

Slide 3 / 252

Table of Contents

Problem Solving with Similar Triangles

Similar Triangles and Trigonometry

Trigonometric Ratios
Inverse Trigonometric Ratios

Review of the Pythagorean Theorem

Converse of the Pythagorean Theorem
Special Right Triangles
PARCC Sample Questions

Geometry

Similar Triangles \& Trigonometry

2015-10-22
www.njctl.org

Slide 4 / 252

Throughout this unit, the Standards for Mathematical Practice are used.

MP1: Making sense of problems \& persevere in solving them. MP2: Reason abstractly \& quantitatively.
MP3: Construct viable arguments and critique the reasoning of others.
MP4: Model with mathematics.
MP5: Use appropriate tools strategically.
MP6: Attend to precision.
MP7: Look for \& make use of structure.
MP8: Look for \& express regularity in repeated reasoning.
Additional questions are included on the slides using the "Math Practice" Pull-tabs (e.g. a blank one is shown to the right on this slide) with a reference to the standards used.

If questions already exist on a slide, then the specific MPs that the questions address are listed in the Pull-tab.

Slide 5 / 252

Problem Solving with Similar Triangles and Right Triangles

Three basic approaches to real world problem solving include:
Similar Triangles

Trigonometry

Pythagorean Theorem

Slide 6 / 252

Problem Solving with Similar Triangles

Shadows and Similar Triangles

One of the oldest math problems was solved using similar right triangles.

About 2600 years ago, Thales of Miletus, perhaps the first Greek mathematician, was visiting Egypt and wondered what the height was of one of the Great Pyramid of Giza.

Due to the shape of the pyramid, he couldn't directly measure its height.

Slide 9 / 252

Shadows and Similar Triangles

He noticed that the pyramid cast a shadow, which could be measured on the ground using a measuring rod.

And he realized that the measuring rod standing vertically also cast a shadow.

Based on those two observations, can you think of a way he could measure the height of the pyramid?

Discuss this at your table for a minute or two.

Shadows and Similar Triangles

When Thales visited the Great Pyramid of Giza 2600 years ago, it was already 2000 years old. He wanted to know its height.

Slide 10 / 252

Shadows and Similar Triangles

What 2 facts can you recall from our study of similar triangles? Fill in the blanks below.

Their angles are all \qquad

Their corresponding sides are in \qquad to one another.

Slide 12 / 252

Shadows and Similar Right Triangles

Draw a sketch of the pyramid being measured and its shadow....and the measuring rod and its shadow.

Represent the pyramid and rod as vertical lines, with the rod being much shorter than the pyramid.

You won't be able to draw them to scale, since the rod is so small compared to the pyramid, but that won't affect our thinking.

Shadows and Similar Right Triangles

Shadows and Similar Right Triangles

Slide 15 / 252

Similar Right Triangles

By putting one triangle atop the other it's easy to see that they are similar.

Using the 2 ideas we came up with before, you know the angles are all the same, and the sides are in proportion.

Similar Right Triangles

Taking away the objects and just leaving the triangles created by the height of the object, the sunlight and the shadow on the ground, we can see these are similar triangles.

All the angles are equal, so the sides must be in proportion.

Slide 16 / 252

Similar Right Triangles

Which means that the length of each shadow is in proportion to the height of each object.

shadow of pyramid

Slide 18 / 252

Shadows and Similar Right Triangles

If the shadow of the rod was 2 meters long
And the shadow of the pyramid was 120 meters long.
And the height of the rod was 1 meter.
How tall is the pyramid?

shadow of pyramid

Shadows and Similar Right Triangles

Shadows and Similar Right Triangles

This approach can be used to measure the height of a lot of objects which cast a shadow.

And, a convenient measuring device is then your height, and the length of the shadow you cast.

Try doing this on the next sunny day you can get outside.
Measure the height of any object which is casting a shadow by comparing the length of its shadow to the length of your own.

Lab - Indirect Measurement
Reminder - Mirrors also create indirect measurement if you are doing this lab on a cloudy day.

Slide 21 / 252

2 You're 6 feet tall and you notice that your shadow at one time is 3 feet long. The shadow of a nearby building at that same moment is 20 feet long

How tall is the building?

1 A lamppost casts a 9 ft shadow at the same time a person 6 ft tall casts a 4 ft shadow. Find the height of the lamppost.
OA 6 ft
OB 2.7 ft
Oc 13.5 ft
OD 15 ft

Slide 22 / 252

3 You're 1.5 m tall and you notice that your shadow at one time is 4.8 m long. The shadow of a nearby tree at that same moment is 35 m long

How tall is the tree?

Slide 23 / 252

Slide 24 / 252

4 Two buildings are side by side. The 35 m tall building casts a 21 m shadow.

How long will the shadow of the 8 m tall building be at the same time?

Similar Triangle Measuring Device

Similar Triangle Measuring Device

We can also make a device to set up similar triangles in order to make measurements.

Take a piece $3^{\prime \prime} \times 5$ " card and cut it as shown below:

Slide 27 / 252

Similar Triangle Measuring Device

By looking along the meter stick, you can then move the card so that a distant object fills either the $0.5 \mathrm{~cm}, 2 \mathrm{~cm}$ or 4 cm slot.

You can then measure how far the card is from your eye, along the meter stick.

This creates a similar triangle that allows you to find how far away an object of known size is, or the size of an object of known distance away.

Similar Triangle Measuring Device

Now slide a meter stick through the slot in the bottom of the card. In that way, you can move the card a specific distance from one end of the stick.

Similar Triangle Measuring Device

This shows how by lining up a distant object to fill a slot on the device two similar triangles are created, the small red one and the larger blue one.

All the angles are equal and the sides are in proportion. Also, the base and altitude of each isosceles triangle will be in proportion.

Slide 29 / 252

Similar Triangle Measuring Device

The altitude and base of the small isosceles triangle can be directly measured, which means that the ratio of those on the larger triangle is know. Given the size or the distance to the object, the other can be determined.

Similar Triangle Measuring Device

You are visiting Paris and have your similar triangle measuring device with you.

You know that the Eiffel Tower is 324 meters tall.
You adjust your device so that turned sidewise the height of the tower fills the 2 cm slot when the card is 20 cm from your eye.

How far are you from the tower?

Shadows and Similar Right Triangles

$\frac{\text { distance to tower }}{\text { height of tower }}$	$=\frac{\text { distance to card }}{\text { width of slot }}$
distance to tower $=\frac{\text { distance to card }}{\text { width of slot }} \mathrm{x}$ height of tower	
$\mathrm{d}=\frac{20 \mathrm{~cm}(324 \mathrm{~m})}{2 \mathrm{~cm}}$	
$\mathrm{~d}=3240 \mathrm{~m}$	

Slide 33 / 252

6 The tallest building in the world, the Burj Kalifah in Dubai, is 830 m tall. You turn your device so that it fills the 4 cm slot when it is 29.4 cm from your eye. How far are you from the building?

5 You move to another location and the Eiffel Tower (324 m tall) now fills the 4 cm slot when the card is 48 cm from your eye. How far are you from the Eiffel Tower now?

Slide 35 / 252

Slide 36 / 252

8 The moon has a diameter of 3480 km . You measure it one night to about fill the 0.5 cm slot when the card is 54 cm from your eye.

What is the distance to the moon?

Similar Triangles and Trigonometry

Return to the Table of Contents

Problem Solving with Trigonometry

When we did the problem earlier we used the rod's height of 1 m and it's shadow's length of 2 m . That would mean that the angle between the rays of sunlight and the ground would have been 26.6°.

And the length of the pyramid's shadow was 120 m .
Let's use that angle and distance and see if we get the same answer.

Slide 45 / 252

Tangent θ

Early in the last problem we found that: $\frac{\text { height }}{\text { distance }}=\frac{\sin \theta}{\cos \theta}$

This ratio of sine to cosine is used very often, and has its own name: Tangent θ, or $\tan \theta$ for short.

Tangent θ is defined as Sine θ divided by Cosine θ.

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

Problem Solving with Trigonometry

If the distance was 120 m , and the angle was 26.6°, you find the height by solving for it and then using your calculator to look up the values for sin and cos.

$$
\begin{aligned}
\frac{\text { height }}{\text { distance }} & =\frac{\sin \theta}{\cos \theta} \\
\frac{\text { height }}{120 \mathrm{~m}} & =\frac{\sin \left(26.6^{\circ}\right)}{\cos \left(26.6^{\circ}\right)} \\
\text { height } & =\frac{\sin \left(26.6^{\circ}\right)}{\cos \left(26.6^{\circ}\right)}(120 \mathrm{~m}) \\
& =\frac{(0.448)}{(0.894)}(120 \mathrm{~m})=60 \mathrm{~m}
\end{aligned}
$$

Slide 46 / 252

Using Calculators with Trigonometry

The last step of that problem required finding the values of the sine and the cosine of 26.6°.

When working with trigonometry, you'll need to find the values of sine, cosine and other trig functions when given an angle.

This used to involve using tables, but now it's pretty simple to use a basic scientific calculator.

Slide 47 / 252

Using Calculators with Trigonometry

Basic scientific calculators are available on computers, tablets and smart phones.

They can also be a separate device, similar to the inexpensive calculator shown here. It can do everything you'll need for this course.

Slide 48 / 252

Using Calculators with Trigonometry

The trig functions we're going to be using right now are sine, cosine and tangent.

Those are marked in the box on the calculator.

On most calculators, they are noted by buttons which say

Slide 57 / 252
Example

You are standing 200 m away
from the base of a building.
You measure the top of the
building to be at an angle of
elevation (the angle between the
ground and a line drawn to the
top) of 60°.
What is the height of the
building?

heigh

Slide 59 / 252

Example

Then set up the ratios, substitute the values and solve.

Inclinometer

You are standing on the ground and look along your inclinometer to see the top of a building to be at an angle of 30°. You then measure the distance to the base of the building to be 30 m . Find the height of the building, remembering to add in the height your eye is above the ground.

Slide 58 / 252

Example

Slide 60 / 252

9 You are standing 30 m away from the base of a building. The top of the building lies at an angle of elevation (the angle between the ground and the hypotenuse) of 50°. What is the height of the building?

10 You are standing 50 m away from the base of a building. The building creates an angle of elevation with the ground measuring 80°. What is the height of the building?

11 Use the $\tan \theta$ function of your calculator to determine the height of a flagpole if it is 30 m away and it's angle of elevation with the ground measures 70°.

Slide 63 / 252

12 Use the $\tan \theta$ function of your calculator to determine the height of a building if its base is 50 m away and it's angle of elevation with the ground measures 20°.

Slide 64 / 252

13 You are on top of a building and look down to see someone who standing the ground. The angle of depression (the angle below the horizontal to an object) is 30° and they are 90 m from the base of the building. How high is the building? (Neglect the heights of you and the other person.)

Make sure to draw a sketch!

Slide 65 / 252
 Slide 66 / 252

14 Determine the distance an object lies from the base of a 45 m tall building if the angle of depression to it is 40°.

Trigonometric Ratios

When solving problems with trig, you find a right triangle which is similar to the one below. Then you find the solution by setting up the ratios of proportion. But, since the hypotenuse is 1 , often it's forgotten that these are ratios

Trigonometric Ratios Return to the Table of Contents	Trigonometric Ratios Fill in the fundamental trig ratios below: \qquad called "sin" for short click \qquad click called "cos" for short \qquad click called "tan" for short
Slide 69 / 252	Slide 70 / 252
Trigonometric Ratios The name of the angle usually follows the trig function. If the angle is named θ (theta) the names become: $\begin{aligned} & \sin \theta \\ & \cos \theta \\ & \tan \theta \end{aligned}$ If the angle is named α (alpha) the functions become: $\begin{aligned} & \sin \alpha \\ & \cos \alpha \\ & \tan \alpha \end{aligned}$	Trigonometric Ratios If you have the sides, trig ratios let you find the angles. But if you have a side and an angle, trig ratios also let you find the other sides.
Slide 71 / 252	Slide 72 / 252
Trigonometric Ratios adjacent side These ratios depend on which angle you are calling θ; never the right angle. You know that the side opposite the right angle is called the hypotenuse. The leg opposite θ is called the opposite side. The leg that touches θ is called the adjacent side.	Trigonometric Ratios There are two possible angles that can be called \#. Once you choose which angle is \#, the names of the sides are defined. You can change later, but then the names of the sides also change.

Slide 87 / 252

Slide 89 / 252
20 Find the $\cos \theta$. Round your answer to the nearest hundredth.

17 Find the $\tan \theta$. Round your answer to the nearest hundredth.

Slide 88 / 252

19 Find the $\sin \theta$. Round your answer to the nearest hundredth.

Slide 90 / 252

Trigonometric Ratios

For instance, let's find the length of side x.

The side we're looking for is opposite the given angle;
and the given length is the hypotenuse;
so we'll use the trig function that relates these three:
$\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{\text { opp }}{\text { hyp }}$

23 Find the value of x. Round your answer to the nearest tenth.

Slide 99 / 252

24 Find the value of x. Round your answer to the nearest tenth.
7.4

Slide 100 / 252

Applications of Trigonometric Ratios

Most of the time, trigonometric ratios are used to solve realworld problems, as you saw at the beginning of this unit.

Now that you are familiar with the derivation of the three trigonometric ratios (sine, cosine, and tangent), you are ready to apply your knowledge and practice solving these problems.

Before we begin, let's review some key vocabulary that you will see in these word problems.

Slide 101 / 252
 Slide 102 / 252

Applications of Trigonometric Ratios

The angle of elevation is the angle above the horizontal to an object.

The angle of depression is the angle below the horizontal to an object.

Applications of Trigonometric Ratios

The angle of elevation and the angle of depression are both measured relative to parallel horizontal lines, so they are equal in measure.

Applications of Trigonometric Ratios

Example

Amy is flying a kite at an angle of 58°.
The kite's string is 158 feet long and Amy's arm is 3 feet off the ground.

How high is the kite off the ground?

Applications of Trigonometric Ratios

Now, we must add in Amy's arm height. $134+3=137$

The kite is about 137 feet off the ground.

Slide 105 / 252

Applications of Trigonometric Ratios

Example
You are standing on a mountain that is 5306 feet high. You look down at your campsite at angle of 30°. If you are 6 feet tall, how far is the base of the mountain from the campsite?

Slide 107 / 252

Applications of Trigonometric Ratios

Example:
Vernon is on the top deck of a cruise ship and observes 2 dolphins following each other directly away from the ship in a straight line. Veron's position is 154 m above sea level, and the angles of depression to the 2 dolphins to the ship are 35 and 36°, respectively. Find the distance between the 2 dolphins to the nearest hundredth of a meter.

Slide 106 / 252

Applications of Trigonometric Ratios

$$
\begin{aligned}
& \tan 30=\frac{5312}{x} \\
& .5774=\frac{5312}{x} \\
& 5774 x=5312 \\
& x \approx 9,200 \mathrm{ft}
\end{aligned}
$$

The campsite is about $9,200 \mathrm{ft}$ from the base of the mountain.
Slide $107 / 252$

Applications of Trigonometric Ratios
Example:
Vernon is on the top deck of a cruise ship and observes 2 dolphins
Veron's position is 154 m above sea level, and the angles of
depression to the 2 dolphins to the ship are 35 and 36°, respectively.
Find the distance between the 2 dolphins to the nearest hundredth of
a meter.

Slide 117 / 252

Slide 118 / 252

30 The ship is traveling at a speed of 32 meters per second, in the direction towards the submarine. From its current position, how many minutes, to the nearest tenth of a minute, will it take the ship to be directly over the submarine.

29 A sonar operator on a ship detects a submarine that is located 800 meters away from the ship at an angle of depression of 38°. If the submarine stays in the same position, then how far would the ship need to travel to be directly above the submarine?

Using Calculators with Inverse Trigonometry

The inverse trig functions are located just above the sine, cosine and tangent buttons.

They are marked in the box on the calculator.

On most calculators, they are noted by text which says
SIN^{-1}
COS^{-1}
TAN-1
In most cases, they can be used by pressing the 2nd, or shift, button (arrow pointing to it) \& the sine, cosine, or tangent button.

Slide 123 / 252

32 Find $\tan ^{-1}(2.3)$. Round the angle measure to the nearest hundredth.

31 Find $\sin ^{-1}(0.8)$ Round the angle measure to the nearest hundredth.

Slide 125 / 252

Inverse Trigonometric Ratios

To find an unknown angle measure in a right triangle,you need to identify the correct trig function that will find the missing value. Use "SOH CAH TOA" to help.
$\angle \mathrm{A}$ is your angle of reference.
Label the two given sides of your triangle opp, adj, or hyp. Identify the trig funtion that uses $\leq \underline{A}$, and the two sides.

33 Find $\cos ^{-1}(0.45)$. Round the angle measurement to the nearest hundredth.

Slide 124 / 252

Inverse Trigonometric Ratios	Inverse Trigonometric Ratios
Now, let's find the measurement of the angle θ in this case. The sides that we are given are the opposite side \& the hypotenuse; so we'll use the trig function that relates these two sides with our angle: $\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{\text { opp }}{\text { hyp }}$	$\sin \theta=\frac{12}{13}$ $\theta=\sin ^{-1}\left(\frac{12}{13}\right)$ $\theta=67.38^{\circ}$

Slide 129 / 252

34 Find the m<D in the figure below.

Slide 130 / 252

35 Find the $m \angle F$ in the figure below.

Slide 131 / 252

Slide 132 / 252

36 Find the $m<G$ in the figure below.

Applications of Inverse Trigonometric Ratios

As we discussed earlier in this unit, trigonometric ratios and the inverse trigonometric ratios are used to solve real-world problems.

Now that you are familiar with the three inverse trigonometric ratios (inverse sine, inverse cosine, and inverse tangent), you are ready to apply your knowledge and practice solving these problems.

Applications of Inverse Trigonometric Ratios

Applications of Inverse Trigonometric Ratios

A hockey player is 24 feet from the goal line. He shoots the puck directly at the goal. The height of the goal is 4 feet. What is the maximum angle of elevation at which the player can shoot the puck and still score a goal?

24 ft

Slide 135 / 252

Applications of Inverse Trigonometric Ratios

You lean a 20 foot ladder up against a wall. The base of the ladder is 5 feet from the edge of the wall. What is the angle of elevation is created by the ladder \& the ground.

Slide 136 / 252

Applications of Inverse Trigonometric Ratios

$$
\begin{aligned}
& \cos \theta=\frac{5}{20} \\
& \theta=\cos ^{-1}\left(\frac{5}{20}\right) \\
& \theta=75.52^{\circ}
\end{aligned}
$$

Slide 137 / 252

37 Katherine looks down out of the crown of the statue of liberty to an incoming ferry about 345 feet. The distance from crown to the ground is about 250 feet. What is the angle of depression?

38 The Sear's Tower in Chicago, Illinois is 1451 feet tall. The sun is casting a 50 foot shadow on the ground. What is the angle of elevation created by the tip of the shadow and the ground?

39 You lean a 30 foot ladder up against the side of your home to get into a bedroom on the second floor. The height of the window is 25 feet. What angle of elevation must you set the ladder at in order to reach the window?

40 You are looking out your bedroom window towards the tip of the shadow made by your home. Your friend measures the length of the shadow to be 10 feet long. If you are20 feet off the ground, what is the angle of depression needed to see the tip of your home's shadow.

Slide 141 / 252

41 You return to view your home's shadow 3 hours later. Your friend measures the length of the shadow to be 25 feet long. If you are20 feet off the ground, what is the angle of depression needed to see the tip of your home's shadow.

Slide 142 / 252

Review of the Pythagorean Theorem

Return to the Table of Contents

Slide 143 / 252

Review of Pythagorean Theorem

$$
c^{2}=a^{2}+b^{2}
$$

" c " is the hypotenuse
"a" and "b" are the two legs;
which leg is "a" and which is "b" doesn't matter.

Slide 144 / 252

42 The legs of a right triangle are 7.0 m and 3.0 m , what is the length of the hypotenuse?

54 Katherine looks down out of the crown of the statue of liberty to an incoming ferry about 345 feet. The distance from crown to the ground is about 250 feet. What is the distance from the ferry to the base of the statue?

Converse of the Pythagorean Theorem

Return to the Table of Contents

Slide 160 / 252

Converse of the Pythagorean Theorem

If the square of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

If $c^{2}=a^{2}+b^{2}$, then $\triangle A B C$ is a right triangle.

Slide 161 / 252

Theorem

If the square of the longest side of a triangle is greater than the sum of the squares of the other two sides, then the triangle is obtuse.

If $c^{2}>a^{2}+b^{2}$, then $\triangle A B C$ is obtuse.

Example

Tell whether the triangle is a right triangle Explain your reasoning.

Slide 162 / 252

Theorem

If the square of the longest side of a triangle is less than the sum of the squares of the other two sides, then the triangle is acute.

If $\mathrm{c}^{2}<\mathrm{a}^{2}+\mathrm{b}^{2}$, then $\triangle \mathrm{ABC}$ is acute.

Example
Classify the triangle as acute, right, or obtuse.
Explain your reasoning.

55 Classify the triangle as acute, right, obtuse, or not a triangle.

OA acute
OB right
OC obtuse
OD not a triangle

Slide 165 / 252

56 Classify the triangle as acute, right, obtuse, or not a triangle.

OA
acute
○B
right
OC
obtuse
OD not a triangle
OD not a triangle

Slide 167 / 252

Slide 168 / 252
58 Classify the triangle as acute, right, obtuse, or not a triangle.

OA acute
OB right
OC obtuse
OD not a triangle

Slide 166 / 252

57 Classify the triangle as acute, right, obtuse, or not a triangle.

OA acute
OB right
OC obtuse
OD not a triangle

60 Tell whether the lengths represent the sides of an acute, right, or obtuse triangle.

$$
\sqrt{3}, 2,3
$$

OA acute triangle
OB right triangle
OC obtuse triangle

Review

If $c^{2}=a^{2}+b^{2}$, then triangle is right.
If $c^{2}>a^{2}+b^{2}$, then triangle is obtuse.
If $\mathrm{c}^{2}<\mathrm{a}^{2}+\mathrm{b}^{2}$, then triangle is acute.

Special Right Triangles

Slide 173 / 252

Investigation: 45-45-90 Triangle Theorem
Find the missing side lengths in the triangles.
Leave answers in simplified radical/fractional form...NO DECIMALS!

Slide 174 / 252

Investigation: 45-45-90 Triangle Theorem
Find the missing side lengths in the triangles.
Leave answers in simplified radical/fractional form...NO DECIMALS!

4

Investigation: 45-45-90 Triangle Theorem

Find the missing side lengths in the triangles.
Leave answers in simplified radical/fractional form...NO DECIMALS!

6

Slide 177 / 252

45-45-90 Triangle Theorem

This theorem can be proved algebraically using Pythagorean Theorem.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& x^{2}+x^{2}=c^{2} \\
& 2 x^{2}=c^{2} \\
& x \sqrt{2}=c
\end{aligned}
$$

Slide 179 / 252
45-45-90 Example

Find the length of the missing sides. Write the answer in simplest radical form.

Slide 178 / 252

45-45-90 Example

Find the length of the missing sides.
Write the answer in simplest radical form.

R

Slide 180 / 252

45-45-90 Example

Find the length of the missing sides. Write the answer in simplest radical form

Slide 183 / 252

63 What is the length of each leg of an isosceles, if the length of the hypotenuse is 20 cm .

Slide 184 / 252

Investigation: 30-60-90 Triangle Theorem

Find the missing side lengths in the triangles.
Leave answers in simplified radical/fractional form...NO DECIMALS!
z

Slide 185 / 252

Investigation: 30-60-90 Triangle Theorem

Find the missing side lengths in the triangles.
Leave answers in simplified radical/fractional form...NO DECIMALS!

v

Slide 186 / 252

Investigation: 30-60-90 Triangle Theorem
Find the missing side lengths in the triangles.
Leave answers in simplified radical/fractional form...NO DECIMALS!
u

t

30-60-90 Triangle Theorem Using the side lengths that you found in the Investigation, can you figure out the rule, or formula, for the 30-60-90 Triangle Theorem?	30-60-90 Triangle Theorem This theorem can be proved using an equilateral triangle and Pythagorean Theorem. For right triangle ABD , $\overline{\mathrm{BD}}$ is a perpendicular bisector. let $a=x, c=2 x$ and $b=B D$ $\begin{aligned} & a^{2}+b^{2}=c^{2} \\ & x^{2}+b^{2}=(2 x)^{2} \\ & x^{2}+b^{2}=4 x^{2} \\ & b^{2}=3 x^{2} \\ & b=x \sqrt{3} \end{aligned}$
Slide 189 / 252	Slide 190 / 252
30-60-90 Example Example: Find the length of the missing sides of the right triangle.	30-60-90 Example Recall triangle inequality, the shortest side is opposite the smallest angle and the longest side is opposite the largest angle. $\overline{\mathrm{HF}}$ is the shortest side $\overline{\mathrm{GF}}$ is the longest side (hypotenuse) $\overline{\mathrm{GH}}$ is the 2 nd longest side $\mathrm{HF}<\mathrm{GH}<\mathrm{GF}$
Slide 191 / 252	Slide 192 / 252
30-60-90 Example	30-60-90 Example Example: Find the length of the missing sides of the right triangle. $\begin{array}{cc} 30^{\circ} & 15 \\ y & \square \\ & 0^{\circ} \end{array}$

30-60-90 Example

Example:
Find the area of the triangle.

Slide 195 / 252

30-60-90 Example

Example:
Find the area of the triangle.

Slide 197 / 252

Slide 198 / 252

65 Find the value of x.
66 Find the value of x.

OA	7
OB	$7 \sqrt{3}$
OC	$\frac{7 \sqrt{2}}{2}$
OD	14

Slide 196 / 252

64 Find the value of x.

$$
30-60-90 \text { Example }
$$

Example:
Find the area of the triangle.
○A 7
OB $7 \sqrt{3}$
OC $\frac{7 \sqrt{2}}{2}$
OD 14
A

30-60-90 Example

The altitude (or height) divides the triangle into two $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.

The length of the shorter leg is 7 ft .
The length of the longer leg is $7 \sqrt{3} \mathrm{ft}$.
$A=1 / 2 b(h)=1 / 214(7 \sqrt{3})$
$A=49 \sqrt{3}$ square $\mathrm{ft} \approx 84.87$ square ft
-

67 The hypotenuse of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is 13 cm . What is the length of the shorter leg?

68 The length the longer leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is 7 cm . What is the length of the hypotenuse?

Slide 201 / 252

Real World Example

The wheelchair ramp at your school has a height of 2.5 feet and rises at angle of 30°. What is the length of the ramp?

Slide 202 / 252

Real World Example

The triangle formed by the ramp is a $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle. The length of the ramp is the hypotenuse.
hypotenuse $=2$ (shorter leg) hypotenuse $=2(2.5)$ hypotenuse $=5$

The ramp is 5 feet long.

Slide 203 / 252

69 A skateboarder constructs a ramp using plywood.
The length of the plywood is 3 feet long and
falls at an angle of 45°. What is the height of the ramp?

Round to the nearest hundredth.

70 What is the length of the base of the ramp? Round to the nearest hundredth.

Slide 204 / 252

71 The yield sign is shaped like an equilateral triangle. Find the length of the altitude.

Slide 207 / 252

PARCC Sample Questions

The remaining slides in this presentation contain questions from the PARCC Sample Test. After finishing this unit, you should be able to answer these questions.

Good Luck!

Return to Table of Contents

72 The yield sign is shaped like an equilateral triangle. Find the area of the sign.

Slide 208 / 252

Question 10/25

Topic: Trigonometric Ratios
An archaeological team is excavating artifacts from a sunken merchant vessel on the ocean floor. To help with teh exploration the team uses a robotic probe. The probe travels approximately 3,900 meters at an angle of depression of 67.4 degrees from the team's ship on the ocean surface down to the sunken vessel on the ocean floor. The figure shows a representation of the team's sip and the probe.

PARCC Released Question (EOY)

Slide 209 / 252

Question 10/25

Topic: Trigonometric Ratios
73 When the probe reaches the ocean floor, the probe will be approximately \qquad meters below the ocean surface.

OE 3,600

PARCC Released Question (EOY)

Slide 210 / 252

Question 10/25

Topic: Trigonometric Ratios
74 When the probe reaches the ocean floor, the horizontal distance of the probe behind the team's ship on the ocean surface will be approximately \qquad meters.

OF 1,247

OG 1,500
OH 1,623

O| 3,377
○J 3,600
PARCC Released Question (EOY)

Question 3/25
 Topic: Trigonometric Ratios

75 In right triangle $A B C, m \angle B \neq m \angle C$. Let $\sin B=r$ and $\cos B=s$. What is $\sin C-\cos C$?

OA $r+s \quad B$

OBres
OC $s-r$
OD $\frac{r}{s}$
A
C

PARCC Released Question (EOY)

Slide 213 / 252

Question 16/25 Part A

Topic: Trigonometric Ratios
76 At the moment in time represented by the figure, the angle of depression from the UAV to the fire has a measure of 30°. At the moment in time represented by the figure, what is the distance from the UAV to the fire?

PARCC Released Question (EOY)

Question 16/25

Topic: Trigonometric Ratios
An unmanned aerial vehicle (UAV) is equipped with cameras used to monitor forest fires. The figure represents a moment in time at which a UAV, at point B, flying at an áltitude of 1,000 meters (m) is directly above point D on the forest floor. Point A represents the location of a small fire on the forest floor.

PARCC Released Question (EOY)

Slide 214 / 252

Question 16/25 Part B

Topic: Trigonometric Ratios
77 What is the distance, to the nearest meter, from the fire to point D ?

PARCC Released Question (EOY)

Slide 216 / 252

Question 16/25 Part C
 Topic: Trigonometric Ratios

78 Points C and E represent the linear range of view of the camera when it is pointed directly down at point D. The field of view of the camera is 20° and is represented in the figure by $\angle C B E$. The camera takes a picture directly over point D, what is the approximate width of the forest floor that will be captured in the picture?

OA 170 meters
OB 353 meters
Oc 364 meters
OD 728 meters

[^0]
Question 16/25 Part D

Topic: Trigonometric Ratios
79 The UAV is flying at a speed of 13 meters per second in the direction toward the fire. Suppose the altitude of the UAV is now 800 meters. The new position is represented at F in the figure. From its position at point F, how many minutes, to the nearest tenth of a minute, will it take the UAV to be directly over the fire?

OA 0.6
ОВ 1.2
OC 1.8

OD 2.0
PARCC Released Question (EOY)

Question 20/25 Part A

Topic: Trigonometric Ratios
A spring is attached at one end to support B and at the other end to collar A, as represented in the figure. Collar A slides along the vertical bar between points C and D. In the figure, the angle θ is the angle created as the collar moves between points C and D.

80 When $\theta=28^{\circ}$, what is the distance from point A to point B to the nearest tenth of a foot?

PARCC Released Question (EOY)

Slide 219 / 252

Question 4/7

Topic: Trigonometric Ratios

82 Right triangle WXY is similar to triangle DEF. The following are measurements in right triangle DEF.

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{~F}=90^{\circ} \\
& \mathrm{DE}=\sqrt{113} \\
& \mathrm{DF}=7 \\
& \mathrm{EF}=8
\end{aligned}
$$

Write an expression that represents cos W.
Which number represents the numerator of the fraction?
$\bigcirc 90$

- $\sqrt{113}$
- 7
○ 8

PARCC Released Question (PBA)

Question 20/25 Part B Topic: Inverse Trigonometric Ratios

A spring is attached at one end to support B and at the other end to collar A, as represented in the figure. Collar A slides along the vertical bar between points C and D. In the figure, the angle θ is the angle created as the collar moves between points C and D.

81 When the spring is stretched and the distance from A to B is 5.2 feet, what is the value of θ to the nearest tenth of a degree?

- 35.2°
- 54.8°
$\bigcirc 45.1^{\circ}$
○ 60.0°

PARCC Released Question (EOY)

Slide 220 / 252

Question 4/7

Topic: Trigonometric Ratios
83 Right triangle WXY is similar to triangle DEF. The following are measurements in right triangle DEF.

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{~F}=90^{\circ} \\
& \mathrm{DE}=\sqrt{113} \\
& \mathrm{DF}=7 \\
& \mathrm{EF}=8
\end{aligned}
$$

Write an expression that represents cos W .
Which number represents the denominator of the fraction?
90
$\sqrt{113}$
7
8

PARCC Released Question (PBA)

Slide 222 / 252

Question 7/7

Topic: Trigonometric Ratios
85 In this figure, triangle GHJ is similar to triangle PQR.
Based on this information, which ratio represents $\tan \mathrm{H}$?

OA $\frac{8}{15}$
OB $\frac{8}{17}$
OC $\frac{15}{8}$
OD $\frac{17}{8}$

Question 5/11

Topic: Trigonometric Ratios

86 Mariela is standing in a building and looking out of a window at a tree. The tree is 20 feet away from Mariela. Mariela's line of sight to the top of the tree creates a 42° angle of elevation, and her line of sight to the base of the tree creates a 31° angle of depression.

What is the height, in feet, of the tree? Type in your answer.

PARCC Released Question (PBA)

Slide 225 / 252

Question $1 / 11$

Topic: Trigonometric Ratios

The figure shows the design of a shed that will be built. Use the figure to answer all parts of the task.

The base of the shed will be a square measuring 18 feet by 18 feet. The height of the rectangular sides will be 9 feet. The measure of the ansgle made by the roof with the side of the shed can vary and is labeled as x°. Different roof angles create different surface areas of the roof. The surface area of the roof will determine the number of roofing shingles needed in constructing the shed. To meet drainage requirements, the roof angles must be at least 117°.

Released PARCC Exam Question

The following question from the released PARCC - PBA exam uses what we just learned and combines it with what we learned earlier to create a good question.

Please try it on your own.
Then we'll go through the processes that we can use to solve it.

PARCC Released Question (PBA)

Part A
The builder of the shed is considering using an angle that measures 125°. Determine the surface area of the roof if 125° angle is used. Explain or show your process.

Part B

Without changing the measurements of the base of the shed, the builder is also considering using a roof angle that will create a roof surface area that is 10% less than the area obtained in Part A. Less surface area will require less roofing shingles. Will such an angle meet the specified drainage requirements. Explain how you came to your conclusion.

Part C

The roofing shingles cost $\$ 27.75$ for a bundle. Each bundle can cover approximately 35 square feet. Shingles must be purchased in full bundles. The builder has a budget of $\$ 325$ for shingles.

What is the greatest angle the builder can use and stay within budget? Explain or show your process.

Slide 227 / 252

Topic: Trigonometric Ratios

The builder of the shed is considering using an angle that measures 125°. Determine the surface area of the roof if 125° angle is used. Explain or show your process.

87 What concepts could we use to solve this problem? \bigcirc Area of a rectangle
\bigcirc Right Triangle TrigonometryAngle Addition PostulateAll of the above

Slide 228 / 252

Question 1/11 Part A
Topic: Trigonometric Ratios
88 If the value of x is 125°, what would be the $m \angle 1$?
$\bigcirc 90^{\circ}$
(2) 25°

- 35°
- 160°

Front view of the shed

Question 1/11 Part A
 Topic: Trigonometric Ratios

89 What would be the value of y in the figure to the right?
06 ft
09 ft

- 12 ft
- 18 ft

Question 1/11 Part A

Topic: Trigonometric Ratios
90 What ratio would we use to find the value of z in the figure below?
$0 \sin (35)=\frac{z}{18}$
$0 \tan (35)=\frac{9}{z}$
$O \cos (35)=\frac{9}{z}$
$0 \tan (35)=\frac{z}{9}$

Front view of the shed

Slide 231 / 252

Slide 232 / 252

Question 1/11 Part A

Topic: Trigonometric Ratios

Question $1 / 11$ Part A

Topic: Trigonometric Ratios
91 What is the value of z in the figure below?

Q 7.37 feet

- 10.32 feet
- 10.99 feet
- 12.85 feet

Slide 233 / 252

Question 1/11 Part B

Without changing the measurements of the base of the shed, the builder is also considering using a roof angle that will create a roof surface area that is 10% less than the area obtained in Part A. Less surface area will require less roofing shingles. Will such an angle meet the specified drainage requirements. Explain how you came to your conclusion.

Slide 234 / 252

Question 1/11 Part B

Topic: Trigonometric Ratios
93 After finding the answer that the area of the roof was $395.64 \mathrm{ft}^{2}$, what would be the area of a roof that has 10% less area?
$356.08 \mathrm{ft}^{2}$$316.52 \mathrm{ft}^{2}$
© $197.8 \mathrm{ft}^{2}$
○ $39.56 \mathrm{ft}^{2}$

Question 1/11 Part B

Topic: Trigonometric Ratios
94 Using the area that we found in the previous slide, what is the new value of z ?
10.99 ft
17.58 ft
O 19.78 ft
$\bigcirc 9.89 \mathrm{ft}$

Slide 237 / 252

Question 1/11 Part B

Topic: Trigonometric Ratios
96 Does the measurement of our new angle x meet the building requirements?

OYes
Ono

Slide 239 / 252

Question 1/11 Part C

Topic: Trigonometric Ratios
97 If the roofing shingles cost $\$ 27.75$ for a bundle and his budget is $\$ 325$, how many bundles of shingles can he buy?
0.10

- 11

○ 11.71
12

Question 1/11 Part B
Topic: Trigonometric Ratios
95 Using the new value of z, what is the new $m<1$?
$\bigcirc 65.51^{\circ}$
○ 24.49°
(42.30°

- 47.70°

Slide 238 / 252

Question 1/11 Part C Topic: Trigonometric Ratios

Slide 240 / 252

Question 1/11 Part C

Topic: Trigonometric Ratios
98 If each bundle of shingles covers an area of 35 square feet, then what is the area is covered by the the amount of bundles that the builder purchased?

Question 1/11 Part C

Topic: Trigonometric Ratios
99 Using the new area found in the last question, what is the value of z in the figures below?
10.69 ft

O 14.26 ft

- 16.04 ft
21.39 ft

Slide 243 / 252

Released PARCC Exam Question

The following question from the released PARCC - PBA exam uses what we just learned and combines it with what we learned earlier to create an interesting question.

Please try it on your own.
Then we'll go through the processes that we can use to solve it.

Slide 244 / 252

Question 3/11

Topic: Problem Solving w/Similar Triangles
A billboard at ground level has a support length of 26 feet that extends from the top of the billboard to the ground. A post that is 5 feet tall is attached to the support and is 4 feet from where the base of the support is attached to the ground. In the figure shown, the distance, in feet, from the base of the billboard to the base of the support is labeled x.

Create an equation that can be used to determine x. Discuss any assumptions that should be made concerning the equation. Use your equation to find the value of x. Show your work or explain your answer.

Slide 245 / 252

Slide 246 / 252

Question 3/11

101 Is this problem solvable?
OYes
O No

Topic: Problem Solving w/ Similar Triangles
I

Question 3/11

Topic: Problem Solving w/ Similar Triangles
102 If we assume that both the billboard \& the post are perpendicular with the ground, what concepts could we use to solve this problem?
OA Pythagorean Theorem
OB Right Triangle Trigonometry
Oc Similar Triangles
OD All of the above

Question 3/11 Topic:Problem Solving w/ Similar Triangles	Question 3/11 Topic: Problem Solving w/ Similar Triangles
 C Similar Triangles. 103 What would be the value of y ? A 3 B 9 C $\sqrt{41}$ D 41	104 What proportion would we use to find the value of x ? A $\frac{5}{x}=\frac{\sqrt{41}}{26}$ B $\frac{4}{x}=\frac{\sqrt{41}}{26}$ C $\frac{5}{b}=\frac{\sqrt{41}}{26}$ D $\frac{4}{x}=\frac{26}{\sqrt{41}}$

Slide 249 / 252

Question 3/11

Topic: Problem Solving w/ Similar Triangles
105 What is the value of x ?

Slide 251 / 252

Question 3/11
Topic: Problem Solving w/ Similar Triangles

107 What is the measurement of angle G ?

Slide 250 / 252

Question 3/11

Now, let's use the combination of B Right Triangle Trigonomety \& C Similar Triangles.

106 What would be the ratio that we would use to find the measurement of Angle G?
OA $\tan G=\frac{5}{4}$

Topic: Problem Solving w/ Similar Triangles

$O B \sin G=\frac{5}{26}$
OC $\cos G=\frac{4}{26}$
$O D \tan G=\frac{4}{5}$

Slide 252 / 252

Question 3/11

Topic: Problem Solving w/ Similar Triangles
Since the two triangles are similar, the measurement of angle G is the same in both triangles.
108 Using the measurement of angle G, what is the value of x ?

[^0]: PARCC Released Question (EOY)

