Simple for Dead load and Continuous for Live loads (SDCL)- Steel Bridges ABC Application

Summary of more than ten years of research, field application and monitoring

Aaron Yakel- University of Nebraska-Lincoln Reza Farimani, Thornton Tomasetti Saeed Javidi, Associated Engineering, CA Derek Kowalski, NUCOR Nazanin Mossahebi, Bureau Veritas North America Nick Lampe, HDR

Results of the study are summarized in five journal paper and submitted to special issue of AISC EJ for possible publications

Summary of more than ten years of research, field application and monitoring

Nebraska Department of Roads

Federal Highway Administration

Typical Steel Construction - Continuous for Dead and Live Loads

In the slides to follow:

SDCL

Simple for Dead load and Continuous for Live loads

SDCL- Conventional Case- cast in place deck

SDCL-ABC Case- Modular approach

Cont. for Dead and Live Load vs SDCL

SDCL Steel Bridge System

More than one way to provide continuity for live loads

SDCL Bridge System using

Concrete Diaphragm

For most part connections that works for cast in place deck methods of construction, also works for ABC applications

Using Concrete Diaphragm

Creep and shrinkage is not an issue

Advantages of Concrete Diaphragm Protects the ends of the girders and enhances service life

Challenges using Concrete Diaphragm

Large Bottom Flange

FIGURE 1.

Prestressed Concrete

Small Bottom Flange

Steel

BOTTOM FLANGE CONTINUOUS PLUS

END PLATE

ULTIMATE LOAD TEST

NO END DETAIL

Important consideration when Using concrete diaphragm

It is important to provide continuous load path for transferring the compression force from one flange to the next flange, without the possibility of crushing the concrete in the diaphragm.

Calculating the tension reinforcement

Strain and Stress in Slab

Stress in Concrete Diaphragm

Resisting Elements		
Slab Rebar	60.82%	66.77%
Stirrups in tension	5.09%	5.42%
Concrete in tension	4.35%	6.03%
Stirrups in compression	0.00%	1.58%
Concrete in compression	12.37%	20.20%
Bottom plate in compression	17.37%	NA
Total	100.00%	100.00%

Example: Two span steel bridge using SDCL system- Each span 95 ft.

Live load moment Mu (LL)= 34770 in-kip **Girder size** W40x249 **Depth of girder** 43.375" $A_{s} = M_{n} / (f_{v} (d - H/2))$

 $A_s = 34770 / (60 * (43.375 - 4 / 2)) = 14 in^2$

Use of recommended detail for SDCL Cast in place deck vs ABC

End of girders needs to be restrained against twist

before casting deck

Recommendation is to fill the concrete diaphragm about 1/2 to 2/3 of the height and let it cure

To minimize the cracking

Recommendation- Assume 20% continuity for dead load

Use of the recommended detail

Case of ABC

SDCL- Case of ABC

SDCL- Case of ABC

SDCL- Case of ABC

Full Scale Testing

SDCL-ABC recommended detail

Full Scale Testing

SDCL-ABC recommended detail

Full Scale Testing

SDCL-ABC recommended detail

SDCL- Recommended Detail

Cast in Place Deck

Fill Diaphragm ¹/₂ to 2/3

ABC

Recommended Design – Tension Reinforcement

Cast in Place Deck

ABC

 $M_n = A_s f_y$ (moment Arm)

Future Applications of SDCL- Seismic Application

Steel bridges are lighter (about 40% of concrete bridges)
1995 Hyogoken-Nanbu earthquake in Kobe lesson: Protect end of steel girder and have a good path to transfer lateral loads from superstructure to substructure.

Hanshine Expressway, was closed for more than a year

Brief Discussion of other SDCL Details used in Practice

Test results shows that concrete in vicinity of Bottom flanges can crush

Research results shows that there is no need for top plate

This detail is not recommended

Challenges with this detail (Cast in Place Deck)

Ends of girders are not protected

 Steel diaphragm is needed at end of each girder.

Challenges with this detail (Cast in Place Deck)

- Deck can crack
- Moisture can penetrate from bottom side
- Low fatigue category

Advantages of SDCL Steel Bridge System Cast in place deck and ABC

 SDCL steel bridge system facilitates use of ABC

Advantages of SDCL Steel Bridge System Cast in place deck and ABC

- Eliminating the need for bolted splices

Advantages of SDCL Steel Bridge System Cast in place deck and ABC

 Allowing use of the same cross section throughout the girder length

Advantages of SDCL Steel Bridge System

Cast in place deck and ABC

 SDCL steel bridge system with recommended detail over pier, protect the girder ends against any possible corrosion and enhances the service life of bridges.
 Eliminating the bolted splices, also help to enhance the service

AISC Engineering Journal special edition- SDCL

- Soliciting papers to collect existing SDCL expertise in one place for easy reference to facilitate standardization of design and construction practices
- Topics include design, construction, or monitoring inservice performance of SDCL steel bridges
- Submittals due January 11, 2013

www.aisc.org/ej

Thanks You

Contact Information

Atorod Azizinamini

aazizina@fiu.edu

