
CS 3651 – Prototyping
Intelligent Appliances

Simple Digital Logic Design (H-Bridge)

Georgia Institute of Technology

Aug 29 2007 2

Simple Digital Logic Design

The basic steps in designing a simple digital circuit are:
Step 1: Define the problem

Truth tables
Step 2: Translate truth tables into combinatorial logic circuit

Boolean Algebra
Minterms
Sum of Products (or Product of Sums)

Step 3: Optimization
Boolean Identities
DeMorgan’s Law
Karnaugh Maps (K-Maps)

Step 4: Build It!
Protoboard and Integrated Circuits.

Warning: This is a lot of information if it is your first exposure
to circuits!

Step 1: Define the Problem

Digital logic circuits can contain multiple inputs and
outputs.
The combinations of inputs and outputs can be
represented in a table form (called truth tables).
Truth tables should list ALL the combinations of inputs and
outputs.

 Example: Inverter

Input Output

0 1

1 0

Our Problem: H-bridge

We want to build a device called an H-Bridge.
An H-bridge is a simple motor controller that is used to
provide 4 functions to an electric motor: Forward, Reverse,
Brake, and Coast. The functions are selected with 2 input
lines.
The H-bridge is built with 4 switches, and allows voltage to
be applied across the motor in either direction.

Photo courtesy of Wikipedia

H-Bridge Truth Table

H-Bridge input table H-Bridge output table

H-Bridge full combinatorial logic full truth table

IN 2 IN 1 Function

0 0 Coast

0 1 Forward

1 0 Reverse

1 1 Brake

Function SW1 SW2 SW3 SW4

Coast 0 0 0 0

Forward 1 0 0 1

Reverse 0 1 1 0

Brake 1 0 1 0

IN2 IN1 SW1 SW2 SW3 SW4 Function

0 0 0 0 0 0 Coast

0 1 1 0 0 1 Forward

1 0 0 1 1 0 Reverse

1 1 1 0 1 0 Brake

Step 2: Translate truth table into circuit

All digital circuits can be built with some combination of
AND, OR, and NOT gates.
Depending on what gates you have available, you can
redesign your circuit to use different types of gates (using
DeMorgan’s Law).
NAND gates are widely used.

A B OUT

0 0 1

0 1 1

1 0 1

1 1 0

Step 2 cont.: Translate truth table into circuit

These gates are available in integrated circuits that you
can buy at electronics stores (RadioShack, Fry’s, etc.)

Step 2 cont.: Translate truth table into circuit

There are a couple different ways to translate a truth table
into a physical circuit.
One easy was is the Sum of Products method (SOP),
another way is the Product of Sums (POS) method.
These methods create a working circuit that is NOT
optimized.
Uses Boolean algebra (not the same as regular algebra)
• A=B+C A=B OR C
• A=B*C A=B AND C
• A=BC A=B AND C
• A=B A=NOT(B)

Sum of Products

Select the rows that generate a TRUE output, and then
combine the terms with an OR gate.
You do this separately for each output value (sw1. . .sw4).

IN2 IN1 SW1 SW2 SW3 SW4 Function

0 0 0 0 0 0 Coast

0 1 1 0 0 1 Forward

1 0 0 1 1 0 Reverse

1 1 1 0 1 0 Brake

IN2 IN1 SW1

0 0 0

0 1 1

1 0 0

1 1 1

IN2 IN1 SW2

0 0 0

0 1 0

1 0 1

1 1 0

IN2 IN1 SW3

0 0 0

0 1 0

1 0 1

1 1 1

IN2 IN1 SW4

0 0 0

0 1 1

1 0 0

1 1 0

SW1= SW2= SW3= SW4=

IN2*IN1 + IN2*IN1 IN2*IN1 IN2*IN1 + IN2*IN1 IN2*IN1

Sum of Products

IN2

IN1

IN2

IN1

SW1

IN2

IN1

IN2

IN1

SW3

SW1=IN2*IN1 + IN2*IN1

SW3=IN2*IN1 + IN2*IN1

IN2

IN1

IN2

IN1
SW2 SW4

SW2=IN2*IN1 SW4=IN2*IN1

Do you see any
unnecessary
gates?

Step 3: Optimization – Boolean Identities

Using Boolean identities, the circuit can be simplified.

Step 3: Optimization – K Maps

Karnaugh Maps are a graphical way to optimize
circuits.
It involves populating the K-map tables from the truth
tables with the correct vales, and then grouping
rectangles of 1’s together according to certain rules.

0 1

0

1

A

B

00 01

0

1

AB

C

11 10

00 01

00

01

AB

CD

11 10

11

10

4 Input K-Map

3 Input K-Map2 Input K-Map

Step 4: Build it!

M

Power

GND

IN2

IN1

Final Circuit

Conclusion

This method is great for prototyping because
1) It is really cheap. Each discrete logic chip is about 10
cents.
2) It is reliable, the chips do what you want them to do as
soon as you get them. No programming necessary.

The catch: it does not scale well for anything more than a
simple circuit.
It does not have any delays built in to compensate for the
switching times of the H-Bridge!
FPGA (field programmable gate arrays) are used for more
complex circuits, and require the user to program the
chips.

	Simple Digital Logic Design (H-Bridge)
	Simple Digital Logic Design
	Step 1: Define the Problem
	Our Problem: H-bridge
	H-Bridge Truth Table
	Step 2: Translate truth table into circuit
	Step 2 cont.: Translate truth table into circuit
	Step 2 cont.: Translate truth table into circuit
	Sum of Products
	Sum of Products
	Step 3: Optimization – Boolean Identities
	Step 3: Optimization – K Maps
	Step 4: Build it!
	Conclusion

