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Abstract. Sloshing is a well-known phenomenon in liquid storage tanks subjected to base or 
body motions.  In recent years the use of baffles for reducing the sloshing effects in tanks 
subjected to earthquake has been studied by some researchers.  However, the use of multiple 
baffles has not been taken into consideration so much.  On the other hand, although some of 
the existing computer programs are capable to model sloshing phenomenon by acceptable 
accuracy, the full dynamic analysis subjected to random excitations such as earthquake 
induced motions is very time consuming, particularly when there are vertical and horizontal 
baffles inside the tank, which postpone the convergence of response calculations.  Therefore, 
a simplified method for evaluation of sloshing effects in baffled tanks is desired.  In this paper 
a method is presented for this purpose based on conducting several dynamic analysis cases, 
by using a powerful Finite Element (FE) method for rectangular tanks with various 
dimensions, subjected to both harmonic and seismic excitations, and then using neural 
network to create simple relationships between the dominant frequency and amplitude of the 
base excitations and the maximum level of liquid in the tank during the sloshing and also the 
maximum dynamic pressure on the tank wall. At first, the FE numerical modeling has been 
verified by using some existing experimental data. Then, dynamic analyses have been 
conducted to obtain the required numerical results for teaching the neural network.  In the 
next stage, the neural network model has been developed.  Finally, the predicted results of the 
neural network have been compared with those obtained by some other cases of analyses as 
control values, to make sure on the accuracy of the neural network model. The proposed 
simplified neural network model can be used also for finding the proper number and features 
of baffles for minimizing the sloshing effect on the tank for a group of given earthquakes, or 
other cases of base excitations. 
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1 INTRODUCTION 

One of the most important phenomena in fluid storage tanks, either buried, semi-buried, 
aboveground or elevated, is the oscillation of fluid due to the movements of the tank body, 
because of its base motions during an earthquake.  Past earthquakes have shown that this 
phenomenon can result in sever damages to water storage tanks.  To prevent tanks against 
sloshing induced damages, the use of baffles have been suggested and studied by some 
researchers since mid 60s [1], however, just few studies have been conducted on using baffles 
for reducing the earthquake induced sloshing effects.  

As one of the first works in this regard Shaaban and Nash (1977) studied on response of 
partially filled liquid-storage circular cylindrical tank with or without an interior cylindrical 
baffle under seismic actions using Finite Element (FE) technique [2].  They worked on an 
elastic cylindrical liquid storage tank attached to a rigid base slab.  Their studied tank was 
either empty or filled to an arbitrary depth with an in-viscid, incompressible liquid.  They 
presented a FE analysis for both tank and liquid, to investigate the free vibration of the 
coupled system permitting determination of natural frequencies and associated mode shapes.  
They employed Sanders shell theory to express the strain-displacements relationship in the 
derivation of the shell FE.  They determined the response of the tank to artificial earthquake 
excitation, and performed similar investigations with the addition of an elastic cylindrical 
perforated baffle to control the system natural frequencies. 

In 1999 Gedikli and Ergüven worked on the seismic analysis of a liquid storage cylindrical 
tank with a rigid baffle [3].  In that study the fluid was assumed to be incompressible and in-
viscid, and its motion was assumed to be ir-rotational.  They implemented method of 
superposition of modes to compute the seismic response, and used the boundary element 
method to evaluate the natural modes of liquid in the tank.  In that study the linearized free 
surface conditions was taken into consideration. 

Yasuki and his colleagues (2000) conducted a study on suppression of seismic sloshing in 
cylindrical tanks with baffle plates [4]. The purpose of that study was proposing the 
evaluation model of damping characteristics of cylindrical tank with ring baffle plates.  They 
carried out shaking table tests, in which the location and geometry of the baffle plates were 
varied, with sinusoidal excitation.  Their experimental results showed that the damping 
characteristic is dependent on the location and geometry of baffle plates.  Their model for 
solid baffle plates was extended to be applicable to both solid and perforated baffle plates, and 
the validity of their evaluation model was confirmed with the experimental results.  

Maleki and Ziyaeifar (2007) conducted a study on damping enhancement of seismic 
isolated cylindrical liquid storage tanks using baffles [5].  Mentioning that in moving liquid 
containers, baffles play an important role in damping the liquid motion, to study the effects of 
using baffles in seismically isolated tanks, in the first instance they have analyzed the velocity 
contours in a cylindrical tank to determine the most effective shape of baffle.  Then they have 
determined the damping coefficients analytically for horizontal ring shape and vertical blade 
shape baffles.  To estimate the sloshing height level and the damping ratio, Maleki and 
Ziyaeifar have developed a methodology, based on Tank Body Spectra, in which the higher 
sloshing amplitude and the relative fluid velocity with respect to baffles in base isolated tanks 
are taken into consideration.  They have also developed a computer program to put all these 
together and investigate the effect of baffles for different tank dimensions under the effect of 
earthquakes.  Their results show that the average damping ratio of sloshing mode due to ring 
baffle increases with a decrease in liquid height and highest damping may be achieved for 
height to radius ratios of 1.0 to 1.5.  In addition, for reasonable ring baffle dimensions, an 
average reduction of 6% in base displacement of base isolated tanks and an average reduction 
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of more than 30% in the sloshing height of base isolated and fixed base tanks may be 
achieved.  To study the effect of baffles on the distribution of hydrodynamic and tank body 
forces with height, Maleki and Ziyaeifar have proposed a simple dynamic model.  The results 
of analyses using this model indicate a constant reduction in sloshing forces and different 
reductions in moment and shear forces for different heights. This happens because 
contribution of the sloshing force to the total hydrodynamic force varies with height. 

Wu (2010) has conducted a thorough study the nonlinear liquid sloshing in a 3D tank with 
baffles, in which the mechanism of liquid sloshing and the interaction between the fluid and 
internal structures have been investigated [6].  He has applied a developed 3D time-
independent finite difference method to solve liquid sloshing in tanks with or without the 
influence of baffles under the ground motion of six-degrees of freedom.  He has solved the 3D 
Navier-Stokes equations and has transformed to a tank-fixed coordinate system, and has 
considered the fully nonlinear kinematic and dynamic free surface boundary conditions for 
fluid sloshing in a rectangular tank with a square base.  In that study the fluid was assumed 
incompressible. The complicated interaction in the vicinity of the fluid-structure interface was 
solved by implementing one dimensional ghost cell approach and the stretching grid 
technique near the fluid-structure boundaries were used to catch the detailed evolution of local 
flow field. A PC-cluster was established by linking several single computers to reduce the 
computational times due to the implementation of the 3D numerical model. The Message 
Passing Interface (MPI) parallel language and MPICH2 software were utilized to code the 
computer codes and to carry out the circumstance of parallel computation, respectively.  

Wu has verified his developed numerical scheme by rigorous benchmark tests, and has also 
performed some further experimental investigations [6].  In that study for a tank without 
internal structures, the coupled motions of surge and sway were simulated with various 
excitation angles, excitation frequencies and water depths.  The characteristics of sloshing 
waves were dissected in terms of the classification of sloshing wave types, sloshing 
amplitude, beating phenomenon, sloshing-induced forces and energy transfer of sloshing 
waves. Six types of sloshing waves, named single-directional, diagonal, square-like, swirling-
like, swirling and irregular waves, were found and classified in Wu’s study and he found that 
the occurrence of these waves are tightly in connection with the excitation frequency of the 
tank. The effect of excitation angle on the characteristics of sloshing waves was explored and 
discussed, especially for swirling waves.  In that study the spectral analyses of sloshing 
displacement of various sloshing waves were examined and a clear evidence of the correlation 
between sloshing wave patterns and resonant modes of sloshing waves were demonstrated. 
The mechanism of switching direction of swirling waves was also discussed by investigating 
the situation of circulatory flow, the instantaneous free surface, the gravitational effect and the 
instantaneous direction of external forcing.   

Wu also considered a 2D tank with vertically tank bottom-mounted baffles and has 
discussed the influence of baffle height on the natural mode of the tank, the evolution of 
vortices and vortex shedding phenomenon, the relationship between the vortex shedding 
frequency and the excitation frequency of the tank, the vortex size generated in the vicinity of 
the baffle tip, and the interaction of vortices inside the tank [6].  Based on the results the 
baffle height shows a significant influence on the shift of the first natural frequency of the 
baffled tank and the liquid depth also plays an important part in determining this influence.  In 
other words, the shift of the first natural mode due to various baffle heights varies with water 
depths.  Wu has claimed that the design of two baffles separated by 0.2 times the tank breadth 
is an efficient tool to not only reduce the sloshing amplitude, but also switch the first natural 
frequency of the tank.  The results also show that sloshing displacement is affected distinctly 
by different numbers of baffles mounted vertically on the tank bottom. The more baffles 
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mounted onto the tank bottom, the smaller the sloshing displacement is presented in both the 
transient and steady-state periods.  Wu has categorized the processes of the evolution of 
vortices near the baffle tip into four phases: the formation of separated shear layer and 
generation of vortices, the formation of a vertical jet and shedding of vortices, the interaction 
between shedding vortices and sloshing flow (the generation of snaky flow) and the 
interaction between snaky flow and sloshing waves.  Results show that vortex shedding 
phenomenon due to stronger vertical jets occurs when the excitation frequency is close to the 
first natural mode of the baffled tank, and that is discussed and the size of vortex, generated 
near the baffle tip, is closely correlated with the baffle height.  In that study two types of 3D 
tuned liquid dampers, a vertically tank bottom-mounted baffle and a vertical plate, were 
discussed for a tank under coupled surge-sway motions.  Results show that the wave types of 
diagonal and single-directional waves switch to the swirling type due to the influence of the 
baffle. The phenomenon of square-like waves or irregular waves coexisting with swirling 
waves is found in the baffled tank under diagonal excitation.  The shift of the first natural 
mode of the baffled tank due to various baffle heights is remarkable. The length of the plate 
can cause a significant influence on not only the variation of the natural frequencies but the 
type of the sloshing waves. The influence of the vertical plate on the irregular waves is 
insignificant and several peaks appear in the spectral analysis of the sloshing displacement for 
the irregular waves and the numbers of peaks are more than that of the baffled tank. 

It is seen in the review of the literature that the analysis of baffled tanks in general is very 
complicated and time consuming, even with just one or two baffle(s).  It is then clear that 
multiple baffles make the behavior of the liquid inside the tank more complicated, and 
accordingly makes the analysis much more difficult and time consuming.  In this study a 
simplified method for evaluation of sloshing effects in rectangular tanks with multiple baffles 
is presented.  The method is based on conducting several dynamic analysis cases, by using a 
powerful FE method for tanks with various dimensions, subjected to both harmonic and 
seismic excitations, and the use of neural network to create simple relationships between the 
dominant frequency and amplitude of the base excitations and the maximum level of liquid in 
the tank during the sloshing and also the maximum dynamic pressure on the tank wall.  The 
details of the study are discussed in the following section of the paper. 

2 FINITE ELEMENT MODELING AND ITS VERIFICATION 

In order to verify the numerical modeling of the tanks by FE analysis at first the numerical 
FE model of a tank, previously tested at the Hydraulic Institute of Stuttgart University on 
shake table (Figure 1) by some other colleagues (Goudarzi et al. 2010) [7], were developed by 
the employed computer program.   

 

 
Figure 1: The scaled-down tank model on the shake-table [7] 
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Comparing Figure 3 with Figure 2 and also Figure 5 with Figure 4, the very good 
agreement between the numerical result obtained by the FE model, developed in this study, 
and the experimental and analytical results can be seen.  Based on this verification, the 
employed FE modeling process could be used for more detailed analysis of sloshing in tanks 
as explained in next sections.   

3 CONSIDERED TANKS FOR THE FINITE ELEMENT ANLYSES 

In this study the typical double-compartment aboveground water tanks, used in water 
supply system in Iran, were used.  The general geometric features of the tanks, considered for 
the study, are shown in Figure 6. 

 

 
Figure 6: General geometric plan features of the double-containment tanks considered for the study 

 
To have the minimum length of the tank’s wall (to minimize the amount of required 

construction materials) for a given tank’s area, in the case of double-compartment tanks 
shown in Figure 6, it can be shown easily that b should be around 1.5a.  Also usually the 
water depth in the tank, h, is considered not to be less than 0.1 of the width, a, and not more 
than 6 meters.  The common specifications of tanks with different water volumes or 
capacities, based on the above conditions, are as shown in Table 1. 

 
Table 1: Common specifications of tanks with different water volumes, and their fundamental sloshing period 

The tank water 
capacity (m3) 

Tank water height, 
h, in the tank (m) 

a (m) b=1.5a h/a h/b T (sec) 

125 3.0 5.270 7.905 0.758 0.569 2.619 

250 3.0 7.453 11.180 0.536 0.402 3.197 

500 3.0 10.540 15.811 0.379 0.284 4.029 

1000 3.0 14.907 22.360 0.268 0.201 5.270 

5000 4.0 28.867 43.301 0.184 0.138 8.408 

10000 5.0 36.514 54.772 0.182 0.136 9.502 

15000 5.5 42.640 63.960 0.171 0.128 10.523 

20000 5.5 49.236 73.854 0.148 0.111 12.019 

30000 6.0 57.735 86.602 0.138 0.103 13.434 
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It is seen in Figures 14 to 16 that using baffles in general leads to decrease in the water 
level variations (the maximum water rising), and using more baffles results in more decrease 
in water level rising.  However, similar analyses by using other earthquake records, such as 
Tabas, Iran (1987) and Kocaeli, Turkey (1999) showed that using more than 3, and in some 
cases 2, baffles does not change the results so much.  Therefore, it can be recommended that 2 
baffles are used in tanks of the sizes around the size of the studied tank.  

6 NEURAL NETWORK AND ITS TRAINING FOR SLOSHING RESPONSE 
PREDICTION 

To train a neural network for prediction of the sloshing response to earthquake excitations, 
the results of Kocaeli (1999), Tabas (1987), and Chi-Chi (Chy024 component -1999) 
earthquakes were used.  The values of pseudo velocities corresponding to the 1st, 2nd, and 3rd 
sloshing modes in the tank, along with the number of baffles were used and the input data, and 
the ratio of water level increase to the water depth was used as the output data (Table 2).  

 

Table 2: Input and output data used for training the considered neural network 

  Name of 
 Earthq. 

X1=Number 
of baffle(s) 

X2=Pseudo 
velocity 

Water level 
increase (cm) 

Y1=Water level increase / 
Water depth 

1 

K
oc

ae
li 

0 
0.3463 26 0.565217391 

2 0.827 26 0.565217391 
3 1.001 26 0.565217391 
4 

1 
0.3463 26 0.565217391 

5 0.827 26 0.565217391 
6 1.001 26 0.565217391 
7 

2 
0.3463 21 0.512195122 

8 0.827 21 0.512195122 
9 1.001 21 0.512195122 

10 
3 

0.3463 21 0.512195122 
11 0.827 21 0.512195122 
12 1.001 21 0.512195122 
13 

T
ab

as
 

0 
0.5658 7.5 0.272727273 

14 0.8988 7.5 0.272727273 
15 0.7549 7.5 0.272727273 
16 

1 
0.5658 4.05 0.168399168 

17 0.8988 4.05 0.168399168 
18 0.7549 4.05 0.168399168 
19 

2 
0.5658 3.6 0.152542373 

20 0.8988 3.6 0.152542373 
21 0.7549 3.6 0.152542373 
22 

3 
0.5658 2.4 0.107142857 

23 0.8988 2.4 0.107142857 
24 0.7549 2.4 0.107142857 
25 

C
hi

-C
hi

 (
C

H
Y

02
4)

 

0 
0.6337 60 0.75 

26 0.7192 60 0.75 
27 0.4451 60 0.75 
28 

1 
0.6337 31.5 0.611650485 

29 0.7192 31.5 0.611650485 
30 0.4451 31.5 0.611650485 
31 

2 
0.6337 36 0.642857143 

32 0.7192 36 0.642857143 
33 0.4451 36 0.642857143 
34 

3 
0.6337 34.5 0.633027523 

35 0.7192 34.5 0.633027523 
36 0.4451 34.5 0.633027523 
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Based on the data given in Table 2, and by considering a neural network with one 
intermediate or hidden layer [8] (Figure 17), the network was trained.  After training the neural 
network, to test its capability in response prediction, another earthquake (Chi-Chi, Chy101 
component) was considered, whose displacement record is shown in Figure 17. 

 

 
Figure 17: the neural network with one intermediate (hidden) layer [8] 

 

 
Figure 17: Displacement time history of Chi-Chi earthquake (CHY101 component) 

 
The results, obtained by FE element analysis of the sloshing response of the tank, subjected to 

the test record are given in Table 3. 
 

Table 3: Input and output data obtained from the test record for checking the trained neural network  

  
Name of 
 Earthq. 

X1=Number 
of baffle(s) 

X2=Pseudo 
velocity 

Water level 
increase (cm) 

Y1=Water level increase / 
Water depth 

1 

C
hi

-C
hi

 (
C

H
Y

10
1)

 

0 

0.5358 33* 0.622641509 

2 0.4025 33 0.622641509 

3 0.3115 33 0.622641509 

4 

1 

0.5358 27 0.574468085 

5 0.4025 27 0.574468085 

6 0.3115 27 0.574468085 

7 

2 

0.5358 18 0.473684211 

8 0.4025 18 0.473684211 

9 0.3115 18 0.473684211 

10 

3 

0.5358 18 0.473684211 

11 0.4025 18 0.473684211 

12 0.3115 18 0.473684211 
* Results are related to the tank with actual size. 

 
Figure 18 shows the results obtained by the trained neural network in comparison with those 

obtained by the time history analysis of the numerical FE model. 
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