Simple Digital Logic Design (H-Bridge)

Georgia Institute of Technology CS 3651 — Prototyping
Intelligent Appliances

Simple Digital Logic Design

L
® The basic steps in designing a simple digital circuit are:

9 Step 1: Define the problem
* Truth tables

9 Step 2: Translate truth tables into combinatorial logic circuit
* Boolean Algebra
* Minterms
* Sum of Products (or Product of Sums)

9 Step 3: Optimization
* Boolean Identities
* DeMorgan’s Law
+ Karnaugh Maps (K-Maps)

9 Step 4: Build It!
* Protoboard and Integrated Circuits.

* Warning: This is a lot of information if it is your first exposure
to circuits!

Aug 29 2007 2

Step 1: Define the Problem

® Digital logic circuits can contain multiple inputs and
outputs.

® The combinations of inputs and outputs can be
represented in a table form (called truth tables).

® Truth tables should list ALL the combinations of inputs and
outputs.

Example: Inverter

Input Output

0 1

1 0

Our Problem: H-bridge

e @
® We want to build a device called an H-Bridge.

9 An H-bridge is a simple motor controller that is used to
provide 4 functions to an electric motor: Forward, Reverse,
Brake, and Coast. The functions are selected with 2 input
lines.

9 The H-bridge is built with 4 switches, and allows voltage to
be applied across the motor in either direction.

Ca s

D ~®

S2 5S4

Photo courtesy of Wikipedia

H-Bridge Truth Table

® H-Bridge input table H-Bridge output table
IN2 | IN1 | Function Function | SW1 Sw2 SW3 SW4
0 0 Coast Coast 0 0 0 0
0 1 Forward Forward 1 0 0 1
1 0 Reverse Reverse 0 1 1 0
1 1 Brake Brake 1 0 1 0
® H-Bridge full combinatorial logic full truth table
IN2 IN1 SW1 SW2 SW3 SW4 | Function
0 0 0 0 0 0 Coast
0 1 1 0 0 1 Forward
1 0 0 1 1 0 Reverse
1 1 1 0 1 0 Brake

Step 2: Translate truth table into circuit

® All digital circuits can be built with some combination of
AND, OR, and NOT gates.

® Depending on what gates you have available, you can
redesign your circuit to use different types of gates (using S
DeMorgan’s Law). S

® NAND gates are widely used. L
A B ouT
oo 1 A
0o 1 |1 out
1 0 1 B
1 1 0

Step 2 cont.: Translate truth table into circuit

® These gates are available in integrated circuits that you
can buy at electronics stores (RadioShack, Fry’s, etc.)

14 13 12 11 10) 8 |=—PFing

GEMD

Step 2 cont.: Translate truth table into circuit

® There are a couple different ways to translate a truth table
Into a physical circuit.

® One easy was Is the Sum of Products method (SOP),
another way is the Product of Sums (POS) method.

® These methods create a working circuit that is NOT

optimized.

® Uses Boolean algebra (not the same as regular algebra)
* A=B+C A=B OR C
* A=B*C A=B AND C

+ A=BC A=B AND C
+ A=B A=NOT(B)

Sum of Products

I
® Select the rows that generate a TRUE output, and then

combine the terms with an OR gate.

® You do this separately for each output value (swl. . .sw4).

SWi=

IN2*IN1 + IN2*IN1

SW2=

IN2*IN1

IN2 IN1 SW1 SwW2 SW3 SW4 | Function

0 0 0 0 0 0 Coast

0 1 1 0) 0) 1 Forward

1 o) 0 1 1 0 Reverse

1 1 1 0 1 0 Brake
IN2 |IN1 | SW1 IN2 |[IN1 |SW2 IN2 |IN1 | SW3

SW3=

IN2*IN1 + IN2*IN1

SW4=

IN2*IN1

Sum of Products

i)—

2

IN2 | 4)_1‘
IN1 2 SW1=IN2*IN1 + IN2*IN1

IN2 I
SW2
INL —I>Q—L

SW2=IN2*IN1

IN2 1
IN1 2 SW3=IN2*IN1 + IN2*IN1

Do yo

IN2 —[>O—|—

u see any

unnecessary
gates?

IN1 2

SW4=IN2*IN1

Step 3: Optimization — Boolean Identities

® Using Boolean identities, the circuit can be simplified.

I. |Law of Identity A=A
A=A
2. |Commulative Law A*B=B A
A+B=B+A
3, | Associative Law A+ B-Cy=A-B:C
A+{(B+C)= A+EB+C
4, |Idempotent Law A-A=A
A+A=A
5. |Double Negative Law A=A
6. |Complementary Law AA=0
A+A =1
7. (Law of Intersection A-l=A
A0 =0
8. |Law of Union A+l =1
A+0=A
9. | DeMaorgan’s Theorem AB=A+B
A+B=AB
1), | Distributive Law A B+C)=(AB)+(A-O)
A+(BC) = (A+B)-(A+C)
11. |Law of Absorption A-(A+B)=A
A+(AB) = A
12. |Law of Common Identitles A «(A +B) = AB
A+(AB) = A+B

Step 3: Optimization — K Maps

® Karnaugh Maps are a graphical way to optimize
circuits.

® It involves populating the K-map tables from the truth
tables with the correct vales, and then grouping
rectangles of 1's together according to certain rules. %

AB
00 01 11 10
A AB
0 1 00 01 11 10 00
0 0 01
B C CD
1 1 11
2 Input K-Map 3 Input K-Map 10

4 Input K-Map

Step 4: Build it!

Final Circult

e
| 2

IN2 | o !
\ 3
-

Conclusion

I
® This method is great for prototyping because

9 1) It is really cheap. Each discrete logic chip is about 10
cents.

9 2) Itis reliable, the chips do what you want them to do as
soon as you get them. No programming necessatry.

® The catch: it does not scale well for anything more than a
simple circuit.

® |t does not have any delays built in to compensate for the
switching times of the H-Bridge!

® FPGA (field programmable gate arrays) are used for more
complex circuits, and require the user to program the
chips.

	Simple Digital Logic Design (H-Bridge)
	Simple Digital Logic Design
	Step 1: Define the Problem
	Our Problem: H-bridge
	H-Bridge Truth Table
	Step 2: Translate truth table into circuit
	Step 2 cont.: Translate truth table into circuit
	Step 2 cont.: Translate truth table into circuit
	Sum of Products
	Sum of Products
	Step 3: Optimization – Boolean Identities
	Step 3: Optimization – K Maps
	Step 4: Build it!
	Conclusion

