
 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 1 of 21

Subnetting Made Simple
IP Subnetting without Tables, Tools, or Tribulations

Larry Newcomer

The Pennsylvania State University

York Campus

Abstract

Every networking professional should have a thorough understanding of TCP/IP

subnetting. Subnetting can improve network performance by splitting up collision

and broadcast domains. Subnets can reflect organizational structure and help

support security policies. WAN links typically join different subnets. Subnets can

define administrative units and hence support the structuring and delegation of

administrative tasks. Unfortunately, mastering subnetting can pose difficulties for

both professionals and students because of the binary mathematics that underlies

the technology. While it is imperative to present subnetting concepts in terms of

the underlying binary representation, most texts also present subnetting

procedures in binary terms. Such an approach can make it difficult for students to

learn how to actually carry out subnetting without tables or other reference

materials, even when they understand the basic concepts. This paper presents a

simple, alternative method for understanding and implementing subnetting without

software, calculators, tables, or other aids. The only knowledge of binary

arithmetic required is familiarity with the powers of 2 from 0 to 8 (2x for x = 0, 1,

…, 8). With a little decimal arithmetic thrown in, the whole process is simple

enough to be carried out mentally. This paper assumes the reader is already

somewhat familiar with IP addressing, the role of subnet masks, and the uses for

subnetting. It proceeds quickly from a brief introduction to a thorough discussion

of simple techniques for determining the number of subnets and hosts, calculating

the subnet mask, determining (sub)network id’s, and figuring the available IP

addresses for each subnet. The methodology is helpful both to those who aspire to

be network professionals and to those who seek a simple way to teach subnetting

in networking courses.

Introduction

Every networking student should have a solid understanding of TCP/IP subnetting

(Loshin, 1997). Subnetting’s importance in modern networking is reflected by its many

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 2 of 21

and varied uses. It can enhance network performance by splitting up collision and

broadcast domains in a routed network (Odom, 2000). Large networks can be organized

into separate subnets representing departmental, geographical, functional, or other

divisions (Feit, 1997). Since hosts on different subnets can only access each other

through routers, which can be configured to apply security restrictions, subnetting can

also serve as a tool for implementing security policies (Bulette, 1998). Dividing a large

network into subnets and delegating administrative responsibility for each subnet can

make administration of a large network easier. Routers can require that a WAN link

connecting two networks must itself form a separate subnet (Bulette, 1998).

Troubleshooting, diagnosing, and fixing problems in a TCP/IP internetwork typically

require thorough familiarity with subnetting. Network design requires both the ability to

understand and carry out subnetting.

A major stumbling block to successful subnetting is often a lack of understanding of the

underlying binary math. In fact, the principles of subnetting are difficult to grasp without

mastery of binary arithmetic, logic, and binary/decimal conversions. On the other hand, it

is not necessary to be able to think in binary in order to plan, design, and implement

simple subnetting. The methodology discussed below allows anyone with the following

capabilities to successfully carry out all the subnetting essentials:

 Know the decimal values of the powers of 2 from 0 to 8 as presented in Table 1

below (e.g., 24 = 16)

 Know how to add and subtract the decimal values of the powers of 2 in the

following table (e.g., 27 – 25 = 128 – 32 = 96). If this decimal arithmetic can be

done mentally, then subnetting itself can be accomplished mentally.

Table 1

x 2x 2x in Decimal

0 20 1

1 21 2

2 22 4

3 23 8

4 24 16

5 25 32

6 26 64

7 27 128

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 3 of 21

x 2x 2x in Decimal

8 28 256

It is helpful to memorize Table 1 before proceeding. The discussion below presents a

simple, step-by-step methodology for determining the number of subnets, the maximum

number of hosts per subnet, the subnet mask, the network id’s, and the valid IP addresses

for each subnet. In short, the method covers all the major steps in the subnetting process.

First, however, we present a rapid review of subnetting concepts.

Simple Subnetting Concepts

Before discussing the subnetting procedure, it is necessary to become familiar with the

basic concepts of IP addressing, subnet masks, and the separation of an IP address into a

network ID and a host ID. An IPv4 (IP version 4) address consists of a 32-bit binary

number, which can be viewed as a series of 4 octets (Odom, 1999). Each octet consists of

8 bits, so 4 octets make up 4 * 8 = 32 bits, the exact number of bits in an IP address.

Since IP addressing operates at the OSI network layer (Layer 3), IP addresses must be

able to identify both individual hosts (the TCP/IP term for any device connected by a

network adapter to a TCP/IP network, such as a computer, printer, router, etc.) and

individual networks. This is accomplished by dividing the 32-bit IP addresses into two

parts: an initial network ID portion that identifies (i.e., addresses) individual networks,

followed by a host ID portion that identifies (i.e., addresses) individual hosts on a given

network (Lammle, 2000). Thus IP addressing works by uniquely specifying:

a) A particular TCP/IP network as identified by the network ID portion of the IP

address

b) A particular host on that network as identified by the host ID portion of the IP

address

It is critical to understand the difference between the MAC address (also known as the

hardware, physical, or NIC address) at the Data-Link layer (Layer 2), and the IP address

which operates at the Network layer (Layer 3). The MAC address uniquely identifies

each network adapter (NIC or Network Interface Card) with a 48-bit binary number. The

assignment of MAC addresses is supervised by the IEEE to ensure worldwide

uniqueness. Each MAC address consists of two parts: the first part uniquely identifies the

NIC manufacturer, and the second part uniquely identifies each NIC produced by a given

manufacturer (Poplar, 2000). A device attached to a TCP/IP network via a NIC is called a

TCP/IP host. Note that the MAC addressing scheme does not provide a way to identify

individual networks, only individual hosts.

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 4 of 21

With IP addressing, individual hosts can still be uniquely identified, but in a different

way. Hosts are identified by specifying both: a) the network on which the host resides

(the network id), plus b) a unique host number on that network (the host ID). Thus Layer

3 devices can work either with individual networks by using just the network ID (the

beginning portion of the IP address), or with individual hosts by using both the network

ID and host ID, i.e., the entire IP address (Heywood, 1997).

Network layer (Layer 3) software and devices thus must be able to separate IP addresses

into their network ID and host ID portions. This is accomplished with the help of another

32-bit binary number called a subnet mask. The job of the subnet mask is to tell which

part of the IP address is the network ID, and which part is the host ID. Since the network

ID is always the leading part of an IP address and the host ID is always the trailing part, a

simple masking scheme can be used (Dulaney, 1998). A subnet mask always consists of a

series of uninterrupted 1 bits followed by a series of uninterrupted 0 bits. These two

portions of the subnet mask (all 1’s and all 0’s) correspond to the two parts of an IP

address. The 1 bits in the subnet mask match up with the Network ID, and the 0 bits in

the subnet mask match up with the Host ID in the IP address. By looking at the subnet

mask, it is easy to tell which part of an IP address represents the network ID and which

part represents the host ID. The following example illustrates the use of a subnet mask to

separate the network ID and host ID portions of an IP address for a standard Class B

network (for Class B networks the first 2 octets of the IP address make up the network ID

and the last 2 octets make up the host ID):

32-bit IP Address: 10010010101010000000000000000111

32-bit Subnet Mask: 11111111111111110000000000000000

To enhance clarity we repeat the example above, this time adding some white space

between the octets in both the IP address and the subnet mask:

IP Address: 10010010 10101000 00000000 00000111

Subnet Mask: 11111111 11111111 00000000 00000000

Observe how the subnet mask consists of 2 octets of uninterrupted 1’s (indicating the

network ID part of the corresponding IP address), and 2 octets of uninterrupted 0’s

(indicating the host ID part of the corresponding IP address). Using the subnet mask, we

can readily separate the IP address into its two parts:

Network ID: 10010010 10101000

Host ID: 00000000 00000111

Although it is easiest to understand the role of the subnet mask while working in binary,

binary notation is in general too cumbersome for humans. Hence IP addresses and subnet

masks are usually written in dotted-decimal notation (Cunningham, 1998), in which each

octet is converted to its equivalent decimal number, and the four decimal numbers are

separated with dots (i.e., periods). The IP address and subnet mask from the example

above would appear in dotted-decimal as:

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 5 of 21

IP Address: 146.168.0.7

Subnet Mask: 255.255.0.0

Network ID: 146.168

Host ID: 0.7

Note that the network ID is usually seen written as 4 octets (which can be created by

appending any necessary 0 octets to the end of the network ID as delimited by the subnet

mask), and that leading 0 octets are usually dropped from the host ID, as in:

Network ID: 146.168.0.0

Host ID: 7

It is also important to remember that the octet 00000000 in binary becomes 0 in dotted-

decimal notation, and the octet 11111111 in binary becomes 255 in dotted-decimal

notation.

Finally, we consider the basic concepts of subnetting. Imagine that your organization has

obtained an official “public” network address from your Internet Service Provider (ISP)

for your organization to use on the Public Internet. You could equally well imagine that

your organization has chosen a “private” IP address to use for an internal TCP/IP network

that will not be connected to the Public Internet (i.e., an intranet). In either scenario, you

have the same problem: Your organization has enough hosts that they cannot, for a

variety of reasons beyond the scope of this paper, coexist on the same TCP/IP network

(Craft, 1998). The network must be broken up (or segmented) into separate subnetworks.

Reasons to segment a large network may include such things as: reducing the size of

collision domains, reducing the size of broadcast domains, implementing security,

organizing subnetworks to reflect corporate structures, joining networks across WAN

links, and segmenting network administration responsibilities (Bulette, 1998).

To segment the original network, we must devise an addressing scheme that is able to

identify each subnetwork within the (original) larger network. This will require the use of

an additional subnet ID along with the original network ID. A Given host will then be

uniquely identified by the combination of:

1. A network ID that uniquely specifies the network on which the host resides (if the

network is on the public Internet, this network ID is the address that will identify

the network (including all its subnets) on the public Internet)

2. A subnet ID that uniquely specifies the subnetwork (within the original network

in item 1 above) on which the host resides

3. A host ID that uniquely specifies the host on the subnetwork in item 2 above

An IP address already accommodates a network ID and a host ID, so all that is required is

some way to create the subnet ID field. Since we can’t expand the size of the IP address

(32 bits for IPv4), we most “borrow” some bits from the existing address to use for the

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 6 of 21

subnet ID. We can’t borrow bits from the network ID part of the IP address because this

has been pre-assigned by our ISP to uniquely identify our organization’s network.

Changing the network ID would wreck our ISP’s assignments of network ID’s to the

ISP’s customers. Hence we are forced to borrow bits to create the subnet ID from the

existing host ID field.

The process of borrowing bits from the host ID field to form a new subnet ID field is

known as subnetting. The process is shown in Table 2 below:

Table 2

Network ID 3 Bits Borrowed for Subnet ID Host ID (3 bits Shorter)

10010010 10101000 000 00000 00000111

Notice that when we “borrow” bits from the host ID for the subnet ID, the original subnet

mask is no longer accurate. As shown in Table 3 below, the original subnet mask has

binary 0’s matching up with the bits in the new Subnet ID. Since binary 0’s in the subnet

mask indicate the Host ID field, the newly created “Subnet ID” field still appears to

belong to the original Host ID field.

Table 3

 Network ID 3 Bits Borrowed for

Subnet ID

Host ID (3 Bits

Shorter)

IP Address: 10010010 10101000 000 00000 00000111

Original

Subnet Mask:

11111111 11111111 000

(0 bits here

make subnet ID

appear to be

part of host ID)

00000 00000000

To eliminate confusion over what bits still belong to the original Host ID field and what

bits belong to the new Subnet ID field, we must extend the binary 1’s in the original

Subnet Mask with enough 1 bits to match the size of the newly created Subnet ID field

(and correspondingly reduce the number of 0’s which originally identified the Host ID in

the Subnet Mask by the same amount). The new subnet mask is called a custom subnet

mask. After this adjustment, the total number of bits in the custom subnet mask will still

be 32, but the number of binary 1’s will have increased by the size of the subnet ID, and

the number of binary 0’s will have decreased accordingly. This operation is illustrated in

Table 4 below:

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 7 of 21

Table 4

 Network ID Bits Borrowed for

Subnet ID

Shortened Host ID

IP Address: 10010010 10101000 000 00000 00000111

Original

Subnet Mask:

11111111 11111111 000 00000 00000000

Custom

Subnet Mask

11111111 11111111 111

(1 bits here

indicate

field belongs

to network

ID)

00000 00000000

A critical issue when “borrowing” bits from the host ID to create the subnet ID is to

accurately determine the following information:

1. How many subnets are needed

2. How many bits must be “borrowed” from the host ID field for the new subnet ID

field to accommodate the required number of subnets

3. What is the largest number of hosts that will ever be on a given subnet

4. How many bits must be retained in the host ID field to accommodate the

maximum number of hosts needed

These considerations mandate that careful planning should be carried out before the

subnetting process is begun. It is obviously prudent to plan for future as well as for

current needs. Once pre-planning is complete, the actual subnetting process involves the

following steps:

1. Determine how many subnets are needed

2. Determine the maximum number of hosts that will be on any given subnet

3. Determine how many bits to borrow from the host ID field for the subnet ID field

4. Determine how many bits must remain in the host ID field (and therefore cannot

be borrowed for the subnet ID)

5. Determine how many bits are in the original network ID and host ID fields

6. Check to ensure that the number of bits to be “borrowed” from the host ID does

not exceed the number of bits to be retained for the host ID (i.e., check that the

subnetting problem is solvable)

7. Set an optimal length for the subnet ID field, including room for future growth

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 8 of 21

8. Create a modified (custom) subnet mask for the network

9. Determine the valid subnet ID’s for the network

10. Determine the valid ranges of IP addresses for each subnet on the network

A Simple Subnetting Procedure

The following step-by-step procedure can be used to subnet a TCP/IP network. It is

assumed that the reader is already familiar with IP addressing, subnet masks, the

separation of an IP address into a network ID and a host ID, and basic subnet concepts as

discussed above.

1. Determine the required number of subnets and call it S (“big S”)

When estimating the required number of subnets, it is critical to consider not only

your current subnet needs, but also to plan for future growth. If there is historical

information available, use it as a guide to predict how many subnets will be needed

next year, two years from now, three, etc. Remember to include both current and

anticipated subnetworks in your total. If your WAN links are handled as separate

subnets, then count each WAN link too.

Remember to leave plenty of room for growth. Nothing is more embarrassing (and

costly) than to have to redo a network design because of poor planning. Work closely

with users and management to uncover upcoming changes that might affect future

growth in ways not shown by historical data (such as an anticipated merger or

acquisition, introduction of a new product line, etc.). In the steps that follow, assume

that S = 5.

2. Determine the maximum number of hosts per subnet and call it H (“big H”)

In TCP/IP terminology, a “host” is any device that attaches to the network via a

network interface. The count should reflect the largest number of network interfaces

that will ever be on a given subnet. Remember to include not only network interfaces

for computers, but also any network interfaces in printers, routers, or any other

networked devices. Some computers (called multihomed hosts) may have more than

one NIC, in which case each NIC is counted separately. Other devices (such as

bridges or routers) will also have more than one network interface.

It is not necessary to tabulate the number of network interfaces for every subnet. The

purpose of step 2 is to count the maximum number of interfaces that will ever be

needed for the largest subnet.

As with step 1, remember to plan for growth. Use historical data if available, but also

look for upcoming changes that could lead to significant growth not reflected in the

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 9 of 21

historical data. Again, nothing is more embarrassing than to have to redo a network

design because of poor planning. In the steps that follow, assume that H = 50.

3. Find the smallest integer s (“little s”) such that 2s – 2 ≥ S

This step calculates the number of bits s (“little s”) needed in the IP address for the

subnet ID’s. “Little s” is the smallest integer (whole number) such that 2s – 2 is at

least S (“big S”, the required number of subnets). As the following table illustrates,

with s bits for the subnet ID, we can address 2s different subnets. However, a subnet

ID is not allowed to be either all 0’s (which according to TCP/IP standards always

means the current subnet and therefore cannot be used as a subnet ID for an actual

subnet), or all 1’s (which according to TCP/IP standards is always a broadcast

address and therefore cannot be used as a subnet ID for an actual subnet) (Heywood,

1997). Hence with s bits for the subnet ID, the effective number of addressable

subnets is 2s – 2, as shown in Table 5 below:

Table 5

s = number of bits

for subnet ID

2s – 2 = number of

addressable subnets

Valid subnet addresses (all 0s or

all 1’s are invalid and are shown

crossed out)

1

(produces no valid

addresses)

21 – 2 = 2 – 2 = 0 0

1

2 22 – 2 = 4 – 2 = 2 00

01

10

11

3 23 – 2 = 8 – 2 = 6 000

001

010

011

100

101

110

111

Calculating s is easier if we rewrite the inequality 2s – 2 ≥ S as 2s ≥ S + 2. If you are

comfortable with the entries in Table 1, you can quickly find the smallest s such that

2s ≥ S + 2 as follows:

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 10 of 21

1. Find the smallest integer value in the right-hand column of Table 1 that is

equal to or greater than S + 2 (“big S” plus 2)

2. Using Table 1, find the corresponding value of s (“little s”) from the left-hand

column

3. This is the number of bits needed for the subnet ID’s in your IP addresses

For example, if S = 5, the smallest integer value from the right-hand column of Table

1 that is ≥ 5 + 2 = 7 is 8. The corresponding value of s (from the left-hand column of

Table 1) is 3. If on the other hand S = 7, the smallest integer value from the right-

hand column of Table 1 that is greater than or equal to 7 + 2 = 9 is 16. Hence the

value of s is 4.

4. Find the smallest integer h (“little h”) such that 2h – 2 ≥ H

This step calculates the number of bits h (“little h”) needed in the IP address for the

host ID’s, and is similar to step 3. In fact, the TCP/IP standards state that a host ID

cannot be all 0’s, since a 0 host ID always refers to the current host (and so can never

be used as the address for a particular host), or all 1’s, since all 1’s indicates a

broadcast address (and so can never be used for the address of a particular host)

(Heywood, 1997). Hence the formula for finding the number of bits needed for the

host ID’s is exactly parallel to that used to calculate the number of bits needed for the

subnet ID’s. Similar to step 3, we look for the smallest integer h such that 2h – 2 ≥ H.

By rewriting the inequality as 2h ≥ H + 2, we can use a parallel procedure to that in

step 3:

1. Find the smallest integer value in the right-hand column of Table 1 that is

equal to or greater than H + 2 (“big H” plus 2)

2. Using Table 1, find the corresponding value of h (“little h”) from the left-hand

column

3. This is the number of bits needed for the host ID’s in your IP addresses

For example, if H = 50, the smallest integer value from the right-hand column of

Table 1 that is ≥ 50 + 2 = 52 is 64. The corresponding value of h (from the left-hand

column of Table 1) is 6. If on the other hand H = 30, the smallest integer from the

right-hand column of Table 1 that is greater than or equal to H + 2 = 30 + 2 = 32 is

32. Hence h = 5.

5. Determine the total number of host ID bits in the standard subnet mask for your

assigned address class. Call the number of host ID bits T (“big T”).

Table 6 below shows the standard number of Host ID bits for each of the three major

address classes, A, B, and C. To determine the address class of a network ID, look at

the first octet in dotted-decimal notation. As Table 6 shows, if the first octet is

between 1 – 126, the network is Class A; if the first octet is between 128 – 191, the

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 11 of 21

network is Class B; if the first octet is between 192 – 223, the network is Class C.

Once you know the address class, it is easy to determine the number of host ID bits

from Table 6. For example, if you have been officially assigned a Class B address, T

= 16; if you have been officially assigned a Class C address, T = 8; etc. To do mental

subnetting, it is helpful to memorize Table 6.

Table 6

Address

Class

Starting Octet for

Network ID

(in decimal)

Network ID Bits in

Standard Subnet Mask

Host ID Bits in

Standard Subnet

Mask (T)

A 1 – 126 8 24

B 128 – 191 16 16

C 192 - 223 24 8

For example, assume the official network ID is 146.168.0.0. According to Table 6,

this is a Class B address (since 146 is between 128 – 191, inclusive) and the number

of host ID bits in the standard subnet mask is T = 16.

6. If s + h > T, then you need more host ID bits than are available for your official

address class. You cannot meet your subnetting requirements (i.e., the problem

is not solvable using your assigned address class)

In this case your officially assigned Network ID requires so many bits in the IP

address that there are not enough bits left over to satisfy your needs for subnet ID’s

and host ID’s. In short, your subnetting requirements S (”big S”) and H (“big H”)

when taken together are too large for your assigned address class. You will either

have to reduce the values of S and/or H, or apply for an official network ID that

requires fewer network ID bits and leaves more host ID bits (i.e., change from class C

to class B, or from class B to class A). If s + h > T, start over again at step 1 after

changing your requirements (i.e., the estimated number of subnets and/or the

maximum required number of hosts per subnet), and/or changing your officially

assigned address class.

In our example, T = 16, s = 3, and h = 6. Hence s + h = 3 + 6 = 9, which is not greater

than T = 16. Hence we can proceed to the next step.

7. If s + h = T, skip the next step (step 8)

You have exactly enough bits for the desired subnetting. Skip step 8 and go on to step

9. In our example, s + h = 3 + 6 = 9 and T = 16, so we must carry out step 8.

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 12 of 21

8. If s + h < T, then you have T – s – h “extra” bits to distribute between s and h in

a manner that best provides for unanticipated future growth. Calculate r (“little

r”) as r = T – s – h, the number of bits that you can deploy either for extra

subnet ID bits and/or for extra host ID bits, then increase s and/or h accordingly

You have r (“little r”) bits to distribute between s (“little s”, the number of bits needed

for subnet ID’s) and h (“little h”, the number of bits needed for host ID’s). Increase s

and/or h until you’ve used up all r bits (at which point T = s + h, as in step 7).

Since you are more likely to run out of subnets before you run out of host ID’s on any

given subnet, it is probably safer to make sure that s is comfortably large before

increasing h. Assume that at the beginning of step 8, T = 16, s = 7, and h = 6. You

then have T – s – h = 16 – 7 – 6 = 3 bits to distribute between s and h. Since it is

probably a safer hedge to increase s, you might give 2 of the 3 “extra” bits to s

(making s = 9), and give 1 of the 3 extra bits to h (making h = 7). If done correctly,

the new values of s and h will sum to T (9 + 7 = 16).

In the example we’ve been following from previous steps, r = T – s – h = 16 – 3 – 6 =

7 bits to distribute between s and h. We will increase s by 1 (making the new value of

s = 4), and increase h by 6 (making the new value of h = 12). Since it is often more

important to increase s than to increase h, we should carefully question our decision

to increase s by only one. Let us assume that we have a very high degree of

confidence in our original estimate for S, but are less sure of our original estimate for

H. Hence we (perhaps atypically) decide to favor h over s in this step.

9. Determine the custom subnet mask for your network

Start with the default (standard) subnet mask for your address class as shown in Table

7 below: We will extend the network ID portion of the default subnet mask by

replacing its leftmost zero octet (shown bolded in the table) with a new value.

Table 7

Address Class Default Subnet Mask Leftmost Zero Octet

A 255.0.0.0 255. .0.0

B 255.255.0.0 255.255. .0

C 255.255.255.0 255.255.255.

Calculate the new value for the leftmost zero octet in the standard subnet mask as:

 256 – 28 - s

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 13 of 21

For example, if the adjusted value of s is 4, we calculate 256 – 28 – 4 = 256 – 24 = 256

– 16 = 240. This value will replace the leftmost zero octet in the default subnet mask

for our network class, thus forming the custom subnet mask. Since in Step 5 we

determined that our network ID was Class B, our default subnet mask from Table 7 is

255.255.0.0. Replace the leftmost zero octet (shown bolded) with the value 240 to

obtain the custom subnet mask 255.255.240.0.

10. Determine the Valid Network ID’s for the New Subnets

The next step is to determine the network (and subnetwork) ID’s for the new subnets.

Start by identifying the leftmost 0 octet in the original network ID for your network

(expressed as four octets in dotted-decimal). This is the octet that corresponds to the

leftmost 0 octet in the standard subnet mask (i.e., the octet shown bolded in Table 7).

For the original subnet mask in our example, it would be the third octet from the left

(shown bolded): 146.168.0.0. For a Class A network, this will always be the second

octet (as in 13.0.0.0), for a class B network, this will always be the third octet (as in

146.168.0.0), and for a Class C network, this will always be the fourth octet (as in

193.200.17.0).

Note this particular octet will always have all 0’s in the extended subnet ID area (the

area “borrowed” from the original host ID), and so is not a valid subnetwork ID

(recall that a zero value is not permitted for either a network or subnetwork ID).

To obtain the first valid subnetwork ID, add 28 – s to the leftmost 0 octet (as identified

above) in the original network address. Now add 28 – s to the same octet in the first

subnetwork ID to get the second subnetwork ID, add 28 – s to the same octet in the

second to get the third, etc. Continue in this fashion until you have obtained 2s – 2

subnetwork ID’s, or until you reach the value of your custom subnet mask. Note that

the custom subnet mask value itself is not a valid network ID because the subnet ID is

all 1’s (the reserved broadcast address).

In our example, the original network ID is 146.168.0.0 (the leftmost zero octet is

shown bolded), the updated value of s is 4, and 28 – s = 28 – 4 = 24 = 16. We expect 2s –

2 = 24 – 2 = 16 – 2 = 14 subnets, which we find as follows:

The first network ID is obtained by adding 28 – s (i.e., 16) to the leftmost 0 octet in the

original network address, forming the first network ID, i.e., add 16 to the third octet

(shown bolded) in 146.168.0.0 to yield

 146.168.16.0 (first valid subnet ID)

The second subnet ID is obtained by adding 28 – s (16) to the same octet in the first

valid subnet ID (shown bolded above), i.e., add 16 to the third octet (shown bolded)

in 146.168.16.0 to yield

 146.168.32.0

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 14 of 21

To form the third network ID, again add 28 – s (16) to the same octet in the second

valid subnet ID (shown bolded above), i.e., add 16 to the bolded octet in 146.168.32.0

to yield

 146.168.48.0

Repeat this procedure until you have obtained the expected 14 subnetwork addresses

(or until you reach the custom subnet mask from Step 9). The results are shown in

Table 8 below:

Table 8

Original Network ID

(Not a valid subnetwork address)

146.168.0.0

Network ID for Subnet 1 146.168.16.0

Network ID for Subnet 2 146.168.32.0

Network ID for Subnet 3 146.168.48.0

Network ID for Subnet 4 146.168.64.0

Network ID for Subnet 5 146.168.80.0

Network ID for Subnet 6 146.168.96.0

Network ID for Subnet 7 146.168.112.0

Network ID for Subnet 8 146.168.128.0

Network ID for Subnet 9 146.168.144.0

Network ID for Subnet 10 146.168.160.0

Network ID for Subnet 11 146.168.176.0

Network ID for Subnet 12 146.168.192.0

Network ID for Subnet 13 146.168.208.0

Network ID for Subnet 14 146.168.224.0

Custom Subnet Mask value

(Not a valid subnetwork address)

146.168.240.0

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 15 of 21

11. Determine the Valid IP Addresses for Each Subnet

The final step in subnetting is to determine the valid IP addresses for each new

subnetwork. To generate the valid IP addresses for a given subnetwork, start with that

subnetwork’s network address (as shown in Table 8, for example). Add 1 to the

rightmost octet in the subnet address to obtain the first valid IP address on that subnet.

In our example:

 Network ID of first subnet: 146.168.16.0

 First valid IP address on that subnet: 146.168.16.1

Continue to add 1 to the rightmost octet until one of the following three conditions

occurs:

1. The octet that you are incrementing reaches 255. When incrementing the

value 255, instead of adding 1 (to get 256), roll the 255 back to 0 and add 1 to

the next octet to the left. This operation is similar to a carry in ordinary

decimal addition. For example, assume you have just added 1 to

146.168.16.254 to obtain 146.168.16.255. The next step would not be to add 1

again to obtain 146.168.16.256 (which is not a valid IP address). Instead, roll

the 255 back to 0 and add 1 to the next octet to the left (the 16), yielding

146.168.17.0. From this point, continue to increment as before to obtain

additional IP addresses for the current subnet

2. While incrementing, you get to the point where another increment would

reach one less than the network ID for the next subnet. In this case, you have

listed all the valid IP addresses for the current subnet, and you must move on

to the next subnet (by starting with its network ID and repeatedly

incrementing the rightmost octet by 1)

3. You reach a total of 2h – 2 IP addresses for a given subnet. This is equivalent

to condition 2 above, and in fact is just another way of looking at the same

situation. As in condition 2, you have listed all the valid IP addresses for the

current subnet. Move on to the next subnet by starting with its network ID and

repeatedly incrementing by 1

Repeat this process for all subnetworks to obtain a complete list of valid IP addresses

for each subnet.

In our example, we start with 146.168.16.0, the network ID for the first subnet (see

Table 8). Add 1 to the rightmost octet to obtain the first valid IP address for this

subnet, namely 146.168.16.1. Again, add 1 to the rightmost octet to obtain the second

valid IP address for this subnet, namely 146.168.16.2. Continue in this fashion until

reaching 146.168.16.254, which after incrementing yields an IP address of

146.168.16.255. Note that this is a valid IP address on the subnet. The next valid IP

address is found by rolling the 255 back to 0 and incrementing the next octet to the

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 16 of 21

left, yielding 146.168.17.0. Continue incrementing until reaching 146.168.17.255,

which is followed by 146.168.18.0. Again, the process repeats until we hit

146.168.18.255, which is followed by 146.168.19.0. This process will continue all the

way to 146.168.30.255, which is followed by 146.168.31.0. We continue to increment

until reaching 146.168.31.254. We are now at the point where yet another increment

would yield one less than the next subnet’s network ID (i.e., if we were to carry out

one more increment we would be at 146.168.31.255, which if it were itself

incremented would yield the subnet ID for the next subnet, 146.168.32.0). At this

point we have a complete list of all valid IP addresses for the first subnet. We would

then have to repeat the entire process for the second subnet, etc. Table 9 summarizes

the IP addresses for the first subnet:

Table 9

IP Addresses for Subnet 1

(Network Address 146.168.16.0)

146.168.16.1 to 146.168.16.255

146.168.17.0 to 146.168.17.255

146.168.18.0 to 146.168.18.255

146.168.19.0 to 146.168.19.255

146.168.20.0 to 146.168.20.255

146.168.21.0 to 146.168.21.255

…

146.168.30.0 to 146.168.30.255

146.168.31.0 to 146.168.31.254

Do not be confused by the fact that some valid IP addresses end in 0 or 255. This

happens normally when subnetting, and the rules about not having network,

subnetwork, or host ID’s equal to all 0’s or all 1’s are not necessarily violated just

because an octet is equal to all 0’s or all 1’s. The rules place restrictions on the values

of network, subnetwork, and host ID’s, not on the values of octets. To understand

this, consider the IP address 146.168.17.0 from Table 9 and analyze it according to

the custom subnet mask for our example network, 255.255.240.0.

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 17 of 21

Table 10

 Standard Network ID

Part of IP Address

Bits Borrowed

from Host ID to

form Subnet ID

Part of IP Address

Shortened Host ID

Part of IP Address

IP Address

146.168.17.0

10010010 10101000 0001 0001 00000000

Custom Subnet

Mask

255.255.240.0

11111111 11111111 1111 0000 00000000

Notice that although the rightmost octet of the Host ID consists of all zero bits, the

full Host ID is a total of 12 bits and is not all 0’s (the sole one bit is shown bolded).

For a second example, consider the IP address 146.168.21.255 from Table 9.

Although the last octet is 255 (eight 1’s in binary), the following analysis shows that

the full host ID is not all 1 bits (the two zero bits in the host ID are shown bolded):

Table 11

 Standard Network ID

Part of IP Address

Bits Borrowed

from Host ID to

form Subnet ID

Part of IP Address

Shortened Host ID

Part of IP Address

IP Address

146.168.21.255

10010010 10101000 0001 0101 11111111

Custom Subnet

Mask

255.255.240.0

11111111 11111111 1111 0000 00000000

A Class C Example

Suppose an ISP assigns a Class C network address of 193.200.35.0 to an organization

(call it Widgets, Inc., or just Winc). We will work through the 11 steps presented

above in order to subnet this Class C network.

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 18 of 21

1. After meetings with relevant Winc personnel and study of historical growth

trends, it is determined that Winc currently needs 2 subnets, with practically no

likelihood of adding other subnets in the future. Therefore, we set S (“big S”) at 2.

2. After meetings with relevant Winc personnel and study of historical growth

trends, it is determined that Winc currently needs at most 25 hosts on any subnet.

In the future, subnet size is not expected to pass 30 hosts. Hence, we set H (“big

H”) at 30.

3. To find the smallest integer s such that 2s – 2 ≥ S, we first rewrite the inequality as

2s ≥ S + 2. Since S = 2, this becomes 2s ≥ 2 + 2 or 2s ≥ 4. Reference to Table 1

shows that the smallest such integer s is 2.

4. To find the smallest integer h such that 2h – 2 ≥ H, we first rewrite the inequality

as 2h ≥ H + 2. Since H = 30, this becomes 2h ≥ 30 + 2 or 2h ≥ 32. Reference to

Table 1 shows that the smallest such integer h is 5.

5. Winc’s assigned network address is 193.200.35.0, which begins with 193. Hence

Winc has a Class C network address for which T (“big T”) is 8 (see Table 6).

6. Now we can calculate s + h = 2 + 5 = 7, which does not exceed the value of “big

T” (T = 8). Hence we have a solvable subnetting problem and can proceed to step

7.

7. Since s + h = 2 + 5 = 7 which is not equal to 8 (the value of T), we must carry out

step 8

8. Since s + h = 2 + 5 = 7 is less than T = 8, we have r = T – s – h = 8 – 2 – 5 = 1 bit

left over to increase the value of either s or h. Since in general Winc is more likely

to run short of subnets rather than hosts on a subnet, we allocate the extra bit to s,

incrementing s so that now s = 3. Note that now s + h = 3 + 5 = 8 = T.

9. To determine the custom subnet mask for Winc’s network, we start with the

standard (default) subnet mask for Class C (Winc’s network class), which

according to Table 7 is 255.255.255.0. We will replace the leftmost zero octet in

the original subnet mask (i.e., the 0 in 255.255.255.0), with a new octet that will

extend the subnetwork ID into the host ID. Calculate the new value for the

original leftmost zero octet as 256 – 28 – s, which is 256 – 28 – 3 or 256 – 25 or 256

– 32 or 224. Hence the custom subnet mask for Winc’s network is

255.255.255.224.

10. Now we determine the valid network ID’s for the new subnets by identifying the

leftmost 0 octet in the original network ID assigned by the ISP. Since this network

ID is 193.200.35.0, the leftmost 0 octet (the only 0 octet) is also the rightmost 0

octet (shown bolded). We now add 28 – s = 28 – 3 = 25 = 32 to this 0 octet to get the

new value for the octet in the first subnet ID: 32 + 0 = 32. Thus the network ID

for the first subnet is

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 19 of 21

193.200.35.32

We continue adding 28 – s to this octet until we either reach the value of the custom

subnet mask (255.255.255.224) or until we have network addresses for 2s – 2

subnets (these two conditions are equivalent and so will occur at the same time).

In our case, 2s – 2 = 23 – 2 = 8 – 2 = 6 subnets, so we continue adding 28 – s five

more times (for a total of six times) as shown below:

Table 12

Original Network ID (not a valid subnet

address since subnet ID is all 0’s)

193.200.35.0

Address for subnet 1 193.200.35.32

Address for subnet 2 193.200.35.64

Address for subnet 3 193.200.35.96

Address for subnet 4 193.200.35.128

Address for subnet 5 193.200.35.160

Address for subnet 6 193.200.35.192

Custom Subnet Mask (not a valid subnet

address since subnet ID is all 1’s)

193.200.35.224

11. To determine the valid IP addresses for each subnet, we begin with the network

ID for the subnet. Let us start with the first subnet whose address (as seen from

Table 12) is 193.200.35.32. To find the first IP address on the subnet, we add 1 to

the rightmost octet of the subnet address: 32 + 1 = 33. Thus the first IP address on

subnet 1 is

193.200.35.33

We will continue incrementing until we reach 255, or until the next increment

would reach two less than the next subnet address, or until we have generated 2h –

2 IP addresses (these last two conditions are equivalent and will always occur at

the same time). Since in our case h = 5, we can expect 25 – 2 = 32 – 2 = 30 IP

addresses per subnet. The valid IP addresses for subnet 1 are shown in the

following table:

Subnet 1 Address # IP Address

1 193.200.35.33

2 193.200.35.34

3 193.200.35.35

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 20 of 21

Subnet 1 Address # IP Address

4 193.200.35.36

5 193.200.35.37

6 193.200.35.38

7 193.200.35.39

8 193.200.35.40

9 193.200.35.41

10 193.200.35.42

11 193.200.35.43

12 193.200.35.44

13 193.200.35.45

14 193.200.35.46

15 193.200.35.47

16 193.200.35.48

17 193.200.35.49

18 193.200.35.50

19 193.200.35.51

20 193.200.35.52

21 193.200.35.53

22 193.200.35.54

23 193.200.35.55

24 193.200.35.56

25 193.200.35.57

26 193.200.35.58

27 193.200.35.59

28 193.200.35.60

29 193.200.35.61

30 193.200.35.62

Note that if we increment the last octet of the 30th IP address (see Table 12), we

get 63, which is one less than the network ID for the next subnet. Hence

193.200.35.62 is indeed the final IP address on subnet 1.

The IP addresses for the remaining 5 subnets can be found in a similar manner.

 Subnetting Made Simple
 Computers in Education Journal (ASEE)
 Larry Newcomer, Penn State University

© L. Newcomer, Computers In Education Journal, lxn@psu.edu Page 21 of 21

References

Bulette, G. TCP/IP MCSE Study Guide, Foster City, CA, IDG Books Worldwide,

1998.

Craft, M., Mayo, B., Pherson, J., et. al., CCNA Cisco Certified Network Associate

Study Guide (Exam 640-407), Berkeley, CA, Osborne McGraw-Hill, 1998

Cunningham, S., Frederick, B., First, T., et. al., MCSE Microsoft TCP/IP on Windows

NT 4.0 Study Guide, Berkeley, CA, Osborne McGraw-Hill, 1998

Dulaney, E., Sherwood, L., Scrimger, R., MCSE Training Guide TCP/IP,

Indianapolis, IN, New Riders Publishing, 1998.

Feit, S. TCP/IP, New York, NY, McGraw-Hill, 1997.

Heywood, D., Scrimger, R., Networking with Microsoft TCP/IP Certified

Administrator’s Resource Edition, Indianapolis, IN, New Riders Publishing,

1997.

Lammle, T., CCNA Cisco Certified Network Associate Study Guide (Exam 640-507),

2nd ed., Alameda, CA, SYBEX, 2000

Loshin, P. TCP/IP Clearly Explained, San Diego, CA, Academic Press, 1997.

Odom, W., CCNA Exam Certification Guide, Indianapolis, IN, Cisco Press, 1999

Odom, W., Cisco CCNA Exam #640-507 Certification Guide, Indianapolis, IN, Cisco

Press, 2000

Poplar, M., Waters, J., McNutt, S., and Stabenaw, D., CCNA Routing and Switching,

Scottsdale, AR, Coriolis, 2000

