SIMPLIFIED DESIGN OF STRUCTURAL ELEMENTS

STAIR, FOUNDATION AND COLUMN

MD. OMAR FARUK
S.M. NAYEEM

NUSRATH JAHAN NISHA

DEPARTMENT OF CIVIL ENGINEERING

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

DECEMBER, 2016

SIMPLIFIED DESIGN OF STRUCTURAL ELEMENTS

STAIR, FOUNDATION AND COLUMN

THIS THESIS PAPER IS

Submitted By:Student ID
MD.OMAR FARUK 12.02.03.010
S.M. NAYEEM 12.02.03.103
NUSRATH JAHAN NISHA 12.02.03.111
In partial fulfillment of requirements for the degree of

Bachelor of Science in Civil Engineering

Under the Supervision of

Dr. ENAMUR RAHIM LATIFEE

Associate Professor

Department of Civil Engineering

APPROVED AS TO STYLE AND CONTENT

BY

Dr. ENAMUR RAHIM LATIFEE

Associate Professor

Department of Civil Engineering

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

141-142 LOVE ROAD, TEJGAON INDUSTRIAL AREA, DHAKA-1208
DECEMBER, 2016

DECLARATION

We hereby declare that the work performed in this thesis for the achievement of the degree of Bachelor of Science in Civil Engineering is "SIMPLIFIED DESIGN OF STRUCTURAL ELEMENTS-Stair, Foundation and Column". The whole work is carried out by the authors under the guidance and strict supervision of Dr. Enamur Rahim Latifee, Associate Professor, Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh.

It is also declare that the work performed in this thesis has not been submitted and will not be submitted, either in part or in full for the award of any other degree in this institute or any other institute or university.

ACKNOWLEDGEMENT

First and foremost we have to thank with respect from our heart to our thesis supervisor, Dr. Enamur Rahim Latifee, Associate Professor, Honorable faculty member, Department of Civil Engineering, Ahsanulllah University of Science and Technology. Without his assistance and dedicated involvement in every step of the work, this paper would have never been accomplished. We would like to thank you very much for your support in all stages.

We would also like to show our respect to all our teachers and professors who taught us during the journey of undergraduate period.

We would like to thank our classmates, seniors and friends for their continued help and encouragement.

Most importantly, we deeply thank our parents and siblings for their unconditional trust, timely support, encouragement and endless patience throughout our life.

ABSTRACT

The objective of our study is to introduce the concept of simplified design of building elements since the traditional method of design includes several steps, lengthy and time consuming. New designers or engineers may find it difficult to overcome within limited short time. In general traditional method described in our books, we have to assume a lot of parameters in many equations but in simplified design some of the parameters are made constant (like strength of reinforcement, ultimate strength of concrete, properties of cement etc are made constant depending on availability of the material) and some of the parameters (like wind load, resistance to earthquake, induced forces, earth or liquid pressure etc.) are ignored in order to shorten the design procedure and to make the design easy plus time efficient. This thesis paper on "Simplified Design of Structural Elements- Stair, Foundation and Column," is prepared by following the provisions according to ACI Standard 318, Building Code Requirements for Structural Concrete.

The designs are formulated in excel which would help the designers \& those who are interested in designing the foundation, column, stair in shortest possible time, with minimum amount of effort. Again elements types, design steps, design examples, Required tables to adopt data, Comparisons tables, graphs, figures with detailing etc. are also provided for Stair, Foundation,\& Column design in a simplified way in this paper. Design for various types of same elements (like square footing, rectangular footing, square column, circular column, stair with different span and different strength etc.) are also included separately. Different websites have been created for different structural elements. Address of those websites are given in appendix. All through a simplified design of concrete structures for stair, foundation, column are implemented in this thesis paper.

It will help practicing engineers, the architects, and common non-technical persons for initial structural design, verifying existing design and to get rough idea on the design and check the assumptions, further checking abilities, and some way of reducing the design time required for smaller projects, reinforced concrete buildings of moderate size and height.

Table of Contents

Declaration I
Acknowledgement. II
Abstract III
Table of Contents IV
List of Figures. VII
List of Symbol and Abbreviation X
Chapter 01: INTRODUCTION
1.1 Scope of simplified design 2
1.2 Purposes behind simplification of design 3
1.3 The beneficiaries 3
1.4 How we have simplified design 4
1.5 Our Future goals 4
Chapter 02: LITERATURE REVIEW
2.1 Stair 7
2.1.1 Types of Stair 7
2.2 Foundation 14
2.2.1 Some Purposes of Foundation 14
2.2.2 Types Of Foundations 14
2.2.3 Factors affecting the selection of Foundation: 21
2.2.4 Bearing Capacity 21
2.2.5 Bearing Capacity Values 24
2.2.6 Load Calculation for Foundation 26
2.3 Reinforced Concrete Columns 26
2.3.1 Column construction materials 27
2.3.2 Effecting factors of column design 27
2.3.3 Types of Columns 27
2.3.4 Short Column: 28
2.3.5 Types of Reinforcements for columns and their requirements 29
Chapter 03: METHODOLOGY AND EXPERIMENTAL WORK
3.1 Stair 31
3.1.1 Design Steps of Stairs 31
3.1.2 Design Example of Stairs 33
3.2 Foundation 36
3.2.1 Design Steps of Rectangular Foundation 36
3.2.2 Design example of Rectangular footing 37
3.2.3 Design Steps of Square Foundation 39
3.2.4 Example of a square footing design 40
3.3 Column 43
3.3.1 Design Example of square column 43
3.3.2 Design Example of circular column: 44
Chapter 04: RESULTS AND DISCUSSION
4.1 Stair Design result and analysis 47
4.1.1 Simplified design of stair 47
4.1.2 Comparison Results 49
4.1.3 Website on Stair Design 50
4.2 Foundation Design result and analysis 58
4.2.1 Load Calculation for Foundation 58
4.2.2 Rectangular Foundation Design 63
4.2.3 Square Footing Design 66
4.2.4 Website on Isolated Foundation Design 68
4.3 Column design result and analysis 81
4.3.1 Simplified design of Concentric loading square column 82
4.3.2 Simplified design of Concentric loading circular column 82
4.3.3 Preliminary Column Sizing 84

Chapter 05: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 91
5.2 Recommendation. 91
Appendix 93
Bibliography 94

List of Figures

Figure 1.1: Foundation 4
Figure 1.2: Column 5
Figure 1.3: Stair 5
Figure 2.1: Straight Stair 7
Figure 2.2: Quarter Turn Stairs 8
Figure 2.3: Half Turn Stairs. 9
Figure 2.4: Spiral Stairs 10
Figure 2.5: Components of Staircase 13
Figure 2.6: Wall footing 15
Figure 2.7: Column footing 16
Figure 2.8: Combined footing 16
Figure 2.9: Strap footing 17
Figure 2.10: Mat or raft foundation 18
Figure 2.11: Pile foundation 19
Figure 2.12: Pier foundation 20
Figure 2.13: Well or Caisson foundation 21
Figure 2.14: Load transfer concept in column 26
Figure 2.15: Reinforcement of Column sections 27
Figure 3.1 : Reinforcement Detailing of Stair 35
Figure 4.1 (a): Design of stair excel file screenshot 47
Figure 4.1 (b): Design of stair excel file screenshot 48
Figure 4.2 (a): Design of stair web page screenshot 50
Figure 4.2 (b): Design of stair web page screenshot 51
Figure 4.2 (c): Design of stair web page screenshot 52
Figure 4.2 (d): Design of stair web page screenshot 53
Figure 4.2 (e): Design of stair web page screenshot 54
Figure 4.2 (f): Design of stair web page screenshot 55
Figure 4.2 (g): Design of stair web page screenshot 56
Figure 4.2 (h): Design of stair web page screenshot 57
Figure 4.3 (a): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot58
Figure 4.3 (b): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot59
Figure 4.3 (c): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot

Figure 4.3 (d): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot

Figure 4.3 (e): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot

Figure 4.3 (f): Load Calculation For Foundation (Interior Column with Three beams) excel file Screenshot 61
Figure 4.3 (g): Load Calculation For Foundation (Interior Column with Three beams) excel file Screenshot
Figure 4.3 (h): Load Calculation For Foundation (Interior Column with Three beams) excel file
Screenshot .. 62
Figure 4.3 (i): Load Calculation For Foundation (Exterior Column with Two beams) excel file Screenshot

Figure 4.3 (j): Load Calculation For Foundation (Exterior Column with Two beams) excel file Screenshot

Figure 4.4 (a): Rectangular Foundation design excel file screenshot ... 64
Figure 4.4 (b): Rectangular Foundation design excel file screenshot ... 64
Figure 4.4 (c): Rectangular Foundation design excel file screenshot ... 65
Figure 4.4 (d): Rectangular Foundation design excel file screenshot ... 65
Figure 4.5 (a): Square Foundation design excel file screenshot ... 66
Figure 4.5 (b): Square Foundation design excel file screenshot .. 67
Figure 4.5 (c): Square Foundation design excel file screenshot.. 67
Figure 4.6 (a): Home page of Simplify the foundation design web page screenshot.................................. 68
Figure 4.6 (b): Simplify the foundation design web page screenshot ... 68
Figure 4.6 (c): Simplify the foundation design web page screenshot.. 69
Figure 4.6 (d): Simplify the foundation design web page screenshot .. 69
Figure 4.6 (e): Simplify the foundation design web page screenshot .. 70
Figure 4.6 (f): Simplify the foundation design web page screenshot .. 70
Figure 4.6 (g): Simplify the foundation design web page screenshot... 71
Figure 4.6 (h): Simplify the foundation design web page screenshot ... 71
Figure 4.6 (i): Simplify the foundation design web page screenshot .. 72
Figure 4.6 (j): Simplify the foundation design web page screenshot.. 72
Figure 4.6 (k): Simplify the foundation design web page screenshot... 73
Figure 4.6 (I): Simplify the foundation design web page screenshot .. 73
Figure 4.6 (m): Simplify the foundation design web page screenshot ... 74
Figure 4.6 (n): Simplify the foundation design web page screenshot ... 74
Figure 4.6 (o): Simplify the foundation design web page screenshot .. 75
Figure 4.6 (p): Simplify the foundation design web page screenshot .. 75
Figure 4.6 (q): Simplify the foundation design web page screenshot ... 76
Figure 4.6 (r): Simplify the foundation design web page screenshot ... 76
Figure 4.6 (s): Simplify the foundation design web page screenshot.. 77
Figure 4.6 (t): Simplify the foundation design web page screenshot .. 77
Figure 4.6 (u): Simplify the foundation design web page screenshot .. 78
Figure 4.6 (v): Simplify the foundation design web page screenshot.. 78
Figure 4.6 (w): Simplify the foundation design web page screenshot... 79
Figure 4.6 (x): Simplify the foundation design web page screenshot... 79
Figure 4.6 (y): Simplify the foundation design web page screenshot... 80
Figure $4.6(z)$: Simplify the foundation design web page screenshot 81
Figure 4.7 (a): Design of square column excel file screenshot 82
Figure 4.8 (a): Design of circular column excel file screenshot 83
Figure 4.9 (a): Design Chart for Non-slender, Square Tied Columns (in inch ${ }^{2}$) 85
Figure 4.9 (b): Design Chart for Nonslender, Square Tied Columns (in inch²) 86
Figure 4.9 (c): Design Chart for Non slender, Square Tied Columns (in inch²) 87
Figure 4.9 (d): Design Chart for Non slender, Square Tied Columns (in inch ${ }^{2}$) 88
Figure 4.9 (e): Design Chart for Nonslender, Square Tied Columns (in inch²) 89

List of Symbols and Abbreviations

$\mathrm{ACI}=$ American Concrete Institute.
ASCE $=$ American Society of Civil Engineers.
BNBC $=$ Bangladesh National Building Code.
DL = Dead load.
$\mathrm{LL}=$ Live load.
$1=$ Length of span.
As = Area of steel.
$f^{\prime} c=$ Compressive strength of concrete.
fy $=$ Grade $/$ Yield strength of steel .
$\mathrm{h}=$ Thickness of slab
$\mathrm{E}=$ Modulus of elasticity.
$\mathrm{I}=$ Moment of inertia.
$\rho=$ Steel ratio.

Introduction

Page 1

Most of the structures throughout the world are made of R.C.C. (Reinforced cement concrete). As a result, people are trying to simplify the design of R.C.C. building components in various countries at various times. We have adopted the same motto to make the design of R.C.C. components better, simple, time consuming and easy to use. To achieve that goal we have mainly worked on Foundation, Column and Stair design for normal residential, commercial buildings of moderate size and Height.

This paper on "Simplified Design of Structural elements- Stair, Foundation and Column" is prepared by following the provisions mentioned in ACI Standard 318, Building Code Requirements for Structural Concrete. The simplification of design with its attendant savings in design time result from avoiding building members proportioning details and material property selection which make it necessary to consider certain complex provision of the ACI standards. This situation often avoided by making minor changes in design approach. In various situations during our design specific recommendations are made to accomplish our goal.

This paper has been written as a time saving aid for use by those who consistently seek ways to simplify design procedures. The purpose of this paper is to give practicing engineers some way of reducing the design time required for smaller projects.

We have ignored complicated legal terminology without changing the intent or the objective of the code. Invention, innovation, and experimentation help to advance knowledge, but experience provides the confidence to trust our design practices.

1.1 Scope of simplified design

The simplified design approach presented in this thesis paper should be used within general guidelines and limitations mentioned in the paper. In addition, appropriate guidelines and limitations are given within each chapter for proper application of specific simplifying design procedures. Our designs will help practicing engineers to give idea about their assumption data in design, further checking abilities, and some way of reducing the design time required for smaller projects.

1.2 Purposes behind simplification of design

There are lots of commercial software available to solve structural design problems such as ETABS, STAAD Pro, etc. However, to use all of this software, a person must have some basic civil engineering knowledge and it also requires detail information input for modeling. The engineers, architects and ordinary people including home owner, contractors and others do not have any handy software available to get very quick design and estimation of materials. Moreover, no unpaid tool is available for them to have an idea of the size and cost of building elements, and even paid software, need detail data input. To overcome these shortcomings of the modern day software and to empower the engineers, architects and others to have structural design which is ready with very simple inputs excel file based, free of cost application is developed according to ACI-318-11 with visual output in figures. The user including the engineer, the architect, and common non-technical person can give very simple inputs in a excel sheet and instantly get the results there. It can be used for initial structural design, verifying existing design and detail. There are also a lot of methods for design a reinforced concrete building, but here we used simplified design method of reinforced concrete buildings.

The aim is to create a simplification in the design process with minimum user input. The design aids in the form of graphs, are being generated for regular cases- residential/commercial. The scope is limited to moderate size and height of buildings. Two websites has been created on our design to benefit the user and we have made it free to use. Many designs tools have been done in Microsoft office excel worksheet and uploaded to our websites. So, one can easily use those tools in internet using their computer or other devices.

1.3 The beneficiaries

The materials in this paper are not intended for well-trained, experienced structural engineers but rather for people who are interested in the topic but lack both training and experience in structural design. With this readership in mind, the computational work here is reduced to a minimum, using mostly simple mathematical procedures. A minimum background for the reader is assumed in fundamentals of structural mechanics.

1.4 How we have simplified design

One may have question in mind that how we have simplified the design where we have followed the same established procedure to solve the design problems. Actually we take the whole burden of carrying out the design on our shoulder and provide you a ready design of building components. What you have to do is just to input the required data (e.g. Column length, width, dead and live load etc.) and you will get the result instantly with detailing in figure. Thus we have simplified and reduce the design time.

1.5 Our Future goals

Since we started our thesis by simplification of foundation, but till now we have completed foundation, column, and stair for simplified design method. We hope to cover the full building components design solution in near future.

Figure 1.1: Foundation

Figure 1.2: Column

Figure 1.3: Stair

Chapter 2

Literature Review

2.1 Stair

Stair consist of steps arranged in a series for purpose of giving access to different floors of a building. Since a stair is often the only means of communication between the various floors of a building, the location of the stair requires good and careful consideration.

2.1.1 Types of Stair

Straight Stair: These are the stairs along which there is no change in direction on any flight between two successive floors. The straight stairs can be of following types.

- Straight run with a single flight between floors
- Straight run with a series of flight without change in direction
- Parallel stairs
- Angle stairs
- Scissors stairs

Straight stairs can have a change in direction at an intermediate landing. In case of angle stairs, the successive flights are at an angle to each other. Scissor stairs are comprised of a pair of straight runs in opposite directions and are placed on opposite sides of a fire resistive wall.

Figure 2.1: Straight Stair

Quarter Turn Stairs: They are provided when the direction of flight is to be changed by 90 degree. The change in direction can be effected by either introducing a quarter space landing or by providing winders at the junctions.

Figure 2.2: Quarter Turn Stairs

Half Turn Stairs: These stairs change their direction through 180°. It can be either dog-legged or open newel type. In case of dog legged stairs the flights are in opposite directions and no space is provided between the flights in plan. On the other hand in open newel stairs, there is a well or opening between the flights and it may be used to accommodate a lift. These stairs are used at places where sufficient space is available.

Figure 2.3: Half Turn Stairs

Three Quarter Turn Stairs: These types of stairs change their directions through 270°. In other words direction is changed three times with its upper flight crossing the bottom one. In this type of construction an open well is formed.

Circular Stairs: These stairs, when viewed from above, appear to follow circle with a single center of curvature and large radius. These stairs are generally provided at the rear of a building to give access for servicing at various floors. All the steps radiate from a newel post in the form of winders. These stairs can be constructed in stone, cast iron or R.C.C.

Curved Stairs: These stairs, when viewed from above, appear to follow a curve with two or more center of curvature, such as ellipse.

Geometrical Stairs: These stairs have no newel post and are of any geometrical shape. The change in direction in these stairs is achieved through winders. The stairs require more skill for its construction and are weaker than open newel stairs. In these stairs the open well between the forward and the backward flights is curved.

Spiral Stairs: These stairs are similar to circular stairs except that the radius of curvature is small and the stairs may be supported by a center post. Overall diameter of such stairs may range from 1 to 2.5 m .

Figure 2.4: Spiral Stairs

2.1.2 Component of Stair Case

Step - The step is composed of the tread and riser.

Tread - The part of the stairway that is stepped on. It is constructed to the same specifications (thickness) as any other flooring. The tread "depth" is measured from the outer edge of the step to the vertical "riser" between steps. The "width" is measured from one side to the other.

Riser - The vertical portion between each tread on the stair. This may be missing for an "open" stair effect.

Nosing - An edge part of the tread that protrudes over the riser beneath. If it is present, this means that, measured horizontally, the total "run" length of the stairs is not simply the sum of the tread lengths, as the treads actually overlap each other slightly.

Starting step or Bull nose- Where stairs are open on one or both sides, the first step above the lower floor may be wider than the other steps and rounded. The balusters typically form a semicircle around the circumference of the rounded portion and the handrail has a horizontal spiral called a "volute" that supports the top of the balusters. Besides the cosmetic appeal, starting steps allow the balusters to form a wider, more stable base for the end of the handrail.

Handrails that simply end at a post at the foot of the stairs can be less sturdy, even with a thick post. A double bull nose can be used when both sides of the stairs are open.

Stringer , Stringer board or sometimes just String - The structural member that supports the treads and risers. There are typically two stringers, one on either side of the stairs; though the treads may be supported many other ways. The stringers are sometimes notched so that the risers and treads fit into them.

Winders- Winders are steps that are narrower on one side than the other. They are used to change the direction of the stairs without landings. A series of winders form a circular or spiral stairway. When three steps are used to turn a 90° corner, the middle step is called a kite winder as a kiteshaped quadrilateral.

Trim-Trim (e.g. quarter-round or baseboard trim) is normally applied where walls meet floors and often underneath treads to hide the reveal where the tread and riser meet. Shoe molding may be used between where the lower floor and the first riser meet. Trimming a starting step is a special challenge as the last riser above the lower floor is rounded.

Flexible, plastic trim is available for this purpose, however wooden molding are still used and are either cut from a single piece of rounded wood, or bent with laminations Scotia is concave molding that is underneath the nosing between the riser and the tread above it.

Banister, Railing or Handrail - The angled member for handholding, as distinguished from the vertical balusters which hold it up for stairs that are open on one side; there is often a railing on both sides, sometimes only on one side or not at all, on wide staircases there is sometimes also one in the middle, or even more. The term "banister" is sometimes used to mean just the handrail, or sometimes the handrail and the balusters or sometimes just the balusters.

Volute - A handrail end element for the bull nose step that curves inward like a spiral. A volute is said to be right or left-handed depending on which side of the stairs the handrail is as one faces up the stairs.

Turnout - Instead of a complete spiral volute, a turnout is a quarter-turn rounded end to the handrail.

Gooseneck - The vertical handrail that joins a sloped handrail to a higher handrail on the balcony or landing is a gooseneck.

Rosette - Where the handrail ends in the wall and a half-newel is not used, it may be trimmed by a rosette.

Easing - Wall handrails are mounted directly onto the wall with wall brackets. At the bottom of the stairs such railings flare to a horizontal railing and this horizontal portion is called a "starting easing". At the top of the stairs, the horizontal portion of the railing is called a "over easing".

Core rail- Wood handrails often have a metal core to provide extra strength and stiffness, especially when the rail has to curve against the grain of the wood. The archaic term for the metal core is "core rail".

Baluster - A term for the vertical posts that hold up the handrail .Sometimes simply called guards or spindles. Treads often require two balusters. The second baluster is closer to the riser and is taller than the first. The extra height in the second baluster is typically in the middle between decorative elements on the baluster. That way the bottom decorative elements are aligned with the tread and the top elements are aligned with the railing angle.

Newel- A large baluster or post used to anchor the handrail. Since it is a structural element, it extends below the floor and subfloor to the bottom of the floor joists and is bolted right to the floor joist. A half-newel may be used where a railing ends in the wall. Visually, it looks like half the newel is embedded in the wall. For open landings, a newel may extend below the landing for a decorative newel drop.

Finial - A decorative cap to the top of a newel post, particularly at the end of the balustrade.
Base rail or Shoe rail- For systems where the baluster does not start at the treads, they go to a base rail. This allows for identical balusters, avoiding the second baluster problem.

Fillet- A decorative filler piece on the floor between balusters on a balcony railing.

Figure 2.5: Components of Staircase

2.2 Foundation:

In simple words, a foundation is a structure that transfers loads of the structure to the earth.
Foundation of a structure is always constructed below the ground level so as to increase the lateral stability of the structure. It includes the portion of the structure below the ground level and is built, so as to provide a firm and level surface for transmitting the load of the structure on a large area of the soil lying underneath. The solid ground on which the foundation rests is called the Foundation Bed.

All the soil compress noticeably when loaded and cause the supported structure to settle. The two essential requirements in the design of foundation are that the total settlement of the structure be limited to a tolerably small amount and that differential settlement of the various parts of the structure be eliminated as nearly as possible.

2.2.1 Some Purposes of Foundation

All engineering structures are provided with foundations at the base to fulfill the following objectives and purposes;
i. To distribute the load of the structure over a large bearing area so as to bring intensity of loading within the safe bearing capacity of the soil lying underneath.
ii. To load the bearing surface at a uniform rate so as to prevent unequal settlement.
iii. To prevent the lateral movement of the supporting material.
iv. To secure a level and firm bed for building operations.
v. To increase the stability of the structure as a whole.

2.2.2 Types of Foundations

Foundations are broadly classified into two categories.

Shallow Foundation

Shallow foundation are those foundations in which the depth at which the foundation is placed is less than the width of the foundation ($\mathrm{D}<\mathrm{B}$). Shallow foundations are generally termed as spread footing as they transmit the load of the super structure laterally into the ground.

Classification of Shallow Foundation:

On the basis of design, the shallow foundations are classified as:

- Wall Footing
- Isolated column or Column Footing
- Combined Footing
- Cantilever (Strap) Footing
- Mat (Raft) Foundation

Wall Footing

This type of foundation runs continuous along the direction of the wall and helps to transmit the load of the wall into the ground. Wall footings are suitable where loads to be transmitted are small and are economical in dense sands and gravels. In this type of foundation the width is 2-3 times the width of the wall at ground level. Wall footing may be constructed through stone, brick, plain or reinforced cement concrete.

Figure 2.6: Wall footing

Column Footing

Column footings are suitable and economical for the depth greater than 1.5 m . In this type of foundation the base of the column is enlarged. Column footing is in the form of flat slab and may be constructed through plain or reinforced concrete.

Figure 2.7: Column footing

Combined Footing

Combined footings are those foundations that are made common for two or more columns in a row. It is used when the footing for a column may extend beyond the property line. It is also suitable when the two columns are closely spaced and the soil on which the structure resist is of low bearing capacity. It may be rectangular or trapezoidal in shape.

Figure 2.8: Combined footing

Strap Footing

When an edge footing cannot be extended beyond the property line the edge footing is linked up with the other interior footing by means of a strap beam. Such footings are called as strap footing. It is also known as cantilever footing.

Figure 2.9: Strap footing

Mat Foundation

A mat foundation is a combined footing which covers the entire area beneath of a structure and supports all the walls and columns. It is also known as raft foundation. Mat foundation is applicable when:

- Allowable bearing pressure is low.
- The structure is heavy.
- The site is with highly compressible layer.

The mat foundation can be further classified into following types:

- Flat slab type.
- Flat Slab thickened under column.
- Two way beam and slab type.
- Flat slab with pedestals.
- Rigid frame mat.
- Piled mat.

Figure 2.10: Mat or raft foundation

Deep Foundation

Deep Foundation are those foundations in which the depth of the foundation is greater than its width ($\mathrm{D}>\mathrm{B}$). The D / B ratio is usually $4-5$ for deep foundation. Unlike shallow foundation, the deep foundation transmits the load of the superstructure vertically to the rock strata lying deep. Deep foundations are used when the shallow foundation cannot support the load of the structure.

Classification of Deep Foundation

The mat foundation can be further classified into following types:

- Pile Foundation
- Pier Foundation
- Well (Caissons) Foundation

Pile Foundation

Pile is a slender member with small area of cross-section relative to its length. They can transfer load either by friction or by bearing. Pile foundations are used when:

- The load is to be transferred to stronger or less compressible stratum, preferably rock.
- The granular soils need to be compacted.
- The horizontal and the inclined forces need to be carried from the bridge abutments and the retaining walls.

Figure 2.11: Pile foundation

Classification of Pile Foundation

The pile foundation can be further classified into following types on various basis such as function, material, method of installation which are listed below:

Based on Function:

- Bearing piles
- Friction piles
- Combined piles (Both bearing and friction)

Based on Material:

- Timber piles
- Concrete piles
- Steel piles

Based on Method of Installation:

- Large displacement piles
- Small displacement piles
- Non-displacement piles

Pier Foundation

Pier foundations are underground cylindrical structural member that support heavier load of the structure which shallow foundations cannot resist. Unlike pile foundation, pier foundation can only transfer load by bearing. Pier foundations are shallower in depth than the pile foundation. Pier foundations are used when:

- The top stratum is a decomposed rock underlying as sound rock strata.
- The soil is stiff clay that occur large resistance for driving the bearing pile.

Figure 2.12: Pier foundation

Well (Caissons) Foundation

The term caisson refers to box or a case. These are hollow inside and are usually constructed at the site and sunk in place into a hard bearing stratum. As they are expensive in construction, they are usually restricted to major foundation works. Well foundations are suitable when the soil contains large boulders obstructing the penetration during installation of pier or pile foundations. Caissons are used for bridge piers, abutments in rivers and lakes and other shore protection works. They are used to resist heavy vertical and horizontal loads and are used in the construction of large water front structures as pump houses.

Classification of Well Foundation

- Open Caissons
- Pneumatic Caissons
- Box Caissons

Figure 2.13: Well or Caisson foundation

2.2.3 Factors affecting the selection of Foundation:

On the basis of ground/soil condition :

- Shallow foundations are preferred where soil close to the surface is capable of supporting structure loads.
- Where the ground close to the surface is not capable of supporting structural loads, hard strata is searched for and deep foundation is required.
- Uniform stable ground requires relatively shallow foundation whereas filled up ground has low bearing capacity thus requires deep foundation.

On the basis of Loads from Building:

- In the case of low-rise building in a larger area, the extent of loading is relatively low, so shallow foundation can resist the load from the structures.
- In the case of the high-rise building built within less area have high loads. Therefore, the deep foundation is required as shallow foundation may not be able to resist such loads of greater intensity.

2.2.4 Bearing Capacity

Bearing Capacity:

Bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the
theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing capacity is based on the maximum allowable settlement. Bearing Capacity of soil varies with the types of soil and places. A word file is added to pick up the bearing capacity values for using in the design as bearing capacity of soil plays an important role in foundation design.

Bearing Capacity Calculation

For Shallow Foundation:

Using Terzaghi's equation:

This equation can be used both for cohesion less and cohesive soil. The common equation isquit $=\mathbf{c N c}+1 / 2 \mathbf{B} \gamma \mathbf{N} \gamma+\mathbf{q N q}$ $=(\mathbf{q u} / \mathbf{2}) \mathbf{N c}+1 / 2 \mathbf{B} \gamma \mathbf{N} \gamma+(\gamma \mathrm{df}) \mathbf{N q}$
Where, $N c, N \gamma$ and $N q$ are non dimensional bearing capacity factors and functions only of the angle of internal friction, φ. Unconfined compressive strength, q and γ is the unit weight of soil. df is the depth of footing
Strip footing: qult $=\mathrm{cNc}+1 / 2 \mathrm{~B} \gamma \mathrm{~N} \gamma+\mathrm{qNq}$
Square footing: quit $=1.3 \mathrm{cNc}+0.4 \mathrm{~B} \gamma \mathrm{~N} \gamma+\mathrm{qNq}$
Circular Footing: quit $=1.3 \mathrm{cNc}+0.3 \mathrm{~B} \gamma \mathrm{~N} \gamma+\mathrm{qNq}$
Where graphs are not given then we can use :
$\mathrm{Nq}=\tan ^{\wedge} 2(45+\varphi / 2) e^{\wedge} \pi \tan \varphi$
$\mathrm{Nc}=(\mathrm{Nq}-1) \cot \varphi$
$\mathbf{N} \gamma=1.5(\mathrm{Nq}-1) \tan \varphi$
LIMITATIONS : In this case many factors like (qu,B,df, γ, φ) are unknown, so a user must have soil report to input the values .

Using Skempton's Bearing Capacity Equation (for Clay Soil):

Bearing capacity of footings founded on purely cohesive soils based on extensive investigations

$$
\begin{aligned}
\text { quilt }= & \mathbf{c N c} \\
& =(q u / 2) \mathbf{N c}
\end{aligned}
$$

The bearing capacity factor, Nc is given by

For strip footing:
$N c=5(1+0.2 D f / B)$
For square and circular footings:
$N c=6(1+0.2 D f / B)$

For rectangular footings:
$N c=5(1+0.2 B / L)(1+0.2 D f / B)$ for $\mathrm{Df} / \mathrm{B} \leq 2.5$
And $N c=7.5(1+0.2 B / L)$ for $\mathrm{Df} / \mathrm{B}>2.5$.
Or from the graph
LIMITATIONS: This method is valid only for clay soil, and a user must know depth, length, width of the footing and qu

For Pile Foundation:
Individual capacity of a bored pile on clay:
Qup $=\mathbf{Q e b}+\mathbf{Q s f}$
$=A p . q p+$ Af.qf
$=\left(\pi^{*} \mathrm{D}^{\wedge} 2 / 4\right) \cdot 9 \mathrm{cu}+(\pi \mathrm{DL}) \cdot \alpha 1 \mathrm{cu} \quad[\alpha 1=$ reduction factor $=0.45$ normally $]$
Where,
Qup = Ultimate bearing load of the pile
Qeb $=$ End bearing resistance of the pile $\mathrm{Qsf}=$ Skin friction resistance of the pile

Ap $=$ Effective area of the tip of the pile
$\mathrm{qp}=9 \mathrm{cu}=$ Theoretical unit tip-bearing capacity for cohesive soils
$\mathrm{cu}=$ Undrained shear strength of soil at the base
$\mathrm{Af}=$ Effective surface area of the pile
$\mathrm{qf}=\alpha 1 \mathrm{cu}=$ Theoretical unit friction capacity

REQUIREMENTS: Dia. Of the pile and cu must be known to the user.

Individual Capacity of a bored pile on Sand :

Qup = Qeb + Qsf
End Bearing, Qeb = 1.2 * \mathbf{N} * Ap

$$
=1.2 * N^{*}\left(\pi * D^{\wedge} 2 / 4\right)
$$

Skin Friction, $\mathbf{Q s f}=\boldsymbol{\beta}^{*} \mathbf{p o}^{*}{ }^{*} \mathbf{A f} \quad[\beta=1.5-0.135 \sqrt{ }]$

$$
=\boldsymbol{\beta}^{*} \gamma \mathbf{Z}^{*}(\pi \mathrm{DL})
$$

Where,
$\mathrm{z}=$ depth from GL to middle of the layer
$\mathrm{N}=$ Field N value from standard penetration test at the level of bottom
po' = effective overburden pressure

1. Skin friction of top 5° of pile should be neglected [due to loose soil at top]
2. Skin friction of bottom $2^{`}-5$ of pile should be neglected [due to induced soil at bottom]

Individual action of Pile Cap = Individual capacity of a pile x number of pile in the pile group Group action of Pile Cap $=2 / 3 \times$ Capacity of group pile

LIMITATIONS: In this case , $\mathrm{N}, \mathrm{D}, \gamma$, and z must be known to the user, besides calculating (Z) is tough for different layers of soil.
2.2.5 Bearing Capacity Values
RECOMMENDED VALUES OF SAFE BEARING CAPACITY FOR PRELIMINARY ANALYSIS

TYPE OF ROCK OR SOIL

ROCKS

Rocks (hard) without lamination and defects, for example granite, trap and diorite

Laminated rocks, for example sand stone and lime
stone in sound condition

Residual deposits of shattered and broken bed rock and hard shale, cemented material

SAFE BEARING CAPACITY

$\left(k N / \mathbf{m}^{2}\right) \quad\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$

Soft rock
450

NON-COHESIVE SOILS
Gravel, sand and gravel mixture, compact and offering
high resistance to penetration when excavated by 450
tools. (Refer Note 5)

Coarse sand, compact and dry (with ground water
level at a depth greater than width of foundation 450
below the base of footing)
Medium sand, compact and dry 250

Fine sand, silt (dry lumps easily pulverized by fingers) 150

Loose gravel or sand gravel mixture; loose coarse to medium sand, dry (Refer Note 5)

Fine sand, loose and dry
100

COHESIVE SOILS

Soft shale, hard or stiff clay in deep bed, dry	450	4.5
Medium clay, readily indented with thumb nail	250	2.5
Moist clay and sand clay mixture which can be indented with strong thumb pressure	150	1.5
Soft clay indented with moderate thumb pressure	100	1.0
Very soft clay which can be penetrated several centimeters with the thumb	50	0.5
Black cotton soil or other shrinkable or expansive clay in dry condition (50 percent saturation) (Refer Note		
Peat (Refer Note 2 \& 3)	To be	ed

Fills or made up ground (Refer Note 4 \& 5)
2.5

2.2.6 Load Calculation for Foundation

Purposes behind load calculation

For foundation design we have to assume a certain amount of load that may act on foundation. The designer who has no experience cannot assume properly for his design calculation. Keeping this in mind we have tried to give a primary idea to the designers that how much load that can be act upon the foundation. This file is applicable only for the design of foundation of low rise residential building. As this file is for usual low rise residential building, one way slab condition is ignored to simply the calculation.

2.3 Reinforced Concrete Columns

A column is a very important component in a structure. It is like the legs on which a structure stands. It is designed to resist axial and lateral forces and transfer them safely to the footings in the ground. Columns support floors in a structure. Slabs and beams transfer the stresses to the columns. So, it is important to design strong columns.

Figure 2.14: Load transfer concept in column

A column is a vertical structural member supporting axial compressive loads, with or without moments. The cross-sectional dimensions of a column are generally considerably less than its height. A reinforced concrete column can be defined as a structural member with a steel frame (reinforcement bars) composed of concrete that is been designed to carry compressive loads.

Figure 2.15: Reinforcement of Column sections

2.3.1 Column construction materials

In the modern construction industry, Columns are mostly constructed by concrete; apart from that materials such as Wood, Steel, Fiber-reinforced polymer, Cellular PVC, and Aluminum too are been used. The type of material is been decided on the scale, coast and application of the construction.

2.3.2 Effecting factors of column design

Column design does not depend only on axial loads, but also on many other factors. There are bending moments and torsion forces induced due to beam spans, wind loads, seismic loads, point loads and many other factors.

2.3.3 Types of Columns

A column may be classified based on different criteria such as:

1. Based on shape

- Rectangle
- Square
- Circular
- Polygon

2. Based on slenderness ratio

The ratio of the effective length of a column to the least radius of gyration of its cross section is called the slenderness ratio.

- Short RCC column, $=<10$
- Long RCC column, > 10
- Short Steel column, $=<50$
- Intermediate Steel column $>50 \&<200$
- Long Steel column >200

3. Based on type of loading

- Axial loaded column.
- A column subjected to axial load and uniaxial bending.
- A column subjected to axial load and biaxial bending.

4. Based on pattern of lateral reinforcement

- Tied RCC columns
- Spiral RCC columns

2.3.4 Short Column:

In our column design, we have mainly focused on short column as it is the most used type of column. The primary concept of short column is discussed shortly below:

When the ratio of effective length to the least lateral dimensions of the column is less than 12 , then it is called short column.

The strength of short columns is controlled by the strength of the material and the geometry of the cross section. Reinforcing rebar is placed axially in the column to provide additional axial stiffness. Accounting for the additional stiffness of the steel, the nominal loading capacity P_{n} for the column in terms of the maximum compressive stress of the concrete $\mathrm{f}_{\mathrm{c}}{ }^{\prime}$, the yield stress of the steel f_{y}, the gross cross section area of the column A_{g}, and the total cross section area of the steel rebar $\mathrm{A}_{\text {st }}$

2.3.5 Types of Reinforcements for columns and their requirements

Longitudinal Reinforcement

- Minimum area of cross-section of longitudinal bars must be at least 0.8% of gross section area of the column.
- Maximum area of cross-section of longitudinal bars must not exceed 6% of the gross crosssection area of the column.
- The bars should not be less than 12 mm in diameter.
- Minimum number of longitudinal bars must be four in rectangular column and 6 in circular column.
- Spacing of longitudinal bars measures along the periphery of a column should not exceed 300 mm .

Transverse reinforcement

- It may be in the form of lateral ties or spirals.
- The diameter of the lateral ties should not be less than $1 / 4^{\text {th }}$ of the diameter of the largest longitudinal bar and in no case less than 6 mm .
- The pitch of lateral ties should not exceed
- Least lateral dimension
$-16 \times$ diameter of longitudinal bars (small)
$-300 \mathrm{~mm}$

Helical Reinforcement

- The diameter of helical bars should not be less than $1 / 4^{\text {th }}$ the diameter of largest longitudinal and not less than 6 mm .
- The pitch should not exceed (if helical reinforcement is allowed);
$-75 \mathrm{~mm}$
$-1 / 6^{\text {th }}$ of the core diameter of the column
- Pitch should not be less than, 25 mm or 3 x diameter of helical bar

Chapter 3

Methodology and Experimental Work

3.1 Stair

3.1.1 Design Steps of Stairs

Step 1: Determination of load on stair
On stair two types load usually work, Dead load and Live Load. Dead load comes from selfweight of the stair Components and from floor finish. Minimum live load for residential buildings stair according to BNBC is $4.96 \mathrm{KN} / \mathrm{m}^{2}$ or 100 psf .

Total Factored Load, $\mathrm{W}_{\mathrm{U}}=\mathrm{W}_{\mathrm{DL}}+\mathrm{W}_{\mathrm{LL}}$

$$
\mathrm{W}_{\mathrm{DL}}=(1.2 * \mathrm{DL}) \text { and } \mathrm{W}_{\mathrm{LL}}=\left(1.6^{*} \mathrm{LL}\right)
$$

Where, $\quad \mathrm{DL}=$ Total Dead Load. (Self-Weight of Rise and Steps, Self-Weight of waist, Self-Weight Of landing slab)
LL = Total Live Load

Step 2: Determination of factored moments, M
Factored moment coefficient found in figure
Moment and shear values using ACI coefficients. (ACI Code 31811, section 8.3.3)

$\mathrm{Wu}=$ Total factored load per unit length of beam or per unit area of slab $\mathrm{Ln}=$ Clear span for positive moment and the average of the two adjacent clear Spans for negative moment.

Step 3: Determination of effective depth,d

The net tensile strain $\varepsilon_{\ell}=0.004$ provides the maximum reinforcement ratio allowed by the ACI Code for beams.

$$
\text { Maximum reinforcement ratio, } \rho \max =0.85 \beta 1 \frac{f c}{f y} \frac{\varepsilon u}{\varepsilon u+0.004}
$$

Where, $\mathrm{f}^{\prime} \mathrm{c}=$ Compressive strength of concrete.
Fy $=$ Tensile strength of steel
$\varepsilon_{u}=0.003=$ Concrete crushing strain

$$
\begin{array}{r}
\quad M u=\varphi \rho f y b d^{2}\left(1-0.59 \frac{\rho f y}{f^{\prime} c}\right) \\
\text { Effective depth, } \mathrm{d}=\sqrt{\frac{M u}{\varphi \rho f y b\left(1-0.59 \frac{\rho f y}{f^{\prime} c}\right)}}
\end{array}
$$

Where, $\mathrm{Mu}=$ Ultimate moment
$\varphi=$ Reduction factor
b = Width of per feet strip
$\rho=$ Reinforcement ratio

Step 4: Determination of area of Steel, As

$\mathrm{As}=\frac{M u}{\varphi f y\left(d-\frac{\sigma}{2}\right)}$ Where, $\varnothing=0.9$ for flexure design.
Checking the assumed depth, $\mathrm{a}=\frac{A s f y}{0.85 f^{\prime} c b}$
According to ACI Code 318-11, section 13.3.1 the minimum reinforcement in each direction shall be as mentioned below:
For 40 grade rebar: Asmin $=0.0020 \times b \times h$
60 grade rebar: Asmin $=0.0018 \times b \times h$
>60 grade rebar: Asmin $=\frac{0.0018 \times 60000}{f y} \times \mathrm{b} \times \mathrm{h}$
Step 5: Determining the spacing of the steel bars
Spacing $=\frac{\text { area of the bar used } * \text { width of the strip }}{\text { required steel area }}$
Note 2.1: Temperature and shrinkage reinforcement: Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement should be provided on a structural slab in which the principal reinforcement extends in one direction only. ACI Code 318-11, section 7.12.2 specifies the minimum ratios of reinforcement area to gross concrete area (i.e. based on the total depth of the slab), but in no case may such reinforcing bars be placed farther apart than 5 times the slab thickness or more than 8 inch. In no case is the reinforcement ratio to be less than 0.0014 .

3.1.2 Design Example of Stairs

Design a stair of 16 ft span. Using concrete with $\mathrm{f}^{\prime} \mathrm{c}=2500 \mathrm{psi}$ and steel with fy $=60000 \mathrm{psi}$.

Solution:

Dead load Calculation:

Rises \& Steps $=\left(\frac{\frac{1}{2} * \frac{6}{12} * \frac{10}{12} * 3.5 * 9 * 150}{1000}\right)=.98 \mathrm{k}$
Waist $=\left(\frac{\sqrt{7.5^{2}+5^{2}} * \frac{6}{12} * 3.5 * 150}{1000}\right)=2.37 \mathrm{k}$

Total Dead Load = Landing Slab + (Rises \& steps+ waist)

$$
\begin{aligned}
& =\left(\frac{6 * 12.5}{1000}\right)+\left(\frac{.98+2.37}{3.5 * 9.01}\right) \\
& =.18 \mathrm{ksf}
\end{aligned}
$$

FF = 25psf or .025 ksf

Dead load Calculation:

Rises \& Steps $=\left(\frac{\frac{1}{2} * \frac{6}{12} * \frac{10}{12} * 3.5 * 9 * 150}{1000}\right)=.98 \mathrm{k}$
Waist $=\left(\frac{\sqrt{7.5^{2}+5^{2}} * \frac{6}{12} * 3.5 * 150}{1000}\right)=2.37 \mathrm{k}$

Total Dead Load = Landing Slab + (Rises \& steps+ waist)

$$
\begin{aligned}
& =\left(\frac{6 * 12.5}{1000}\right)+\left(\frac{.98+2.37}{3.5 * 9.01}\right) \\
& =.18 \mathrm{ksf}
\end{aligned}
$$

FF = 25psf or .025ksf

Live load Calculation:

According to BNBC Minimum live load for residential building stair is 100 psf or 0.1 ksf

Total Load, $\mathrm{W}=\left(0.1^{*} 1.6\right)+\left(1.2^{*}(0.18+.025)\right)=.406 \mathrm{ksf}$
$\mathrm{M}+=\frac{W l^{2}}{14}=\frac{.406 * 16^{2}}{14}=7.424 k-f t / f t$
$\mathrm{M}-=\frac{W l^{2}}{9}=\frac{.406 * 16^{2}}{9}=11.55 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$
$d=(6-1)=5^{\prime \prime}$
$f y=60000$ psi
$f^{\prime} c=2500 \mathrm{psi}$
$\operatorname{Pmax}=.85 * \beta 1 * \frac{2500}{60000} * \frac{.003}{.003+.004}=.013$
$\mathrm{Mu}=\phi^{*} \mathrm{Pmax}^{*} \mathrm{fy}^{*} \mathrm{~b}^{*} \mathrm{~d}^{2}$
$\mathrm{d}^{2}=\frac{11.55 * 12}{.9 * .013 * 60 * 12 *\left(1-0.59 * \frac{.013 * 60}{2.5}\right)}=20.16$
$d=4.49^{\prime \prime}<6^{\prime \prime}$ (ok)
Asmin $=(.0018 * 12 * 6)=.13 \mathrm{in}^{2}$
$+\mathrm{As}=\frac{M * 12}{\varphi * f y *\left(d-\frac{a}{2}\right)}=\frac{7.424 * 12}{0.9 * 60 *\left(5-\frac{85}{2}\right)}=0.36$ in $^{2}($ controlled $)$
$\mathrm{a}=\frac{A s * f y}{.85 * f^{\prime} c * b}=\frac{.36 * 60}{.85 * 2.5 * 12}=0.85 \mathrm{in}$ (ok)
Use $\phi 12 \mathrm{~mm} @ 5.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ alt ckd
$-\mathrm{As}=\frac{11.55 * 12}{0.9 * 60 *\left(5-\left(\frac{1.41}{2}\right)\right)}=.62 \mathrm{in}^{2}($ controlled $)$
$\mathrm{a}=\frac{A s * f y}{.85 * f^{\prime} c * b}=\frac{.6 * 60}{.85 * 2.5 * 12}=1.41 \mathrm{in}(o k)$

The distance between two cranked rods is $11^{\prime \prime}$

So, required reinforcement $=0.62-\left(.175 * \frac{12}{11}\right)=.41$ in 2

The extra negative reinforcement required

$$
=\frac{.41}{.175} * \frac{11}{12}=2.15 ; \text { so use } 3-\phi 12 \mathrm{~mm} \text { as extra top }
$$

For shrinkage, Asmin $=.0018 * 12 * 6=.13 \mathrm{in}^{2}$

Now , $\frac{.121}{.13} * 12=11$ "; use $\varphi 10 \mathrm{~mm} @ 11 " c / c$

Figure 3.1 : Reinforcement Detailing of Stair

3.2 Foundation

3.2.1 Design Steps of Rectangular Foundation

Steps to be followed for design of Rectangular footings:-

Calculate Dead load and live load on foundation.
Determine pressure of material below ground level = Footing depth below G.L. * Unit wt. of soil \& concrete on average

Calculate Allowable bearing capacity of soil, qa (From soil report or calculation)
Calculate required area of foundation assuming about 3\% of (DL+LL) as self weight in excess of soil.

$$
\text { Req. Area, } \begin{aligned}
& \mathrm{A}=(\mathrm{DL}+\mathrm{LL}+\text { self weight }) / \mathrm{qa} \\
&=((\mathrm{DL}+\mathrm{LL})+(\mathrm{DL}+\mathrm{LL}) * 3 \%) / \mathrm{qa} \\
&=((\mathrm{DL}+\mathrm{LL}) * 1.03) / \mathrm{qa}
\end{aligned}
$$

5. Calculate Surcharge of footing, $\mathrm{Sf}=\mathrm{bh}^{2} / 6$
6. Calculate $\mathrm{q}=(\mathrm{p} / \mathrm{Af})+(\mathrm{M}$ from column $/ \mathrm{Sf})$
7. If q < Allowable bearing pressure then ok otherwise one have to increase footing area.
8. Calculate net under pressure producing shear and bending. qnet $=(1.2 \mathrm{DL}+1.4 \mathrm{LL}) /$ Provided area
9. Determine thickness of footing.
10. Considering punching shear, Allowable punching strength Vpa $=4^{*}$ phi $* \operatorname{Sqrt}\left(\mathrm{f}^{\prime} \mathrm{c}\right)^{*} \mathrm{~b}^{*} \mathrm{~d}$
11. Considering beam shear, Allowable beam shear strength Vba=2* phi *f'c * $b^{*} d$
12. Minimum thickness $=9$ " (According to the code)
13. Clear cover $=2 "$ (minimum)
14. Determine flexure reinforcements

As $=\mathrm{Mu} /\{\mathrm{phi} * \mathrm{fy} *(\mathrm{~d}-\mathrm{a} / 2)\} ; \mathrm{Mu}=\mathrm{wL}^{2} / 2$
$\mathrm{a}=\mathrm{Asfy} /\left(.85^{*} \mathrm{f}^{\prime} \mathrm{c}^{*} \mathrm{~b}\right)$
15. For rectangular foundation (oblong foundation) reinforcement under the column for a band width along short direction shall be calculated using the relation shown below.

Reinforcement in band width $=2 /(\beta+1)$

Where, $\beta=$ (Long side of the foundation / Short side of the foundation)
Here, Band width = width of the short side of the foundation
16. Express your design in a figure with reinforcement detailing.

Reference book: Design of concrete structure By Nilson/ Darwin/ Donal (13th edition)

3.2.2 Design example of Rectangular footing

Q2. A square column of $16^{*} 16$ in is to carry DL of 158 kips and LL of 60 kips . Allowable bearing capacity of soil is 2.5 ksf at 6^{\prime} depth below ground level. Ratio of length of width of footing is 1.6 . Assuming 3% self weight. Design the footing if $\mathrm{f}^{\prime} \mathrm{c}=4 \mathrm{ksi}$, and $\mathrm{fy}=60 \mathrm{ksi}$.
Solution : 1. Required Area of footing , $\mathrm{A}=((158+60) * 1.03) / 2.5$

$$
=89.816 \mathrm{ft}^{2}
$$

Given, L/B = 1.6
$\mathrm{L}=1.6^{* B}$
Now, Area, A = Length * Width
$89.416=L * B$
$89.416=1.6 \mathrm{~B} * \mathrm{~B}$
$\mathrm{B}=7.49 \mathrm{ft}$
So, B=7.5 ft (say)
So, $\mathrm{L}=1.5^{*} 7.5=11.98 \mathrm{ft}=12 \mathrm{ft}$ (say)
2. qu net $=\left(1.2 * 158+1.6^{*} 60\right) /(12 * 7.5)$

$$
=3.17 \mathrm{k} / \mathrm{ft}^{2}
$$

3. Try h =16 in . So, d = (16-3)in $=13$ in
4. Punching shear check (Two way shear):
$\mathrm{Vp}=(1.2 * 158+1.6 * 60)-(((29 * 29) / 144) * 3.17)=267 \mathrm{kips}$
$\mathrm{Va}=(4 * .75 * \operatorname{SQRT}(4000) * 29 * 4 * 13) / 1000=286 \mathrm{kips}$
As, $\mathrm{Va}>\mathrm{Vp}$, So [OK]
5. Beam shear check (one way shear) :
$\mathrm{Vb}=4.335^{*} 3.17^{*}=13.77 \mathrm{kips}$
$\mathrm{Va}=\left(2^{*} .75 * \operatorname{SQRT}(4000) * 12 * 13\right) / 1000=14.79 \mathrm{kips}$
$\mathrm{As}, \mathrm{Va}>\mathrm{Vb}$, So [OK]
So, thickness, $\mathrm{h}=16$ in and depth, $\mathrm{d}=13$ in

6. Re bar for Long direction :

$\mathrm{M}=\mathrm{wL}^{2} / 2=3.17 * 5.335^{2} / 2=45.11 \mathrm{k}-\mathrm{ft}$
$\mathrm{As}=(45.11 * 12) /(.9 * 60 *(13-(1.2 / 2)))=.81 \mathrm{in}^{2}$ [Controls]
$\mathrm{a}=(.81 * 60) /(.85 * 4 * 12)=1.19$ in [OK]
As min $=(200 * 12 * 13) / 60000=.51 \mathrm{in}^{2}$
Use \$20@ 7" c/c at bottom along long direction.
7. Re bar for Short direction :
$\mathrm{M}=\mathrm{wL}^{2} / 2=3.17 * 3.085^{2} / 2=15.06 \mathrm{k}-\mathrm{ft}$
$\mathrm{As}=(15.06 * 12) /(.9 * 60 *(12-(0.4 / 2)))=.28 \mathrm{in}^{2}$
$\mathrm{a}=(.28 * 60) /(.85 * 4 * 12)=.4 \mathrm{in}^{2}$
As min $=(200 * 12 * 12) / 60000=.475 \mathrm{in}^{2}$ [Controls]
So, Total As in short direction $=.475 * 12=5.4 \mathrm{in}^{2}$
8. As band $=(2 /(\beta+1)) *$ As total $=((2 / 1.6+1)) * 5.7=4.38 \mathrm{in}^{2}=4.38 / 7.5=.584 \mathrm{in}^{2} / \mathrm{ft}$
[$\beta=$ Long direction of footing/ short direction of footing]
Use, 1616 @, 6" c/c for 7.5 " band width
For rest of the short direction, As $=5.7-4.384=1.31 /(12-7.5)=.29 \mathrm{in}^{2}$
Use, 1616 @ 12 " c/c for 4.5'length.

3.2.3 Design Steps of Square Foundation

Steps to be followed for design of Square footings

1. Calculate Dead load and live load on foundation.
2. Determine pressure of material below ground level = Footing depth below G.L. * Unit wt. of soil \& concrete on average
3. Calculate Total surcharge adding extra surcharge if any.
4. Net permissible soil pressure, qnet $=$ Permissible soil pressure - Total surcharge
5. Area of footing, $\mathrm{Af}=(1.2 \mathrm{DL}+1.6 \mathrm{LL}) / \mathrm{qnet}$
6. Assume footing size according to the area of footing. i.e.$($ Length $=$ width $)$ of footing $=$ Sqrt (Area of footing)
7. Calculate Surcharge of footing, $\mathrm{Sf}=\mathrm{bh}^{2} / 6$
8. Calculate $q=(p / A f)+(M$ from column $/ \mathrm{Sf})$
9. If q < Allowable bearing pressure then ok otherwise one have to increase footing area.
10. Calculate Footing projection, $\mathrm{c}=($ Footing length- Column length $) / 2$
11. Max. reinforcement ratio, $\rho=.0018^{*} 1.11=.002$ [Note: say $\mathrm{h} / \mathrm{d}=1.11$, Minimum steel ρ is $0.0018 \times b h$ or 0.002 bd]
12. Calculate $\mathrm{Rn}=\rho *$ fy*(1-(.5* $\rho * \mathrm{fy}) /\left(.85 * \mathrm{f}^{\prime} \mathrm{c}\right)$)
13. Calculate, $\mathrm{Mu}=\mathrm{qu}^{*} \mathrm{c}^{2} / 2=(\mathrm{Pu} / \mathrm{Af}) *\left(\mathrm{c}^{2} / 2\right) ; \mathrm{Pu}=$ Factored $(\mathrm{DL}+\mathrm{LL})$
14. Calculate Depth, d =Sqrt($\mathrm{Mu} / \mathrm{phi} * \mathrm{Rn})$
15. Calculate $\mathrm{h}=\mathrm{d}+4>10 \mathrm{in}$; Considering 4 " clear cover+diameter of bar
16. Considering punching shear, Allowable punching strength

Vpa $=4^{*}$ phi $* \operatorname{Sqrt}\left(\mathrm{f}^{\prime} \mathrm{c}\right) * \mathrm{~b}^{*} \mathrm{~d}$
17. Considering beam shear, Allowable beam shear strength $\mathrm{Vba}=2^{*}$ phi $* \mathrm{f}^{\prime} \mathrm{c} * \mathrm{~b}^{*} \mathrm{~d}$
18. Calculate Bending Moment, $\mathrm{M}=\mathrm{wL}^{2} / 2$
19. Determine flexure reinforcements

As $=\mathrm{Mu} /\{$ phi*fy* $(\mathrm{d}-\mathrm{a} / 2)\} \quad ; \mathrm{Mu}=\mathrm{wL}^{2} / 2$
$\mathrm{a}=$ Asfy/(.85*f'c*b) ; Provide the reinforcements on both sides
20. Express your design in a figure with reinforcement detailing.

Reference book: Simplified design of reinforced concrete building By Mahmoud E Kamara and Lawrence C Novak \& Design of concrete structure By Nilson/ Darwin/ Donal (13th edition)

3.2.4 Example of a square footing design

Q.1. Design footings for the interior column of building No. 2 (5 story flat plate). Assume, base of footing location 5^{\prime} below ground level. Permissible soil pressure, $\mathrm{qa}=6 \mathrm{ksf}$.
1.Design Data :

Service surcharge $=50 \mathrm{pcf}$
Assume, Weight of soil and concrete above footing base $=100 \mathrm{pcf}$
(When soil is wet packet use weight of soil $=130 \mathrm{Pcf}$)
Interior column $=16 " \times 16 "$
4 no 8 bars (No sway frame)
8 no 10 bars (Sway frame)
$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$ (for both footing and column)
2.Load Combination :
a) Gravity loads: $\mathrm{PDL}=351$ kips , $\mathrm{PLL}=56.4$ kips
b) Gravity loads + Wind, PDL $=339.4$ kips

PLL $=56.4$ kips, Mservice $=75.4 \mathrm{k}-\mathrm{ft}$
3. Base Area Footing :
weight of surcharge $=(0.100 \times 5)=0.5 \mathrm{ksf}$
extra surcharge $=50 \mathrm{psf}=0.05 \mathrm{ksf}$
[If there is no extra surcharge, ignore this term]
Total surcharge $=(0.5+0.05)=0.55 \mathrm{ksf}$
So, Net permissible soil pressure $=(6-0.55)=5.45 \mathrm{ksf}$
Area of footing , $\mathrm{Af}=(351+56.4) / 5.45=74.75 \mathrm{sq} . \mathrm{ft}$.
Try 9' x 9 ' square footing. ($\mathrm{Af}=81 \mathrm{sq} . \mathrm{ft}$.)
Now, we know, Sectional Modulus, $\mathrm{S}=\mathrm{I} / \mathrm{C}$
or, $S=I / C=(b h 3 / 12) /(h / 2)$
so, $S=b h 2 / 6$
$\mathrm{S}=\left(9^{*} 9^{\wedge} 2\right) / 6=121.5 \mathrm{ft} 3$
As, $\mathrm{Af}=81 \mathrm{ft} 2$
Now, $q=p / A f+M / S f$
$=((351+56.4) / 81)+(75.4 / 121.5)$
$=5.65>5.45($ Not ok $)$
Try, 9.5 ' x 9.5 ' square footing ($\mathrm{Af}=90.25 \mathrm{ft} 2$)
$\mathrm{q}=((351+56.4) / 90.25)+(75.4 / 142.2)$
$=5.04<5.45(\mathrm{Ok})$
4. Footing Thickness :

Footing projection , $\mathrm{c}=(9.5-(16 / 12)) / 2$
Now, $\rho=0.0018 \times 1.11=0.002$
Rn $=\rho$ fy (1-(.5* ρ fy $\left.) /\left(.85 f^{\prime} c\right)\right)$
$=0.002 \times 60000\left(1-\left(.5^{*} .002 * 60000\right) /\left(.85^{*} 4000\right)\right)$
$=117.9 \mathrm{psi}$
$\mathrm{d}^{\wedge} 2$ required $=\mathrm{Mu} /(\mathrm{phi} * \mathrm{Rn})=(\mathrm{Mu} * 1000) /(.9 * 117.9)$
Again, $\mathrm{Mu}=(\mathrm{p} / \mathrm{Af})\left(\mathrm{c}^{\wedge} 2 / 2\right) \ldots \ldots$. (2) $\quad(\mathrm{as},(\mathrm{Pu} / \mathrm{Af})=\mathrm{qu})$
Now, from eqn. (1), d^{2} req $=9.43 \mathrm{Mu}$
$=9.43 x(\mathrm{p} / \mathrm{Af})\left(\mathrm{c}^{\wedge} 2 / 2\right)($ (from eqn. 2$)$
dreq $=2.17 \mathrm{c} * \operatorname{Sqrt}(\mathrm{p} / \mathrm{Af})$

$$
\begin{aligned}
& \text { so, drequired }=2.2 \mathrm{c} * \operatorname{Sqrt}(\mathrm{p} / \mathrm{Af}) \\
& \begin{aligned}
\mathrm{h} & =2.2 \mathrm{c} * \operatorname{Sqrt}(\mathrm{p} / \mathrm{Af})+4 \quad(\text { considering, } 4 \text { " clear cover }+ \text { dia of bar }) \\
\mathrm{h} & =2.2 * 4.08 * \operatorname{Sqrt}(1.2 * 351+1.6 * 56.4 / 90.25)+4 \\
& =25.4 \text { in }>10 \text { in }(\mathrm{Ok})
\end{aligned}
\end{aligned}
$$

Try, $\mathrm{h}=27 \mathrm{in}$.
So, $\mathrm{d}=(27-4)$ in

$$
=23 \mathrm{in} .
$$

5. Qu net $=$ Factored load $/$ Area of footing

$$
=(1.2 * 351+1.6 * 56.4) /(9.5 * 9.5)=511.44 / 90.25=5.67 \mathrm{ksf}
$$

6. Considering punching Shear or Two way shear :

Punching shear, $\mathrm{Vp}=511.44-(39 * 39) / 144 * 5.67$

$$
=451.55 \mathrm{Kips}
$$

Allowable shear, $\mathrm{Va}=4 \varphi \operatorname{Sqrt}\left(\mathrm{f}^{\prime} \mathrm{c}\right) \mathrm{b}$ d

$$
\begin{aligned}
& =(4 * .75 * \operatorname{Sqrt}(4000) *(39 * 4) * 23) / 1000 \\
& =680.77 \mathrm{Kips}
\end{aligned}
$$

As, $\mathrm{Va}>\mathrm{Vp}$, so [OK]
6. Considering beam Shear or One way shear :

Beam shear, $\mathrm{Vb}=\mathrm{qu} *$ Beam strip length * (c-d)

$$
\begin{aligned}
& =5.67 * 9.5 * 2.167 \\
& =116.72 \mathrm{Kips}
\end{aligned}
$$

Allowable shear, $\mathrm{Va}=2 \varphi \operatorname{Sqrt}\left(\mathrm{f}^{\prime} \mathrm{c}\right) \mathrm{b} \mathrm{d}$

$$
\begin{aligned}
& =(2 * .75 * \operatorname{Sqrt}(4000) *(9.5 * 12) * 23) / 1000 \\
& =248.71 \mathrm{Kips}
\end{aligned}
$$

$\mathrm{As}, \mathrm{Va}>\mathrm{Vb}$, so [OK]
7. The Bending Moment :

$$
\begin{aligned}
\mathrm{M}= & \left(5.67 * 9.5 *(2.167+(23 / 12))^{\wedge} 2 * 12\right) / 2 \\
& =5575.30 \mathrm{Kip}-\mathrm{in}
\end{aligned}
$$

8. Reinforcements :

$$
\begin{aligned}
\mathrm{As} & =\mathrm{M} /(\mathrm{phi} * \mathrm{fy} *(\mathrm{~d}-\mathrm{a} / 2)) \\
& =5575.30 /(.9 * 60 *(23-7.98 / 2)) \\
& =5.43 \text { in^ } 2 ; \text { Controls } \\
\mathrm{a} & =\mathrm{As} * \mathrm{fy} / .85 \mathrm{f}^{\prime} \mathrm{cb} \\
& =(5.43 * 60) / *(.85 * 4 * 12) \\
& =7.98 \text { in }[\mathrm{ok}]
\end{aligned}
$$

As $\min =200 *{ }^{*}$ d/fy

$$
\begin{aligned}
& =(200 * 12 * 23) / 60000 \\
& =0.92 \mathrm{in} \wedge 2
\end{aligned}
$$

Use \#10 bar in each direction @ 2.5in c/c

3.3 Column

3.3.1 Design Example of square column

Design a square column to support a concentric load of 700 kips. Initially assume that approximately 2% longitudinal steel is desired, $\mathrm{f}^{\prime} \mathrm{c}=3000 \mathrm{psi}$ and $\mathrm{fy}=60,000 \mathrm{psi}$

Solution:

Selecting column dimension and bar size

${ }^{\varphi} \operatorname{Pn}(\max)=0.80^{\varphi} \mathrm{Ag}\left[0.85 \mathrm{f}^{\prime} \mathrm{c}+\rho g\left(f y-0.85 f^{\prime} c\right)\right]$
$700=0.80 \times 0.65 \times \operatorname{Ag}[(0.85 \times 3)+0.02\{60-(0.85 \times 3)\}]$
$\mathrm{Ag}=236.55 \mathrm{in}^{2}$ or $237 \mathrm{in}^{2}$
Use a 16×16 inch column
Amount of reinforcement to be used $=16^{2} \times 0.03=7.68 \mathrm{in}^{2}$
Use $4 \# 14$ bars ($9 \mathrm{in}^{2}$)

Spacing of tie bar

Lest of the below three criteria
16 db of main bar $=16 \times 1.75=28 \mathrm{in}^{2}$
48 db of tie bar $=48 \times 0.375=18 \mathrm{in}^{2}$
Least die of column $=16$ in 2
Use 8 in C / C at top and bottom and 16 in C / C at middle span

3.3.2 Design Example of circular column:

Design a round spiral column to support an axial dead load P_{D} of 240 K and an axial live load P_{L} of 300 k . Initially assume that approximately 2% longitudinal steel is desired, $\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$, and $\mathrm{fy}=60,000 \mathrm{psi}$.

Solution:

Selecting column dimension and bar size
$P_{u}=1.2^{*}(240 \mathrm{k})+1.6^{*}(300 \mathrm{k})=768 \mathrm{~K}$
${ }^{\varphi} \mathrm{P}_{\mathrm{n}}={ }^{\varphi} 0.85\left[0.85 \mathrm{f}^{\prime} \mathrm{c}\left(\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)+\mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}\right]$
$768 \mathrm{k}=(0.75)(0.85)\left[(0.85)(4 \mathrm{ksi})\left(\mathrm{Ag}_{\mathrm{g}}-0.02 \mathrm{~A}_{\mathrm{g}}\right)+(60 \mathrm{ksi})\left(0.02 \mathrm{~A}_{\mathrm{g}}\right)\right]$
$\mathrm{Ag}=266 \mathrm{in}^{2}$
Diameter of column, $\mathrm{d}=\sqrt{\frac{266 \times 4}{3.1416}}=18.4$ in or 18 in .
Column area to be use $=\frac{3.1416 \times 18^{2}}{4}=254.47 \mathrm{in}^{2}$ or $255 \mathrm{in}^{2}$
Using a column diameter with a gross area less than the calculated gross area (255 $\mathrm{in}^{2}<266 \mathrm{in}^{2}$) results in a higher percentage of steel than originally assumed.

$$
768 \mathrm{k}=(0.75)(0.85)\left[(0.85)(4 \mathrm{ksi})\left(255 \mathrm{in}^{2}-\mathrm{A}_{\mathrm{st}}\right)+(60 \mathrm{ksi}) \mathrm{A}_{\mathrm{st}}\right]
$$

$$
\mathrm{A}_{\mathrm{st}}=5.97 \mathrm{in}^{2}
$$

Use 6 \#9 bars ($6.00 \mathrm{in}^{2}$)

Design of spiral

$\mathrm{A}_{\mathrm{c}}=\frac{3.1416 \times 15^{2}}{4}=177 \mathrm{in}^{2}$
Minimum $\rho s=(0.45)\left(\frac{A g}{A c}-1\right) \frac{f^{\prime} c}{f y}=(0.45)\left(\frac{255 i n^{2}}{177 i n^{2}}-1\right) \frac{4 k s i}{60 k s i}=0.0132$
Assume a \#3 spiral, $\mathrm{d}_{\mathrm{b}}=0.375$ in and $\mathrm{a}_{\mathrm{s}}=0.11 \mathrm{in}^{2}$

$$
\begin{aligned}
\rho s & =\frac{4 a s(D c-d b)}{s D c^{2}} \\
0.0132 & =\frac{\left.4 \times 0.11 \mathrm{In}^{2}\right)(15 \mathrm{in}-0.375 \mathrm{in})}{s \times 15 \mathrm{in}^{2}} \\
\mathrm{~s} & =2.17 \text { in or } 2 \mathrm{in} .
\end{aligned}
$$

Result and Discussion

4.1 Stair Design result and analysis

An Excel calculation based website has been created on simplified design of stair of reinforced concrete buildings of moderate size and height. The users including the engineers, the architects, and common non-technical person can give very simple inputs, e.g. Span, Thickness of waist, Thickness of slab, and Loads etc. in this excel sheet and instantly get the visual results there. It can be used for initial structural design, verifying existing design and to get rough idea on the design and check the assumptions. Link of this website is given below:

http://designofstair.weebly.com/

4.1.1 Simplified design of stair

User needs to input data in the green colored cell. He will find final result at bottom. User has to give the following information about the stair i.e. span of the stair, waist thickness, yield strength and diameter of steel.

This analysis includes thickness of the slab, area of required steel and spacing of the rebar. Reinforcement detailing of stair has shown in the bottom of the excel file to better understand the position and spacing of reinforcement of stair.

Figure 4.1 (a): Design of stair excel file screenshot

Figure 4.1 (b): Design of stair excel file screenshot

4.1.2 Comparison Results

We have calculated required reinforcement for 16 feet span of stair with several concrete and steel strength. And from comparison we can say that for a 16 feet span stair, maximum positive reinforcement is $0.36 \mathrm{in}^{2}$ and negative reinforcement is $0.62 \mathrm{in}^{2}$ if the slab thickness is 6 inch.

Design of Stair

Span length 16^{\prime}
Slab Thickness 6"

f'c	2500 psi	2500 psi	3000 psi	3000 psi	3500 psi	3500 psi
fy	60000 psi	72500 psi	60000 psi	72500 psi	60000 psi	72500 psi
Required depth,d	4.64 in	4.52 in	4.22 in	4.15 in	3.89 in	3.86 in
Positive Moment	$7.5 \mathrm{k}-\mathrm{ft}$					
Negative Moment	$11.9 \mathrm{k}-\mathrm{ft}$					
Positive still area	$.36 \mathrm{in}^{2}$	$.30 \mathrm{in}^{2}$	$.36 \mathrm{in}^{2}$	$.297 \mathrm{in}^{2}$	$.35 \mathrm{in}^{2}$	$.29 \mathrm{in}^{2}$
Negative still area	$0.62 \mathrm{in}^{2}$	$.51 \mathrm{In}^{2}$	$.59 \mathrm{in}^{2}$	$.49 \mathrm{in}^{2}$	$.59 \mathrm{in}^{2}$	$.49 \mathrm{in}^{2}$

4.1.3 Website on Stair Design

Website has been created on Stair design as mentioned above providing all our works into it including design calculations in excel files (Screen shots are mentioned above). This website contains information's about stair, design sample, design steps. We are still working on modifying the website to make it better to best and trying to add more and more information regarding Stair. The screenshots of the websites are shown below:

Figure 4.2 (a): Design of stair web page screenshot

Stair and It's Types

What is Stair

Typar of Stain	
18talytsam.	
2 Quarsertamsalr. 1 rairturnstaliz.	
4 ThreengartartumDaira. a Cratarstarn. 4. splal Salz.	
7.Curvastain a. Cowertc: Siain Q. Burcabed Staira.	HaLs YLkN SYalks
SYEAICHYSYALkS	 inplan Onthe sther handin apencavai itain, theveliaw welor oguring between the flighand $/ t$ may be und ta accommodita a If:
figtbebven two ruccambefoon. The atrightralizan be of folloutrabyper	
- Strichtrunithasirgianlythbubenefoors - Paralalarain	THREE QUARTER TURN STAIRS
- Argartaír * Selenorivitala	otharwarta disctionlicharged thres timarwithitu ugparfight
 	samed
	CIRCULARSTAIRS
	 froor, All the ragaridisa from anwwi port intheformorwincerz

Figure 4.2 (b): Design of stair web page screenshot

Figure 4.2 (c): Design of stair web page screenshot

Sample Desings of Stair

Above reirforcement detailing is valid if concrete strength (fe) is 2500 psi, steel strength (fy) is 60000 psi and span (L) is 16 ft . If span is 16 ft and the strength of concrete and steel is used as per mentioned, above detailing can be use to build a stair.

Figure 4.2 (d): Design of stair web page screenshot

Figure 4.2 (e): Design of stair web page screenshot

Design of Stair

Sample Calculation:
(${ }^{\prime} \mathrm{c}=2.5 \mathrm{ksi}, \mathrm{fy}=60 \mathrm{ksi}$, span=16 ${ }^{\prime}$)

Live Load= $100 \mathrm{psf}=0.1 \mathrm{ksf}$
Dead load Calculation:
Rises \& Steps $=\left(\frac{\frac{1}{2} \frac{6}{12}+\frac{10}{12}+3.549+150}{1000}\right)=.98 \mathrm{k}$
Waist $=\left(\frac{\sqrt{7.5^{2}+5^{2}} \cdot \frac{6}{12}+3.5+150}{1000}\right)=2.37 \mathrm{k}$
Total Dead Load $=$ Landing Slab + (Rises \& steps + waist $)$

$$
=\left(\frac{6+12.5}{1000}\right)+\left(\frac{.98+2.37}{3.5+9.01}\right)
$$

$=.18 \mathrm{ksf}$
$\mathrm{FF}=25 \mathrm{psf}$ or .025 ksf
Total Load $W=\left(0.1^{*} 1.6\right)+\left(1.2^{*}(0.18+.025)\right)=.406 \mathrm{ksf}$
Figure 4.2 (f): Design of stair web page screenshot

```
\(M+=\frac{w l^{2}}{14}=\frac{.406+16^{2}}{14}=7.424 k-f t / f t\)
\(\mathrm{M}-=\frac{W l^{2}}{9}=\frac{.406 \times 16^{2}}{9}=11.55 k-f t / f t\)
\(d=(6-1)=5^{\prime \prime}\)
fy \(=60000\) psi
    \(f^{\prime} \mathrm{c}=2500 \mathrm{psi}\)
    \(P_{\max }=.85^{*} \beta 1 * \frac{2500}{60000} * \frac{.002}{003+.004}=.013\)
    \(M u=\phi^{*} P_{m a x}{ }^{*} f y^{*} b^{*} d^{2}\)
    \(d^{2}=\frac{11.55+12}{.94 .012+60+12+\left(1-0.59 \cdot \frac{.013 \times 60}{25}\right)}=20.16\)
    \(\mathrm{d}=4.49^{\circ}<6^{\prime \prime}\) (ok)
    Asmin \(=\left(.0018^{*} 12^{*} 6\right)=.13 \mathrm{in}^{2}\)
    +As \(=\frac{M+12}{\varphi \cdot f y *\left(d-\frac{3}{2}\right)}=\frac{7.424+12}{0.9460 *\left(s-\frac{3}{2}\right)}=0.36 \mathrm{in}^{2}\) (controlled)
    \(a=\frac{A s+f y}{.85+f^{\prime} c+b}=\frac{.36+60}{.85+2.5+12}=0.85 \mathrm{in}(\mathrm{ok})\)
    Use \(\Phi 12 \mathrm{~mm} @ 5.5^{\circ} \mathrm{c} / \mathrm{c}\) alt ckd
    \(-\mathrm{As}=\frac{11.55+12}{0.9+60 \cdot\left(5-\left(\frac{1.41}{2}\right)\right)}=.62 \mathrm{in}^{2}\) (controlled)
    \(a=\frac{A 5+f y}{.85+f^{\prime} c+b}=\frac{.6+60}{.85+2.5+12}=1.41 \mathrm{in}(\mathrm{ok})\)
    The distance between two cranked rod is 11
    So, required reinforcement \(=0.62-\left(.175 * \frac{12}{11}\right)=.41 \mathrm{in}^{2}\)
    The extra negative reinforcement required
        \(=\frac{-41}{175} * \frac{11}{12}=2.15\); so use \(3-\phi 12 \mathrm{~mm}\) as extra top
    For shrinkage, Asmin \(=.0018^{*} 12^{*} 6=.13 \mathrm{in}^{2}\)
    Now \(\frac{.121}{13} * 12=11^{\prime \prime} ;\) use \(\varphi 10 \mathrm{~mm} @ 11^{\prime \prime} c / c\)
```

Figure $4.2(\mathrm{~g})$: Design of stair web page screenshot

To download this design steps as word file Please click the button below

DOWNLOAD

To design a stair with different span and strength please download the excel worksheet by pressing download．

DOWNLOAD

Visitors	
153	± 1
－ 16	1
＝ 5	國1
${ }^{3}$	$\mid \psi_{1}$
围1	
抎FL	AG counter

Figure 4.2 （h）：Design of stair web page screenshot

4.2 Foundation Design result and analysis

An Excel calculation based website has been created on simplified design of foundation of reinforced concrete buildings of moderate size and height. The users including the engineers, the architects, and common non-technical person can give very simple inputs, e.g. Column width, Column length, bearing capacity of soil, Loads etc. in this excel sheet and instantly get the visual results there. It can be used for initial structural design, verifying existing design and to get rough idea on the design and check the assumptions. Link of this website is given below:

http://simplifythefoundationdesign.weebly.com/

4.2.1 Load Calculation for Foundation

One has to input data in the blue colored cell. He will find result right bottom to the input data box. Different excel sheet is prepared for different criteria. The first Sheet is about the interior column with 4 beams around it. On the basis of input data it will give you the total loads on that particular column. To get the clear idea necessary figures are included. The second and third sheet is about interior column with 3 beams around and exterior column with 2 beams respectively.

(a) Interior Column with Four beams

Figure 4.3 (a): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot

Figure 4.3 (b): Load Calculation For Foundation (Interior Column with four beams) excel file

Screenshot

Figure 4.3 (c): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot

Figure 4.3 (d): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot

103	short direction=	10	
104	long direction=	14	
105	$\mathrm{m}=$	0.71	
106		Triangular	Trapezoidal
107	Amount of load=	0.67	0.83
108	load pattern on B4 (from upper slab)	Trapezoidal	
109	Loads on B4 from the upper side slab (kip/ft)	0.83	
110			
111	Calculation for B4 beam at lower side		
112			
113	short direction=	14	
114	long direction=	14	
115	$\mathrm{m}=$	1.00	
116		Triangular	Trapezoidal
117	Amount of load=	0.93	0.93
118	load pattern on B4 (from Lower slab)	Triangular	
119	Loads on B4 from the lower side slab	0.93	
120	Total loads on B4 Beam (kip/ft)	1.91	
121			
122	Self weight of column (kip)	2.67	
123	Total loads of column (kip)	31.79	
124			

Figure 4.3 (e): Load Calculation For Foundation (Interior Column with four beams) excel file Screenshot

b)Interior Column with Three beams

Figure 4.3 (f): Load Calculation For Foundation (Interior Column with Three beams) excel file
Screenshot

Figure 4.3 (g): Load Calculation For Foundation (Interior Column with Three beams) excel file Screenshot

Figure 4.3 (h): Load Calculation For Foundation (Interior Column with Three beams) excel file Screenshot

c) Exterior Column with Two beams

Figure 4.3 (i): Load Calculation For Foundation (Exterior Column with Two beams) excel file Screenshot

Figure 4.3 (j): Load Calculation For Foundation (Exterior Column with Two beams) excel file Screenshot

4.2.2 Rectangular Foundation Design

Users have to input his / her data in the blue colored cell. Among inputs there are-column width, column length, bearing capacity of soil, dead and live loads etc. Green colored cell is indicating the required result. Designs are performed in both FPS and SI units. Both are mentioned in the excel file in two different sheets. Requires Data like steel area, bearing capacity values for different soils etc are added so that users can easily input their required values. Figures are included with reinforcement detailing. A Design example is also being added for better understanding.

1		Design of Rectangular footing								
2										
3	Footing Data:		Unit			Bar Desig		unit	Diameter, in	
4		Put the values in the Bl	lue colored cell			010 mm	0.121		0.394	
5	Column length $=$	16 i	in			012 mm	0.175	in^{2}	0.472	
6	column width =	16 in	in			016 mm	0.31		0.63	
7	Live load (LL)=	351 k	kip			020 mm	0.487	in^{2}	0.787	
8	Dead load (DL)=	56.4 k	kip			025 mm	0.76	in^{2}	0.984	
9	Bearing capacity of soil (qa) =	6 k	ksf							
10	$\mathrm{f}^{\prime} \mathrm{c}=$	4000 p	psi							
11	$f y=$	60000 p	psi							
12	Lenghthwidth (Footing) =	1.6								
13	Depth below ground level=		ft							
14	Unit wt. of soil+concrete on avg. $=$	0.125 k	kcf							
15	Assumed Thickness of Footing,t=	16 i	in							
16	Selected bar dia,db=	0.472 i	in							
17										
18										
19										
20	Design:									
21	1.2DI+1.6 LL=	629.28								
22	Pressure of material below G.L.=	0.75 k								
23	Available Bearing pressure=	5.25 k								
24	Required Area=	79.93 f								
25	Footing width, $\mathrm{B}=$	7.07								

Figure 4.4 (a): Rectangular Foundation design excel file screenshot

Figure 4.4 (b): Rectangular Foundation design excel file screenshot

43	$a=$	4.50 I							
50	2nd trial, Asssume a=	2.56 in	in						
51	Asl(2nd trial)=								
52	$a=$	2.73 i							
53	Final Asl=								
54	As min=								
55	Areq=		in^{2}	Green cell	indicates th	he required	dsteel area		
36	If Asl>Asmin=Al; controls	TRUE							
57	If Asl<Asmin=Asmin; controls	FALSE							
58	Reinforcement dia for AS	20.00	mm						
39	use $\phi 20 \mathrm{~mm}$ @	3.00	in CIC						
30									
51									
52									
33	Re-Bar for Short Direction:								
34									
35									
36	Ms=	32.36	kff						
57	1st trial,Assume,a=	1.00	in						
38	Ass(1st trial)=								
39	$a=$								
70	2nd trial, Assume a=		in						
71	Ass(2nd trial)=								
72	$a=$	0.84 i							
73	Final Ass=								
74	As min=	048						\wedge	

Figure 4.4 (c): Rectangular Foundation design excel file screenshot

Figure 4.4 (d): Rectangular Foundation design excel file screenshot

4.2.3 Square Footing Design

Square footings or foundation are one of the most used foundations. The reinforcement is uniformly distributed over the width of footing in each of the two layers in square foundations. The spacing's of the bars are constant. The moments for which the two layers are designed are the same. However the effective depth d for the upper layer is less by 1 bar diameter than that of the lower layer. Instead of using different spacing or different bar diameters in each of the two layers, it is customary to determine as based on average depth and to use the same arrangement of the reinforcement for both layers.

Users have to input his / her data in the yellow colored cell. Green colored cell is indicating the required result. Designs are performed in FPS unit. Required Data like steel area (marked by box), bearing capacity values for different soils etc are added so that users can easily input their requires values. Figures are included with reinforcement detailing. A Design example is given for better understanding.

Figure 4.5 (a): Square Foundation design excel file screenshot

Figure 4.5 (b): Square Foundation design excel file screenshot

Figure 4.5 (c): Square Foundation design excel file screenshot

4.2.4 Website on Isolated Foundation Design

As early said, A website has been created on Foundation design providing all our works into it including design calculations in excel files (Screen shots are mentioned above). This website contains eight tabs with different topics. We are still working on modifying the website to make it better to best and trying to add more and more information regarding foundation and its design. The screenshots of the websites are shown below:

Figure 4.6 (a): Home page of Simplify the foundation design web page screenshot

Figure 4.6 (b): Simplify the foundation design web page screenshot

Figure 4.6 (c): Simplify the foundation design web page screenshot

номе

\square

desicn of rectangular foundation design of square foundation
 MORE.

Foundation

In simple words, a foundation is a structure that transfers loads of the structure to the earth.
Foundation of a structure is always constructed below the ground level so as to increase the lateral stability of the structure. It includes the portion of the structure below the ground level and is built, so as to provide a firm and level surface for transmitting the load of the structure on a large area of the soil lying underneath. The solid ground on which the foundation rests is called the Foundation Bed.
All the soil compress noticeably when loaded and cause the supported structure to settle. The two essential requirements in the design of foundation are that the total settlement of the structure be limited to a tolerably small amount and that differential settlement of the various parts of the structure be eliminated as nearly as

Some Purposes of

 Foundation```
All engineering structures are provided with
foundations at the base to fulfill the following
objectives and purposes;
 1. To distribute the load of the structure over a
 large bearing area so as to bring intensity of
 loading within the safe bearing capacity of the
 soil lying underneath.
 2. To load the bearing surface at a uniform rate
 so as to prevent unequal settlement.
```


## Types of Foundation

Foundations are broadly classified into two
categories.

1) Shallow Foundation
1. Spread footing or open trench foundations
2. Grillage foundations
3. Raft foundations
4. Stepped foundations
5. Inverted arch foundations
2) Deep Foundations
1. Pile foundations

Figure 4.6 (d): Simplify the foundation design web page screenshot


Factors affecting the selection of Foundation
On the basis of ground/soil condition

- Shallow foundations are preferred where soil close to the surface is capable of supporting structure loads.
- Where the ground close to the surface is not capable of supporting structural loads, hard strata is searched for and deep foundation is required.
- Uniform stable ground requires relatively shallow foundation whereas filled up ground has low bearing capacity thus requires deep foundation.

On the basis of Loads from Building:

- In the case of low-rise building in a larger area, the extent of loading is relatively low, so shallow foundation can resist the load from the structures.
- In the case of the high-rise building built within less area have high loads. Therefore, the deep foundation is required as shallow foundation may not be able to resist such loads of greater intensity.

Figure 4.6 (e): Simplify the foundation design web page screenshot


Figure 4.6 (f): Simplify the foundation design web page screenshot

## Instructions for using the excel file

```
Users have to input his / her data in the blue colored cell. Green colored cell is indicating the required result. Designs are performed in
oth FPS and SI units. Both are mentioned here in two different sheets. Requires Data like steel area, bearing capacity values for different
soils etc are added so that users can easily input their requires values. Figures are included with reinforcement detailing. An Design
example is also being added for better understanding.
 simplified_design_of_foundation.xlsx
 Download File
Disclaimer: These are meant for Educational Purpose. You may use for commercial use, such as checking preliminary design,but we are not
responsible for that.
Note that we are still working on all the details.Please visit again in future
Express your valuable opinion on how to improve our designs
N\mp@code{Name* * Last}
Email *
Comment*
Comment**
```

Figure 4.6 (g): Simplify the foundation design web page screenshot


Square footing or foundation are one of the most used type of foundations. The reinforcement is uniformly distributed over the width of footing in each of the two layers in square foundations. The spacing of the bars are constant.The moments for which the two layers are designed are the same.However the effective depth d for the upper layer is less by 1 bar diameter than that of the lower layer.Instead of using different spacings or different bar diameters in each of the two layers, it is customary to determine As based on average depth and to use the same arrangement of the reinforcement for both layers.

Figure 4.6 (h): Simplify the foundation design web page screenshot

Instructions for using the excel file

Users have to input his / her data in the yellow colored cell. Green colored cell is indicating the required result. Designs are performed in FPS unit. Required Data like steel area (marked by box), bearing capacity (in a different tab) values for different soils etc are added so that users can easily input their requires values. Figures are included with reinforcement detailing. An Design example is given for better understanding.

```
design_of_square_footing.xlsx
```

Download File

Disclaimer: These are meant for Educational Purpose. You may use for commercial use, such as checking preliminary design,but we are not responsible for that.
Note that we are still working on all the details. Please visit again in future.


Figure 4.6 (i): Simplify the foundation design web page screenshot


The design steps that we followed to simply the foundation designs are mentioned below.

Figure 4.6 (j): Simplify the foundation design web page screenshot

The design steps that we followed to simply the foundation designs are mentioned below.

```
Steps to be followed for design of Rectangular footings:-
 . Calculate Dead load and live load on foundation.
 2. Determine pressure of material below ground level = Footing depth below G.L. * Unit wt. of soil & concrete on average
 3. Calculate Allowable bearing capacity of soil, qa (From soil report or calculation)
 4. Calculate required area of foundation assuming about 3% of (DL+LL) as self weight in excess of soil.
 Req. Area, }A=(DL+LL+\mathrm{ self weight)/qa
 = ((DL+LL)+(DL+LL)*3%)/qa
 =((DL+LL)*1.03)/qa
5. Calculate Surcharge of footing, Sf = bh^2/6
6. Calculate q = (p/Af)+(M from column/Sf
7. If q < Allowable bearing pressure then ok otherwise one have to increase footing area
8. Calculate net under pressure producing shear and bending.
 gnet=(1.2DL+1.4LL)/Provided area
9. Determine thickness of footing.
```

Figure 4.6 (k): Simplify the foundation design web page screenshot
8. Calculate net under pressure producing shear and bending.
qnet=(1.2DL+1.4LL)/Provided area
9. Determine thickness of footing.
10. Considering punching shear, Allowable punching strength

Vpa= 4* phi *Sqrt(f'c)* ${ }^{*}$ *
11. Considering beam shear, Allowable beam shear strength $\mathrm{Vba}=2^{*}$ phi ${ }^{*} f^{\prime} \mathrm{C}^{*} b^{*} d$
12. Minimum thickness $=9^{\prime \prime}$ (According to the code)
13. Clear cover $=2^{\prime \prime}$ (minimum)
14. Determine flexure reinforcements

As $=\mathrm{Mu} /\left\{\mathrm{phi}^{*} \mathrm{fy}^{*}(\mathrm{~d}-\mathrm{a} / 2)\right\} ; \mathrm{Mu}=\mathrm{wL} \mathrm{A}^{\wedge} 2 / 2$
$\mathrm{a}=\mathrm{Asfy} /\left(.85^{*} \mathrm{f}^{\prime} \mathrm{c}\right.$ b)
15. For rectangular foundation (oblong foundation) reinforcement under the column for a band width along short direction shall be calculated using the relation shown below.

- Reinforcement in band width $=2 /(\beta+1)$

Where, $\beta=$ (Long side of the foundation / Short side of the foundation)

- Here, Band width = width of the short side of the foundation

16. Express your design in a figure with reinforcement detailing.

Reference book: Design of concrete structure By Nilson/ Darwin/ Donal (13th edition)

[^0]Figure 4.6 (1): Simplify the foundation design web page screenshot

1. Calculate Dead load and live load on foundation.
2. Determine pressure of material below ground level = Footing depth below G.L. * Unit wt. of soil \& concrete on average
3. Calculate Total surcharge adding extra surcharge if any.
4. Net permissible soil pressure, qnet = Permissible soil pressure - Total surcharge
5. Area of footing, $\mathrm{Af}=(1.2 \mathrm{DL}+1.6 \mathrm{LL}) /$ qnet
6. Assume footing size according to the area of footing. i.e . (Length $=$ width $)$ of footing $=$ Sqrt ( Area of footing)
7. Calculate Surcharge of footing, $S f=b h^{\wedge} 2 / 6$
8. Calculate $q=(p / A f)+(M$ from column $/ \mathrm{Sf})$
9. If q < Allowable bearing pressure then ok otherwise one have to increase footing area.
10. Calculate Footing projection, $\mathrm{c}=($ Footing length-Column length $) / 2$
11. Max. reinforcement ratio, $\rho=.0018^{*} 1.11=.002$ [Note: say $\mathrm{h} / \mathrm{d}=1.11$, Minimum steel $\rho$ is $0.0018 \times$ bh or 0.002 bd ]
12. Calculate $R n=\rho^{*} f y^{*}\left(1-\left(.5^{*} \rho^{*} f y\right) /\left(.85^{*} f^{\prime} c\right)\right)$
13. Calculate, $\mathrm{Mu}=\mathrm{qu}^{*} \mathrm{c}^{\wedge} 2 / 2=(\mathrm{Pu} / \mathrm{Af})^{*}\left(\mathrm{c}^{\wedge} 2 / 2\right) ; \mathrm{Pu}=$ Factored $(\mathrm{DL}+\mathrm{LL})$
14. Calculate Depth, $d=\operatorname{Sqrt}\left(\mathrm{Mu} /\right.$ phi $\left.^{*} \mathrm{Rn}\right)$
15. Calculate $h=d+4>10$ in; Considering 4 " clear cover+diameter of bar
16. Considering punching shear, Allowable punching strength Vpa= 4* phi *Sqrt(f'c)* ${ }^{*}$ *
17. Considering beam shear, Allowable beam shear strength $V b a=2^{*}$ phi $f^{\prime} c^{*} b^{*} d$
18. Calculate Bending Moment, $M=w L^{\wedge} 2 / 2$
19. Determine flexure reinforcements $A s=M u /\left\{p h i^{*} f y^{*}(d-a / 2)\right\} ; M u=w L^{\wedge} 2 / 2$
$a=$ Asfy/(.85** $\left.f^{\prime} c^{*} b\right)$; Provide the reinforcements on both sides
20. Express your design in a figure with reinforcement detailing.

Figure 4.6 (m): Simplify the foundation design web page screenshot


Example of a square footing design
Q.1. Design footings for the interior column of building No. 2 ( 5 story flat plate). Assume, base of footing location 5 ' below ground level .

Permissible soil pressure, $q a=6 \mathrm{ksf}$.
1.Design Data:

Service surcharge $=50$ pcf
Assume, Weight of soil and concrete above footing base $=100 \mathrm{pcf}$
(When soil is wet packet use weight of soil $=130 \mathrm{Pcf}$ )
Interior column $=16^{\prime \prime} \times 16^{\prime \prime}$
4 no 8 bars (No sway frame)
8 no 10 bars (Sway frame)
$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$ (for both footing and column)
2.Load Combination:
a) Gravity loads: $\mathrm{PDL}=351 \mathrm{kips}, \mathrm{PLL}=56.4$ kips
b) Gravity loads + Wind, PDL $=339.4$ kips

PLL $=56.4$ kips , Mservice $=75.4 \mathrm{k}-\mathrm{ft}$
Figure 4.6 (n): Simplify the foundation design web page screenshot
a) Gravity loads: PDL $=351$ kips, PLL $=56.4$ kips
b) Gravity loads + Wind, PDL $=339.4$ kips

PLL $=56.4$ kips, Mservice $=75.4$ k-ft
3. Base Area Footing:
weight of surcharge $=(0.100 \times 5)=0.5 \mathrm{ksf}$
extra surcharge $=50 \mathrm{psf}=0.05 \mathrm{ksf}$
[ If there is no extra surcharge, ignore this term]
Total surcharge $=(0.5+0.05)=0.55 \mathrm{ksf}$
So, Net permissible soil pressure $=(6-0.55)=5.45 \mathrm{ksf}$
Area of footing, $\mathrm{Af}=(351+56.4) / 5.45=74.75 \mathrm{sq} . \mathrm{ft}$.
Try $9^{\prime} \times 9^{\prime}$ square footing. ( $\mathrm{Af}=81 \mathrm{sq} . \mathrm{ft}$.)
Now, we know, Sectional Modulus, $\mathrm{S}=\mathrm{I} / \mathrm{C}$
or, $\mathrm{S}=\mathrm{I} / \mathrm{C}=(\mathrm{bh} 3 / 12) /(\mathrm{h} / 2)$
so, $S=b h 2 / 6$
$S=\left(9^{*} 9^{\wedge} 2\right) / 6=121.5 \mathrm{ft} 3$
As, $A f=81 \mathrm{ft} 2$
Now, $q=p / A f+M / S f$
$=((351+56.4) / 81)+(75.4 / 121.5)$
$=5.65>5.45$ (Not ok)
Try, $9.5^{\prime} \times 9.5^{\prime}$ square footing ( $\mathrm{Af}=90.25 \mathrm{ft} 2$ )
$\mathrm{q}=((351+56.4) / 90.25)+(75.4 / 142.2)$
$=5.04<5.45$ (Ok)
4. Footing Thickness:

Footing projection, $\mathrm{c}=(9.5-(16 / 12)) / 2$
Now, $\rho=0.0018 \times 1.11=0.002$
$\mathrm{Rn}=\rho \mathrm{fy}\left(1-\left(.5^{*} \rho \mathrm{fy}\right) /\left(.85 f^{\prime} \mathrm{c}\right)\right)$
Figure 4.6 (o): Simplify the foundation design web page screenshot


Figure 4.6 (p): Simplify the foundation design web page screenshot

```
5.Qu net = Factored load/ Area of footing
 =(1.2*351+1.6*56.4)/(9.5*9.5) =511.44/90.25 =5.67 ksf
 6. Considering punching Shear or Two way shear :
 Punching shear,Vp=511.44-(39*39)/144*5.67
 =451.55 Kips
 Allowable shear, Va = 4\varphi Sqrt(f'c)b d
 =(4*75*Sqrt(4000)*(39*4)*23)/1000
 =680.77 Kips
 As, Va > Vp, so [OK]
 6. Considering beam Shear or One way shear
 Beam shear, Vb=qu * Beam strip length * (c-d)
 =5.67*9.5*2.167
 =116.72 Kips
 Allowable shear, Va=2\varphiSqrt(f'c) b d
 =(2*.75*Sqrt(4000)*(9.5*12)*23)/1000
 =248.71 Kips
 As, Va > Vb, so [OK]
7. The Bending Moment:
 M=(5.67*9.5* (2.167+(23/12))^2*12)/2
 =5575.30 Kip-in
8. Reinforcements:
 As=M/(phi*fy*(d-a/2))
 =5575.30/(.9*60*(23-7.98/2))
 =5.43 in^2; Controls
 a=As*fy/.85f'cb
 =(5.43*60)/* (.85*4*12)
```

Figure 4.6 (q): Simplify the foundation design web page screenshot


Figure 4.6 (r): Simplify the foundation design web page screenshot


Design example of Rectangular footing:
Q2. A square column of $16^{*} 16$ in is to carry DL of 158 kips and LL of 60 kips . Allowable bearing capacity of soil is 2.5 ksf at 6 ' depth below ground level. Ratio of length of width of footing is 1.6 . Assuming $3 \%$ self weight. Design the footing if $f^{\prime} \mathrm{C}=4 \mathrm{ksi}$, and $\mathrm{fy}=60 \mathrm{ksi}$. Solution: 1 . Required Area of footing, $A=\left((158+60)^{*} 1.03\right) / 2.5$

Given, $\mathrm{L} / \mathrm{B}=1.6$

- $\mathrm{L}=1.6^{*} \mathrm{~B}$

Now, Area, $A=$ Length * Width
Figure 4.6 (s): Simplify the foundation design web page screenshot


Figure 4.6 (t): Simplify the foundation design web page screenshot

- $\mathrm{L}=1.6^{*} \mathrm{~B}$

Now, Area, A = Length * Width

- $89.416=L^{*} B$
- $89.416=1.6 B^{*} B$
- $B=7.49 \mathrm{ft}$

So, $B=7.5 \mathrm{ft}$ (say)
So, L= $1.5^{*} 7.5=11.98 \mathrm{ft}=12 \mathrm{ft}$ (say)
2. qu net $=\left(1.2^{*} 158+1.6^{*} 60\right) /\left(12^{*} 7.5\right)$ $=3.17 \mathrm{k} / \mathrm{ft}^{\wedge} 2$
3. Try h=16 in. So, d=(16-3) in $=13 \mathrm{in}$
4. Punching shear check (Two way shear):
$V p=\left(1.2^{*} 158+1.6^{*} 60\right)-\left(\left(\left(29^{*} 29\right) / 144\right)^{*} 3.17\right)=267 \mathrm{kips}$
$\mathrm{Va}=\left(4^{*} .755^{*} \operatorname{SQRT}(4000) * 29^{*} 4^{*} 13\right) / 1000=286$ kips
As, Va > Vp, So [OK]
5. Beam shear check (one way shear) :
$\mathrm{Vb}=4.335^{*} 3.17^{*}=13.77 \mathrm{kips}$
$\mathrm{Va}=\left(2^{*} .75^{*} \operatorname{SQRT}(4000)^{*} 12^{*} 13\right) / 1000=14.79$ kips
As, $\mathrm{Va}>\mathrm{Vb}$, So [OK]
So, thickness, $\mathrm{h}=16$ in and depth, $\mathrm{d}=13$ in
6. Re bar for Long direction :
$M=w^{\wedge} 2 / 2=3.17^{*} 5.335^{\wedge} 2 / 2=45.11 \mathrm{k}$-ft
$\mathrm{As}=\left(45.11^{*} 12\right) /\left(.9^{*} 60^{*}(13-(1.2 / 2))\right)=.81 \mathrm{in}^{\wedge} 2$ [Controls]
$a=\left(.81^{*} 60\right) /\left(.85^{*} 4^{*} 12\right)=1.19$ in [OK]
As min $=\left(200^{*} 12^{*} 13\right) / 60000=.51 \mathrm{in}^{\wedge} 2$
Useゆ20@7"c/c at bottom along long direction.

Figure 4.6 (u): Simplify the foundation design web page screenshot

As $=\left(15.06^{*} 12\right) /\left(.9^{*} 60^{*}(12-(0.4 / 2))\right)=.28$ in^$^{\wedge} 2$
$a=\left(.28^{*} 60\right) /\left(.85^{*} 4^{*} 12\right)=.4$ in^$^{\wedge}$
As min $=\left(200^{*} 12^{*} 12\right) / 60000=.475$ in $^{\wedge} 2$ [Controls]
So, Total As in short direction $=.475^{*} 12=5.4 \mathrm{in}^{\wedge} 2$
8 . As band $=(2 /(\beta+1))^{*}$ As total $=((2 / 1.6+1))^{*} 5.7=4.38$ in $^{\wedge} 2=4.38 / 7.5=.584 \mathrm{in}^{\wedge} 2 / \mathrm{ft}$
[ $\beta=$ Long direction of footing/ short direction of footing]
Use. 中16@6"c/c for $7.5^{\prime \prime}$ band width
For rest of the short direction, As $=5.7-4.384=1.31 /(12-7.5)=.29$ in^2 $^{\wedge}$
Use, ф16@12"c/c for $4.5^{\prime}$ length.


Disclaimer: These are meant for Educational Purpose. You may use for commercial use, such as checking preliminary design, but we are not
Figure 4.6 (v): Simplify the foundation design web page screenshot


Purposes behind load calculation
For foundation design we have to assume a certain amount of load that may act on foundation. The designer who has no experience can not assume properly for his design calculation. Keeping this in mind we have tried to give a primary idea to the designers that how much load that can be act unon the foundation. This file is applicable only for the design of foundation of low rise residential building. As this file is for undationdesign.weebly.com/load-calculation-for-foundation.html b condition is ignored to simply the calculation.

Figure 4.6 (w): Simplify the foundation design web page screenshot
assume properly for his design calculation. Keeping this in mind we have tried to give a primary idea to the designers that how much load that can be act upon the foundation. This file is applicable only for the design of foundation of low rise residential building. As this file is for usual low rise residential building, One way slab condition is ignored to simply the calculation.

## Instruction to use the excel file

One have to input data in the blue colored cell. He will find result right bottom to the input data box. Different excel sheet is prepared for different criteria. The first Sheet is about the interior column with 4 beams around it. On the basis of input data it will give you the total loads on that particular column. To get the clear idea necessary figures are included. The second and third sheet are about interior column with 3 beams around and exterior column with 2 beams respectively.
load_calculation_of_foundation.xlsx
Download File

Disclaimer: These are meant for Educational Purpose. You may use for commercial use, such as checking preliminary design,but we are not responsible for that.
Note that we are still working on all the details.Please visit again in future

Express your valuable opinion on how to improve our designs

Figure 4.6 (x): Simplify the foundation design web page screenshot


Bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil.Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing capacity is based on the maximum allowable settlement. Bearing Capacity of soil varies with the types of soil and places.
A word file is added to pick up the bearing capacity values for using in the design as bearing capacity of soil plays an important role in foundation design.

Figure 4.6 (y): Simplify the foundation design web page screenshot

## Values of safe bearing capacity

| SI. No | TYPE OF ROCK OR SOIL | SAFE BEARING CAPACITY |  |
| :---: | :---: | :---: | :---: |
|  |  | $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ | $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$ |
|  | ROCKS |  |  |
| 1 | Rocks (hard) without lamination and defects, for example granite, trap and diorite | 3300 | 33 |
| 2 | Laminated rocks, for example sand stone and lime stone in sound condition | 1650 | 16.5 |
| 3 | Residual deposits of shattered and broken bed rock and hard shale, cemented material | 900 | 9 |
| 4 | Soft rock | 450 | 4.5 |


| NON-COHESIVE SOILS |  |  |  |
| :---: | :---: | :---: | :---: |
| 5 | Gravel, sand and gravel mixture, compact and offering high resistance to penetration when excavated by tools. (Refer Note 5) | 450 | 4.5 |
| 6 | Coarse sand, compact and dry (with ground water level at a depth greater than width of foundation below the base of footing) | 450 | 4.5 |
| 7 | Medium sand, compact and dry | 250 | 2.5 |
| 8 | Fine sand, silt (dry lumps easily pulverized by fingers) | 150 | 1.5 |
| 9 | Loose gravel or sand gravel mixture; loose coarse to medium sand, dry (Refer Note 5) | 250 | 2.5 |
| 10 | Fine sand, loose and dry | 100 | 1 |
| COHESIVE SOILS |  |  |  |
| 11 | Soft shale, hard or stiff clay in deep bed, dry | 450 | 4.5 |
| 12 | Medium clay, readily indented with thumb nail | 250 | 2.5 |

Figure 4.6 (z): Simplify the foundation design web page screenshot

### 4.3 Column design result and analysis

Excel calculations has been created on simplified design of concentrated loading square and column of reinforced concrete buildings of moderate size and height. The users including the engineers, the architects, and common non-technical person can give very simple inputs, e.g. Loads, percentage of longitudinal steel, size of longitudinal bar to be use etc. in this excel sheet and instantly get the visual results there. It can be used for initial structural design, verifying existing design and to get rough idea on the design and check the assumptions.

### 4.3.1 Simplified design of Concentric loading square column

User needs to input data in the green colored cell. He will find final result at bottom. User has to give the following information about the column i.e. loads, percentage of steel, reinforcement bar to be use as main bar etc. This analysis includes determination of column size, spacing of tie bar etc. Reinforcement detailing of column has shown in the excel file to better understand the position and spacing of reinforcement of column.


Figure 4.7 (a): Design of square column excel file screenshot

### 4.3.2 Simplified design of Concentric loading circular column

User needs to input data in the green colored cell. He will find final result at bottom. User has to give the following information about the column i.e. loads, percentage of steel, reinforcement bar to be use as main bar etc. This analysis includes determination of column size, spacing of tie bar etc.

Reinforcement detailing of column has shown in the excel file to better understand the position and spacing of reinforcement of column.


Figure 4.8 (a): Design of circular column excel file screenshot

### 4.3.3 Preliminary Column Sizing

It is necessary to select a preliminary column size for cost estimating and/or frame analysis. The initial selection can be very important when considering overall design time. In general, a preliminary column size should be determined using a low percentage of reinforcement; it is then possible to provide any additional reinforcement required for the final design (including applicable slenderness effects) without having to change the column size. Columns which have reinforcement ratios in the range of $1 \%$ to $2 \%$ will usually be the most economical.

The design charts presented in Figures are based on ACI Eq. (10-2). These charts can be used for no slender tied square columns loaded at an eccentricity of no more than 0.1 h , where h is the size of the column. Design axial load strengths for column sizes from 10 in to 24 in with reinforcement ratios between 1 and $8 \%$ are presented in figures.

These design charts will provide quick estimates for a column size required to support a factored load within the allowable limits of the reinforcement ratio. Using the total tributary factored load for the lowest story of multistory column stack, a column size should be selected with a low percentage of reinforcement. This will allow some leeway to increase the amount of steel for the final design, if required.


Figure 4.9 (a): Design Chart for Non-slender, Square Tied Columns (in inch²)

Page 85


Figure 4.9 (b): Design Chart for Nonslender, Square Tied Columns (in inch²)


Figure 4.9 (c): Design Chart for Non slender, Square Tied Columns (in inch²)


Figure 4.9 (d): Design Chart for Non slender, Square Tied Columns (in inch²)

Page 88


Figure 4.9 (e): Design Chart for Nonslender, Square Tied Columns (in inch²)

## Conclusion and Recommendation

### 5.1 Conclusion

The purpose of this paper is to give the idea of simplifying design of reinforced concrete components like foundation, column, stair. It will help practicing engineers to give idea about their assumption data in design, further checking abilities, and some way of reducing the design time required for smaller projects. We have tried to follow the the ACI Standard 318, Building Code Requirements for Structural Concrete, Bangladesh national building code and others code. Here for design, dead load \& live load are considered in accordance of the code. If wind load, resistance to earthquake, induced forces, earth or liquid pressure, impact effects or structural effects of differential settlement need to be included in the design, such effects should be considered separately. They are not included within the scope of simplified design techniques presented here.

This simplified design approach can be used for conventionally reinforced concrete buildings of moderate size \& height with usual spans \& story height. This paper was prepared for the purpose of suggesting the design of Foundation (Rectangular footing, Square footing), Column (Short square and circular column), Stair. Here most numbers of parameter in design procedure are taken as a constant value. The main reason behind this is to shorten the time \& effort of the designer. Simplified design procedures comply with the provisions of Building Code Requirements for Structural Concrete (ACI 318) using appropriate load factors \& strength reduction factors.

The design is formulated in excel which would help the designers \& those who are interested in designing the foundation, column, stair in shortest possible time, with minimum amount of effort. Simplified design of other units of structure will be carry forward in future.

### 5.2 Recommendations

1. This paper contains simplified design of reinforced concrete foundation, column and stair. In order to complete the full building, simplified design of other structural units of building i.e. slab, beam, shear wall, over head tank, underground reservoir etc. have to be calculated whose designs are added in our websites.
2. One should not fully depend on these calculations in practical purposes because for simplifying the calculation some effecting factors are ignored, but in practical many different factors will be in considerations. These are only meant for educational purposes and checking designs.
3. During load calculation of foundation, all slabs are considered as two way slab but in practical there may be one way slab in some cases. In that case loads from one way slab portion must be calculated separately.
4. Some unit conversions must be done manually during inputting data or getting results according one's requirements.
5. The design can be simplified if the parameters like strength of rebar and concrete can be made constant (i.e. $\mathrm{fy}=60,000 \mathrm{psi}, \mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$ ).
6. Here for design purpose only dead load and live load are considered. But if other loads i.e. wind load and earthquake loads are to be considered, then this loads are taken into account separately in design procedure.
7. Analysis of Stair design for various strengths are done only for 16 feet span and for 6inch slab thickness. It can be done for other span too.
8. Both BNBC and ACI code are being followed together during stair design. Separate design can also be done for specific code.
9. Columns which have reinforcement ratios in the range of $1 \%$ to $2 \%$ will usually be the most economical.
10. Design charts for various concrete strengths are being prepared for non slender square tied columns only, for circular column one can try to develop same kind staffs.
11. In design charts of column the ultimate strength of steel assumed to be constant (fy=60ksi), It may be different, in that case the charts will be invalid.
12. Ultimately, In simplified designs some of the parameters are made constant (like strength of reinforcement, ultimate strength of concrete, properties of cement etc. are made constant depending on availability of the material) in order to shorten the design procedure and to make the design easy plus time efficient as well as for learning purposes, but in practical they may have considered.

## APPENDIX

1. http://simplifythefoundationdesign.weebly.com/
[Note: This website contains relevant knowledge regarding Foundation, its types, purposes, influencing factors, bearing capacity, load calculation, various design, its procedures, examples and diagrams about foundations.]
2. http://designofstair.weebly.com/
[Note: This website is all about stair, its types, its design with examples and procedures and diagrams.]
3. http://drlatifee.weebly.com/student-corner.html
[Note: Dr. Enamur Rahim Latifee is a well-known person in Bangladesh and abroad. He is currently an Associate Professor in the Department of Civil Engineering at Ahsanullah University of Science and Technology (AUST), Dhaka, Bangladesh. This is his website's student's corner link where he has mentioned various helpful materials about design of Structural elements, about materials and so on.]

## BIBLIOGRAPHY

1. Design of Concrete Structures, Arthur H. Nilson, David Darwin and Charles W. Dolan, Thirteenth Edition
2. Simplified Design of Reinforced Concrete Buildings, Mahmoud E. Kamara and Lawrence C. Novak, Fourth Edition
3. Reinforced Concrete: Mechanics and Design (6th Edition) by JAMES K. WIGHT \& JAMES G. MACGREGOR
4. Building Code Requirements for Reinforced Concrete, American Concrete Institute (ACI 318-08).
5. Building Code Requirements for Reinforced Concrete, American Concrete Institute (ACI 318-11).
6. Bangladesh National Building Code, (BNBC 2006).
7. Structural Design manuals - CE400 \& CE 412
8. http://civilqa.com
9. http://civilblog.org
10. http://drlatifee.weebly.com/student-corner.html

[^0]:    Steps to be followed for design of Square footings:-

    1. Calculate Dead load and live load on foundation.
    2. Determine pressure of material below ground level = Footing depth below G.L. * Unit wt. of soil \& concrete on average

    2 Calrulata Tntal currharma aridine outro currhareno if amu

