17

Similarity of Triangle

17.1 INTRODUCTION

Looking around you will see many objects which are of the same shape but of same or different sizes. For examples, leaves of a tree have almost the same shape but same or different sizes. Similarly, photographs of different sizes developed from the same negative are of same shape but different sizes, the miniature model of a building and the building itself are of same shape but different sizes. All those objects which have the same shape but different sizes are called similar objects.

Let us examine the similarity of plane figures :
(i) Two line-segments of the same length are congruent but of different lengths are similar.
(ii) Two circles of the same radius are congurent but circles of different radii are similar.

(iii) Two equilateral triangles of different sides are similar.

(iv) Two squares of different sides are similar.

In this lesson, we shall study about the concept of similarity, especially similarity of triangles and the conditions thereof. We shall also study about various results related to them.

17.2 OBJECTIVES

After studying this lesson, the learner will be able to :

- identify similar figures
- distinguish between congurent and similar plane figures
- cite the criteria for similarity of triangles viz. AAA, SSS and SAS.
- verify and use unstarred results given in the curriculum based on similarity experimentally
- prove the Baudhayan/Pythagoras Theorem
- apply these results in verifying experimentally (or proving logically) problems based on similar triangles.

17.3 EXPECTED BACKGROUND KNOWLEDGE

Knowledge of

- plane figures like triangles, quadrilaterals, circles, rectangles, squares, etc.
- criteria of congruency of triangles
- finding squares and square-roots of numbers
- ratio and proportion
- internal and external bisectors of angles of a triangle.

17.4 SIMILAR PLANE FIGURES

Fig. 17.2

In Fig. 17.2, the two pentagon seem to be of the same shape.
We can see that $\angle \mathrm{A}=\angle \mathrm{A}^{\prime}, \angle \mathrm{B}=\angle \mathrm{B}^{\prime}, \angle \mathrm{C}=\angle \mathrm{C}^{\prime}, \angle \mathrm{D}=\angle \mathrm{D}^{\prime}$ and $\angle \mathrm{E}=\angle \mathrm{E}^{\prime}$ and $\frac{\mathrm{AB}}{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=\frac{\mathrm{BC}}{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}=\frac{C D}{\mathrm{C}^{\prime} \mathrm{D}^{\prime}}=\frac{\mathrm{DE}}{\mathrm{D}^{\prime} \mathrm{E}^{\prime}}=\frac{\mathrm{EA}}{\mathrm{E}^{\prime} \mathrm{A}^{\prime}}$. We say that the two pentagons are similar. Thus we say that

Any two polygons, with corresponding angles equal and corresponding sides proportional, are similar

Thus, two polygons are similar, if they satisfy the following two conditions :
(i) Corresponding angles are equal
(ii) The corresponding sides are proportional.

Even if one of the conditions does not hold, the polygons are not similar as in the case of a rectangle and square given in Fig. 17.3. Here all the corresponding angles are equal but the corresponding sides are not proportional.

Fig. 17.3

17.5 SIMILARITY OF TRIANGLES

Triangles are special type of polygons and therefore the conditions of similarity of polygons also hold for triangles. Thus,
Two triangles are similar if
(i) their corresponding angles are equal, and
(ii) their corresponding sides are proportional

Fig. 17.4
We say that $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$ and denote it by writing
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

The symbol ' \sim ' stands for the phrase " is similar to"
If $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$, then by definition
$\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{D}=\angle \mathrm{F}$ and $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$

17.5.1 AAA criterion for similarity

We shall show that if either of the above two conditions is satisfied then the other automatically holds in the case of triangles.

Let us perform the following experiment.
Construct two \triangle 's ABC and PQR in which $\angle \mathrm{P}=\angle \mathrm{A}, \angle \mathrm{Q}=\angle \mathrm{B}$ and $\angle \mathrm{R}=\angle \mathrm{C}$ as shown in Fig. 17.5.

Fig. 17.5
Measure the sides AB, BC and CA of $\triangle \mathrm{ABC}$ and also measure the sides PQ, QR and RP of $\triangle \mathrm{PQR}$.

Now find the ratio $\frac{\mathrm{AB}}{\mathrm{PQ}}, \frac{\mathrm{BC}}{\mathrm{QR}}$ and $\frac{\mathrm{CA}}{\mathrm{RP}}$.
What do you find? You will find that all the three ratios are equal and therefore the triangles are similar.

Try this with different triangles with equal corresponding angles. You will find the same result. Thus, we can say that

If in two triangles, the corresponding angles are equal the triangles are similar.
This is called AAA similarity criterion.

17.5.2 SSS criterion for similarity.

Let us now perform the following experiment :
Draw a triangle ABC with $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4.5 \mathrm{~cm}$ and $\mathrm{CA}=3.5 \mathrm{~cm}$

(i)

(ii)

Fig. 17.6
Draw another $\triangle \mathrm{PQR}$ as shown in Fig. 17.6 (ii)
We can see that $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
i.e., the sides of the two triangles are proportional

Now measure $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ of $\triangle \mathrm{ABC}$ and $\angle \mathrm{P}, \angle \mathrm{Q}$ and $\angle \mathrm{R}$ of $\triangle \mathrm{PQR}$.
You will find that $\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}$ and $\angle \mathrm{C}=\angle \mathrm{R}$.
Repeat the experiment with another two triangles having corresponding sides proportional, you will find that the corresponding angles are equal and so the triangle are similar.

Thus, we can say that
If the corresponding sides of two triangles are proportional the triangles are similar.

17.5.3 SAS Criterian for Similarity

Let us conduct the following experiment.
Take a line $\mathrm{AB}=3 \mathrm{~cm}$ and at A construct an angle of 60°. Cut off $\mathrm{AC}=4.5 \mathrm{~cm}$. Join BC

Fig. 17.7
Now take $\mathrm{PQ}=6 \mathrm{~cm}$. At P , draw an angle of 60° and cut off $\mathrm{PR}=9 \mathrm{~cm}$.
Measure $\angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{Q}$ and $\angle \mathrm{R}$. We shall find that $\angle \mathrm{B}=\angle \mathrm{Q}$ and $\angle \mathrm{C}=\angle \mathrm{R}$
Thus, $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$

Thus, we conclude that
If one angle of a triangle is equal to one angle of the other triangle and the sides containing these angles are proportional, the triangles are similar.

Thus, we have three important criteria for the similarity of triangles. They are given below:
(i) If in two triangles, the corresponding angles are equal, the triangles are similar.
(ii) If the corresponding sides of two triangles are proportional, the triangles are similar.
(iii) If one angle of a triangle is equal to one angle of the other triangle and the sides containing these angles are proportional, the triangle are similar.

Example 17.1 : In Fig. 17.8 are given two triangles $A B C$ and $P Q R$

Fig. 17.8
Is $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$?
Solution : We are given that

$$
\angle \mathrm{A}=\angle \mathrm{P} \text { and } \angle \mathrm{B}=\angle \mathrm{Q}
$$

We also know that

$$
\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}
$$

Thus, according to first criterion of similarity

$$
\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR} .
$$

Example 17.2 :

Fig. 17.9
In Fig. 17.9, $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$. If $\mathrm{AC}=4.8 \mathrm{~cm}, \mathrm{AB}=4 \mathrm{~cm}$ and $\mathrm{PQ}=9 \mathrm{~cm}$, find $P R$.

Solution : It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

$$
\begin{array}{llrl}
& \therefore & \frac{\mathrm{AB}}{\mathrm{PQ}} & =\frac{\mathrm{AC}}{\mathrm{PR}} \\
\text { Let } & \mathrm{PR} & =\mathrm{x} \mathrm{~cm} \\
& \therefore & \frac{4}{9} & =\frac{4.8}{\mathrm{x}} \\
& \Rightarrow & 4 \mathrm{x} & =9 \times 4.8 \\
& \Rightarrow & \mathrm{x} & =10.8 \\
\text { i.e., } & \mathrm{PR} & =10.8 \mathrm{~cm} .
\end{array}
$$

Find the values of x and y if $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
(i)

Fig. 17.10

Fig. 17.11
(iii)

Fig. 17.12

17.6 BASIC PROPORTIONALITY THEOREM

We state below the Basic Proportionality Theorem :

If a line is drawn parallel to one side of a triangle, the other two sides of the triangle are divided proportionally.

Thus, in Fig. 17.13, $\mathrm{DE} \| \mathrm{BC}$, According to the above result $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

We can easily verify this by measuring $\mathrm{AD}, \mathrm{DB}, \mathrm{AE}$ and EC . You will find that

Fig. 17.13

We state the converse of the above result as follows :
If a line divides any two sides of a triangle in the same ratio, the line is parallel to third side of the triangle.

Thus, in Fig. 17.13, if $D E$ divides sides $A B$ and $A C$ of $\triangle A B C$ such that $\frac{A D}{D B}=\frac{A E}{E C}$, then DE \| BC.

We can verify this by measuring $\angle \mathrm{ADE}$ and $\angle \mathrm{ABC}$ and finding that

$$
\angle \mathrm{ADE}=\angle \mathrm{ABC}
$$

These being alternate angles, the lines DE and BC are parallel.
We can verify the above two results by taking different triangles.
Let us solve some examples based on these.
Example 17.3 : In Fig. 17.14, $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{AD}=3 \mathrm{~cm}, \mathrm{DB}=5 \mathrm{~cm}$ and $\mathrm{AE}=6 \mathrm{~cm}$, find AC .
Solution : DE || BC (Given). Let $\mathrm{EC}=\mathrm{x}$

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
\therefore & \frac{3}{5}=\frac{6}{\mathrm{x}} \\
\Rightarrow & 3 \mathrm{x}=30 \\
\Rightarrow & \mathrm{x}=10 \\
\therefore & \mathrm{EC}=10 \mathrm{~cm} \\
\therefore & \mathrm{AC}=\mathrm{AE}+\mathrm{EC}=16 \mathrm{~cm} .
\end{array}
$$

Fig. 17.14

Example 17.4 : In Fig. 17.15, $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=5 \mathrm{~cm}, \mathrm{AE}=4.5 \mathrm{~cm}$ and $\mathrm{EC}=5 \frac{5}{8} \mathrm{~cm}$. Is DE || BC ? Given reasons for your answer.

Solution : We are given that $\mathrm{AD}=4 \mathrm{~cm}$ and $\mathrm{DB}=5 \mathrm{~cm}$.

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{4}{5} \\
\text { Similarly, } & \frac{\mathrm{AE}}{\mathrm{EC}}=\frac{4.5}{\frac{45}{8}}=\frac{9}{2} \times \frac{8}{45}=\frac{4}{5}
\end{array}
$$

Fig. 17.15
$\therefore \quad$ According to converse of Basic Proportionality Theorem DE \| BC.

CHECK YOUR PROGRESS 17.2

1. In Fig. 17.16 (i), (ii) and (iii), $P Q \| B C$. Find the value of x in each case.

Fig. 17.16
2. In Fig. 17.17 [(i), (ii) and (iii)], find whether DE is parallel to BC or not? Give reasons for your answer.

Fig. 17.17

17.7 BISECTOR OF AN ANGLE OF A TRIANGLE

We now state an important result as given below :

The internal bisector of an angle of a triangle divides the opposite side in the ratio of sides containing the angle

Thus, according to the above result, if AD is the internal bisector of $\angle A$ of $\triangle A B C$, then

$$
\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

We can easily verify this by measuring $\mathrm{BD}, \mathrm{DC}, \mathrm{AB}$ and AC and finding the ratios. We will find that

$$
\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

Fig. 17.18

Repeating the same activity with other triangles, we may verify the result.
Let us solve some examples to illustrate this.
Example 17.5 : The sides AB and AC of a triangle are 6 cm and 8 cm . The bisector AD of $\angle \mathrm{A}$ intersects the opposite side BC in D such that $\mathrm{BD}=4.5 \mathrm{~cm}$. Find the length of segment CD.

Solution : According to the above result, we have

$$
\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

$(\because \mathrm{AD}$ is the internal bisector of $\angle \mathrm{A}$ of $\triangle \mathrm{ABC})$

$$
\begin{array}{rlrl}
\text { or } & \frac{4.5}{x} & =\frac{6}{8} \\
\Rightarrow & & 6 x & =4.5 \times 8 \\
& & x & =6
\end{array}
$$

Fig. 17.19
i.e., the length of line-segment $\mathrm{CD}=6 \mathrm{~cm}$.

Example 17.6: The sides of a triangle are $28 \mathrm{~cm}, 36 \mathrm{~cm}$ and 48 cm . Find the lengths of the line-segments into which the smallest side is divided by the bisector of the angle opposite to it.

Solution : The smallest side is of length 28 cm and the sides forming the angle. A opposite to it are 36 cm and 48 cm . Let the angle bisector AD meet BC in D .

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{36}{48}=\frac{3}{4} \\
\Rightarrow & 4 \mathrm{BD}=3 \mathrm{DC} \text { or } \mathrm{BD}=\frac{36}{48} \mathrm{DC}=\frac{3}{4} \mathrm{DC} \\
& \therefore \\
& \mathrm{BC}=\mathrm{BD}+\mathrm{DC}=28 \mathrm{~cm} \\
\therefore & \mathrm{DC}+\frac{3}{4} \mathrm{DC}=28
\end{array}
$$

Fig. 17.20

$$
\begin{array}{ll}
\therefore & \mathrm{DC}=\left(28 \times \frac{4}{7}\right) \mathrm{cm}=16 \\
\therefore & \mathrm{BD}=12 \mathrm{~cm} \text { and } \mathrm{DC}=16 \mathrm{~cm}
\end{array}
$$

CHECK YOUR PROGRESS 17.3

1. In Fig. 17.21, AD is the bisector of $\angle \mathrm{A}$, meeting BC in D . If $\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{BD}=3 \mathrm{~cm}$, $D C=5 \mathrm{~cm}$, find x .

Fig. 17.21
2. In Fig. 17.22, PS is the internal bisector of $\angle \mathrm{P}$ of $\triangle \mathrm{PQR}$. The dimensions of some of the sides are given in Fig. 17.22. Find x.

Fig. 17.22
3. In Fig. 17.23, R S is the internal bisector of $\angle \mathrm{R}$ of $\triangle \mathrm{PQR}$. For the given dimensions, express p , the length of QS in terms of x, y and z .

Fig. 17.23

17.8 SOME MORE IMPORTANT RESULTS

Let us study another important result on similarity in connection with a right triangle and the perpendicular from the vertex of the right angle to the opposite side. We state the result below and try to verify the same.

If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, the triangles on each side of the perpendicular are similar to each other and to the triangle.

Let us try of verify this by an activity.
Draw a $\triangle \mathrm{ABC}$, right angled at A . Draw $\mathrm{AD} \perp$ to the hypotenuse BC , meeting it in D .

$$
\begin{array}{ll}
\text { Let } & \angle \mathrm{DBA}=\alpha, \mathrm{As} \angle \mathrm{ADB}=90^{\circ}, \\
\therefore & \angle \mathrm{BAD}=90^{\circ}-\alpha \\
\text { As } & \angle \mathrm{BAC}=90^{\circ} \text { and } \angle \mathrm{BAD}=90^{\circ}-\alpha,
\end{array}
$$

Fig. 17.24

Therefore $\angle \mathrm{DAC}=\alpha$
Similarly, $\angle \mathrm{DCA}=90^{\circ}-\alpha$
$\therefore \quad \triangle \mathrm{ADB}$ and $\triangle \mathrm{CDA}$ are similar, as it has all the corresponding angles equal.
Also, the angles of $\triangle \mathrm{BAC}$ are $\alpha, 90^{\circ}$ and $90^{\circ}-\alpha$

$$
\therefore \quad \Delta \mathrm{ADB} \sim \Delta \mathrm{CDA} \sim \Delta \mathrm{CAB}
$$

Another important result is about relation between sides and areas of similar triangles.
It states that
The ratio of the areas of similar triangles is equal to the ratio of the squares on their corresponding sides

Let us verify this result by the following activity. Draw two triangles ABC and PQR which are similar i.e., their sides are proportional.

Fig. 17.25

Draw $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{PS} \perp \mathrm{QR}$
Measure the lengths of AD and PS.
Find the product $\mathrm{AD} \times \mathrm{BC}$ and $\mathrm{PS} \times \mathrm{QR}$
You will find that $\mathrm{AD} \times \mathrm{BC}=\mathrm{BC}^{2}$ and $\mathrm{PS} \times \mathrm{QR}=\mathrm{QR}^{2}$
Now $\mathrm{AD} \times \mathrm{BC}=2$. Area of $\triangle \mathrm{ABC}$
$\mathrm{PS} \times \mathrm{QR}=2$. Area of $\triangle \mathrm{PQR}$
$\therefore \quad \frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{PQR}}=\frac{\mathrm{AD} \times \mathrm{BC}}{\mathrm{PS} \times \mathrm{QR}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}$
As $\quad \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
$\therefore \quad \frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{PQR}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$
The activity may be repeated by taking different pairs of similar triangles.
Let us illustrate these results with the help of examples.
Example 17.7 : Find the ratio of the area of two similar triangles if one pair of their corresponding sides are 2.5 cm and 5.0 cm .

Solution : Let the two triangles be ABC and PQR
Let

$$
\mathrm{BC}=2.5 \mathrm{~cm} \text { and } \mathrm{QR}=5.0
$$

$$
\frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{(2.5)^{2}}{(5.0)^{2}}=\frac{1}{4}
$$

Example 17.8 : In a $\triangle A B C, P Q \| B C$ and intersects $A B$ and $A C$ at P and Q respectively. If $\frac{\mathrm{AP}}{\mathrm{BP}}=\frac{2}{3}$, find the ratio of areas of $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$.

Solution : In Fig. 17.26,

$$
\begin{array}{ll}
& \mathrm{PQ} \| \mathrm{BC} \\
& \therefore \\
\therefore & \frac{\mathrm{AP}}{\mathrm{BP}}=\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{2}{3} \\
\therefore & \frac{\mathrm{BP}}{\mathrm{AP}}=\frac{3}{2} \\
\therefore & 1+\frac{\mathrm{BP}}{\mathrm{AP}}=1+\frac{3}{2}=\frac{5}{2}
\end{array}
$$

Fig. 17.26

$$
\begin{gathered}
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{AP}}=\frac{5}{2} \quad \Rightarrow \quad \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{2}{5} \\
\therefore \quad \frac{\operatorname{Area}(\triangle \mathrm{APQ})}{\operatorname{Area}(\triangle \mathrm{ABC})}=\frac{\mathrm{AP}^{2}}{\mathrm{AB}^{2}}=\left(\frac{\mathrm{AP}}{\mathrm{AB}}\right)^{2}=\left(\frac{2}{5}\right)^{2}=\frac{4}{25} .
\end{gathered}
$$

CRD CHECK YOUR PROGRESS 17.4

1. In Fig. 17.27, ABC is a right triangle with $\angle \mathrm{A}=90^{\circ}$ and $\angle \mathrm{C}=30^{\circ}$. Show that $\Delta \mathrm{DAB} \sim \Delta \mathrm{DCA} \sim \Delta \mathrm{ACB}$.

Fig. 17.27
2. Find the ratio of the areas of two similar triangles if the corresponding sides are of lengths 3 cm and 5 cm .
3. In Fig. 17.28, ABC is a triangle in which $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{AD}=2 \mathrm{~cm}$, find the ratio of the area of $\triangle \mathrm{ADE}$ and trapezium DBCE.

Fig. 17.28
4. P, Q and R are the mid-points of the sides $A B, B C$ and $C A$ of the $\triangle A B C$ respectively. Show that the area of $\triangle \mathrm{PQR}$ is one-fourth the area of $\triangle \mathrm{ABC}$.
5. In two similar triangles $A B C$ and $P Q R$, if the corresponding altitudes $A D$ and $P S$ are in the ratio of $4: 9$, find the ratio of the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$.
$\left[\right.$ Hint : Use $\left.\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PS}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{PR}}\right]$
6. If the ratio of the areas of two similar triangles is $16: 25$, find the ratio of their corresponding sides.

17.9 BAUDHAYAN/PYTHAGORAS THEOREM

We know prove an important theorem, called Baudhayan/Phythagorus Theorem using the concept of similarity.

Theorem : In a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Given. A right triangle ABC , in which $\angle \mathrm{B}=90^{\circ}$.
To Prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Construction. From B, draw $\mathrm{BD} \perp \mathrm{AC}$ (See Fig. 17.29)
Proof : BD $\perp \mathrm{AC}$

$$
\begin{array}{ll}
\therefore & \Delta \mathrm{ADB} \sim \Delta \mathrm{ABC} \\
\text { and } & \Delta \mathrm{BDC} \sim \Delta \mathrm{ABC} \tag{ii}
\end{array}
$$

From (i), we get $\quad \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AD}}{\mathrm{AB}}$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{AB}^{2}=\mathrm{AC} \cdot \mathrm{AD} \tag{A}
\end{equation*}
$$

Fig. 17.29

From (ii), we get $\quad \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{DC}}{\mathrm{BC}}$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{BC}^{2}=\mathrm{AC} \cdot \mathrm{DC} \tag{B}
\end{equation*}
$$

Adding (A) and (B), we get

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =\mathrm{AC}(\mathrm{AD}+\mathrm{DC}) \\
& =\mathrm{AC} \cdot \mathrm{AC}=\mathrm{AC}^{2}
\end{aligned}
$$

The theorem is known after the name of famous Greek Mathematician Pythagoras. This was originally stated by the Indian Mathematician. Baudhayan about 200 years before Pythagoras.

17.9.1 Converse of Pythagoras Theorem

The conserve of the above theorem states :

In a triangle, if the square on one side is equal to sum of the squares on the other two sides, the angle opposite to first side is a right angle.

This result can be verified by the following activity.
Draw a triangle ABC with side $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm .
i.e.,
$\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.

You can see that $\mathrm{AB}^{2}+\mathrm{BC}^{2}=(3)^{2}+(4)^{2}$

$$
=9+16=25
$$

Fig. 17.30

$$
\begin{aligned}
\mathrm{AC}^{2} & =(5)^{2}=25 \\
\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2} & =\mathrm{AC}^{2}
\end{aligned}
$$

The triangle in Fig. 17.30 satisfies the condition of the above result.
Measure $\angle \mathrm{ABC}$, you will find that $\angle \mathrm{ABC}=90^{\circ}$. Construct triangles of sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm , and of sides $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$. You will again find that the angles opposite to side of length 13 cm and 25 cm are 90° each.

Let us solve some examples using above results.
Example 17.9 : In a right triangle, the sides containing the right angle are of length 5 cm and 12 cm . Find the length of the hypotenuse.

Solution : Let ABC be the right triangle, right angled at B

$$
\begin{array}{lrl}
\therefore & \mathrm{AB} & =5 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm} \\
\text { Also, } & \mathrm{AC}^{2} & =\mathrm{BC}^{2}+\mathrm{AB}^{2} \\
& =(12)^{2}+(5)^{2} \\
& & =144+125 \\
& & =169 \\
\therefore & \mathrm{AC} & =13
\end{array}
$$

i.e., the length of the hypotenuse is 13 cm .

Example 17.10 : Find the length of diagonal of a rectangle the lengths of whose sides are 3 cm and 4 cm .

Solution : In Fig. 17.31, is a rectangle ABCD. Join the diagonal BD. Now DCB is a right triangle.

$$
\begin{aligned}
\therefore \quad \mathrm{BD}^{2} & =\mathrm{BC}^{2}+\mathrm{CD}^{2} \\
& =4^{2}+3^{2} \\
& =16+9=25 \\
\mathrm{BD} & =5
\end{aligned}
$$

Fig. 17.31
i.e., the length of diagonal of rectangle ABCD is 5 cm .

Example 17.11 : In an equilateral triangle, verify that three times the square on one side is equal to four times the square on its altitude.

Solution : The altitude $\mathrm{AD} \perp \mathrm{BC}$
and $\quad \mathrm{BD}=\mathrm{CD}$
Let $\quad \mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 \mathrm{a}$
and $\quad \mathrm{BD}=\mathrm{CD}=\mathrm{a}$
Let $\quad \mathrm{AD}=\mathrm{x}$

Fig. 17.32

$$
\begin{aligned}
\therefore \quad x^{2} & =(2 a)^{2}-(a)^{2}=3 a^{2} \\
\text { 3. }(\text { Side })^{2} & =3 \cdot(2 a)^{2}=12 a^{2} \\
\text { 4. }(\text { Altitude }) & =4.3 a^{2}=12 a^{2}
\end{aligned}
$$

Hence the result.
Example 17.12 : ABC is a right triangle, right angled at C . If CD , the length of perpendicular from C on $A B$ is $p, B C=a, A C=b$ and $A B=c$, show that
(i) $\mathrm{pc}=\mathrm{ab}$
(ii) $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$

Solution : (i) $\mathrm{CD} \perp \mathrm{AB}$

Fig. 17.33
(ii) $\quad \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
or $\quad c^{2}=b^{2}+a^{2}$

$$
\left(\frac{\mathrm{ab}}{\mathrm{p}}\right)^{2}=\mathrm{b}^{2}+\mathrm{a}^{2}
$$

$$
\text { or } \quad \frac{1}{\mathrm{p}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}
$$

CHECK YOUR PROGRESS 17.5

1. The sides of certain triangles are given below. Determine which of them are right triangles $:[\mathrm{AB}=\mathrm{c}, \mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}]$
(i) $\mathrm{a}=4 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}, \mathrm{c}=3 \mathrm{~cm}$
(ii) $\mathrm{a}=1.6 \mathrm{~cm}, \mathrm{~b}=3.8 \mathrm{~cm}, \mathrm{c}=4 \mathrm{~cm}$
(iii) $\mathrm{a}=9 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}, \mathrm{c}=18 \mathrm{~cm}$
(iv) $\mathrm{a}=7 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}, \mathrm{c}=25 \mathrm{~cm}$
2. Two poles of height 6 m and 11 m , stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.

$$
\begin{aligned}
& \therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{ACD} \\
& \therefore \quad \frac{\mathrm{c}}{\mathrm{~b}}=\frac{\mathrm{a}}{\mathrm{p}} \\
& \Rightarrow \quad \mathrm{pc}=\mathrm{ab} \text {. }
\end{aligned}
$$

3. Find the length of the diagonal of a square of side 10 cm .
4. In Fig. 17.34, $\angle \mathrm{C}$ is acute and $\mathrm{AD} \perp \mathrm{BC}$. Show that $\mathrm{AB}^{2}=A C^{2}+\mathrm{BC}^{2}-2 \mathrm{BC}$. DC

Fig. 17.34
5. L and M are the mid-points of the sides $A B$ and $A C$ of $\triangle A B C$, right angled at B. Show that
$4 \mathrm{LC}^{2}=\mathrm{AB}^{2}+4 \mathrm{BC}^{2}$
6. P and Q are points on the sides $C A$ and $C B$ respectively of $\triangle A B C$, right angled at C. Prove that
$\mathrm{AQ}^{2}+\mathrm{BP}^{2}=\mathrm{AB}^{2}+\mathrm{PQ}^{2}$
7. PQR is an isosceles right triangle with $\angle \mathrm{Q}=90^{\circ}$. Prove that $\mathrm{PR}^{2}=2 \mathrm{PQ}^{2}$.
8. A ladder is placed against a wall such that its top reaches upto a height of 4 m of the wall. If the foot of the ladder is 3 m away from the wall, find the length of the ladder.

LET US SUM UP

- Objects which have the same shape but different sizes are called similar objects.
- Any two polygons, with corresponding angles equal and corresponding sides proportional, are similar.
- Two triangles are said to be similar, if
(a) their corresponding angles are equal and
(b) their corresponding sides are proportional
- Criteria of similarity
- AAA criterion
- SSS criterion
- SAS criterion
- If a line is drawn parallel to one-side of a triangle, it divides the other two sides in the same ratio and its converse.
- The internal bisector of an angle of a triangle divides the opposite side in the ratio of sides containing the angle.
- If a perpendicular is drawn from the vertex of the right angle of a right angled triangle to the hypotenuse, the triangles so formed are similar to each other and to the given triangle.
- The ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
- In a right triangle, the square on the hypotenuse is equal to sum of the squares on the remaining two sides - (Baudhyan) Pythagoras Theorem
- In a triangle, if the square on one side is equal to the sum of the squares on the remaining two sides, then the angle opposite to the first side is a right angle - converse of (Baudhayan) Pythagoras Theorem.

TERMINAL EXERCISE

1. Write the criteria for the similarity of two polygons.
2. Enumerate different criteria for the similarity of the two triangles.
3. In which of the following cases, Δ 's $A B C$ and $P Q R$ are similar
(i) $\angle \mathrm{A}=40^{\circ}, \angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=80^{\circ}, \angle \mathrm{P}=40^{\circ}, \angle \mathrm{Q}=60^{\circ}$ and $\angle \mathrm{R}=80^{\circ}$
(ii) $\angle \mathrm{A}=50^{\circ}, \angle \mathrm{B}=70^{\circ}, \angle \mathrm{C}=60^{\circ}, \angle \mathrm{P}=50^{\circ}, \angle \mathrm{Q}=60^{\circ}$ and $\angle \mathrm{R}=70^{\circ}$
(iii) $\mathrm{AB}=2.5 \mathrm{~cm}, \mathrm{BC}=4.5 \mathrm{~cm}, \mathrm{CA}=3.5 \mathrm{~cm}$
$\mathrm{PQ}=5.0 \mathrm{~cm}, \mathrm{QR}=9.0 \mathrm{~cm}, \mathrm{RP}=7.0 \mathrm{~cm}$
(iv) $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CA}=5.0 \mathrm{~cm}$
$\mathrm{PQ}=4.5 \mathrm{~cm}, \mathrm{QR}=7.5 \mathrm{~cm}, \mathrm{RP}=6.0 \mathrm{~cm}$.
4. In Fig. 17.35, $\mathrm{AD}=3 \mathrm{~cm}, \mathrm{AE}=4.5 \mathrm{~cm}, \mathrm{DB}=4.0 \mathrm{~cm}$, find CE , given that $\mathrm{DE} \| \mathrm{BC}$.

Fig. 17.35

Fig. 17.36
5. In Fig. 15.36, DE \|AC. From the dimension given in the figure, find the value of x.
6. In Fig. 17.37 is shown a $\triangle \mathrm{ABC}$ in which $\mathrm{AD}=5 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm}, \mathrm{AE}=2.50 \mathrm{~cm}$ and $\mathrm{EC}=1.5 \mathrm{~cm}$. Is $\mathrm{DE} \| \mathrm{BC}$? Give reasons for your answer.

Fig. 17.37

Fig. 17.38
7. In Fig. 17.38, AD is the internal bisector of $\angle \mathrm{A}$ of $\triangle \mathrm{ABC}$. From the given dimension, find x.
8. The perimeter of two similar Δ 's ABC and DEF are 12 cm and 18 cm . Find the ratio of the area of $\triangle \mathrm{ABC}$ to that of $\triangle \mathrm{DEF}$.
9. The altitudes AD and PS of two similar Δ 's ABC and PQR are of length 2.5 cm and 3.5 cm . Find the ratio of area of $\triangle \mathrm{ABC}$ to that of $\triangle \mathrm{PQR}$.
10. Which of the following are right triangles ?
(i) $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}, \mathrm{CA}=13 \mathrm{~cm}$
(ii) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=10 \mathrm{~cm}$
(iii) $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{CA}=6 \mathrm{~cm}$
(iv) $\mathrm{AB}=25 \mathrm{~cm}, \mathrm{BC}=24 \mathrm{~cm}, \mathrm{CA}=7 \mathrm{~cm}$
(v) $\mathrm{AB}=\mathrm{a}^{2}+\mathrm{b}^{2}, \mathrm{BC}=2 \mathrm{ab}, \mathrm{CA}=\mathrm{a}^{2}-\mathrm{b}^{2}$

Fig. 17.39
12. Two poles of height 12 m and 17 m , stand on a plane ground and the distance between their feet is 12 m . Find the distance between their tops.
13. In Fig. 17.39, show that
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} . C D$
14. A ladder is placed against a wall and its top reaches a point at a height of 8 m from the ground. If the distance between the wall and foot of the ladder is 6 m , find the length of the ladder.
15. In an equilateral triangle, show that three times the square of a side equals four times the square on medians.

ANSWERS

Check Your Progress 17.1

1.

(i) $\mathrm{x}=4.5, \mathrm{y}=3.5$
(ii) $\mathrm{x}=70, \mathrm{y}=50$
(iii) $\mathrm{x}=2 \mathrm{~cm}, \mathrm{y}=7 \mathrm{~cm}$

Check Your Progress 17.2

1. (i) 6
(ii) 6
(iii) 10 cm
2. (i) No
(ii) Yes
(iii) Yes

Check Your Progress 17.3

1. 7.5 cm
2. 4 cm
3. $\frac{\mathrm{yz}}{\mathrm{x}} \quad(\mathrm{x}=-1$ is not possible $)$

Check Your Progress 17.4

2. $9: 25$
3. $1: 8$
4. $16: 81$
5. $4: 5$

Check Your Progress 17.5

1. (i) Yes
(ii) No
(iii) No
(iv) Yes
2. 13 m
3. $10 \sqrt{2} \mathrm{~cm}$
4. 5 m

Terminal Exercise

3. (i) and (iii)
4. 6 cm
5. 4.5 cm
6. Yes: $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
7. 4.5 cm
8. $4: 9$
9. $25: 49$
10. (i), (ii), (iv) and (v)
11. $\sqrt{3} a^{2}$
12. 13 m
13. 10 m
