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Abstract
This paper presents SimCSE, a simple con-
trastive learning framework that greatly ad-
vances the state-of-the-art sentence embed-
dings. We first describe an unsupervised ap-
proach, which takes an input sentence and pre-
dicts itself in a contrastive objective, with only
standard dropout used as noise. This simple
method works surprisingly well, performing
on par with previous supervised counterparts.
We hypothesize that dropout acts as minimal
data augmentation and removing it leads to a
representation collapse. Then, we draw inspi-
ration from the recent success of learning sen-
tence embeddings from natural language in-
ference (NLI) datasets and incorporate anno-
tated pairs from NLI datasets into contrastive
learning by using “entailment” pairs as pos-
itives and “contradiction” pairs as hard neg-
atives. We evaluate SimCSE on standard
semantic textual similarity (STS) tasks, and
our unsupervised and supervised models using
BERTbase achieve an average of 74.5% and
81.6% Spearman’s correlation respectively, a
7.9 and 4.6 points improvement compared to
previous best results. We also show that con-
trastive learning theoretically regularizes pre-
trained embeddings’ anisotropic space to be
more uniform, and it better aligns positive
pairs when supervised signals are available.1

1 Introduction

Learning universal sentence embeddings is a fun-
damental problem in natural language process-
ing and has been studied extensively in the liter-
ature (Kiros et al., 2015; Hill et al., 2016; Con-
neau et al., 2017; Logeswaran and Lee, 2018; Cer
et al., 2018; Reimers and Gurevych, 2019, inter
alia). In this work, we advance state-of-the-art sen-
tence embedding methods and demonstrate that a

*The first two authors contributed equally (listed in alpha-
betical order). This work was done when Xingcheng visited
the Princeton NLP group remotely.

1Our code and pre-trained models are publicly available at
https://github.com/princeton-nlp/SimCSE.

BERTbase

Unsupervised
Avg. embeddings 56.7
IS-BERT (prev. SoTA) 66.6
SimCSE 74.5 (+7.9%)

Supervised
SBERT 74.9
SBERT-whitening (prev. SoTA) 77.0
SimCSE 81.6 (+4.6%)

Table 1: Comparison between SimCSE and previous
state-of-the-art (unsupervised and supervised). The re-
ported numbers are the average of seven STS tasks
(Spearman’s correlation), see Table 6 for details. IS-
BERT, SBERT, SBERT-whitening: Zhang et al. (2020),
Reimers and Gurevych (2019) and Su et al. (2021).

contrastive objective can be extremely effective
in learning sentence embeddings, coupled with
pre-trained language models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019).
We present SimCSE, a simple contrastive sentence
embedding framework, which can be used to pro-
duce superior sentence embeddings, from either
unlabeled or labeled data.

Our unsupervised SimCSE simply predicts the
input sentence itself, with only dropout (Srivastava
et al., 2014) used as noise (Figure 1(a)). In other
words, we pass the same input sentence to the pre-
trained encoder twice and obtain two embeddings
as “positive pairs”, by applying independently sam-
pled dropout masks. Although it may appear strik-
ingly simple, we find that this approach largely out-
performs training objectives such as predicting next
sentences (Kiros et al., 2015; Logeswaran and Lee,
2018) and common data augmentation techniques,
e.g., word deletion and replacement. More surpris-
ingly, this unsupervised embedding method already
matches all the previous supervised approaches.
Through careful analysis, we find that dropout es-
sentially acts as minimal data augmentation, while
removing it leads to a representation collapse.

https://github.com/princeton-nlp/SimCSE
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Figure 1: (a) Unsupervised SimCSE predicts the input sentence itself from in-batch negatives, with different
dropout masks applied. (b) Supervised SimCSE leverages the NLI datasets and takes the entailment (premise-
hypothesis) pairs as positives, and contradiction pairs as well as other in-batch instances as negatives.

In our supervised SimCSE, we build upon the
recent success of leveraging natural language infer-
ence (NLI) datasets for sentence embeddings (Con-
neau et al., 2017; Reimers and Gurevych, 2019)
and incorporate supervised sentence pairs in con-
trastive learning (Figure 1(b)). Unlike previous
work that casts it as a 3-way classification task (en-
tailment/neutral/contradiction), we take advantage
of the fact that entailment pairs can be naturally
used as positive instances. We also find that adding
corresponding contradiction pairs as hard negatives
further improves performance. This simple use of
NLI datasets achieves a greater performance com-
pared to prior methods using the same datasets.
We also compare to other (annotated) sentence-pair
datasets and find that NLI datasets are especially
effective for learning sentence embeddings.

To better understand the superior performance of
SimCSE, we borrow the analysis tool from Wang
and Isola (2020), which takes alignment between
semantically-related positive pairs and uniformity
of the whole representation space to measure the
quality of learned embeddings. We prove that the-
oretically the contrastive learning objective “flat-
tens” the singular value distribution of the sen-
tence embedding space, hence improving the uni-
formity. We also draw a connection to the recent
findings that pre-trained word embeddings suffer
from anisotropy (Ethayarajh, 2019; Li et al., 2020).
We find that our unsupervised SimCSE essentially
improves uniformity while avoiding degenerated
alignment via dropout noise, thus greatly improves
the expressiveness of the representations. We also
demonstrate that the NLI training signal can fur-
ther improve alignment between positive pairs and
hence produce better sentence embeddings.

We conduct a comprehensive evaluation of Sim-
CSE, along with previous state-of-the-art models
on 7 semantic textual similarity (STS) tasks and 7
transfer tasks. On STS tasks, we show that our un-
supervised and supervised models achieve a 74.5%
and 81.6% averaged Spearman’s correlation respec-
tively using BERTbase, largely outperforming pre-
vious best (Table 1). We also achieve competitive
performance on the transfer tasks. Additionally, we
identify an incoherent evaluation issue in existing
work and consolidate results of different evaluation
settings for future research.

2 Background: Contrastive Learning

Contrastive learning aims to learn effective repre-
sentation by pulling semantically close neighbors
together and pushing apart non-neighbors (Hadsell
et al., 2006). It assumes a set of paired examples
D = {(xi, x+i )}mi=1, where xi and x+i are semanti-
cally related. We follow the contrastive framework
in Chen et al. (2020) and take a cross-entropy ob-
jective with in-batch negatives (Chen et al., 2017;
Henderson et al., 2017): let hi and h+

i denote the
representations of xi and x+i , for a mini-batch with
N pairs, the training objective for (xi, x+i ) is:

`i = log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

, (1)

where τ is a temperature hyperparameter and
sim(h1,h2) is the cosine similarity h>1 h2

‖h1‖·‖h2‖ . In
this work, we encode input sentences using a
pre-trained language model such as BERT (De-
vlin et al., 2019) or RoBERTa (Liu et al., 2019):
h = fθ(x), and then fine-tune all the parameters
using the contrastive learning objective (Eq. 1).



Positive instances One critical question in con-
trastive learning is how to construct (xi, x+i ) pairs.
In visual representations, an effective solution is to
take two random transformations of the same image
(e.g., cropping, flipping, distortion and rotation) as
xi and x+i (Dosovitskiy et al., 2014). A similar
approach has been recently adopted in language
representations (Wu et al., 2020; Meng et al., 2021),
by applying augmentation techniques such as word
deletion, reordering, and substitution. However,
data augmentation in NLP is inherently difficult
because of its discrete nature. As we will see in §3,
using standard dropout on intermediate representa-
tions outperforms these discrete operators.

In NLP, a similar contrastive learning objective
has been also explored in different contexts (Hen-
derson et al., 2017; Gillick et al., 2019; Karpukhin
et al., 2020; Lee et al., 2020). In these cases,
(xi, x

+
i ) are collected from supervised datasets

such as mention-entity, or question-passage pairs.
Because of the distinct nature of xi and x+i by
definition, these approaches always use a dual-
encoder framework, i.e., using two independent
encoders fθ1 and fθ2 for xi and x+i . For sentence
embeddings, Logeswaran and Lee (2018) also use
contrastive learning with a dual-encoder approach,
by forming (current sentence, next sentence) as
(xi, x

+
i ). Zhang et al. (2020) consider global sen-

tence representations and local token representa-
tions of the same sentence as positive instances.

Alignment and uniformity Recently, Wang and
Isola (2020) identify two key properties related to
contrastive learning: alignment and uniformity and
propose metrics to measure the quality of represen-
tations. Given a distribution of positive pairs ppos,
alignment calculates expected distance between
embeddings of the paired instances (assuming rep-
resentations are already normalized),

`align , E
(x,x+)∼ppos

‖f(x)− f(x+)‖2. (2)

On the other hand, uniformity measures how well
the embeddings are uniformly distributed:

`uniform , log E
x,y

i.i.d.∼ pdata

e−2‖f(x)−f(y)‖
2
, (3)

where pdata denotes the data distribution. These
two metrics are well aligned with the objective
of contrastive learning: positive instances should
stay close and embeddings for random instances
should scatter on the hypersphere. In the following

Data augmentation STS-B

None 79.1

Crop 10% 20% 30%
75.4 70.1 63.7

Word deletion 10% 20% 30%
74.7 71.2 70.2

Delete one word 74.8
w/o dropout 71.4

MLM 15% 66.8
Crop 10% + MLM 15% 70.8

Table 2: Comparison of different data augmentations
on STS-B development set (Spearman’s correlation).
Crop k%: randomly crop and keep a continuous span
with 100-k% of the length; word deletion k%: ran-
domly delete k% words; delete one word: randomly
delete one word; MLM k%: use BERTbase to replace
k% of words. All of them include the standard 10%
dropout (except “w/o dropout”).

sections, we will also use the two metrics to justify
the inner workings of our approaches.

3 Unsupervised SimCSE

In this section, we describe our unsupervised Sim-
CSE model. The idea is extremely simple: we take
a collection of sentences {xi}mi=1 and use x+i = xi.
The key ingredient to get this to work with iden-
tical positive pairs is through the use of indepen-
dently sampled dropout masks. In standard training
of Transformers (Vaswani et al., 2017), there is a
dropout mask placed on fully-connected layers as
well as attention probabilities (default p = 0.1).
We denote hzi = fθ(xi, z) where z is a random
mask for dropout. We simply feed the same input
to the encoder twice by applying different dropout
masks z, z′ and the training objective becomes:

`i = − log
esim(h

zi
i ,h

z′i
i )/τ∑N

j=1 e
sim(h

zi
i ,h

z′
j
j )/τ

, (4)

for a mini-batch with N sentences. Note that z
is just the standard dropout mask in Transformers
and we do not add any additional dropout.

Dropout noise as data augmentation We view
this approach as a minimal form of data augmenta-
tion: the positive pair takes exactly the same sen-
tence, and their embeddings only differ in dropout
masks. We compare this approach to common aug-
mentation techniques and other training objectives
on the STS-B development set (Cer et al., 2017).



Training objective fθ (fθ1 , fθ2)

Next sentence 66.8 67.7
Next 3 sentences 68.7 69.7
Delete one word 74.8 70.4
Unsupervised SimCSE 79.1 70.7

Table 3: Comparison of different unsupervised ob-
jectives. Results are Spearman’s correlation on the
STS-B development set using BERTbase, trained on 1-
million pairs from Wikipedia. The two columns denote
whether we use one encoder fθ or two independent en-
coders fθ1 and fθ2 (“dual-encoder”). Next 3 sentences:
randomly sample one from the next 3 sentences. Delete
one word: delete one word randomly (see Table 2).

p 0.0 0.01 0.05 0.1
STS-B 64.9 69.5 78.0 79.1

p 0.15 0.2 0.5 Fixed 0.1
STS-B 78.6 78.2 67.4 45.2

Table 4: Effects of different dropout probabilities p
on the STS-B development set (Spearman’s correlation,
BERTbase). Fixed 0.1: use the default 0.1 dropout rate
but apply the same dropout mask on both xi and x+i .

We useN = 512 andm = 106 sentences randomly
drawn from English Wikipedia in these experi-
ments. Table 2 compares our approach to common
data augmentation techniques such as crop, word
deletion and replacement, which can be viewed as
h = fθ(g(x), z) and g is a (random) discrete op-
erator on x. We find that even deleting one word
would hurt performance and none of the discrete
augmentations outperforms basic dropout noise.

We also compare this self-prediction training
objective to next-sentence objective used in Lo-
geswaran and Lee (2018), taking either one encoder
or two independent encoders. As shown in Table 3,
we find that SimCSE performs much better than
the next-sentence objectives (79.1 vs 69.7 on STS-
B) and using one encoder instead of two makes a
significant difference in our approach.

Why does it work? To further understand the
role of dropout noise in unsupervised SimCSE, we
try out different dropout rates in Table 4 and ob-
serve that all the variants underperform the default
dropout probability p = 0.1 from Transformers.
We find two extreme cases particularly interesting:
“no dropout” (p = 0) and “fixed 0.1” (using default
dropout p = 0.1 but the same dropout masks for
the pair). In both cases, the resulting embeddings
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Figure 2: `align-`uniform plot for unsupervised SimCSE,
“no dropout”, “fixed 0.1” (same dropout mask for xi
and x+i with p = 0.1), and “delete one word”. We
visualize checkpoints every 10 training steps and the
arrows indicate the training direction. For both `align
and `uniform, lower numbers are better.

for the pair are exactly the same, and it leads to
a dramatic performance degradation. We take the
checkpoints of these models every 10 steps during
training and visualize the alignment and uniformity
metrics2 in Figure 2, along with a simple data aug-
mentation model “delete one word”. As is clearly
shown, all models largely improve the uniformity.
However, the alignment of the two special variants
also degrades drastically, while our unsupervised
SimCSE keeps a steady alignment, thanks to the
use of dropout noise. On the other hand, although
“delete one word” slightly improves the alignment,
it has a smaller gain on the uniformity, and eventu-
ally underperforms unsupervised SimCSE.

4 Supervised SimCSE

We have demonstrated that adding dropout noise
is able to learn a good alignment for positive pairs
(x, x+) ∼ ppos. In this section, we study whether
we can leverage supervised datasets to provide
better training signals for improving alignment of
our approach. Prior work (Conneau et al., 2017;
Reimers and Gurevych, 2019) has demonstrated
that supervised natural language inference (NLI)
datasets (Bowman et al., 2015; Williams et al.,
2018) are effective for learning sentence embed-
dings, by predicting whether the relationship be-
tween two sentences is entailment, neutral or con-
tradiction. In our contrastive learning framework,
we instead directly take (xi, x

+
i ) pairs from super-

vised datasets and use them to optimize Eq. 1.

2We take STS-B pairs with a score higher than 4 as ppos
and all STS-B sentences as pdata.



Dataset sample full

Unsup. SimCSE (1m) - 79.1

QQP (134k) 81.8 81.8
Flickr30k (318k) 81.5 81.4
ParaNMT (5m) 79.7 78.7
SNLI+MNLI

entailment (314k) 84.1 84.9
neutral (314k)3 82.6 82.9
contradiction (314k) 77.5 77.6

SNLI+MNLI
entailment + hard neg. - 86.2
+ ANLI (52k) - 85.0

Table 5: Comparisons of different supervised datasets
as positive pairs. Results are Spearman’s correlation
on the STS-B development set using BERTbase. Num-
bers in brackets denote the # of pairs. Sample: subsam-
pling 134k positive pairs for a fair comparison between
datasets; full: using the full dataset. In the last block,
we use entailment pairs as positives and contradiction
pairs as hard negatives (our final model).

Exploiting supervised data We first explore
which annotated datasets are especially suitable
for constructing positive pairs (xi, x

+
i ). We ex-

periment with a number of datasets with sentence-
pair examples, including QQP4: Quora question
pairs; Flickr30k (Young et al., 2014): each image
is annotated with 5 human-written captions and
we consider any two captions of the same image
as a positive pair; ParaNMT (Wieting and Gimpel,
2018): a large-scale back-translation paraphrase
dataset5; and finally NLI datasets: SNLI (Bowman
et al., 2015) and MNLI (Williams et al., 2018).

We train the contrastive learning model (Eq. 1)
with different datasets and compare the results in
Table 5 (for a fair comparison, we also run experi-
ments with the same # of training pairs). We find
that most of these models using supervised datasets
outperform our unsupervised approach, showing
a clear benefit from supervised signals. Among
all the options, using entailment pairs from the
NLI (SNLI + MNLI) datasets perform the best.
We think this is reasonable, as the NLI datasets
consist of high-quality and crowd-sourced pairs,
and human annotators are expected to write the
hypotheses manually based on the premises, and

3Though our final model only takes entailment pairs as
positives, here we also try neutral and contradiction pairs.

4https://www.quora.com/q/quoradata/
5ParaNMT is automatically constructed by machine trans-

lation systems and we should not call it a supervised dataset,
although it even underperforms our unsupervised SimCSE.

hence two sentences tend to have less lexical over-
lap. For instance, we find that the lexical overlap
(F1 measured between two bags of words) for the
entailment pairs (SNLI + MNLI) is 39%, while
they are 60% and 55% for QQP and ParaNMT.

Contradiction as hard negatives Finally, we fur-
ther take the advantage of the NLI datasets by us-
ing its contradiction pairs as hard negatives6. In
NLI datasets, given one premise, annotators are
required to manually write one sentence that is ab-
solutely true (entailment), one that might be true
(neutral), and one that is definitely false (contra-
diction). Thus for each premise and its entailment
hypothesis, there is an accompanying contradiction
hypothesis7 (see Figure 1 for an example).

Formally, we extend (xi, x
+
i ) to (xi, x

+
i , x

−
i ),

where xi is the premise, x+i and x−i are entailment
and contradiction hypotheses. The training objec-
tive `i is then defined by (N is the mini-batch size):

− log
esim(hi,h

+
i )/τ∑N

j=1

(
esim(hi,h

+
j )/τ + esim(hi,h

−
j )/τ

) .
(5)

As shown in Table 5, adding hard negatives can
further improve performance (84.9 → 86.2) and
this is our final supervised SimCSE. We also tried
to add the ANLI dataset (Nie et al., 2020) or com-
bine it with our unsupervised SimCSE approach,
but didn’t find a meaningful improvement. We also
considered a dual encoder framework in supervised
SimCSE and it hurt performance (86.2→ 84.2).

5 Connection to Anisotropy

Recent work identifies an anisotropy problem in
language representations (Ethayarajh, 2019; Li
et al., 2020), i.e., the learned embeddings occupy
a narrow cone in the vector space, which largely
limits their expressiveness. Gao et al. (2019) term
it as a representation degeneration problem and
demonstrate that language models trained with tied
input/output embeddings lead to anisotropic word
embeddings, and this is further observed by Etha-
yarajh (2019) in pre-trained contextual embeddings.
Wang et al. (2020) show that the singular values of
the word embedding matrix decay drastically. In
other words, except for a few dominating singular
values, all others are close to zero.

6We do not use the neutral pairs for hard negatives.
7In fact, one premise can have multiple contradiction hy-

potheses. In our implementation, we only sample one as the
hard negative and we did not find a difference by using more.

https://www.quora.com/q/quoradata/


A simple way to alleviate the problem is post-
processing, either to eliminate the dominant prin-
cipal components (Arora et al., 2017; Mu and
Viswanath, 2018), or to map embeddings to an
isotropic distribution (Li et al., 2020; Su et al.,
2021). Alternatively, one can add regularization
during training (Gao et al., 2019; Wang et al., 2020).
In this section, we show that the contrastive ob-
jective can inherently “flatten” the singular value
distribution of the sentence-embedding matrix.

Following Wang and Isola (2020), the asymp-
totics of the contrastive learning objective can be
expressed by the following equation when the num-
ber of negative instances approaches infinity (as-
suming f(x) is normalized):

− 1

τ
E

(x,x+)∼ppos

[
f(x)>f(x+)

]
+ E
x∼pdata

[
log E

x−∼pdata

[
ef(x)

>f(x−)/τ
]]
,

(6)

where the first term keeps positive instances similar
and the second pushes negative pairs apart. When
pdata is uniform over finite samples {xi}mi=1, with
hi = f(xi), we can derive the following formula
from the second term with Jensen’s inequality:

E
x∼pdata

[
log E

x−∼pdata

[
ef(x)

>f(x−)/τ
]]

=
1

m

m∑
i=1

log

 1

m

m∑
j=1

eh
>
i hj/τ


≥ 1

τm2

m∑
i=1

m∑
j=1

h>i hj .

(7)

Let W be the sentence embedding matrix corre-
sponding to {xi}mi=1, i.e., the i-th row of W is hi.
Ignoring the constant terms, optimizing the second
term in Eq. 6 essentially minimizes an upper bound
of the summation of all elements in WW>, i.e.,
Sum(WW>) =

∑m
i=1

∑m
j=1 h

>
i hj .

Since we normalize hi, all elements on the di-
agonal of WW> are 1 and then tr(WW>), also
the sum of all eigenvalues, is a constant. Accord-
ing to Merikoski (1984), if all elements in WW>

are positive, which is the case in most times from
Gao et al. (2019), then Sum(WW>) is an upper
bound for the largest eigenvalue of WW>. There-
fore, when minimizing the second term in Eq. 6,
we are reducing the top eigenvalue of WW> and
inherently “flattening” the singular spectrum of the
embedding space. Hence contrastive learning can

potentially tackle the representation degeneration
problem and improve the uniformity.

Compared to postprocessing methods in Li et al.
(2020); Su et al. (2021), which only aim to encour-
age isotropic representations, contrastive learning
also optimizes for aligning positive pairs by the
first term in Eq. 6, which is the key to the success
of SimCSE (a quantitative analysis is given in §7).

6 Experiment

6.1 Evaluation setup

We conduct our experiments on 7 standard seman-
tic textual similarity (STS) tasks and also 7 transfer
learning tasks. We use the SentEval toolkit (Con-
neau and Kiela, 2018) for evaluation. Note that
we share a similar sentiment with Reimers and
Gurevych (2019) that the main goal of sentence
embeddings is to cluster semantically similar sen-
tences. Hence, we take STS results as the main
comparison of sentence embedding methods and
provide transfer task results for reference.

Semantic textual similarity tasks We evaluate on
7 STS tasks: STS 2012–2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (Cer
et al., 2017) and SICK-Relatedness (Marelli et al.,
2014) and compute cosine similarity between sen-
tence embeddings. When comparing to previous
work, we identify invalid comparison patterns in
published papers in the evaluation settings , includ-
ing (a) whether to use an additional regressor, (b)
Spearman’s vs Pearson’s correlation, (c) how the re-
sults are aggregated (Table B.1). We discuss the de-
tailed differences in Appendix B and choose to fol-
low the setting of Reimers and Gurevych (2019) in
our evaluation. We also report our replicated study
of previous work, as well as our results evaluated
in a different setting in Table B.2 and Table B.3.
We also call for unifying the setting in evaluating
sentence embeddings for future research.

Transfer tasks We also evaluate on the follow-
ing transfer tasks: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST-2 (Socher
et al., 2013), TREC (Voorhees and Tice, 2000) and
MRPC (Dolan and Brockett, 2005). A logistic re-
gression classifier is trained on top of (frozen) sen-
tence embeddings produced by different methods.
We follow default configurations from SentEval8.

8https://github.com/facebookresearch/
SentEval

https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval


Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Unsupervised models

GloVe embeddings (avg.)♣ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERTbase

♥ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
∗ SimCSE-BERTbase 66.68 81.43 71.38 78.43 78.47 75.49 69.92 74.54

RoBERTabase (first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabase-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
∗ SimCSE-RoBERTabase 68.68 82.62 73.56 81.49 80.82 80.48 67.87 76.50
∗ SimCSE-RoBERTalarge 69.87 82.97 74.25 83.01 79.52 81.23 71.47 77.47

Supervised models

InferSent-GloVe♣ 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
Universal Sentence Encoder♣ 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
SBERTbase

♣ 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SBERTbase-flow 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERTbase-whitening 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
∗ SimCSE-BERTbase 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57

SRoBERTabase♣ 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
SRoBERTabase-whitening 70.46 77.07 74.46 81.64 76.43 79.49 76.65 76.60
∗ SimCSE-RoBERTabase 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
∗ SimCSE-RoBERTalarge 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76

Table 6: Sentence embedding performance on STS tasks (Spearman’s correlation, “all” setting). We highlight the
highest numbers among models with the same pre-trained encoder. ♣: results from Reimers and Gurevych (2019);
♥: results from Zhang et al. (2020); all other results are reproduced or reevaluated by ourselves. For BERT-flow (Li
et al., 2020) and whitening (Su et al., 2021), we only report the “NLI” setting (see Table D.3).

Training details We start from pre-trained check-
points of BERT (Devlin et al., 2019) (uncased) or
RoBERTa (Liu et al., 2019) (cased), and add an
MLP layer on top of the [CLS] representation as
the sentence embedding9 (see §6.3 for comparison
between different pooling methods). More training
details can be found in Appendix A. Finally, we
introduce one more optional variant which adds a
masked language modeling (MLM) objective (De-
vlin et al., 2019) as an auxiliary loss to Eq. 1:
`+λ·`mlm (λ is a hyperparameter). This helps Sim-
CSE avoid catastrophic forgetting of token-level
knowledge. As we will show in Table 9, we find
that adding this term can help improve performance
on transfer tasks (not on sentence-level STS tasks).

6.2 Main Results
We compare SimCSE to previous state-of-the-art
unsupervised and supervised sentence embedding
methods. Unsupervised methods include averaging
GloVe embeddings (Pennington et al., 2014), Skip-
thought (Kiros et al., 2015), and IS-BERT (Zhang
et al., 2020). We also compare our models to

9There is an MLP pooler in BERT’s original implementa-
tion and we just use the layer with random initialization.

average BERT or RoBERTa embeddings10, and
post-processing methods such as BERT-flow (Li
et al., 2020) and BERT-whitening (Su et al., 2021).
Supervised methods include InferSent (Conneau
et al., 2017), Universal Sentence Encoder (Cer
et al., 2018) and SBERT/SRoBERTa (Reimers and
Gurevych, 2019) along with applying BERT-flow
and whitening on them. More details about each
baseline are provided in Appendix C.

Semantic textual similarity Table 6 shows the
evaluation results on 7 STS tasks. SimCSE can
substantially improve results on all the datasets in
both supervised and unsupervised settings, largely
outperforming the previous state-of-the-art. Specif-
ically, our unsupervised SimCSE-BERT raises the
previous best average Spearman’s correlation from
66.58% to 74.54%, even comparable to supervised
baselines. Using NLI datasets, SimCSE-BERT fur-
ther pushes the state-of-the-art results from 77.00%
to 81.57%. The gains are even larger for RoBERTa
encoders, achieving 77.47% and 83.76% for unsu-
pervised and supervised approaches respectively.

10Following Su et al. (2021), we take the average of the first
and the last layer, which is better than only taking the last.



Model MR CR SUBJ MPQA SST TREC MRPC Avg.

Unsupervised models

GloVe embeddings (avg.)♣ 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought♥ 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50

Avg. BERT embeddings♣ 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-[CLS]embedding♣ 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
IS-BERTbase

♥ 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83
∗ SimCSE-BERTbase 80.41 85.30 94.46 88.43 85.39 87.60 71.13 84.67

w/ MLM 80.74 85.67 94.68 87.21 84.95 89.40 74.38 85.29

∗ SimCSE-RoBERTabase 79.67 84.61 91.68 85.96 84.73 84.20 64.93 82.25
w/ MLM 82.02 87.52 94.13 86.24 88.58 90.20 74.55 86.18
∗ SimCSE-RoBERTalarge 80.83 85.30 91.68 86.10 85.06 89.20 75.65 84.83
w/ MLM 83.30 87.50 95.27 86.82 87.86 94.00 75.36 87.16

Supervised models

InferSent-GloVe♣ 81.57 86.54 92.50 90.38 84.18 88.20 75.77 85.59
Universal Sentence Encoder♣ 80.09 85.19 93.98 86.70 86.38 93.20 70.14 85.10

SBERTbase
♣ 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41

∗ SimCSE-BERTbase 82.69 89.25 94.81 89.59 87.31 88.40 73.51 86.51
w/ MLM 82.68 88.88 94.52 89.82 88.41 87.60 76.12 86.86

SRoBERTabase 84.91 90.83 92.56 88.75 90.50 88.60 78.14 87.76
∗ SimCSE-RoBERTabase 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08

w/ MLM 85.08 91.76 94.02 89.72 92.31 91.20 76.52 88.66
∗ SimCSE-RoBERTalarge 88.12 92.37 95.11 90.49 92.75 91.80 76.64 89.61
w/ MLM 88.45 92.53 95.19 90.58 93.30 93.80 77.74 90.23

Table 7: Transfer task results of different sentence embedding models (measured as accuracy). ♣: results from
Reimers and Gurevych (2019); ♥: results from Zhang et al. (2020). We highlight the highest numbers among
models with the same pre-trained encoder. MLM: adding MLM as an auxiliary task (§ 6.1) with λ = 0.1.

Transfer tasks Table 7 shows the evaluation re-
sults on transfer tasks. We find that supervised
SimCSE performs on par or better than previous ap-
proaches, although the trend of unsupervised mod-
els remains unclear. We find that adding this MLM
term consistently improves performance on transfer
tasks, confirming our intuition that sentence-level
objective may not directly benefit transfer tasks.
We also experiment with post-processing methods
(BERT-flow/whitening) and find that they both hurt
performance compared to their base models, show-
ing that good uniformity of representations does
not lead to better embeddings for transfer learning.
As we argued earlier, we think that transfer tasks
are not a major goal for sentence embeddings, and
thus we take the STS results for main comparison.

6.3 Ablation Study

We investigate how different batch sizes, pooling
methods and MLM auxiliary objectives affect our
models’ performance. All results are using our
supervised SimCSE model, evaluated on the de-
velopment set of STS-B or transfer tasks. A more
detailed ablation study is provided in Appendix D.

Batch size 32 64 128 256 512 1024

STS-B 84.6 85.6 86.0 86.2 86.2 86.0

Table 8: Effect of different batch sizes (STS-B develop-
ment set, Spearman’s correlation, BERTbase).

Batch size We explore the impact of batch sizes (N
in Eq. 5) in Table 8. We find that the performance
increases as N increases but it will not further in-
crease after 512. This is slightly divergent from
the batch sizes used in visual representations (He
et al., 2020; Chen et al., 2020), mostly caused by
the smaller training data size we use.

Pooling methods Reimers and Gurevych (2019);
Li et al. (2020) show that taking the average em-
beddings of pre-trained models, especially from
both the first and last layers, leads to better perfor-
mance than [CLS]. Table 9 shows the comparison
between the two settings and we find that they do
not make a significant difference in our approach.
Thus we choose to use the [CLS] representation
for simplicity and to be consistent with the com-
mon practice of using pre-trained embeddings.



Model STS-B Avg. transfer

[CLS] 86.2 85.8
First-last avg. 86.1 86.1

w/o MLM 86.2 85.8
w/ MLM
λ = 0.01 85.7 86.1
λ = 0.1 85.7 86.2
λ = 1 85.1 85.8

Table 9: Ablation studies of different pooling methods
and incorporating the MLM objective. The results are
based on the development sets using BERTbase.

MLM auxiliary task Finally, we study the impact
of the MLM auxiliary objective with different λ.
As shown in Table 9, the token-level MLM objec-
tive improves the averaged performance on transfer
tasks modestly, yet it brings a consistent drop in
semantic textual similarity tasks.

7 Analysis

In this section, we further conduct analyses to un-
derstand the inner workings of SimCSE.

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0
8nifoUmity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Al
ig
nm
en
t

40

50

60

70

80

90

100

Avg. BERT (56.7)

 

  

Next3Sent (64.1)

SBERT (74.9)
SimCSE (81.6)

Unsup. SimCSE (74.5)

SBERT-flow (76.6)

SBERT-whitening (77.0)

BERT-flow (66.6)

BERT-whitening (66.3)

` a
li
g
n

<latexit sha1_base64="LXrCaBIBFU/VJM8frPgLjLCYecc=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJS7AVPJWkKHosevFYwX5AW8pmO22XbjZhdyKWEPCvePGgiFd/hzf/jds2B219MPB4b4aZeX4kuEbX/bZyK6tr6xv5zcLW9s7unr1/0NBhrBjUWShC1fKpBsEl1JGjgFakgAa+gKY/vpn6zQdQmofyHicRdAM6lHzAGUUj9eyjUgeE6CUdhEdMqOBDmaalnl10y+4MzjLxMlIkGWo9+6vTD1kcgEQmqNZtz42wm1CFnAlIC51YQ0TZmA6hbaikAehuMjs/dU6N0ncGoTIl0ZmpvycSGmg9CXzTGVAc6UVvKv7ntWMcXHUTLqMYQbL5okEsHAydaRZOnytgKCaGUKa4udVhI6ooQ5NYwYTgLb68TBqVsndevrirFKvXWRx5ckxOyBnxyCWpkltSI3XCSEKeySt5s56sF+vd+pi35qxs5pD8gfX5A4wJld8=</latexit>

`uniform

<latexit sha1_base64="zHvihvH347cGsmjNGfyWAF414Xw=">AAACAHicbVA9SwNBEN2LXzF+nVpY2BwmglW4C4qWQRvLCOYDckfY20ySJXsf7M6J4bjGv2JjoYitP8POf+MmuUITHww83pthZp4fC67Qtr+Nwsrq2vpGcbO0tb2zu2fuH7RUlEgGTRaJSHZ8qkDwEJrIUUAnlkADX0DbH99M/fYDSMWj8B4nMXgBHYZ8wBlFLfXMo4oLQvRSF+ER00RbkQyyrNIzy3bVnsFaJk5OyiRHo2d+uf2IJQGEyARVquvYMXoplciZgKzkJgpiysZ0CF1NQxqA8tLZA5l1qpW+pVfrCtGaqb8nUhooNQl83RlQHKlFbyr+53UTHFx5KQ/jBCFk80WDRFgYWdM0rD6XwFBMNKFMcn2rxUZUUoY6s5IOwVl8eZm0alXnvHpxVyvXr/M4iuSYnJAz4pBLUie3pEGahJGMPJNX8mY8GS/Gu/Exby0Y+cwh+QPj8wdcIZbo</latexit>

uniform

al
ig

n

Figure 3: `align-`uniform plot of models based on
BERTbase. Color of points and numbers in brackets
represent average STS performance (Spearman’s corre-
lation). Next3Sent: “next 3 sentences” from Table 3.

Uniformity and alignment Figure 3 shows the
uniformity and alignment of different sentence em-
beddings along with their averaged STS results. In
general, models that attain both better alignment
and uniformity will achieve better performance,
confirming the findings in Wang and Isola (2020).
We also observe that (1) though pre-trained embed-
ding has good alignment, its uniformity is poor, i.e.,
it is highly anisotropic; (2) post-processing meth-
ods like BERT-flow and BERT-whitening largely

improve the uniformity but also suffer a degen-
eration in alignment; (3) unsupervised SimCSE
effectively improves the uniformity of pre-trained
embeddings, while keeping a good alignment; (4)
incorporating supervised data in SimCSE further
amends the alignment. In Appendix E, we further
show that SimCSE can effectively flatten singular
value distribution of pre-trained embeddings.

Cosine-similarity distribution To directly show
the strengths of our approaches on STS tasks, we
illustrate the cosine similarity distributions of STS-
B pairs with different groups of human ratings in
Figure 4. Compared to all the baseline models,
both unsupervised and supervised SimCSE better
distinguish sentence pairs with different levels of
similarities, thus lead to a better performance on
STS tasks. In addition, we observe that SimCSE
generally shows a more scattered distribution than
BERT or SBERT, but also preserves a lower vari-
ance on semantically similar sentence pairs com-
pared to whitened distribution. This observation
further validates that SimCSE can achieve a better
alignment-uniformity balance.

Qualitative comparison We conduct a small-
scale retrieval experiment using SBERTbase and
SimCSE-BERTbase. We use 150k captions from
Flickr30k dataset and take any random sentence as
query to retrieve similar sentences (based on cosine
similarity). As several examples shown in Table 10,
the retrieved instances by SimCSE have a higher
quality compared to those retrieved by SBERT.

8 Related Work

Early work in sentence embeddings builds upon the
distributional hypothesis by predicting surround-
ing sentences of a given sentence (Kiros et al.,
2015; Hill et al., 2016; Logeswaran and Lee, 2018).
Pagliardini et al. (2018) show that simply augment-
ing the idea of word2vec (Mikolov et al., 2013)
with n-gram embeddings leads to strong results.
Several recent models adopt contrastive objectives
(Zhang et al., 2020; Wu et al., 2020; Meng et al.,
2021) with unsupervised data by taking different
views of the same sentence.

Compared to unsupervised approaches, super-
vised sentence embeddings demonstrate stronger
performance. Conneau et al. (2017) propose to
fine-tune a Siamese model on NLI datasets, which
is further extended to other encoders or pre-trained
models (Cer et al., 2018; Reimers and Gurevych,
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Figure 4: Density plots of cosine similarities between sentence pairs in full STS-B. Pairs are divided into 5 groups
based on ground truth ratings (higher means more similar) along the y-axis, and x-axis is the cosine similarity.

SBERTbase Supervised SimCSE-BERTbase

Query: A man riding a small boat in a harbor.

#1 A group of men traveling over the ocean in a small boat. A man on a moored blue and white boat.
#2 Two men sit on the bow of a colorful boat. A man is riding in a boat on the water.
#3 A man wearing a life jacket is in a small boat on a lake. A man in a blue boat on the water.

Query: A dog runs on the green grass near a wooden fence.

#1 A dog runs on the green grass near a grove of trees. The dog by the fence is running on the grass.
#2 A brown and white dog runs through the green grass. Dog running through grass in fenced area.
#3 The dogs run in the green field. A dog runs on the green grass near a grove of trees.

Table 10: Retrieved top-3 examples by SBERT and supervised SimCSE from Flickr30k (150k sentences).

2019). Furthermore, Wieting and Gimpel (2018);
Wieting et al. (2020) demonstrate that bilingual and
back-translation corpora provide useful supervision
for learning semantic similarity. Another line of
work focuses on regularizing embeddings (Li et al.,
2020; Su et al., 2021; Huang et al., 2021) to alle-
viate the representation degeneration problem (as
discussed in §5), and yields substantial improve-
ment over pre-trained language models.

9 Conclusion

In this work, we propose SimCSE, a simple con-
trastive learning framework, which largely im-
proves state-of-the-art sentence embedding perfor-
mance on semantic textual similarity tasks. We
present an unsupervised approach which predicts
input sentence itself with dropout noise and a su-
pervised approach utilizing NLI datasets. We fur-

ther justify the inner workings of our approach by
analyzing the alignment and uniformity of Sim-
CSE along with other baseline models.

We believe that our contrastive training objective,
especially the unsupervised approach, may have
a broader application in NLP. It provides a new
perspective on data augmentation with text input
in contrastive learning, and may be extended to
other continuous representations and integrated in
language model pre-training.
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A Training Details

We implement SimCSE based on Huggingface’s
transformers package (Wolf et al., 2020). For
supervised SimCSE, we train our models for 3
epochs with a batch size of 512 and temperature
τ = 0.05 using an Adam optimizer (Kingma and
Ba, 2015). The learning rate is set as 5e-5 for base
models and 1e-5 for large models. We evaluate the
model every 250 training steps on the development
set of STS-B and keep the best checkpoint for the
final evaluation on test sets. For unsupervised Sim-
CSE, we take 5e-5 as the learning rate for both base
and large models and only train for one epoch.

B Different Settings for STS Evaluation

We elaborate the differences in STS evaluation set-
tings in previous work in terms of (a) whether to
use additional regressors; (b) reported metrics; (c)
different ways to aggregate results.

Additional regressors The default SentEval im-
plementation applies a linear regressor on top of
frozen sentence embeddings for STS-B and SICK-
R, and train the regressor on the training sets of
the two tasks, while most sentence representation
papers take the raw embeddings and evaluate in an
unsupervised way. In our experiments, we do not
apply any additional regressors and directly take
cosine similarities for all STS tasks.

Metrics Both Pearson’s and Spearman’s correla-
tion coefficients are used in the literature. Reimers
et al. (2016) argue that Spearman correlation,
which measures the rankings instead of the actual
scores, better suits the need of evaluating sentence
embeddings. For all of our experiments, we report
Spearman’s rank correlation.

Aggregation methods Given that each year’s
STS challenge contains several subsets, there are
different choices to gather results from them: one
way is to concatenate all the topics and report the
overall Spearman’s correlation (denoted as “all”),
and the other is to calculate results for differ-
ent subsets separately and average them (denoted
as “mean” if it is simple average or “wmean” if
weighted by the subset sizes). However, most pa-
pers do not claim the method they take, making it
challenging for a fair comparison. We take some
of the most recent work: SBERT (Reimers and
Gurevych, 2019), BERT-flow (Li et al., 2020) and
BERT-whitening (Su et al., 2021)11 as an example:

11Li et al. (2020) and Su et al. (2021) have consistent results,

Paper Reg. Metric Aggr.

Hill et al. (2016) Both all
Conneau et al. (2017) X Pearson mean
Conneau and Kiela (2018) X Pearson mean
Reimers and Gurevych (2019) Spearman all
Zhang et al. (2020) Spearman all
Li et al. (2020) Spearman wmean
Su et al. (2021) Spearman wmean
Wieting et al. (2020) Pearson mean
Ours Spearman all

Table B.1: STS evaluation protocols used in different
papers. “Reg.”: whether an additional regressor is used;
“aggr.”: methods to aggregate different subset results.

In Table B.2, we compare our reproduced results
to reported results of SBERT and BERT-whitening,
and find that Reimers and Gurevych (2019) take the
“all” setting but Li et al. (2020); Su et al. (2021) take
the “wmean” setting, even though Li et al. (2020)
claim that they take the same setting as Reimers
and Gurevych (2019). Since the “all” setting fuses
data from different topics together, it makes the
evaluation closer to real-world scenarios, and un-
less specified, we take the “all” setting.

We list evaluation settings for a number of pre-
vious work in Table B.1. Some of the settings are
reported by the paper and some of them are inferred
by comparing the results and checking their code.
As we can see, the evaluation protocols are very in-
coherent across different papers. We call for unify-
ing the setting in evaluating sentence embeddings
for future research. We also release our evalua-
tion code for better reproducibility. Since previous
work uses different evaluation protocols from ours,
we further evaluate our models in these settings to
make a direct comparison to the published num-
bers. We evaluate SimCSE with “wmean” and
Spearman’s correlation to directly compare to Li
et al. (2020) and Su et al. (2021) in Table B.3.

C Baseline Models

We elaborate on how we obtain different baselines
for comparison:

• For average GloVe embedding (Pennington
et al., 2014), InferSent (Conneau et al., 2017)
and Universal Sentence Encoder (Cer et al.,
2018), we directly report the results from
Reimers and Gurevych (2019), since our eval-
uation setting is the same with theirs.

so we assume that they take the same evaluation and just take
BERT-whitening in experiments here.



Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SBERT (all) 70.97 76.53 73.19 79.09 74.30 76.98 72.91 74.85
SBERT (wmean) 66.35 73.76 73.88 77.33 73.62 76.98 72.91 73.55
SBERT♣ 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89

BERT-whitening (NLI, all) 57.83 66.90 60.89 75.08 71.30 68.23 63.73 66.28
BERT-whitening (NLI, wmean) 61.43 65.90 65.96 74.80 73.10 68.23 63.73 67.59
BERT-whitening (NLI)♠ 61.69 65.70 66.02 75.11 73.11 68.19 63.60 67.63
BERT-whitening (target, all) 42.88 77.77 66.27 63.60 67.58 71.34 60.40 64.26
BERT-whitening (target, wmean) 63.38 73.01 69.13 74.48 72.56 71.34 60.40 69.19
BERT-whitening (target)♠ 63.62 73.02 69.23 74.52 72.15 71.34 60.60 69.21

Table B.2: Comparisons of our reproduced results using different evaluation protocols and the original numbers.
♣: results from Reimers and Gurevych (2019);♠: results from Su et al. (2021); Other results are reproduced by us.
From the table we see that SBERT takes the “all” evaluation and BERT-whitening takes the “wmean” evaluation.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERTbase (first-last avg.)♠ 57.86 61.97 62.49 70.96 69.76 59.04 63.75 63.69
+ flow (NLI)♠ 59.54 64.69 64.66 72.92 71.84 58.56 65.44 65.38
+ flow (target)♠ 63.48 72.14 68.42 73.77 75.37 70.72 63.11 69.57
+ whitening (NLI)♠ 61.69 65.70 66.02 75.11 73.11 68.19 63.60 67.63
+ whitening (target)♠ 63.62 73.02 69.23 74.52 72.15 71.34 60.60 69.21
∗ Unsup. SimCSE-BERTbase 68.92 78.70 73.35 79.72 79.42 75.49 69.92 75.07

SBERTbase (first-last avg.)♠ 68.70 74.37 74.73 79.65 75.21 77.63 74.84 75.02
+ flow (NLI)♠ 67.75 76.73 75.53 80.63 77.58 79.10 78.03 76.48
+ flow (target)♠ 68.95 78.48 77.62 81.95 78.94 81.03 74.97 77.42
+ whitening (NLI)♠ 69.11 75.79 75.76 82.31 79.61 78.66 76.33 76.80
+ whitening (target)♠ 69.01 78.10 77.04 80.83 77.93 80.50 72.54 76.56
∗ Sup. SimCSE-BERTbase 70.90 81.49 80.19 83.79 81.89 84.25 80.39 80.41

Table B.3: STS results with “wmean” setting (Spearman). ♠: from Li et al. (2020); Su et al. (2021).

• For BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), we download the pre-
trained model weights from HuggingFace’s
Transformers12, and evaluate the models
with our own scripts.

• For SBERT and SRoBERTa (Reimers and
Gurevych, 2019), we reuse the results from
the original paper. For results not reported
by Reimers and Gurevych (2019), such as the
performance of SRoBERTa on transfer tasks,
we download the model weights from Sen-
tenceTransformers13 and evaluate them.

• For BERT-flow (Li et al., 2020), since their
original numbers take a different setting, we
retrain their models using their code14, and
evaluate the models using our own script.

• For BERT-whitening (Su et al., 2021), we im-
plemented our own version of whitening script

12https://github.com/huggingface/
transformers

13https://www.sbert.net/
14https://github.com/bohanli/BERT-flow

following the same pooling method in Su et al.
(2021), i.e. first-last average pooling. Our im-
plementation can reproduce the results from
the original paper (see Table B.2).

D More Ablation Studies

τ N/A 0.001 0.01 0.05 0.1 1

STS-B 85.9 84.9 85.4 86.2 82.0 64.0

Table D.1: STS-B development results (Spearman’s
correlation) with different temperatures. “N/A”: Dot
product instead of cosine similarity.

Hard neg N/A Contradiction
Contra.+
Neutral

α - 0.5 1.0 2.0 1.0

STS-B 84.9 86.1 86.2 86.2 85.3

Table D.2: STS-B development results with different
hard negative policies. “N/A”: no hard negative.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://www.sbert.net/
https://github.com/bohanli/BERT-flow


Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERT-flow (NLI) 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-flow (target) 53.15 78.38 66.02 62.09 70.84 71.70 61.97 66.31
BERT-whitening (NLI) 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
BERT-whitening (target) 42.88 77.77 66.28 63.60 67.58 71.34 60.40 64.26

SBERT-flow (NLI) 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERT-flow (target) 66.18 82.69 76.22 73.72 75.71 79.99 73.82 75.48
SBERT-whitening (NLI) 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
SBERT-whitening (target) 52.91 81.91 75.44 72.24 72.93 80.50 72.54 72.64

Table D.3: Comparison of using NLI or target data for postprocessing methods (“all”, Spearman’s correlation).

For both BERT-flow and BERT-whitening, they
have two variants of postprocessing: one takes the
NLI data (“NLI”) and one directly learns the em-
bedding distribution on the target sets (“target”).
We find that in our evaluation setting, “target” is
generally worse than “NLI” (Table D.3), so we only
report the NLI variant in the main results.

Normalization and temperature We train Sim-
CSE using both dot product and cosine similarity
with different temperatures and evaluate them on
the STS-B development set. As shown in Table D.1,
with a carefully tuned temperature τ = 0.05, co-
sine similarity is better than dot product.

The use of hard negatives Intuitively, it may be
not reasonable to use contradiction hypotheses
equally with other in-batch negatives. Therefore,
we extend the supervised training objective defined
in Eq. 5 to a weighted one as follows:

− log
esim(hi,h

+
i )/τ∑N

j=1

(
esim(hi,h

+
j )/τ + α1

j
i esim(hi,h

−
j )/τ

) ,
(8)

where 1ji ∈ {0, 1} is an indicator that equals 1 if
and only if i = j. We train SimCSE with different
α and evaluate the trained models on the develop-
ment set of STS-B. Moreover, we also consider
taking neutral hypotheses as hard negatives. As
shown in Table D.2, α = 1 performs the best, and
neutral hypotheses do not bring further gains.

E Distribution of Singular Values

Figure E.1 shows the singular value distribution of
SimCSE together with other baselines. For both
unsupervised and supervised cases, singular value
drops the fastest for vanilla BERT or SBERT em-
beddings, while SimCSE helps flatten the spectrum
distribution. Postprocessing-based methods such
as BERT-flow or BERT-whitening flatten the curve
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Figure E.1: Singular value distributions of sentence em-
bedding matrix from sentences in STS-B. We normal-
ize the singular values so that the largest one is 1.

even more since they directly aim for the goal of
mapping embeddings to an isotropic distribution.


