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SUMMARY-Scale analysis of coupledheat and mass transferfrom apoint or ahorizontal line source in an infinite
saturated porous medium is reported is this paper. Conservation equations are shown to have solutionsof similarity
form for generalized variablesin the case of flow when dispersion is predominantovermolecular diffusion. Closed-
form solutions are presented for Darcy and non-Darcy natural convection for both point and line sources. The
estimationsof distances from sourceswhere the solutionsobtainedwill be valid aregiven.

1. INTRODUCTION

Natural convection phenomena in porous media
can be associated with simultaneous heat and
mass transfer. Buoyancy forces that drive such
flows arise not only density differences due
to variation in temperature but also from those
due to variations in solute (chemical species)
concentration. Examples are found in many
natural and technological applications such as
geothermics, geophysics, grain storage
installations, the dispersion of chemical
contaminants through water-saturated soil, and
underground disposal of nuclear wastes. This
problem also finds applications in chemical
industry.

Transfer processes around concentrated sources
have a significant place in research of the
mechanism of coupled double natural
convection. Relative to the research activity on
the flow around concentrated sources induced by
thermal buoyancy alone, the problem of the near-
source convection driven by two buoyancy effects
has received quite limited attention. Even in the
review by Trevisan and Bejan (1990) devoted
solely to the combined transfer processes by
natural convection, and in the book by Nield and
Bejan (1999) containing an exhaustive
bibliography on convection in porous media, only
a few papers are cited on this problem. The
transient and steady state flow near a point source
of heat and mass in the low Rayleigh number
regime was the subject of investigation by
Poulikakos (1985).

The corresponding problem for the vicinity of a
horizontal line sourcewas analyzed by Larson and
Poulikakos (1986). The solutions were obtained
by means of perturbation analysis in the thermal
Rayleigh number. The effect of species diffusion
on the buoyancy induced by temperature and flow
fields near the concentrated heat and mass sources
in porous medium were discussed. The high
Rayleigh number regime of coupled double

diffusive natural convection from a line source in
porous medium for Darcy flow has been
considered by (1990). It was shown that the
boundary layer equations can be written in terms
of the similarity variables for power-law variation
of centre-line temperature and concentration and
have closed-form solutions for the special case of
Lewis number = 1.

In the comparatively recent paper by Telles and
Trevisan (1993) the problem of dispersion in
natural convection heat and mass transfer for the
case of vertical surfaces embedded in a porous
mediumwas analyzed. The authors focused on the
boundary layer regime for Darcy flow through a
porous medium and studied the effect of
hydrodynamic dispersion in porousmedia on both
heat and mass transfer in natural convection
flows. It was shown that a few different classes of
problem exist depending on the dispersion
coefficients. They presented several numerical
solutions of the systems of similarity equations,
including the case when the thermal and the mass
dispersions supersede the molecular diffusion.
However the problems of dispersion heat and
mass transfer near the source in porous media
have escaped scrutiny.

Before proceeding to an analysis of the combined
effect of the molecular and the dispersion
mechanisms we have to have some asymptotic
solutions for each mechanism individually that
permit reasonably simple solutions and proper
physical interpretation, and thus serve the
purposes of verification and qualitative analysis.

2. MATHEMATICALFORMULATION

Natural convection heat and mass transfer is
considered in this paper in the steady-state regime
from a point or a line sources embedded in a
porous medium of permeability saturated with a

liquid of viscosity , density and the heat
capacity The sources generate heat at a rate
and, at the same time, a substanceat a rate m.
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For the density variations, the assumption of a
Boussinesq fluid has been made, which means
that the density is assumed constant everywhere
except in the body force term in the momentum

equations via the thermal )and the
concentration ( ) volumetric expansion
coefficients.

Under the boundary layer approximation, the
governing equations that describe the flow in the
plume above a point and a line source are given as
follows

- + =
K b

(C- ( 1 )

with the boundary conditions given by

0,-=o, y = o

The total energy and mass diffusion conservation
conditions across any horizontal plane in the
plume are

- =-
0

Here and 1 for a line and a point source,
respectively; inertial coefficient where
form-dragconstant is of the order of magnitude

(Ward, 1964;Nield Bejan, 1999).

We will focus on two limiting flow regimes. The
first one is Darcy flow

- (C

V

In the other case the role of the linear resistance is
negligible, so that one can use the next version of
the momentum equation (an inertial flow)

(10)

The coefficients and represent overall the
thermal and the mass diffusivities, respectively.
They embody both molecular diffusion and
dispersion.

b

One can say, at the present time the commonly
accepted typical representation of overall
diffusivity for boundary-layer-type problems
the problemof interest) is (Aerov Umnik, 1951;
Ranz,1952;Wakao Kaguei, 1982)
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where is the stagnant thermal conductivity of
a fluid and a saturated porous medium; D is the
molecular mass diffusivity; is the characteristic
length (an analog of the mixing length in
turbulence); and represent the dispersion
coefficients.

In the next sectionwe consider the boundary-layer
heat and mass transfer problem with scale
analysis. Then the similarity analysis of the
problem when the dispersion mechanism
supersedes the molecular dispersion will also be
presented.

3. SCALEANALYSIS

The algorithm of the scale analysis of boundary-
layer-type transfer processes was detailed in by
Ghukhman (1967). For the problem of the same
type for porous media this approach was
extensively used by A. Bejan (see, for instance,
Nield Bejan (1999) for details and references).

The simplest case of the dominant diffusion
mechanismwill be our initial concern.

3.1. Molecular mechanism

Heat transferdrivenflows

Consider the case of heat transfer driven flows
when the molecular diffusion is predominant

in the momentum equation.
Using the scale analysis one can obtain the next
estimations for a line source and Darcy flow on
the basis of the momentum, the energy and the
mass conservationequations

or

where = is the Rayleigh

number for a line sourceand Darcy flow; andH
are the heat plume thickness and height.

The concentration plume thickness can be
estimated following Bejan (1985). We
obtain from the concentrationequation (3)

AC

H

For the case the Lewis number

using as a scale length and
accountingfor the estimations (13)we have

a

and for the case (Le



The Table 1summarizesall for this class of flow. molecular diffusion.Whereas for the case of
It is worthy of note that these results for the heat Darcy flow regime it seems quite reasonable for

plume are the same obtained for pure heat transfer many kinds of liquids, Darcy flow needs
natural convection. additional estimations to find the field of
Here application.

, =-,

are the modified Rayleigh numbers.

POINT SOURCE LINE SOURCE

(inertial regime) 

Table 1 Transport scales for moleculardiffusiononly

Mass transfer drivenflow

For these flows the buoyancy effect due to
variations in solute concentration is dominant

in the momentum equation).

New scales we obtain from the momentum and
the constituent conservation equations, keeping in

mind that the scale length of the flow is

linesource

Here N =-is the 'buoyancy' ratio.

3.2. Hydrodynamicdispersion

In this section we will consider that the
hydrodynamic dispersion supersedes the

The Darcy flow regime is realized if Re =

Taking into account the velocity and the
plume thickness scales (13) we have

Ra

Butfrom the relations (10) it follows that

a, =a+ = ,Da =

The dispersion is predominant if
These estimations are compatible if
which can be realised for oils and chemical
solutions.

With the procedure given in Sec.3.1 one can
obtain the next scales of flow (for the safe of
simplicity we suggest the mixing lengths for the
heat and the mass dispersion are the same. But it
is not difficultto carry out the full analysis):

POINTSOURCE LINE SOURCE

Darcyflow

(inertial regime) 

a a
H H

(1

Table2 Scales for dispersiononly

4. SIMILARITY SOLUTION

Scaleanalysis allows an understanding of the role
of the main parameters controlling the
phenomenon, and is very useful for experimental
data processing and finding possible self-similar
transformationsin the governing equations.

The similarity solutions for the particular' case
where dispersiondominates arenow presented.
The energy and the constituent conservation
equationstake the form
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F'

inertialflow

These equations coupled with the momentum
equation (9) (or mass conservation
equation (4) and the boundary conditions (5)- (8)
form the complete set of equations.

Furthermore let be the generalized
'temperature'

3
(F'Q')

where primes denote differentiation with respect

to
These systems are subject to the boundary
conditions

Then the problem of interest will be formulated as

and the generalizedconservationconstraint
W

=0
0

These equations have the following analytical
solutions

for a line source
Darcyflow

1

inertialflow
The foregoing boundary layer scales suggest the
following similarity transformations

0 for Darcy flow

for a point source

Darcy flow0

0 for inertial flow

with the independent variables

and stream function

=x / l =

where A = 3 =0.7036 ; and are

the Bessel functionsof the first kind, respectively,
of zeroth and first-order; is the first

Using these variables and Eqs
(14) - (20) reduce to the following sets of the
ordinarydifferentialequations:

Darcyflow

root of the function

The distinctive feature of the solution of the
statement under discussion is that the temperature
(concentration) perturbation is localized withn + l

4
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space. This is common with non-linear problems
of heat conduction (Landau 1987).

FromEqs (21)-(28) it follows that the temperature
(concentration) difference falls on the plume of
the terminal thickness:

Darcyflow

= = line source (29)

= =3.401 - point source (30)

0 inertial flow

= - line source (31)

= =4.165 - point source (32)

The plume has a parabolic form.

When equations (29) and (30) are comparedwith
equations (31) and (32) it is apparent that the
quadratic resistance causes an increase in the
temperature (concentration)boundary layer.

The temperature on the centre-linehas the form:

point source

distances sources when one can use
analytical solutions

It is well to bear in mind that these solutions can
break down in the neighbourhood of the plume
borders for the conductivity component can be of
considerable importance in transfer processes
because of small convectivevelocities.

5. CONCLUSIONS

In this paper only the analysis of limiting
situations of the dominant effects of either
molecular or dispersion diffusion mechanism of
coupled heat and mass transfer from point or line
sources embedded in a porous medium is
presented. The results of scale analysis have
demonstrated a key part of these mechanisms on
the heat and mass transfer laws and have enabled
us to obtain new simple analytical solutions for
the case of predominant part of dispersion on the
assumption of identical mechanism for heat and
mass transfer.

The limited space of the paper has not allowed
presentation of an analysis with coupled effects
both of thesemechanisms.
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