss
model, this optimization is not useful in the scenario under test be-
cause the MAVs are closely spaced. Message explosion refers to
the number of receive events that will be generated as a result of
each packet transmitted. It is possible that n2 events are generated
each second in the simulation. In this case, some events are not
generated due to low signal strength at the recipient. Despite the
relative simplicity of the receive event processing, the sheer num-
ber that need to be processed can add significant overhead. The
results of this experiment are shown in figure 8. The overhead of
creating and enqueuing these events is likely the source of the in-
crease in the ‘other’ category. With this workload, we can simulate
550 MAVs in soft realtime.

We set out to create a complete simulator for the MAV swarm
domain. These experiments demonstrate that Simbeeotic meets our
scalability goals for typical workloads (thousands of MAVs in soft
realtime). They also reaffirm the premise that environment com-
plexity and model fidelity can significantly impact performance.
Section 6 discusses potential modifications to improve the scalabil-
ity of the simulator.



(a) Virtual World (b) Helicopter Testbed

Figure 9: A HWIL deployment of a MAV swarm. Five testbed MAVs are deployed alongside 45 simulated MAVs to search a space for
flowers. The circle in the virtual world represents a flower patch (also visible in the testbed floor), and the box at the center denotes
the MAV hive.
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Figure 10: An overhead trace of five simulated MAVs navigat-
ing through the environment with the assistance of a gradient
field provided by RF beacons (square dots). The gradient in
this case specifies two paths away from the center. The MAVs
use the value and the signal strength of beacon packets as input
to a biased random walk (chemotaxis) algorithm. The MAVs
are successful in traveling between the hive and the edge of the
gradient field along the two paths.

5.2 Example Scenarios
We describe two MAV swarm scenarios that we have simulated

using Simbeeotic. The main goal of the first scenario is coverage.
The MAV swarm is deployed to search a space for features of in-
terest (e.g. flowers) and manipulate the environment where the fea-
tures are located (e.g. chemical sampling, pollination). There are
many possible solutions to the swarm coordination problem, in-
cluding static task assignment, cooperative planning, and emergent
behavior. We employ a system that coordinates the actions of the
swarm from a centralized location called the hive [2]. We discretize
the world into cells and dispatch MAVs from the hive to perform a
specific task until they are low on energy, at which point they re-
turn to recharge. A planner at the hive analyzes the results of the
trip (the information collected) and determines which cells require
more attention. Figure 9 shows a snapshot of our swarm manage-
ment system executing a search and survey scenario using 45 vir-
tual MAVs and 5 testbed helicopters. The lefthand panel shows a

Simbeeotic visualization of the virtual world, while the righthand
panel shows the helicopters flying under PC control. This exam-
ple demonstrates that Simbeeotic has adequate modeling fidelity
in actuation and sensing to fly real hardware, and that the staged
deployment goals are satisfied.

The second scenario explores the possibility of using RF bea-
cons embedded in the environment as navigational aids for flying
MAVs. Figure 10 shows an overhead trace of MAVs using a biased
random walk algorithm in a gradient field [3] to navigate along two
preferred paths. The MAVs and beacons are equipped with virtual
CC2420 radios and isotropic antennas. The two-ray RF propaga-
tion model is used to calculate path loss. The MAVs use the value
and signal strength of beacon packets to determine the direction of
travel in the gradient. This example demonstrates one way that RF
communication can be used in a MAV swarm.

6. ONGOING WORK
There are three main directions for future work – scalability, fi-

delity, and autonomy. From the results in Section 5.1 it is clear that
the the physics engine is a bottleneck. We rely heavily on JBullet
for modeling actuation (dynamics, collision detection) and sensing
(ray tracing). Though it has satisfied our needs thus far, we may
consider replacing JBullet with Bullet [1] as we move toward mod-
eling swarms with tens of thousands of MAVs. JBullet is a pure
Java port of Bullet, which is written in C++. In addition to be-
ing written in a native language, newer versions of Bullet support
hardware acceleration on the GPU. The potential performance im-
provement may be worth the modest engineering effort to create
Java wrappers for the subset of the Bullet interfaces used by Sim-
beeotic.

Though we model the breadth of the MAV swarm domain, the fi-
delity of the networking models in Simbeeotic could be improved.
To date, our work on MAV swarms has not focused on communi-
cation. It is likely that the networking interfaces will need to evolve
beyond the simple physical layer implementation. We will look to
leverage community standard tools and models such as ns-3 as our
needs develop. In addition, we may expand our HWIL capabilities
to include real radios in a mote testbed, much link in EmStar. On
first inspection, it appears that the ghost model approach will work
well with a radio interface. Packets sent on a ghost interface would
be transmitted on the physical radio in addition to the virtual radio,
and packets received on the physical radio would be captured and



injected as a virtual packet reception. Some care must be taken to
prevent duplicate transmission and reception events by ghost radio
models participating in both domains.

A major limitation of our testbed is the dependence on an ac-
curate motion capture system. We expect to phase out this depen-
dence as our MAV platform evolves. For example, our MAVs may
soon be equipped with enough sensors to stabilize themselves and
perform local obstacle avoidance but lack the computing power for
path planning. In this case a Simbeeotic model may simulate the
higher levels of the MAVs software stack (e.g. planning, coordina-
tion) while the lower levels (e.g. control, obstacle avoidance) are
executed onboard. With such a deployment we can no longer rely
on a purely simulated environment. Obstacles must be represented
in both worlds, a feat that can be accomplished by adding Vicon
markers to physical objects and creating a corresponding ghost rep-
resentation. Ideally, we would want to feed virtual sensor informa-
tion wirelessly to the testbed MAVs, allowing them to sense purely
virtual objects. However, this might not be feasible considering the
bandwidth and latency requirements of the sensors.

As we develop the software stack that will execute on the au-
tonomous MAVs, it may be possible to leverage ROS [22]. This
presents an opportunity for Simbeeotic to be used as a virtual in-
put to software that will be embedded on a vehicle. We view this
TOSSIM-like approach as another (purely simulated) intermediate
step toward MAV autonomy that is orthogonal to HWIL operation.

On our path toward fully autonomous MAVs we may relax the
requirement that physical objects and virtual objects are co-visible.
Instead, we could construct a virtual world to match the physi-
cal world and ignore interactions between MAVs. This would al-
low us to experiment outside of the testbed and obviate the need
for accurate tracking once the MAVs are fully autonomous (other
than for ground truth during experimentation). We have consid-
ered constructing a less accurate tracking system using Microsoft
Kinect [18] sensors that can be deployed outside of our testbed.
This system would be used for collecting ground truth positional
information of indoor exploration experiments. Simbeeotic would
remain as a useful tool, allowing physical MAVs to coordinate with
simulated MAVs via HWIL in the communication layer, as de-
scribed above.

7. CONCLUSIONS
MAV swarms are an emerging class of mobile sensor systems

with strong ties to the robotics, sensor networking, and swarm in-
telligence communities. We present Simbeeotic, a simulation envi-
ronment and testbed for MAV swarms to support research effort in
this area. Simbeeotic is designed to be flexible and easy to use. The
domain modeling interfaces are designed to cover a complete view
of the application space, including actuation, sensing, and commu-
nication. We show that Simbeeotic is capable of simulating MAV
swarms at scale, and demonstrate its usefulness in exploring new
concepts with real hardware. Simbeeotic is available as open source
at http://robobees.seas.harvard.edu.
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APPENDIX
A. EXAMPLE MODEL AND CONFIG

public class InstrumentBee extends SimpleBee
implements MessageListener {

private Compass compass;
private Radio radio;

@Inject(optional=true)
@Named("max-vel")
private float maxVelocity = 2.0f; // m/s
private float velocitySig = 0.2f; // m/s
private float headingSig = 0.2f; // rad
private long sensorTimeout = 1000; // ms
private long radioTimeout = 1000; // ms

@Override
public void initialize() {

super.initialize();
setHovering(true);

compass = getSensor("compass", Compass.class);
radio = getRadio();

createTimer(new TimerCallback() {

public void fire(SimTime time) {
compass.getHeading();

}
}, 0, TimeUnit.SECONDS,
sensorTimeout, TimeUnit.MILLISECONDS);

createTimer(new TimerCallback() {

public void fire(SimTime time) {
radio.transmit(new byte[] {1, 2, 3, 4});

}
}, 0, TimeUnit.SECONDS,
radioTimeout, TimeUnit.MILLISECONDS);

}

@Override
public void finish() {
}

@Override
protected void updateKinematics(SimTime time) {

// randomly vary the heading (rot. about Z axis)
turn(getRandom().nextGaussian() * headingSig);

// randomly vary the velocity in X & Z dirs
Vector3f newVel = getDesiredLinearVelocity();

newVel.add(new Vector3f(getRandom().nextGaussian() *
velocitySig,

0,
getRandom().nextGaussian() *
velocitySig));

// cap the velocity
if (newVel.length() > maxVelocity) {

newVel.normalize();
newVel.scale(maxVelocity);

}

setDesiredLinearVelocity(newVel);
}

@Override
public void messageReceived(SimTime time, byte[] data,

double rxPower) {
// do nothing

}

@Inject(optional=true)
public final void setVelSig(@Named("vel-sigma")

final float sigma) {
this.velocitySig = sigma;

}

@Inject(optional=true)
public final void setHeadSig(@Named("heading-sigma")

final float sigma) {
this.headingSigma = sigma;

}

@Inject(optional=true)
public final void setSensorTO(@Named("sensor-timeout")

final long t) {
this.sensorTimeout = t;

}

@Inject(optional=true)
public final void setRadioTO(@Named("radio-timeout")

final long t) {
this.radioTimeout = t;

}
}

Figure 11: A listing of the Java code for the MAV used in
the experiment from Figure 8. The MAV is based on the
SimpleBee, which provides a simplified locomotion interface
(used in updateKinematics to implement a random walk).
Timers are established at initialization to take a sensor reading
and send a message periodically. Both long and short forms of
parameter injection (method and field annotation) are demon-
strated. This code demonstrates the basic Simbeeotic APIs but
serves no useful purpose other than to instrument the simulator
in our experiments.



<?xml version="1.0"?>

<scenario xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://harvard/robobees/simbeeotic/configuration/scenario">

<master-seed>
<constant value="111982"/>

</master-seed>

<simulation>
<end-time>100.0</end-time>

</simulation>

<models>
<model>

<java-class>harvard.robobees.simbeeotic.model.comms.FreeSpacePropagationModel</java-class>
<properties>

<prop name="noise-floor-mean" value="-100"/>
<prop name="noise-floor-sigma" value="10"/>
<prop name="range-thresh" value="30"/>

</properties>
</model>
<model>

<java-class>harvard.robobees.simbeeotic.model.SimpleHive</java-class>
<start-position x="0" y="0" z="0"/>

</model>
<model count="8192">

<java-class>harvard.robobees.simbeeotic.example.InstrumentBee</java-class>
<properties>

<prop name="kinematic-update-rate" value="100"/>
<prop name="use-random-start" value="true"/>
<prop name="random-start-bound" value="20"/>
<prop name="allow-bee-collisions" value="true"/>
<prop name="radio-timeout" value="1000"/>
<prop name="sensor-timeout" value="1000"/>

</properties>
<sensor name="compass">

<java-class>harvard.robobees.simbeeotic.model.sensor.DefaultCompass</java-class>
</sensor>
<radio>

<java-class>harvard.robobees.simbeeotic.model.comms.CC2420</java-class>
<properties>

<prop name="tx-power-level" value="31"/>
</properties>
<!-- by default an isotropic antenna will be attached -->

</radio>
<start-position x="0" y="0" z="0"/>

</model>
</models>

<!-- if you want to see what is happening, uncomment this component
<components>

<variation>
<java-class>harvard.robobees.simbeeotic.component.VisComponent3D</java-class>
</variation>

</components>
-->

</scenario>

Figure 12: The scenario configuration file used in the experiment from Figure 8. Users can control the global simulation properties
(e.g. master random seed, simulation end time), and add models and components. The structure of a model entry (which must
conform to the scenario XML schema) allows users to specify the type of the model to instantiate along with the number of instances.
In addition, equipment such as sensors and a radio can be attached. The key-value properties are passed to Guice for injection into
user classes that contain @Inject annotations. A description of the virtual world in which these models operate is supplied in a
separate configuration file.


