Speaking Data:

Simple, Functional Programming with Clojure

Paul deGrandis :: @ohpauleez

Overview

e Clojureinten ideas
o “The key to understanding Clojure is ideas, not language constructs” - Stu Halloway
o Everything | say about Clojure is true for ClojureScript too

e Software engineering with Clojure
o Why Clojure? Why now?
o Community / Ecosystem / Support

e Clojure applied
o Walmart eReceipts / “Savings Catcher”
o Boeing 737 MAX diagnostics system
o DRW Trading

[cognitect

https://github.com/stuarthalloway/presentations/wiki/Clojure-in-10-Big-Ideas
http://cognitect.com/clojure#successstories

Overview: Clojure

Getting Started / Docs / Tutorials - https://clojure.org/

A Lisp dialect (Lisp-1), small core, code-as-data

Functional, emphasis on immutability, a language for data manipulation
Symbiotic with an established platform

Designed for concurrency, managed state

Compiled, strongly typed, dynamic

Powerful polymorphic capabilities

Specifications are first-class

Clojure programs are composed of expressions

[cognitect

https://clojure.org/

Extensible Data Notation (edn)

Extensible data format for the conveyance of values

Rich set of built-in elements, generic dispatch/extension character
o Domain can be fully captured and expressed in extensions

Extensions to the notation are opt-in

Clojure programs are expressed in edn; Serializable form of Clojure

https://github.com/edn-format/edn

[cognitect

https://github.com/edn-format/edn
https://github.com/edn-format/edn

Extensible Data Notation (edn)

{ :firstName "John"
:lastName "Smith"
:age 25
:address {
:streetAddress "21 2nd Street”
:city "New York"
:state "NY"
:postalCode "10021" }
:phoneNumber
[{:type "name" :number "212 555-1234"}
{:type "fax" :number "646 555-4567" }] }

[cognitect

Extensible

Data Notation (edn)
type examples
string "foo"
character \f
integer 42, 42N

floating point

3.14, 3.14M

boolean true

nil nil
symbol foo, +
keyword :foo, ::foo

[cognitect

Extensible Data Notation (edn)

type properties examples
list sequential (1 2 3)
ntial an
vector sequential and [1 2 3]
random access

ma associative il 100
P :b 90}
set membership #{:a :b}

[cognitect

Extensible Data Notation: Clojure
semantics: fn call arg

\ o/

(println "Hello World")

\

structure: symbol string

list [cognitect

Extensible Data Notation: Clojure

defineafn fn name
/ docstring

(defn greet
"Returns a friendly greeting"”
[your-name]

gart (str "Hello, "

arguments T

your-name))

fn boay [cognitect

Extensible Data Notation: Clojure
symbol symbol

Ve T

(defn greet
"Returns a friendly greeting”
[your-name]

— (str "Hello, "

vector T

your-name))

list [cognitect

Extensible Data Notation: Generic Extension

® #name edn-form
o name describes the interpretation/domain of the element that follows
o Recursively defined
e Built-in tags
o #inst “rfc-3339-format”
m Tagged element string in RFC-3339 Format
m #inst “1985-04-12T723:20:50.52Z”
o #uuid “canonical-uuid-string”
m Tagged elementis a UUID string
m #uuid “f81d4fae-7dec-11d0-a765-00a0c91e6bf6”

[cognitect

http://www.ietf.org/rfc/rfc3339.txt

Persistent Data Structures

e |mmutable
e “Change” is by function application

e “Change” produces a new collection; structurally shared
o Full-fidelity old version remains available

e Maintains performance guarantees

e Built upon linked lists and hash array mapped tries (HAMTS)

[cognitect

Persistent Data Structures

X

N

[cognitect

Persistent Data Structures

X\,:

[cognitect

Persistent

Data Structures

HashMap

int count

15

INode root

HashMap

int count

16

INode root

[cognitect

Persistent Data Structures

Characteristic Mutable, Transient
Sharing difficult
Distribution difficult
Concurrent Access difficult
Access Pattern eager
Caching difficult
Examples Java, .Net Collections

Relational DBs
Place-Oriented Systems

Immutable, Persistent
trivial
easy
trivial
eager or lazy
easy

Clojure, F# Collections
Datomic DB
Value-Oriented Systems

[cognitect

Persistent Data Structures

Functions:
Action List Vector Map Set
Create list , list* vector, vec hash-map, set, hash-set,
sorted-map sorted-set
Examine peek, pop, list? | get, nth, peek, get, contains?, | get, contains?
vector? find, keys, vals,
map?
“Change” conj conj, assoc, assoc, dissoc, conj, disj
subvec, replace | merge,
select-keys

[cognitect

Unified Succession Model

e Separation of State and Identity
o Identities are managed references to immutable values
m References refer to point-in-time value
Values aren’t updated in-place
Function application moves state forward in “time”

References see a succession of values @ @

o (change-state reference function args®)
e Clojure provides reference types

o Synchronous vl * v2 » v3

O O O

B Var, Atom (Uncoordinated) e
m Ref (coordinated; Uses STM) Y W
o Asynchronous s

m Agent V v

[cognitect

Unified Succession Model

- Given some value

[cognitect

Unified Succession Model

- Given some function

[cognitect

Unified Succession Model

- - Atomically apply the

function to the value;
“Atomic Succession”

[cognitect

Unified Succession Model

e

Value

Which results in a new
value, at a new point
in time

[cognitect

Unified Succession Model

]
Vae

Value

7]
=)

Value

[cognitect

Unified Succession Model

A reference sees a
succession of values

[cognitect

Unified Succession Model

Observers perceive
identity; can see each
value, can remember
and record

[cognitect

Unified Succession Model

Observers do not
coordinate

[cognitect

Unified Succession Model

(def counter (atom 0))

[cognitect

Unified Succession Model

(def counter (atom 0))
(swap! counter + 10)

[cognitect

Unified Succession Model

(def counter (atom 0))
(swap! counter + 10)

[cognitect

Unified Succession Model

(def counter (atom 0))
(swap! counter + 10)

[cognitect

Unified Succession Model

[cognitect

Unified Succession Model
Identity

[Nov 8] ﬁ-mﬁi'.lel>[Novg]
Value Value [cognitect

Sate

Sequence Abstraction

Clojure is a language programmed to interfaces/abstractions
o Collections are interfaces, Java interfaces for interop, etc.

Sequence interface unifies the foundation
o Sequential interface
o Used like iterators/generators, but immutable and persistent

"It is better to have 100 functions operate on one datastracture abstraction
than 10 functions on 10 data-structures abstractions.”

Clojure’s core is made up of functions of data-oriented interfaces/abstractions
o Seqgs work everywhere: collections, files/directories, XML, JSON, result sets, etc

[cognitect

Sequence Abstraction

e first/rest/cons
o (first[12 3 4]

>1

o (rest[1234)
> (234)

o (consO[1234)
->(01234)

e take/drop
o (take 2[1234)
> (12)
o (drop2[1234)
> (3 4)

Lazy, infinite

O

@)

(@)

(@)

(iterate inc O)
>(012345.)

(cycle[12 3))
>(123123123..)

(repeat :a)
->(a:a:a:a..)

(repeatedly (fn [] (rand-int 10)))
>(37146747..)

[cognitect

Sequence Abstraction

e map / filter / reduce e Fibonacci Sequence
o (range 10) o (deffibo
>(0123456789) (map first (iterate (fn [[a b]] [b (+ a b)]) [0 1])))
o (filter odd? (range 10)) o (take 7 fibo)
>(13579) ->(0112358)
o (map inc (range 10)) o (into[] (take 7 fibo))
>(12345678910) >[0112358]

o (reduce + (range 10))
> 45

[cognitect

Sequence Abstraction

e What actors are in more than one movie, topping the box office charts?

Find the JSON input data of movies
Download it

Parse the JSON into a value

Walk the movies

Accumulating all cast members
Extract actor names

Get the frequencies

Sort by the highest frequency

O O O O O O O O

[cognitect

Sequence Abstraction

e What actors are in more than one movie, topping the box office charts?
(->> “http://developer.rottentomatoes.com/docs/read/json/v10/Box_Office_Movies”
slurp
json/read-json
‘movies
(mapcat :abridged_cast)
(map :name)
frequencies
(sort-by val >)))

[cognitect

Reducers

(ns ...
(:require [clojure.core.reducers :as r])

(->>apples (->> apples
(filter :edible?) (r/filter :edible?)
(map #(dissoc % :sticker)) (r/map #(dissoc % :sticker))
count) (r/fold counter))

[cognitect

Transducers

e Composable algorithmic transformations
o Independent of/decoupled from their input and output sources

e A single “recipe” can be used many different contexts/processes
o Collections, streams, channels, observables, etc.

e On-demand transformation characteristics
o Decide between eager or lazy processing, per use (separate from the “recipe”)

e Same sequence API, without the source sequence

[cognitect

Transducers

e map/ filter
o (filter odd?) ;; returns a transducer that filters odd
o (mapinc) ;; returns a mapping transducer for incrementing

e take/drop
o (take b) ;; returns a transducer that will take the first 5 values
o (drop 2) ;; returns a transducer that will drop the first 2 values

e Composition is function composition
o (defrecipe (comp (filter odd?)
(map inc)
(take 5))

[cognitect

Protocols

Named set of generic functions

Provide a high-performance, dynamic polymorphism construct
o Polymorphic on the type of the first argument

Specification only; No implementation

Open extension after definition

[cognitect

Protocols

(defprotocol AProtocol
"A doc string for AProtocol abstraction"
(bar [a b] "bar docs")
(baz [a] "baz docs"))

[cognitect

Protocols

(defprotocol AProtocol
"A doc string for AProtocol abstraction"
(bar [a b] "bar docs")
(baz [a] "baz docs"))

(baz “hello”)

java.lang.lllegalArgumentException:
No implementation of method: :baz
of protocol: #'user/AProtocol

found for class: java.lang.String

[cognitect

Protocols

(defprotocol AProtocol
"A doc string for AProtocol abstraction"
(bar [a b] "bar docs")
(baz [a] "baz docs"))

(extend-protocol AProtocol
String
(bar [a b] (str a b))
(baz [a] (str “baz-" a)))

(baz “hello”) => “baz-hello”

[cognitect

Protocols (and other forms of polymorphism)

Dispatch maps

Multiple dispatch / multimethods

Conditional dispatch

Protocols (type of first arg only)

Pattern-matching dispatch

[cognitect

https://github.com/clojure/core.match
https://github.com/clojure/core.match

Programming models are libraries

e “Program in data, not in text”
o Program manipulation is data manipulation

e Extend the language using the language
o Functions, macros, extensible reader (edn)

e Build the language up to your domain

o What’s the ideal way to solve your exact problem?
o You never need to wait for the language to evolve

e Examples

O core.async
o core.logic

[cognitect

Programming models are libraries: core.async

e Async programming using channels and CSP
e No bytecode rewriting, no Clojure modifications -- just a library

e Go blocks, I0OC ‘threads’, parking, channels separate from buffers, etc.

(let [messages (chan)]
(put! messages “ping”)
(go (println (<! messages))))

[cognitect

https://github.com/clojure/core.async

Programming models are libraries: core.logic

Logic programming as a library

Prolog-like relational programming, constraint logic programming, and nominal

logic programming

Extensible to other forms of logic programming

Sudoku solver, type inferencer, and more examples

[cognitect

https://github.com/clojure/core.logic/
https://github.com/clojure/core.logic/wiki/Examples

Programming models are libraries: core.logic

(defrel rps winner defeats loser)

(fact rps :scissors :cut :paper)
(fact rps :paper :covers :rock)

(fact rps :rock :breaks :scissors)

(run* [verb]

(fresh [winner]
: (rps winner verb :paper)))

generic search
relation slots can be inputs

or outputs [cognitect

https://github.com/clojure/core.logic/

clojure.spec

e Docs are not enough
e Predicative specifications of data
e Values, maps, and sequences

e Validation, error reporting, parsing/destructuring, instrumentation,
test data generation, property-based generative test generation

[cognitect

clojure.spec

user=> (require '[clojure.spec :as s])
(s/def ::even? (s/and integer? even?))
(s/def ::0dd? (s/and integer? odd?))
(s/def ::a integer?)
(s/def ::b integer?)
(s/def ::c integer?)
(def s (s/cat :forty-two #{42}
:odds (s/+ ::0dd?)
:m (s/keys :req-un [::a ::b ::c])
:oes (s/* (s/cat :0 ::0dd? :e ::even?))
:ex (s/alt :odd ::o0dd? :even ::even?)))
user=> (s/conform s [42 11 13 15 {:a 1 :b 2 :c 3} 1 2 3 42 43 44 11])
{:forty-two 42,
:odds [11 13 15],
m {:8. 1, b 2, ¢ 3},
:oes [{:0 1, :e 2} {:0 3, :e 42} {:0 43, :e 44}],

rex {:odd 11}} ﬂ CogmtECt

Clojure: Software Engineering

Modern language, built for modern systems, to build modern systems
First-class specification & instrumentation; Design-by-contract

Robust testing spans unit, generative property-based, and simulation testing

Architecturally evident (namespaces), low cognitive load

Ecosystems and reach

[cognitect

https://clojure.github.io/clojure/clojure.test-api.html
https://github.com/clojure/test.check
http://www.cognitect.com/simulation-testing

Clojure: Community and Ecosystems

Mailing list / Slack / IRC / Events - https://clojure.org/community
Community-driven examples and docs - https://clojuredocs.org

IDE/Editor support, all with interactive development support

Project tooling: Maven, Gradle, Boot, Leiningen, etc

Professional Services, Support, Training from Cognitect - http://cognitect.com/
Robust Web Services with Pedestal - http://pedestal.io/

Rapid Microservices with Vase - https://github.com/cognitect-labs/vase
o Microservices expressed as data/edn

[cognitect

https://clojure.org/community
https://clojuredocs.org
http://cognitect.com/
http://pedestal.io/
https://github.com/cognitect-labs/vase

Clojure applied: Walmart “Savings Catcher”

e Process and integrate every purchase
o 5000+ physical stores
o Online and mobile purchases
o Globally distributed system and data

e Savings Catcher, Vudu Instawatch, Black Friday 1-Hour Guarantee

e 3 Developers

Clojure applied: Boeing 737 MAX Diagnostics

e Diagnostic system similar to car’s “Check Engine” light

e Hundreds of sensors, streams of data, constant calculation

o Value validations

o Interdependent rules evaluation
o Over 6,000 possible codes

o Only 34,000 lines of Clojure

e Fully integrated into the flight-deck and ONS system (laptops/tablets/etc)

e “Clojure is a relatively new software language that allowed us to write rules
and code capable of handling massive amounts of data under significant
hardware limitations”

e Significant cost/time savings; Improved error detection and accuracy

Clojure applied: DRW Trading

e Already on the JVM,; Existing systems in Java

e Needed “speed”
o Execution performance important
o Time-to-value-delivered
e Interactive-development increased productivity
o Production debugging
o Exploratory adaptations
e Domain dominated by data

o Data-oriented abstractions simplified solutions
o Whole classes/libraries turned into single Clojure functions

