
Speaking Data:
Simple, Functional Programming with Clojure

Paul deGrandis  ::  @ohpauleez



Overview

● Clojure in ten ideas
○ “The key to understanding Clojure is ideas, not language constructs” - Stu Halloway
○ Everything I say about Clojure is true for ClojureScript too

● Software engineering with Clojure
○ Why Clojure? Why now?
○ Community / Ecosystem / Support

● Clojure applied
○ Walmart eReceipts / “Savings Catcher”
○ Boeing 737 MAX diagnostics system
○ DRW Trading

https://github.com/stuarthalloway/presentations/wiki/Clojure-in-10-Big-Ideas
http://cognitect.com/clojure#successstories


Overview: Clojure

● Getting Started / Docs / Tutorials - https://clojure.org/
● A Lisp dialect (Lisp-1), small core, code-as-data
● Functional, emphasis on immutability, a language for data manipulation
● Symbiotic with an established platform
● Designed for concurrency, managed state
● Compiled, strongly typed, dynamic
● Powerful polymorphic capabilities
● Specifications are first-class
● Clojure programs are composed of expressions

https://clojure.org/


Extensible Data Notation (edn)

● Extensible data format for the conveyance of values

● Rich set of built-in elements, generic dispatch/extension character
○ Domain can be fully captured and expressed in extensions

● Extensions to the notation are opt-in

● Clojure programs are expressed in edn; Serializable form of Clojure

● https://github.com/edn-format/edn

https://github.com/edn-format/edn
https://github.com/edn-format/edn


Extensible Data Notation (edn)



Extensible Data Notation (edn)



Extensible Data Notation (edn)



Extensible Data Notation: Clojure



Extensible Data Notation: Clojure



Extensible Data Notation: Clojure



Extensible Data Notation: Generic Extension

● #name edn-form
○ name describes the interpretation/domain of the element that follows
○ Recursively defined

● Built-in tags
○ #inst “rfc-3339-format”

■ Tagged element string in RFC-3339 Format
■ #inst “1985-04-12T23:20:50.52Z”

○ #uuid “canonical-uuid-string”
■ Tagged element is a UUID string
■ #uuid “f81d4fae-7dec-11d0-a765-00a0c91e6bf6”

http://www.ietf.org/rfc/rfc3339.txt


Persistent Data Structures

● Immutable

● “Change” is by function application

● “Change” produces a new collection; structurally shared
○ Full-fidelity old version remains available

● Maintains performance guarantees

● Built upon linked lists and hash array mapped tries (HAMTs)



Persistent Data Structures



Persistent Data Structures



Persistent Data Structures



Persistent Data Structures

Characteristic Mutable, Transient Immutable, Persistent

Sharing difficult trivial

Distribution difficult easy

Concurrent Access difficult trivial

Access Pattern eager eager or lazy

Caching difficult easy

Examples Java, .Net Collections
Relational DBs

Place-Oriented Systems

Clojure, F# Collections
Datomic DB

Value-Oriented Systems



Persistent Data Structures

Action List Vector Map Set

Create list , list* vector, vec hash-map, 
sorted-map

set, hash-set, 
sorted-set

Examine peek, pop, list? get, nth, peek, 
vector?

get, contains?, 
find, keys, vals, 
map?

get, contains?

“Change” conj conj, assoc, 
subvec, replace

assoc, dissoc, 
merge, 
select-keys

conj, disj

Functions:



Unified Succession Model
● Separation of State and Identity

○ Identities are managed references to immutable values
■ References refer to point-in-time value

○ Values aren’t updated in-place
○ Function application moves state forward in “time”
○ References see a succession of values
○ (change-state reference function args*)

● Clojure provides reference types
○ Synchronous

■ Var, Atom (uncoordinated)
■ Ref (coordinated; Uses STM)

○ Asynchronous
■ Agent



Unified Succession Model

Value Given some value



Unified Succession Model

Value

f

Given some function



Unified Succession Model

Value

f

Atomically apply the 
function to the value;
“Atomic Succession”



Unified Succession Model

Value

f

Which results in a new 
value, at a new point 
in time

Value



Unified Succession Model

Value

f

Value

f

Value



Unified Succession Model

Value

f

A reference sees a 
succession of values

Value

f

Value



Unified Succession Model

Value

f

Observers perceive 
identity; can see each 
value, can remember 
and record

Value

f

Value



Unified Succession Model

Value

f

Observers do not 
coordinate

Value

f

Value



Unified Succession Model

0 (def counter (atom 0))atom



Unified Succession Model

0 (def counter (atom 0))
(swap! counter + 10)

atom

+

swap! 10



Unified Succession Model

0 (def counter (atom 0))
(swap! counter + 10)

atom

+

swap! 10

Atomic Succession



Unified Succession Model

0 (def counter (atom 0))
(swap! counter + 10)

atom

+

swap! 10

Pure function



Unified Succession Model



Unified Succession Model



Sequence Abstraction

● Clojure is a language programmed to interfaces/abstractions
○ Collections are interfaces, Java interfaces for interop, etc.

● Sequence interface unifies the foundation
○ Sequential interface
○ Used like iterators/generators, but immutable and persistent

● "It is better to have 100 functions operate on one data structure abstraction 
than 10 functions on 10 data structures abstractions."

● Clojure’s core is made up of functions of data-oriented interfaces/abstractions
○ Seqs work everywhere: collections, files/directories, XML, JSON, result sets, etc



Sequence Abstraction

● first / rest / cons
○ (first [1 2 3 4])

-> 1
○ (rest [1 2 3 4])

-> (2 3 4)
○ (cons 0 [1 2 3 4])

-> (0 1 2 3 4)

● take / drop
○ (take 2 [1 2 3 4])

-> (1 2)
○ (drop 2 [1 2 3 4])

-> (3 4)

● Lazy, infinite
○ (iterate inc 0)

-> (0 1 2 3 4 5 …)

○ (cycle [1 2 3])
-> (1 2 3 1 2 3 1 2 3 …)

○ (repeat :a)
-> (:a :a :a :a …)

○ (repeatedly (fn [ ] (rand-int 10) ) )
-> (3 7 1 4 6 7 4 7 …)



Sequence Abstraction

● map / filter / reduce
○ (range 10)

-> (0 1 2 3 4 5 6 7 8 9)

○ (filter odd? (range 10))
-> (1 3 5 7 9)

○ (map inc (range 10))
-> (1 2 3 4 5 6 7 8 9 10)

○ (reduce + (range 10))
-> 45

● Fibonacci Sequence
○ (def fibo

    (map first (iterate (fn [[a b]] [b  (+ a b)]) [0 1])))

○ (take 7 fibo)
-> (0 1 1 2 3 5 8)

○ (into [ ] (take 7 fibo))
-> [0 1 1 2 3 5 8]



Sequence Abstraction

● What actors are in more than one movie, topping the box office charts?
○ Find the JSON input data of movies
○ Download it
○ Parse the JSON into a value
○ Walk the movies
○ Accumulating all cast members
○ Extract actor names
○ Get the frequencies
○ Sort by the highest frequency



Sequence Abstraction

● What actors are in more than one movie, topping the box office charts?
(->> “http://developer.rottentomatoes.com/docs/read/json/v10/Box_Office_Movies”
       slurp
       json/read-json
       :movies
       (mapcat :abridged_cast)
       (map :name)
       frequencies
       (sort-by val >)))



Reducers

(->> apples
       (filter :edible?)
       (map #(dissoc % :sticker))
       count)

(ns …
  (:require [clojure.core.reducers :as r]))

(->> apples
       (r/filter :edible?)
       (r/map #(dissoc % :sticker))
       (r/fold counter))



Transducers

● Composable algorithmic transformations
○ Independent of/decoupled from their input and output sources

● A single “recipe” can be used many different contexts/processes
○ Collections, streams, channels, observables, etc.

● On-demand transformation characteristics
○ Decide between eager or lazy processing, per use (separate from the “recipe”)

● Same sequence API, without the source sequence



Transducers

● map / filter
○ (filter odd?)    ;; returns a transducer that filters odd
○ (map inc)        ;; returns a mapping transducer for incrementing

● take / drop
○ (take 5)          ;; returns a transducer that will take the first 5 values
○ (drop 2)         ;; returns a transducer that will drop the first 2 values

● Composition is function composition
○ (def recipe  (comp (filter odd?)

                               (map inc)
                               (take 5))



Protocols

● Named set of generic functions

● Provide a high-performance, dynamic polymorphism construct
○ Polymorphic on the type of the first argument

● Specification only; No implementation

● Open extension after definition



Protocols

(defprotocol AProtocol
  "A doc string for AProtocol abstraction"
  (bar [a b] "bar docs")
  (baz [a] "baz docs"))



Protocols

(defprotocol AProtocol
  "A doc string for AProtocol abstraction"
  (bar [a b] "bar docs")
  (baz [a] "baz docs"))

(baz “hello”)

java.lang.IllegalArgumentException:
No implementation of method: :baz
of protocol: #'user/AProtocol
found for class: java.lang.String



Protocols

(defprotocol AProtocol
  "A doc string for AProtocol abstraction"
  (bar [a b] "bar docs")
  (baz [a] "baz docs"))

(extend-protocol AProtocol
  String
  (bar [a b] (str a b))
  (baz [a] (str “baz-” a)))

(baz “hello”)  =>  “baz-hello”



Protocols (and other forms of polymorphism)

Closed for Extension Open for Extension

Dispatch maps Multiple dispatch / multimethods

Conditional dispatch Protocols (type of first arg only)

Pattern-matching dispatch

https://github.com/clojure/core.match
https://github.com/clojure/core.match


Programming models are libraries

● “Program in data, not in text”
○ Program manipulation is data manipulation

● Extend the language using the language
○ Functions, macros, extensible reader (edn)

● Build the language up to your domain
○ What’s the ideal way to solve your exact problem?
○ You never need to wait for the language to evolve

● Examples
○ core.async
○ core.logic



Programming models are libraries: core.async

● Async programming using channels and CSP

● No bytecode rewriting, no Clojure modifications -- just a library

● Go blocks, IOC ‘threads’, parking, channels separate from buffers, etc.

(let [messages (chan)]
  (put! messages “ping”)
  (go  (println (<! messages))))

https://github.com/clojure/core.async


Programming models are libraries: core.logic

● Logic programming as a library

● Prolog-like relational programming, constraint logic programming, and nominal 
logic programming

● Extensible to other forms of logic programming

● Sudoku solver, type inferencer, and more examples

https://github.com/clojure/core.logic/
https://github.com/clojure/core.logic/wiki/Examples


Programming models are libraries: core.logic

https://github.com/clojure/core.logic/


clojure.spec

● Docs are not enough

● Predicative specifications of data

● Values, maps, and sequences

● Validation, error reporting, parsing/destructuring, instrumentation,
test data generation, property-based generative test generation



clojure.spec



Clojure: Software Engineering

● Modern language, built for modern systems, to build modern systems

● First-class specification & instrumentation; Design-by-contract

● Robust testing spans unit, generative property-based, and simulation testing

● Architecturally evident (namespaces), low cognitive load

● Ecosystems and reach

https://clojure.github.io/clojure/clojure.test-api.html
https://github.com/clojure/test.check
http://www.cognitect.com/simulation-testing


Clojure: Community and Ecosystems

● Mailing list / Slack / IRC / Events - https://clojure.org/community 
● Community-driven examples and docs - https://clojuredocs.org
● IDE/Editor support, all with interactive development support
● Project tooling: Maven, Gradle, Boot, Leiningen, etc
● Professional Services, Support, Training from Cognitect - http://cognitect.com/
● Robust Web Services with Pedestal - http://pedestal.io/
● Rapid Microservices with Vase - https://github.com/cognitect-labs/vase

○ Microservices expressed as data/edn

https://clojure.org/community
https://clojuredocs.org
http://cognitect.com/
http://pedestal.io/
https://github.com/cognitect-labs/vase


Clojure applied: Walmart “Savings Catcher”

● Process and integrate every purchase
○ 5000+ physical stores
○ Online and mobile purchases
○ Globally distributed system and data

● Savings Catcher, Vudu Instawatch, Black Friday 1-Hour Guarantee

● 8 Developers



Clojure applied: Boeing 737 MAX Diagnostics

● Diagnostic system similar to car’s “Check Engine” light
● Hundreds of sensors, streams of data, constant calculation

○ Value validations
○ Interdependent rules evaluation
○ Over 6,000 possible codes
○ Only 34,000 lines of Clojure

● Fully integrated into the flight-deck and ONS system (laptops/tablets/etc)
● “Clojure is a relatively new software language that allowed us to write rules 

and code capable of handling massive amounts of data under significant 
hardware limitations”

● Significant cost/time savings; Improved error detection and accuracy



Clojure applied: DRW Trading

● Already on the JVM; Existing systems in Java
● Needed “speed”

○ Execution performance important
○ Time-to-value-delivered

● Interactive-development increased productivity
○ Production debugging
○ Exploratory adaptations

● Domain dominated by data
○ Data-oriented abstractions simplified solutions
○ Whole classes/libraries turned into single Clojure functions


