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ix

PREFACE TO THE 
SIXTH EDITION

Publication of this book presents the opportunity for yet another new
generation of readers to pursue a study of the fundamental topics that un-
derlie the work of design of building structures. In particular, the work
here is developed in a form to ensure its accessibility to persons with lim-
ited backgrounds in engineering. That purpose and the general rationale
for the book are well presented in Professor Parker’s preface to the first
edition, excerpts from which follow.

The fundamental materials presented here derive from two general
areas of study. The first area is that of applied mechanics, and most prin-
cipally, applications of the field of statics. This study deals primarily
with the nature of forces and their effects when applied to objects. The
second area of study is that of strength of materials, which deals gener-
ally with the behavior of particular forms of objects, of specific structural
materials, when subjected to actions of forces. Fundamental relation-
ships and evaluations derived from these basic fields provide the tools for
investigation of structures relating to their effectiveness and safety for
usage in building construction. No structural design work can be satis-
factorily achieved without this investigation.
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In keeping with the previously stated special purpose of this book, the
work here is relatively uncomplicated and uses quite simple mathemat-
ics. A first course in algebra plus some very elementary geometry and
trigonometry will suffice for the reader to follow any derivations pre-
sented here. In fact, the mathematical operations in applications to actual
problem solving involve mostly only simple arithmetic and elementary
algebra.

More important to the study here than mechanical mathematical op-
erations is the conceptual visualization of the work being performed. To
foster this achievement, extensive use is made of graphic images to en-
courage the reader to literally see what is going on. The ultimate exten-
sion of this approach is embodied in the first chapter, which presents the
entire scope of topics in the book without mathematics. This chapter is
new to this edition and is intended both to provide a comprehensive grasp
of the book’s scope and to condition the reader to emphasize the need for
visualization preceding any analytical investigation.

Mastery of the work in this book is essentially preparatory in nature,
leading to a next step that develops the topic of structural design. This
step may be taken quite effectively through the use of the book that is es-
sentially a companion to this work: Simplified Engineering for Architects
and Builders. That book picks up the fundamental materials presented
here, adds to them various pragmatic considerations for use of specific
materials and systems, and engages the work of creating solutions to
structural design problems.

For highly motivated readers, this book may function as a self-study
reference. Its more practical application, however, is as a text for a course
in which case readers will have the advantage of guidance, prodding, and
counsel from a teacher. For teachers accepting such a challenge, a
Teacher’s Manual is available from the publisher.

While the work here is mostly quite theoretical in nature, some use of
data and criteria derived from sources of real materials and products is
necessary. Those sources consist primarily of industry organizations, and
I am grateful for the permissions granted for such use. Primary sources
used here include the American Concrete Institute, the American 
Institute for Steel Construction, and the American Forest and Paper
Association.

A practical context for this theoretical work is presented through sev-
eral illustrations taken from books that more thoroughly develop the
topic of building construction. I am grateful to John Wiley & Sons for

x PREFACE TO THE SIXTH EDITION
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permission to use these illustrations from several of its publications, both
current and vintage works.

Bringing any work to actual publication requires enormous effort and
contributions by highly competent and experienced people who can
transform the author’s raw materials into intelligible and presentable
form. Through many engagements, I continue to be amazed at the level
of quality and the skill of the editors and production staff at John Wiley
& Sons who achieve this effort.

This work is the sixtieth publication that I have brought forth over the
past 35 years, all of which were conceived and produced in my home of-
fice. None of them—first to last—would have happened there without
the support, encouragement, and lately the direct assistance of my wife,
Peggy. I am grateful to her for that contribution, and hope she will sus-
tain it through the next work.

JAMES AMBROSE

2002

PREFACE TO THE SIXTH EDITION xi
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xiii

PREFACE TO THE 
FIRST EDITION

The following are excerpts from the preface to the first edition of this
book, written by Professor Parker at the time of publication in 1951.

Since engineering design is based on the science of mechanics, it is im-
possible to overemphasize the importance of a thorough knowledge of
this basic subject. Regardless of the particular field of engineering in
which a student is interested, it is essential that he understand fully the
fundamental principles that deal with the actions of forces on bodies and
the resulting stresses.

This is an elementary treatment written for those who have had lim-
ited preparation. The best books on the subject of mechanics and strength
of materials make use of physics, calculus, and trigonometry. Such books
are useless for many ambitious men. Consequently, this book has been
prepared for the student who has not obtained a practical appreciation of
mechanics or advanced mathematics. A working knowledge of algebra
and arithmetic is sufficient to enable him to comprehend the mathemat-
ics involved in this volume.
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This book has been written for use as a textbook in courses in me-
chanics and strength of materials and for use by practical men interested
in mechanics and construction. Because it is elementary, the material has
been arranged so that it may be used for home study. For those who have
had previous training it will serve as a refresher course in reviewing the
most important of the basic principles of structural design.

One of the most important features of this book is a detailed explana-
tion of numerous illustrative examples. In so far as possible, the exam-
ples relate to problems encountered in practice. The explanations are
followed by problems to be solved by the student.

This book presents no short-cuts to a knowledge of the fundamental
principles of mechanics and strength of materials. There is nothing
unique in the presentation, for the discussions follow accepted present-
day design procedure. It is the belief of the author, however, that a thor-
ough understanding of the material contained herein will afford a
foundation of practical information and serve as a step to further study.

HARRY PARKER

High Hollow
Southampton
Bucks County, Pennsylvania
May 1951

xiv PREFACE TO THE FIRST EDITION
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1

INTRODUCTION

The principal purpose of this book is to develop the topic of structural in-
vestigation, also sometimes described as structural analysis. To the ex-
tent possible, the focus of this study is on a consideration of the analytical
study as a background for work in structural design. The work of struc-
tural investigation consists of the consideration of the tasks required of a
structure and the evaluation of the responses of the structure in perform-
ing these tasks. Investigation may be performed in various ways, the
principal ones being either the use of mathematical modeling or the con-
struction of physical models.

For the designer, a major first step in any investigation is the visual-
ization of the structure and the force actions to which it must respond. In
this book, extensive use is made of graphic illustrations in order to en-
courage the reader to develop the habit of first clearly seeing what is hap-
pening, before proceeding with the essentially abstract procedures of
mathematical investigation. To further emphasize the need for visualiza-
tion, and the degree to which it can be carried out without any mathe-
matical computations, the first chapter of the book presents the whole
range of book topics in this manner. The reader is encouraged to read
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Chapter 1 completely, and to study the many graphic illustrations. This ini-
tial study should help greatly in giving the reader a grasp for the many con-
cepts to be presented later and for the whole body of the book’s topic scope.

STRUCTURAL MECHANICS

The branch of physics called mechanics concerns the actions of forces on
physical bodies. Most of engineering design and investigation is based on
applications of the science of mechanics. Statics is the branch of me-
chanics that deals with bodies held in a state of unchanging motion by the
balanced nature (called static equilibrium) of the forces acting on them.
Dynamics is the branch of mechanics that concerns bodies in motion or
in a process of change of shape due to actions of forces. A static condi-
tion is essentially unchanging with regard to time; a dynamic condition
implies a time-dependent action and response.

When external forces act on a body, two things happen. First, internal
forces that resist the actions of the external forces are set up in the body.
These internal forces produce stresses in the material of the body. Second,
the external forces produce deformations, or changes in shape, of the
body. Strength of materials, or mechanics of materials, is the study of 
the properties of material bodies that enable them to resist the actions 
of external forces, of the stresses within the bodies, and of the deforma-
tions of bodies that result from external forces.

Taken together, the topics of applied mechanics and strength of mate-
rials are often given the overall designation of structural mechanics or
structural analysis. This is the fundamental basis for structural investiga-
tion, which is essentially an analytical process. On the other hand, design
is a progressive refining process in which a structure is first generally vi-
sualized; then it is investigated for required force responses and its perfor-
mance is evaluated; finally—possibly after several cycles of investigation
and modification—an acceptable form is derived for the structure.

UNITS OF MEASUREMENT

Early editions of this book have used U.S. units (feet, inches, pounds,
etc.) for the basic presentation. In this edition, the basic work is devel-
oped with U.S. units with equivalent metric unit values in brackets [thus].

2 INTRODUCTION
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While the building industry in the United States is now in the process of
changing over to the use of metric units, our decision for the presentation
here is a pragmatic one. Most of the references used for this book are still
developed primarily in U.S. units, and most readers educated in the
United States will have acquired use of U.S units as their “first lan-
guage,” even if they now also use metric units.

Table 1 lists the standard units of measurement in the U.S. system
with the abbreviations used in this work and a description of common
usage in structural design work. In similar form, Table 2 gives the corre-
sponding units in the metric system (or Système International, SI). Con-
version factors to be used for shifting from one unit system to the other
are given in Table 3. Direct use of the conversion factors will produce
what is called a hard conversion of a reasonably precise form.

In the work in this book, many of the unit conversions presented are
soft conversions, meaning one in which the converted value is rounded
off to produce an approximate equivalent value of some slightly more
relevant numerical significance to the unit system. Thus, a wood 2 × 4
(actually 1.5 × 3.5 inches in the U.S. system) is precisely 38.1 × 88.9 mm
in the metric system. However, the metric equivalent of a ''2 by 4'' is
more likely to be made 40 × 90 mm, close enough for most purposes in
construction work.

For some of the work in this book, the units of measurement are not
significant. What is required in such cases is simply to find a numerical
answer. The visualization of the problem, the manipulation of the math-
ematical processes for the solution, and the quantification of the answer
are not related to specific units—only to their relative values. In such sit-
uations, the use of dual units in the presentation is omitted in order to re-
duce the potential for confusion for the reader.

ACCURACY OF COMPUTATIONS

Structures for buildings are seldom produced with a high degree of di-
mensional precision. Exact dimensions are difficult to achieve, even for
the most diligent of workers and builders. Add this to considerations for
the lack of precision in predicting loads for any structure, and the signif-
icance of highly precise structural computations becomes moot. This is
not to be used as an argument to justify sloppy mathematical work,
overly sloppy construction, or use of vague theories of investigation of

ACCURACY OF COMPUTATIONS 3
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4 INTRODUCTION

TABLE 1 Units of Measurement: U.S. System

Name of Unit Abbreviation Use in Building Design

Length
Foot ft Large dimensions, building plans, 

beam spans
Inch in. Small dimensions, size of member 

cross sections

Area
Square feet ft2 Large areas
Square inches in.2 Small areas, properties of cross 

sections

Volume
Cubic yards yd3 Large volumes, of soil or concrete

(commonly called simply “yards”)
Cubic feet ft3 Quantities of materials
Cubic inches in.3 Small volumes

Force, Mass
Pound lb Specific weight, force, load
Kip kip, k 1000 pounds
Ton ton 2000 pounds
Pounds per foot lb/ft, plf Linear load (as on a beam)
Kips per foot kips/ft, klf Linear load (as on a beam)
Pounds per square foot lb/ft2, psf Distributed load on a surface, 

pressure
Kips per square foot k/ft2, ksf Distributed load on a surface, 

pressure
Pounds per cubic foot lb/ft3 Relative density, unit weight

Moment
Foot-pounds ft-lb Rotational or bending moment
Inch-pounds in.-lb Rotational or bending moment
Kip-feet kip-ft Rotational or bending moment
Kip-inches kip-in. Rotational or bending moment

Stress
Pounds per square foot lb/ft2, psf Soil pressure
Pounds per square inch lb/in.2, psi Stresses in structures
Kips per square foot kips/ft2, ksf Soil pressure
Kips per square inch kips/in.2, ksi Stresses in structures

Temperature
Degree Fahrenheit °F Temperature
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ACCURACY OF COMPUTATIONS 5

TABLE 2 Units of Measurement: SI System

Name of Unit Abbreviation Use in Building Design

Length
Meter m Large dimensions, building plans, 

beam spans
Millimeter mm Small dimensions, size of member

cross sections

Area
Square meters m2 Large areas
Square millimeters mm2 Small areas, properties of member 

cross sections

Volume
Cubic meters m3 Large volumes
Cubic millimeters mm3 Small volumes

Mass
Kilogram kg Mass of material (equivalent to 

weight in U.S. units)
Kilograms per cubic meter kg/m3 Density (unit weight)

Force, Load
Newton N Force or load on structure
Kilonewton kN 1000 newtons

Moment
Newton-meters N-m Rotational or bending moment
Kilonewton-meters kN-m Rotational or bending moment

Stress
Pascal Pa Stress or pressure (1 pascal = 

1 N/m2)
Kilopascal kPa 1000 pascals
Megapascal MPa 1,000,000 pascals
Gigapascal GPa 1,000,000,000 pascals

Temperature
Degree Celsius °C Temperature
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6 INTRODUCTION

TABLE 3 Factors for Conversion of Units

To convert from To convert from
U.S. Units to SI SI Units to U.S.

Units, Multiply by: U.S. Unit SI Unit Units, Multiply by:

25.4 in. mm 0.03937
0.3048 ft m 3.281

645.2 in.2 mm2 1.550 × 10-3

16.39 × 103 in.3 mm3 61.02 × 10-6

416.2 × 103 in.4 mm4 2.403 × 10-6

0.09290 ft2 m2 10.76
0.02832 ft3 m3 35.31
0.4536 lb (mass) kg 2.205
4.448 lb (force) N 0.2248
4.448 kip (force) kN 0.2248
1.356 ft-lb (moment) N-m 0.7376
1.356 kip-ft (moment) kN-m 0.7376

16.0185 lb/ft3 (density) kg/m3 0.06243
14.59 lb/ft (load) N/m 0.06853
14.59 kip/ft (load) kN/m 0.06853
6.895 psi (stress) kPa 0.1450
6.895 ksi (stress) MPa 0.1450
0.04788 psf (load or kPa 20.93

pressure)
47.88 ksf (load or pressure) kPa 0.02093

0.566 × (oF – 32) oF oC (1.8 × oC) + 32

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the
publishers, American Institute of Steel Construction. This table is a sample from an extensive set of
tables in the reference document.

behaviors. Nevertheless, it makes a case for not being highly concerned
with any numbers beyond about the second digit.

While most professional design work these days is likely to be done
with computer support, most of the work illustrated here is quite simple
and was actually performed with a hand calculator (the eight-digit, sci-
entific type is adequate). Rounding off of these primitive computations is
done with no apologies.

With the use of the computer, accuracy of computational work is a
somewhat different matter. Still, it is the designer (a person) who makes
judgements based on the computations, and who knows how good the
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input to the computer was, and what the real significance of the degree of
accuracy of an answer is.

SYMBOLS

The following shorthand symbols are frequently used.

Symbol Reading

> is greater than
< is less than
≥ is equal to or greater than
≤ is equal to or less than
6' 6 feet
6" 6 inches
∑ the sum of
∆L change in L

NOMENCLATURE

Notation used in this book complies generally with that used in the build-
ing design field. A general attempt has been made to conform to usage in
the 1997 edition of the Uniform Building Code, UBC for short (Ref. 1).
The following list includes all of the notation used in this book that is
general and is related to the topic of the book. Specialized notation is
used by various groups, especially as related to individual materials:
wood, steel, masonry, concrete, and so on. The reader is referred to basic
references for notation in special fields. Some of this notation is ex-
plained in later parts of this book.

Building codes, including the UBC, use special notation that is usually
carefully defined by the code, and the reader is referred to the source for
interpretation of these definitions. When used in demonstrations of com-
putations, such notation is explained in the text of this book.

Ag = gross (total) area of a section, defined by the outer dimensions

An = net area

C = compressive force

NOMENCLATURE 7
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E = modulus of elasticity (general)

F = (1) force; (2) a specified limit for stress

I = moment of inertia

L = length (usually of a span)

M = bending moment

P = concentrated load

S = section modulus

T = tension force

W = (1) total gravity load; (2) weight, or dead load of an object; 
(3) total wind load force; (4) total of a uniformly distributed
load or pressure due to gravity

a = unit area

e = (1) total dimensional change of length of an object, caused by
stress or thermal change; (2) eccentricity of a nonaxial load, from
point of application of the load to the centroid of the section

f = computed direct stress

h = effective height (usually meaning unbraced height) of a wall or
column

l = length, usually of a span

s = spacing, center to center

v = computed shear stress

8 INTRODUCTION
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9

1
STRUCTURES: PURPOSE

AND FUNCTION

This book deals with the behavior of structures; in particular, with struc-
tures for buildings. The behavior referred to is that which occurs when
the structures respond to various force actions produced by natural and
usage-generated effects. Investigation of structural behaviors has the di-
rect purpose of supporting an informed design of the structures and an as-
surance as to the safety of the construction with regard to the building
occupants.

Structural behaviors may be simple or complex. This quality may de-
rive from the nature of the loads on the structure—from simple gravity to
the dynamic effects of earthquakes. It may also derive from the nature of
the structure itself. For example, the simple structure shown in Figure 1.1
has basic elements that yield to quite elementary investigation for be-
havior. This book provides a starting point for the most elementary in-
vestigations of structures. It can be the beginning of a long course of
study for persons interested in the investigation and design of highly
complex structures.
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10 STRUCTURES: PURPOSE AND FUNCTION

Figure 1.1 An All-American classic structure: the light wood frame, achieved al-
most entirely with “2 ×” dimension lumber. Wall studs serve as columns to support
horizontal members in the time-honored post and beam system with its roots in an-
tiquity. While systems of much greater sophistication have been developed, this is
still the single most widely used structure in the United States today.
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Consider the problems of the structure that derive from its perfor-
mance of various load resisting functions. The basic issues to be dealt
with are:

The load sources and their effects.

What the structure accomplishes in terms of its performance as a sup-
porting, spanning, or bracing element.

What happens to the structure internally as it performs its various
tasks.

What is involved in determining the necessary structural elements and
systems for specific structural tasks.

We begin this study with a consideration of the loads that affect build-
ing structures.

1.1 LOADS

Used in its general sense, the term load refers to any effect that results in
a need for some resistive response on the part of the structure. There are
many different sources for loads, and many ways in which they can be
classified. The principal kinds and sources of loads on building structures
are the following.

Gravity

Source: The weight of the structure and of other parts of the con-
struction; the weight of building occupants and contents; the
weight of snow, ice, or water on the roof.

Computation: By determination of the volume, density, and type of
dispersion of items.

Application: Vertically downward and constant in magnitude.

Wind

Source: Moving air.

Computation: From anticipated wind velocities established by local
weather history.

LOADS 11
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Application: As pressure perpendicular to exterior surfaces or as
shearing drag parallel to exterior surfaces. Primarily considered as
a horizontal force from any compass point, but also with a vertical
component on sloping surfaces and vertical uplift on flat roofs.

Earthquake (Seismic Shock)

Source: Vibration of the ground as a result of a subterranean shock.

Computation: By prediction of the probability of occurrence based
on local history of seismic activity.

Application: Back-and-forth, up-and-down movement of the ground
on which a building sits, resulting in forces induced by the inertial
effect of the building’s weight.

Blast

Source: Explosion of bomb, projectile, or volatile materials.

Computation: As pressure, depending on the magnitude of the ex-
plosion and its proximity to the structure.

Application: Slamming force on surfaces surrounding the explosion.

Hydraulic Pressure

Source: Principally from groundwater levels above the bottom of the
basement floor.

Computation: As fluid pressure proportional to the depth below the
water top surface.

Application: As horizontal pressure on basement walls and upward
pressure on basement floors.

Thermal Change

Source: Temperature changes in the building materials caused by
fluctuations of outdoor temperature.

Computation: From weather histories, coefficient of expansion of
materials, and amount of exposure of the individual parts of the
construction.
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Application: Forces exerted when parts are restrained from expand-
ing or contracting; distortions of building if connected parts 
differ in temperature or have significantly different coefficients of
expansion.

Shrinkage

Natural volume reduction occurs in concrete, in the mortar joints of ma-
sonry, in green wood, and in wet clay soils. These can induce forces in a
manner similar to thermal change.

Vibration

In addition to earthquake effects, vibration of the structure may be caused
by heavy machinery, moving vehicles, or high intensity sounds. These
may not be a critical force issue, but can be a major concern for sensation
by occupants.

Internal Actions

Forces may be generated within a structure by settlement of supports,
slippage or loosening of connections, or by shape changes due to sag,
warping, shrinkage, and so on.

Handling

Forces may be exerted on elements of the structure during production,
transportation, erection, storage, and so on. These may not be evident
when considering only the normal use of the building, but must be con-
sidered for the life of the structure.

1.2 SPECIAL CONSIDERATIONS FOR LOADS

In addition to identifying load sources, it is necessary to classify loads in
various ways. The following are some such classifications.

SPECIAL CONSIDERATIONS FOR LOADS 13
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Live and Dead Loads

For design, a distinction is made between so-called live and dead loads.
A dead load is essentially a permanent load, such as the weight of the
structure itself and the weight of other permanent elements of the build-
ing construction supported by the structure. A live load is technically
anything that is not permanently applied as a force on the structure. How-
ever, the specific term “live load” is typically used in building codes to
refer to the assumed design loads in the form of dispersed load on the
roof and floor surfaces that derive from the building location and its
usage.

Static versus Dynamic Forces

This distinction has to do essentially with the time-dependent character
of the force. Thus, the weight of the structure produces a static effect, un-
less the structure is suddenly moved or stopped from moving, at which
time a dynamic effect occurs due to the inertia or momentum of the mass
of the structure (see Figure 1.2a). The more sudden the stop or start, the
greater the dynamic effect.

Other dynamic effects are caused by ocean waves, earthquakes, blasts,
sonic booms, vibration of heavy machinery, and the bouncing effect of
people walking or of moving vehicles. Dynamic effects are different in
nature from static effects. A light steel-framed building, for instance,
may be very strong in resisting static forces, but a dynamic force may
cause large distortions or vibrations, resulting in cracking of plaster,
breaking of window glass, loosening of structural connections, and so on.
A heavy masonry structure, although possibly not as strong as the steel
frame for static load, has considerable stiffness and dead weight, and
may thus absorb the energy of the dynamic force without perceptible
movement.

In the example just cited, the effect of the force on the function of the
structure was described. This may be distinct from any potential damag-
ing effect on the structure. The steel frame is flexible and may respond
with a degree of movement that is objectionable. However, from a struc-
tural point of view it is probably more resistive to dynamic force than the
masonry structure. Steel is strong in tension and tends to dissipate some
of the dynamic force through movement, similar to a boxer rolling with
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a punch. Masonry, in contrast, is brittle and stiff and absorbs the energy
almost entirely in the form of shock to the material.

In evaluating dynamic force effects and the response of structures to
them, both the effect on the structure and the effect on its performance
must be considered (see Figure 1.2b). Success for the structure must be
measured in both ways.
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Figure 1.2 (a) Static versus dynamic
force effects. (b) Effects of vibration 
on occupant’s sense of the building’s
solidity.
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Load Dispersion

Forces are also distinguished by the manner of their dispersion. Gas
under pressure in a container exerts a pressure that is uniformly dispersed
in all directions at all points. The dead load of roofing, the weight of
snow on a roof, and the weight of water on the bottom of a tank are all
loads that are uniformly distributed on a surface. The weight of a beam
or a suspended cable is a load that is uniformly distributed in a linear
manner. On the other hand, the foot of a column or the end of a beam 
represent loads that are concentrated at a relatively small location (see
Figure 1.3).

Randomly dispersed live loads may result in unbalanced conditions or
in reversals of internal forces in the structure (see Figure 1.4). Since live
loads are generally variable in occurrence, it may be necessary to con-
sider various arrangements and combinations of them in order to deter-
mine the worst effects on the structure.
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Figure 1.3 Dispersion of loads.
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Wind

Wind is moving air, and thus, it has an impact on any static object in its
path, just as water flowing in a stream has an impact on a large rock or a
bridge pier. The fluid flow of the air also produces various other effects,
such as those shown in Figure 1.5. The form, surface texture, and size of
the building, as well as the sheltering effect of ground forms, large trees,
or other nearby buildings, may modify the effects of wind.

While gravity is a constant magnitude, single direction force, wind is
variable in both magnitude and direction. Although usually directed par-
allel to the ground surface, wind can cause aerodynamic effects in other
orientations, resulting in both inward and outward pressures on individ-
ual surfaces of a building. Violent winds are usually accompanied by
gusts, which are brief surges in the wind velocity. Gusts produce impacts
on surfaces and may result in jerking or rocking of small buildings.

Wind magnitude is measured in terms of velocity (wind speed). The
effect on buildings is translated into force in terms of pressures on the ex-
terior building surfaces, measured in pounds per square foot (psf). From
physics, this pressure varies with the square of the velocity. For the case
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Figure 1.4 Unbalanced loads.
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of small to medium size buildings with flat sides, sitting on the ground,
an approximation of the total force from these pressures is visualized in
the form of a single pressure on the building windward side of

p = 0.003V 2

in which

p = pressure on the vertical surface, in units of psf

V = wind velocity in units of miles per hour (mph)

A plot of this equation is shown in Figure 1.6. Local weather histories are
used to establish the maximum anticipated wind speeds for a given loca-
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Figure 1.5 Wind loads on buildings.
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tion, which are then used to establish the code-required design pressures
used for design of structures in that region.

Earthquakes

Earthquakes can have various disastrous effects on buildings. The pri-
mary direct effect is the shaking of the ground produced by the shock
waves that emanate from the center of the earthquake. The rapidity, du-
ration, and magnitude of this shaking depend on the intensity of the
earthquake, on the geological nature of the earth between the earth-
quake and the building site, and on the dynamic response character of the
site itself.

SPECIAL CONSIDERATIONS FOR LOADS 19

Figure 1.6 Relation of wind velocity (speed) to surface pressure on buildings. Re-
produced from Simplified Building Design for Wind and Earthquake Forces, 3rd
edition, by J. Ambrose and D. Vergun, 1995, with permission of the publisher,
John Wiley & Sons, New York.
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The shaking effect of an earthquake may be a source of serious dis-
tress to the building or its occupants. The force effect on the structure is
directly related to the weight of the building and is modified by various
dynamic properties of the structure. As the base of a building is suddenly
moved, the upper part of the building at first resists moving. This results
in a distortion of the structure, with the base laterally displaced while the
upper part momentarily remains stationary. Then, as the upper part fi-
nally moves, the base suddenly reverses direction, which produces a
force due to the momentum of the upper part. This action can produce
sliding, toppling, or total collapse of the building. Repeated several
dozen times during an earthquake, it can also produce progressive failure
of the structure and a fun ride for the building occupants.

If a structure is large, tall, and flexible, its relatively slow response can
set up whiplashlike effects, as shown in Figure 1.7. If a structure is small,
short, and stiff, its motion will be essentially the same as that of the
ground. In addition to the direct shaking action, there are other potential
destructive effects from earthquakes, including:

Settling, cracking, or lateral shifting of the ground surface.

Landslides, avalanches, rock falls, or glacial faults.

Tidal waves that can travel long distances and cause damage to coastal
areas.

Surging of water in lakes, reservoirs, and large water tanks.

Explosions and fires resulting from broken gas or oil pipelines.

Major interruption of community services for power, water supply, or
communication, due to damage to buried utilities, to transmission
towers, to electrical transformers, and so on.

The potential for disaster is enormous, but the reality is tempered by the
infrequent occurrence of major earthquakes, their highly localized na-
ture, and our steady development of more resistive structures. Sadly but
beneficially, each major earthquake works to reduce the inventory of
vulnerable structures for the next earthquake.

Load Combinations

A difficult judgement for the designer is that of the likelihood of simul-
taneous occurrence of forces from various sources. Potential combina-
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tions must be studied carefully to determine those that cause critical sit-
uations and that have some reasonable possibility of actual simultaneous
occurrence. For example, it is not reasonable to design for the simul-
taneous occurrence of a major wind storm and a major earthquake. Nor
is it possible for the wind to blow simultaneously from more than one
direction.

1.3 GENERATION OF STRUCTURES

The making of buildings involves a number of situations that generate a
need for structures.

GENERATION OF STRUCTURES 21

Figure 1.7 Earthquake effects on tall structures. Reproduced from Simplified
Building Design for Wind and Earthquake Forces, 3rd edition, by J. Ambrose and
D. Vergun, 1995, with permission of the publisher, John Wiley & Sons, New York.
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Need for Unobstructed Interior Space

Housing of activities creates the need for producing unobstructed interior
spaces that are free of vertical elements of the building structure. These
spaces may be very small (closets and bathrooms) or very large (sports
arenas). Generating open, enclosed, interior space involves the basic
structural task of spanning, as shown in Figure 1.8. The magnitude of the
spanning task is determined by the length of the span and the loads on the
spanning structure. As the span increases, the required structural effort
increases rapidly, and feasible options for the spanning structure narrow
to a few choices.
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Figure 1.8 The structural task of generating unobstructed interior space.
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Architectural Elements

Most buildings consist of combinations of three basic elements: walls,
floors, and roofs. These elements are arranged to create both space divi-
sion and clear-spanned, unobstructed, interior spaces.

Walls. Walls are usually vertical and potentially lend themselves to
the task of supporting roofs and floors. Even when they do not serve as
supports, they often incorporate the columns that do serve this purpose.
Thus, the design development of spanning roof and floor systems begins
with the planning of the wall systems over which they span. Walls may
be classified on the basis of their architectural functions and their struc-
tural tasks, and this classification affects judgements about their form 
in terms of thickness and of stiffness in their own planes, as shown in
Figure 1.9.

Floors. Floor structures are often dual in function, providing for a
floor surface above and a ceiling surface below. The floor function usu-
ally dictates the need for a flat, horizontal geometry; thus, most floor
structures are of the flat-spanning category (not arches, catenary cables,
etc.). Most floor structures are relatively short in span, owing to the high
loadings and the inefficiency of the flat-spanning structure.

Roofs. Roofs have two primary functions: to act as skin elements for
the building and to drain away water from rain and melting snow.
Whereas floors must usually be flat, roofs must usually not be, as some
sloped form is required for water drainage. Thus, even so-called flat roofs
have some minimum slope for draining the roof surface to designated
collector elements (gutters, downspouts, gargoyles, etc.). Floors also
need some rigidity for a solid feeling when walked on. Because of their
freedom from requirements for horizontal flatness and solidity, roofs
have a great range of possibilities for geometry and nonflat structure;
thus, most really long spans and exotic structural geometries are achieved
with roof structures.

GENERATION OF STRUCTURES 23
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1.4 REACTIONS

Successful functioning of the structure in resisting loads involves two
fundamental considerations. First, the structure must have sufficient in-
ternal strength and stiffness to redirect the loads to its supports without
developing undue stress on its materials or an undesirable amount of de-
formation (sag, etc.). Second, the supports for the structure must keep the
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Figure 1.9 Structural functions of walls.
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structure from collapsing. The required forces developed by the supports
are called reactions.

Figure 1.10 shows a column supporting a load that generates a linear
compressive effect. The reaction generated by the column’s support must
be equal in magnitude and opposite in sense (up versus down) to the col-
umn load. The balancing of the active force (column load) and reactive
force (support reaction) produces the necessary state of static equilib-
rium; thus, no movement occurs.

Figure 1.11 shows the reaction forces required for various structures.
The simple spanning beam requires only two vertical forces for support.
However, the gable frame, arch, and draped cable also require horizontal
restraint at their supports. Structural behavior of the elements is different
in each of the four types of spanning structures shown in Figure 1.11, as
is the required effort by the supports. These differences are due to the dif-
fering forms of the structures, even though all four basically perform the
same spanning task.

There is another type of reaction effort that can be visualized by con-
sidering the situation of the cantilever beam, as shown in Figure 1.12.
Since there is no support at the free end of the beam, the support at the
other end must develop a resistance to rotation of the beam end, as well
as resistance to the vertical load. The rotational effect is called moment,
and it has a unit that is different from that of direct force. Force is measured
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Figure 1.10 Applied and reactive forces on a column.
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Figure 1.11 Reactions R for various spanning structures.

Figure 1.12 Reactions for a cantilever beam.
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in weight units: pounds, tons, and so on. Moment is a product of force
and distance, resulting in a compound unit of pound-feet, or some other
combination of force and length units. The total support reaction for the
cantilever therefore consists of a combination of the vertical force (Rv)
and the resisting moment (Rm).

For the rigid frame shown in Figure 1.13, there are three possible
components of the reactions. If vertical force alone is resisted at the sup-
ports, the bottoms of the columns will move outward and rotate, as
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Figure 1.13 Reactions for a rigid frame.
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shown in Figure 1.13a. If horizontal resistance is developed, as shown
for the gable, arch, and cable in Figure 1.11, the column bottoms can be
pushed back to their unloaded positions, but they will still rotate, as
shown in Figure 1.13b. Finally, if a moment resistance is developed by
the supports, the column bottoms can be held completely in their original
positions, as shown in Figure 1.13c.

The combination of loads and support reactions constitutes the total
external effort on a structure. This system is in some ways independent
of the structure; that is, the external forces must be in equilibrium, re-
gardless of the materials, strength, and so on, of the structure. For exam-
ple, the task for a beam can be totally defined in terms of effort without
reference to what the beam actually consists of.

With its tasks defined, however, it becomes necessary to consider the
response developed by the structure. This means moving on to consider
what happens inside the structure in terms of internal force effects.

1.5 INTERNAL FORCES

In response to the external effects of loads and reactions, internal forces
are developed within a structure as the material of the structure strives to
resist the deformations caused by the external effects. These internal
force effects are generated by stresses in the material of the structure. The
stresses are actually incremental forces within the material, and they re-
sult in incremental deformations, called strains.

Cause and Effect: External versus Internal Force

When subjected to external forces, a structure twists, sags, stretches,
shortens, and so on. To be more technical, it stresses and strains, thus as-
suming some new shape as the incremental strains accumulate into over-
all dimensional changes. While stresses are not visually apparent, their
accompanying strains are; thus, it is possible to infer a stress condition
from observation of structural deformations.

As shown in Figure 1.14, a person standing on a wooden plank that
spans between two supports will cause the plank to sag downward and
assume a curved profile. The sag may be visualized as the manifestation
of a strain phenomenon accompanied by a stress phenomenon. In this ex-
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ample, the principal cause of the structure’s deformation is bending re-
sistance, called internal resistive bending moment.

The stresses associated with the internal force action of bending mo-
ment are horizontally directed compression in the upper portion of the
plank and horizontally directed tension in the lower portion. Anyone
could have predicted that the plank would sag when the person stepped
on it. But we can also predict the deformation as an accumulation of
strains, resulting in the shortening of the upper portion and the lengthen-
ing of the lower portion of the plank. Thus, the stress condition can be in-
ferred from observed deformation, but likewise the deformation can be
predicted from known stress conditions.

For the relatively thin wooden plank, the bending action and strain ef-
fects are quite apparent. If the plank is replaced by a thick wooden beam,
the sag will not be visually apparent with a light load and a short span.
However, the internal bending still occurs and the sag—however slight—
does exist. For the investigation of structural behaviors, visualization of
internal forces is aided by considering an exaggerated deformation of the
structure, assuming it to be much more flexible than it really is.
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Figure 1.14 Internal bending.
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1.6 FUNCTIONAL REQUIREMENTS OF STRUCTURES

Any structure subjected to loads must have certain characteristics in
order to function. For purposes of structural resistance, it must be inher-
ently stable, must have adequate strength for an acceptable margin of
safety, and must have a reasonable stiffness for resistance to deformation.
These three basic characteristics—stability, strength, and stiffness—are
the principal functional requirements of structures.

Stability

Stability has both simple and complex connotations. In the case of the
wooden plank, it is essential that there be two supports and that the per-
son stand between the supports. As shown in Figure 1.15, if the plank ex-
tends over one support, and a person stands on the extended end, disaster
will certainly occur unless a counterweight is placed on the plank or the
plank is anchored to the opposite support. In this case, either the coun-
terweight or the anchorage is necessary for the stability of the structure—
unrelated to the strength or stiffness of the plank.

A slightly different problem of stability is illustrated by another ex-
ample. Suppose you have a sore foot and want to use a walking stick to
assist your travel. You are offered a 3⁄⁄4-in. round wooden stick and a 1⁄⁄4-
in. round steel rod, each 3 ft long. After handling both, you would prob-
ably choose the wooden stick, since the steel rod would buckle under
your weight. This buckling action can be visualized, demonstrated, and
measured. The essential property of a structure that determines its buck-
ling potential is its slenderness.

In engineering analysis, the geometric property of slenderness used to
establish the likelihood of buckling is the slenderness ratio, also called
the relative slenderness, expressed as

L/r

in which

L = length of the compression member over which there is no
lateral bracing to prevent buckling

r = a geometric property of the member cross section called the
radius of gyration
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The geometric property r can be expressed as

In this formula,

A = the member cross-sectional area

I = a property called the second moment of the area or the
moment of inertia

r
I

A
= 





1 2/
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Figure 1.15 Developing stability.
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While A is a direct measure of the amount of material in the member, I is
a measure of the member’s stiffness in resisting bending—which is what
buckling becomes once it is initiated.

In the example of the walking stick, the 3⁄⁄4-in. diameter wooden stick
has an L /r of 192, while the 1⁄⁄4-in. steel rod has an L /r of 576. If we take
the steel and flatten it out and roll it up to produce a cylinder with a 3⁄⁄4 in.
diameter, the area remains the same, but the I value is significantly in-
creased. Furthermore, the r value is thus also increased, so that the L /r
now becomes 136. As long as the cylinder wall is not made too thin, the
pipe-shaped stick represents a major improvement in buckling resistance.
Figure 1.16 shows the three cross sections and the corresponding L /r
values.

Bending and buckling stiffness are also affected by the stiffness of the
material. Thus, a 1⁄4 in. rod of wood would be even less stiff than the one
of steel, since wood is considerably less stiff than steel. For a single, very
slender, compression member, the compression force required to produce
buckling is expressed by the Euler formula, shown in the plot of com-
pression failure versus length in Figure 1.17. As the member is short-
ened, buckling becomes less critical, and the limiting effect becomes
simple compressive crushing of the material. At very short lengths, there-
fore, the compression limit is determined by the stress resistance of the
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Figure 1.16 Relative L/r values.
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material. At the other end of the graph, the curve becomes that of the
Euler formula, in which the index of the member resistance is stiffness—
of both the member cross section (I ) and the material (E, which is the
stiffness modulus of the material). Between the limits, the curve slowly
changes from one form to the other, and the buckling phenomenon con-
tains some aspect of both types of failure.

Stability can be a problem for a single structural member, such as a
single column, or it can be a problem for a whole structural assemblage.
The eight-element framework shown in Figure 1.18 may be stable in re-
sisting vertical gravity loads, but it must be braced in some manner
against any horizontal forces, such as those caused by wind or earth-
quakes. The illustrations in Figure 1.18 show the three principal means
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Figure 1.17 Compression load limit versus member slenderness. E is a factor
that indicates the stiffness of the material.
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 for achieving this stability: by using rigid joints between members, by
using truss bracing in the wall planes, or by using rigid panels in the wall
planes, called infilling.

Strength

Strength is probably the most obvious requirement for a structure. Even
though it is stable, the plank in Figure 1.14 is not strong enough to hold the
weight of ten people. This has to do partly with the material—if the plank
were made of steel, it might do the job. It also has to do with the form and
orientation of the plank cross section—if the wood plank were turned on its
edge, like a floor joist, it would probably also support ten people.

Material strength often depends on the type of stress that the material
must sustain. Steel is adaptable and capable of major resistance to tension,
compression, shearing, twisting, and bending with equal dexterity. Wood,
however, has different strengths depending on the direction of the stress
with reference to the wood grain. As shown in Figure 1.19, the develop-
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Figure 1.18 Means of stabilizing a frame structure.
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ment of major stresses perpendicular to the wood grain direction can
cause the wood to fail easily. Reforming the wood, either by glue lamina-
tion or by pulverising the wood and using the wood fiber to produce com-
pressed fiber panels, is a way of overcoming the grain limitation.

Stone, concrete, and fired clay are examples of materials that have
varying strengths for different stresses. All are relatively strong in resist-
ing compression, but are much less strong in resisting tension or shear.
This requires caution in their use in structures to avoid these stresses or
to compensate for them—such as by using steel reinforcement in con-
crete structures.

Attention must be given both to the form and nature of elements and
to their uses. A cable assembled from thin steel wires has little resistance
to compression or bending or to anything but the single task for which it
is formed—resisting tension. This is so despite the fact that the steel, as
a material, has other stress potentials.

A stack of bricks with no bonding in the joints has the capability of sup-
porting a compressive load applied directly downward on the top of the
stack. Picking the unbonded stack up by lifting the top brick or turning the
stack sideways to create a spanning structure, as shown in Figure 1.20, is
obviously not possible. Thus, joint formation of elements in an assembled
structure is also a concern for strength.
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Figure 1.19 Effect of orientation to load.

Figure 1.20 Effect of orientation to load.
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Stiffness

All structures change shape and move when subjected to forces (see
Figure 1.21). The relative magnitude of these changes determines a qual-
ity of the structure called rigidity or stiffness. The degree of stiffness de-
pends on the material of the of the structure, on the configuration of its
parts, and—for assemblages—on the arrangement of the assembled
members. It may also depend on the connections between parts and on
the type of restraint offered by supports. The presence or absence of
bracing may also be a factor.

Although stiffness is usually not as critical to the safety of a structure
as strength and stability, it is frequently important for use of the structure.
If a slammed door rocks the whole building, or if floors bounce when
walked on, the users of the building will probably not be satisfied with
the structure.

Equilibrium of Structures

Most structures act as transfer elements, receiving certain forces and
transferring them to other points. This transfer capability is dependent on
the internal strength and stability of the structure. As shown in Figure
1.22, a thin sheet of aluminum may be easily buckled, a block of wood
may be easily split along its grain, and a rectangular framework with
loose, single-pin joints may be easily collapsed sideways. All of these
structures fail because of an inability to maintain internal equilibrium
through lack of strength, or because of the lack of some inherent stabil-
ity, or for both reasons.

The complete static equilibrium of a structure requires two separate
balances: that of the external forces and that of the internal forces. Ex-
ternally sufficient reaction components must be developed by the sup-
ports. Internally, there must be an inherent capability for stability and
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Figure 1.21 Deformation of structures under load.
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sufficient strength to do the work of transferring the applied loads to 
the supports.

As shown in Figure 1.23, there are three possible conditions for exter-
nal stability. If support conditions are insufficient in type or number, the
structure is externally unstable. If support conditions are just adequate, the
structure is stable. If the supports provide an excess of the necessary con-
ditions, the structure is probably stable, but may be indeterminate—not
necessarily a bad quality, just a problem for achieving a simple investiga-
tion of structural behavior.

For internal stability, the structure must be formed, arranged, and fas-
tened together to develop the necessary resistance. In the examples
shown in Figure 1.22, the aluminum sheet was too thin for its size, the
wood block had weak shear planes, and the frame lacked the necessary
arrangement of members or type of joints. All three could be altered to
make them more functional. As shown in Figure 1.24, the aluminum
sheet can be braced with stiffening ribs, the solid-sawn wood block can
be replaced with a laminated piece with alternate plies having their grain
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Figure 1.22 Lack of internal resistance.
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Figure 1.23 Stability analysis.

Figure 1.24 Alteration of internal conditions to improve structural resistance.
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directions perpendicular to each other, and the frame can be stabilized by
adding a diagonal member.

1.7 TYPES OF INTERNAL FORCE

Complex actions and effects consist of combinations of the following
basic types of internal force. The simplest types to visualize are tension
and compression, both of which produce simple stress and strain condi-
tions, as shown in Figure 1.25.

Tension

The ability to withstand tension requires certain materials; stone, con-
crete, sandy soil, and wood perpendicular to its grain all have low resis-
tance to tension. Stresses can become critical at abrupt changes in the
cross section of a member, such as at a hole or a notch. Tension may
serve to straighten members or to align connected members. Connections
for transfer of tension are often more difficult to achieve than those for
compression, requiring not simply contact (as with the stack of bricks),
but some form of engagement or anchorage (see Figure 1.26).

Compression

Compression usually causes one of two types of failure: crushing or
buckling. As discussed previously, buckling has to do with the relative
stiffness of elements, while crushing is essentially a simple stress resistance
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Figure 1.25 (a) Effects of tension. (b) Effects of compression.

(a)

(b)
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by the material. Actually, however, most building compression elements
fall between a very slender (pure buckling) form and a very squat (pure
crushing) form, and their behavior thus has some aspects of both forms
of response. (See Figure 1.17 and consider the middle portion of the
graph.) Compression can be transferred between elements by simple con-
tact, as in the case of a footing resting on soil (see Figure 1.26). However,
if the contact surface is not perpendicular to the compressive force, a
side-slip failure might occur. Some form of engagement or restraint is
thus usually desirable.

Shear

In its simplest form, shear is the tendency for slipping of adjacent objects.
This may occur at the joint between elements or within a material, such
as a grain split in wood (see Figure 1.27). If two wooden boards in a floor
are connected at their edges by a tongue-and-groove joint, shear stress is
developed at the root of the tongue when one board is stepped on and the
other is not. This type of shear also develops in bolts and hinge pins.

A more complex form of shear is that developed in beams. This can be
visualized by considering the beam to consist of a stack of loose boards.
The horizontal slipping that would occur between the boards in such a
structure is similar to the internal shear that occurs in a solid beam. If the
boards are glued together to form a solid beam, the horizontal slipping ef-
fect—beam shear—is what must be resisted at the glue joints.
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Figure 1.26 Considerations of tension and compression actions.
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 Bending

Tension, compression, and shear are all produced by some direct force
effect. Actions that cause rotation or curvature are of a different sort. If
the action tends to cause straight elements to curve, it is called bending.
If it tends to twist elements, it is called torsion (see Figure 1.28). When a
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Figure 1.27 Effects of shear.

Figure 1.28 Effect of torsion.
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wrench is used to turn a bolt, bending is developed in the handle of the
wrench, and torsion is developed in the bolt shaft.

Bending can be produced in a number of ways. A common situation
occurs when a flat spanning structure is subjected to loads that act per-
pendicular to it. This is the basic condition of an ordinary beam. As
shown in Figure 1.29, the internal force acting in the beam is a combi-
nation of bending and shear. Both of these internal stress effects pro-
duce lateral deformation of the straight, unloaded beam, called sag or
deflection.

Bending involves a combination of force and distance, most simply
visualized in terms of a single force and an operating moment arm (see
Figure 1.30). It may also be developed by a pair of opposed forces, such
as two hands on a steering wheel. The latter effect is similar to how a
beam develops an internal bending resistance—by the opposing of com-
pressive stresses in the top part of the beam to tension stresses in the
bottom part.
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Figure 1.29 Internal effects in
beams.
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 Since the development of moment is a product of force times dis-
tance, a given magnitude of force can produce more moment if the mo-
ment arm is increased. The larger the diameter of a steering wheel, the
less force required to turn it—or, with a given limited force, the more
moment it can develop. This is why a plank can resist more bending if it
is turned on its edge as a joist. Figure 1.31 shows the effect of form
change on a constant amount of material used for the cross section of a
beam. For each shape, the numbers indicate the relative resistance to
bending in terms of strength (as a stress limit) and stiffness (as a strain
limit producing deflection).

In addition to the bending created when flat spanning members are
transversely loaded, there are other situations in buildings that can pro-
duce bending effects. Two of these are shown in Figure 1.32. In the upper
figures, bending is produced by a compression load not in line with the
axis of the member or by a combination of compressive and lateral load-
ing. In the lower figure, bending is transmitted to the columns through
the rigid joints of the frame.
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Figure 1.30 Development of moments.
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Figure 1.31 Relation of cross-sectional geometry to bending resistance.

Figure 1.32 Conditions resulting in internal bending.
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Torsion

Torsion is similar to bending in that it is a product of force and distance.
As with bending, the form of the cross section of the member resisting the
torsion is a critical factor in establishing its strength and stiffness. A round
hollow cylinder (pipe shape) is one of the most efficient forms for resis-
tance to torsion. However, if the cylinder wall is slit lengthwise, its resis-
tance is drastically reduced, being approximately the same as that for a flat
plate made by flattening out the slit cylinder. Figure 1.33 shows the effect
on torsional resistance of variations in the cross-sectional shape of a lin-
ear member with the same amount of material (area) in the cross section.

Often in designing structures, it is a wiser choice to develop resistance
to torsion by bracing members against the twisting effect. Thus, the tor-
sion is absorbed by the bracing, rather than by stresses in the member.

Combinations of Internal Forces

The individual actions of tension, compression, shear, bending, and tor-
sion can occur in various combinations and in several directions at a sin-
gle point in a structure. For example, as illustrated previously, beams
ordinarily sustain a combination of bending and shear. In the columns of
the frame shown in the lower part of Figure 1.32, the loading on the beam
will produce a combination of compression, bending, and shear. In the ex-
ample shown in Figure 1.34, the loading will produce a combination of in-
ternal compression, shear, torsion, and bending in two directions.

Structures must be analyzed carefully for the various internal force
combinations that can occur and for the critical situations that may
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Figure 1.33 Relation of cross-sectional geometry to torsional resistance.
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produce maximum stress conditions and maximum deformations. In ad-
dition, the external loads often occur in different combinations, with each
combination producing different internal force effects. This frequently
makes the analysis of structural behaviors for design a quite laborious
process, making us now very grateful for the ability to utilize computer-
aided procedures in design work.

1.8 STRESS AND STRAIN

Internal force actions are resisted by stresses in the material of the struc-
ture. There are three basic types of stress: tension, compression, and
shear. Tension and compression are similar in nature, although opposite
in sign or sense. Both tension and compression produce a linear type of
strain (shape change) and can be visualized as pressure effects perpen-
dicular to the surface of a stressed cross section, as shown in Figure 1.35.
Because of these similarities, both tension and compression are referred
to as direct stresses, one considered positive and the other negative.

Shear stress occurs in the plane of a cross section and is similar to a
sliding friction effect. As shown in Figure 1.36, strain due to shear stress
is of a different form from that due to direct stress; it consists of an an-
gular change rather than a linear shortening or lengthening.

Stress-Strain Relations

Stress and strain are related not only in the basic forms they take, but in
their actual magnitudes. Figure 1.37 shows the relation between stress and
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Figure 1.34 Combined internal force effects.
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strain for a number of different materials. The form of such a graph illus-
trates various aspects of the nature of structural behavior of the materials.

Curves 1 and 2 represent materials with a constant proportionality of
the stress and strain magnitudes. For these materials, a quantified rela-
tionship between stress and strain can be described simply in terms of the
slope or angle of the straight line graph. This relationship is commonly
expressed as the tangent of the angle of the graph and is called the
modulus of elasticity of the material. The higher the value of this modu-
lus—that is, the steeper the slope of the graph—the stiffer the material.
Thus, the material represented by curve 1 in the illustration is stiffer than
the material represented by curve 2.
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Figure 1.35 Direct stress and strain.

Figure 1.36 Shear stress and strain.
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For direct stress of tension or compression, the strain is measured as a
linear change, and the modulus is called the direct stress modulus of elas-
ticity. For shear stress, the strain is measured as an angular change, and
the resulting modulus is called the shear modulus of elasticity.

Some materials, such as glass and very high-strength steel, have a
constant modulus of elasticity for just about the full range of stress up to
failure of the material. Other materials, such as wood, concrete, and plas-
tic, have a curved form for the stress-strain graph (curve 3 in Figure
1.37). The curved graph indicates that the value for the modulus of elas-
ticity varies continuously for the full range of stress.

The complex shape of curve 4 in Figure 1.37 is the characteristic form
for a so-called ductile material, such as low-grade steel of the type ordi-
narily used for beams and columns in buildings. This material responds
elastically at a low level of stress, but suddenly deforms excessively at a
level of stress described as its yield point. However, fracture does not
usually occur at this level of stress, but rather at a higher level after the
material reaches a certain limiting magnitude of yielding strain. This pre-
dictable yield phenomenon and the secondary reserve strength are used
to predict ultimate load capacities for steel frames, as well as for concrete
structures that are reinforced with ductile steel rods.
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Figure 1.37 Stress and strain relationships.
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Stress Combinations

Stress and strain are three-dimensional phenomena, but for simplicity,
they are often visualized in linear or planar form. As shown in Figure
1.35, direct stress of compression in a single direction results in strain of
shortening of the material in that direction. However, if the volume of the
material remains essentially unchanged—which it usually does—there
will be a resulting effect of lengthening (or pushing out) at right angles
to the compression stress. This implies the development of a tension ef-
fect at right angles to the compression, which in some materials may be
the real source of failure, as is the case for tension-weak concrete and
plaster. Thus, a common form of failure for concrete in compression is by
lateral bursting at right angles to the compression load.

If direct stress is developed in a linear member, as shown in Figure
1.38, the pure direct stress occurs only on sections at right angles to the
direct force loading, called cross sections. If stress is considered on a sec-
tion at some other angle (called an oblique section), there will be a com-
ponent of shear on the section. If the material is weak in shear (such as
wood parallel to its grain), this angular shear stress effect may be more
critical than the direct stress effect.

Although simple linear tension and compression forces produce di-
rect, linear stresses, shear stress is essentially two-dimensional, as shown
in Figure 1.39. The direct effect of a shear force is to produce shear
stresses that are parallel to the force (on faces a and b in Figure 1.39a).
These opposed stresses in the material produce a rotational effect, which
must be balanced by other opposed stresses (at faces c and d in Figure
1.39b). Thus, whenever shear stress exists within a structure, there is al-
ways an equal magnitude of shear stress at right angles to it. An example
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Figure 1.38 Stress on a cross section not at right angles to the active force.
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of this is the stack of loose boards used as a beam, as shown in Figure
1.27. The shear failure in this case is a horizontal slipping between the
boards, even though the shear force is induced by vertical loading.

As shown in Figures 1.39c and d, the combination of the mutually per-
pendicular shear stresses produces a lengthening of the material on one
diagonal and a shortening on the other diagonal. This implies the devel-
opment of tension on one diagonal and compression on the other diago-
nal, at right angles to the tension. In some cases, these diagonal stresses
may be more critical than the shear stresses that produce them. In con-
crete, for example, failure due to shear stress is usually actually a diago-
nal tension stress failure, as this is the weakest property of the material.
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Figure 1.39 Effects of shear.
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On the other hand, high shear in the web of a steel beam may result in di-
agonal compression buckling of the thin web.

Separately produced direct stresses in a single direction may be
summed algebraically at a given point in a structure. In the case of the
column shown in Figure 1.40, the compression load produces a direct
compression stress on a cross section, as shown at Figure 1.40a, if the
load is placed so as not to produce bending. If the load is off-center on the
column, the stress conditions will be modified by the addition of bending
stresses on the cross section, as shown in Figure 1.40b. The true net
stress condition at any point on the cross section will thus be the simple
addition of the two stress effects, with a combined stress distribution
possible as shown in Figure 1.40c.

A more complex situation is the combination of direct stresses and shear
stresses. Figure 1.41a shows the general condition at a point in the cross
section of a beam where the net stress consists of a combination of the di-
rect stress due to bending (tension or compression) and shear stress. These
stresses cannot simply be added as they were for the column. What can be
combined are the direct stress due to bending and the direct diagonal stress
due to shear, as shown in Figure 1.41b. Actually, because there are two di-
agonal stress conditions, there will be two combinations—one producing a
maximum effect and the other a minimum effect, as shown in Figure 1.41c.
These two stress limits will occur in mutually perpendicular directions.

There is also a net combined shear stress, as shown in Figure 1.41d.
This is the combination of the direct shear stress and the diagonal shear
stress due to the direct stress. Since the direct shear stress is at right an-
gles (vertically and horizontally) and the shear stress due to direct stress
is on a 45° plane, the net maximum shear will be at some angle between
these two. This angle will be closer to a right angle when the direct shear
is larger and closer to a 45° position when the direct stress is larger.

Another stress combination is that produced by triaxial stress condi-
tions. An example of this is a confined material subjected to compression,
such as air or liquid in a piston chamber, as shown in Figure 1.42. In addi-
tion to being compressed by the active compressing force (the piston), the
material is squeezed laterally by the other material around it. The net effect
on the confined material is a three-way push, or triaxial compression. For
materials with little or no tension resistance, such as air, water, or dry sand,
this is the only situation in which they can resist compression. Thus, a
sandy soil beneath a footing can develop resistance in the form of vertical
soil pressure because of the confinement of the soil around it and above it.
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For visualization purposes, it is common to reduce complex structural
actions to their component effects. These simpler individual effects can
thus be analyzed more clearly and simply, and the results combined with
the effects of the other components. In the end, however, care must be
taken to include all the components for a given situation.
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Figure 1.40 Combined direct stresses.
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Thermal Stress

The volumes of materials change with temperature variation, increasing
as temperatures rise and decreasing when they fall. This phenomenon
creates a number of problems that must be dealt with in building design.

The form of objects determines the basic nature of significant di-
mensional changes. As shown in Figure 1.43, the critical directions of
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Figure 1.41 Combined shear stress and direct stress.
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Figure 1.42 Development of stress in a confined material.

Figure 1.43 Effects of thermal change on solid objects.
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movement depend on whether the object is essentially linear, planar
(two-dimensional), or three-dimensional. For a linear object (beam, col-
umn, etc.), the significant change is in its length; significant concerns are
those for very long objects, especially in climates with a considerable
temperature range.

Planar objects, such as wall panels and large sheets of glass, expand in
a two-dimensional manner. Attachments and constraints by other con-
struction must allow for thermal movements. Three-dimensional move-
ments are mostly dealt with by providing for component movements of
a linear or two-dimensional nature.

If thermal expansion or contraction is resisted, stresses are produced.
Figure 1.44 shows a linear structural member in which length change is
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Figure 1.44 Effect of thermal change on a constrained element.
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constrained. If the temperature is raised, the member will push outward
against the restraints, developing internal compression as the constraints
push back. This results in an external compression force on the member,
in the same manner as a load applied to a column. With quantified val-
ues known for the thermal expansion coefficient and the stress-strain re-
lationship for the material, the compressive stress developed in the
member can be determined.

Another type of thermal problem is that involving differential move-
ment of attached parts of the construction. Figure 1.45 shows a common
situation in which a cast concrete structure consists of elements of dif-
ferent mass or thickness. If exposed to temperature change, the thinner
parts will cool down or warm up more quickly than the thicker parts to
which they are attached by the continuous casting process. The result is
that the thinner parts are restrained in their movements by the thicker
parts, which induces stresses in all the parts. These stresses are most crit-
ical for the thinner parts and at the joints between the parts.

Another problem of differential thermal movements occurs between
the exterior surface and the interior mass of a building. As shown in
Figure 1.46, the exposed skin—as well as any exposed structural mem-
bers—will tend to move in response to the changes in outdoor tempera-
tures, while the interior elements of the construction tend to remain at a
relatively constant, comfort-level temperature. For a multistory build-
ing, this effect accumulates toward the top of the building and can result
in considerable distortions in the upper levels of the structure.

A similar problem occurs with long buildings in which the part above
ground is exposed to the weather, while that buried in the ground remains
at a relatively constant temperature throughout the year (see Figure 1.47).
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Figure 1.45 Critical stress effects resulting from differential thermal movements.
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Figure 1.46 Effect of exposure conditions of the structure on development of
thermally induced stress and strain. (a) Conditions resulting in major exposure of
the exterior wall structure, but enclosure of the interior structure. (b) In the winter
(outside at 0°F, interior at 70°F, differential of 70°F), the exterior columns become
shorter than the interior, resulting in the deformations shown. (c) In the summer
(outside at 100°F, inside at 75°F, differential of 25°F), the exterior columns become
longer than the interior, resulting in the deformations shown.

Figure 1.47 Thermal effects in partly underground buildings.
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The simple solution here is to provide construction joints periodically in
the building length that literally create separated masses of the building,
each of a controlled, shorter length.

Composite Structures

When structural elements of different stiffness share a load, they develop
resistance in proportion to their individual stiffnesses. As shown in Fig-
ure 1.48a, if a group of springs share a load that shortens all of the
springs the same amount, the portion of the load resisted by the stiffer
springs will be greater, since it takes a greater effort to shorten them.

Another common type of composite structure occurs when concrete is
reinforced with steel rods, as shown in Figure 1.48b. When a load is ap-
plied to such an element (called a composite structure), the stiffer mate-
rial (steel in this case) will carry a higher portion of the load. In this
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Figure 1.48 Load sharing in composite
structures. (a) A group of springs of varying
stiffness. (b) Steel-reinforced concrete.
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manner, a relatively small percentage of steel in a reinforced concrete
member can be made to carry a major part of the load, since steel has on
average around 10 times the stiffness of structural grade concrete.

A situation somewhat similar to this occurs when the building as a
whole is distorted by loads, such as the horizontal effects of wind and
earthquakes. Figure 1.49 shows two examples of this, the first being a
building with solid walls of masonry and wood frame construction in the
same exterior surface. As a bracing wall for horizontal loads, the much
stiffer masonry will tend to take most of the load. In this case, the wood
framed wall may be virtually ignored for its structural resistance, al-
though any effects of the lateral distortion must be considered.

The second example in Figure 1.49 involves a steel frame in the same
plane as relatively stiff walls. Even though the framed walls may be less
strong than the steel frame, they will likely be much stiffer; thus, they
will tend to absorb a major portion of the lateral load. The solution in this
case is to either make the walls strong enough for the bracing work, or to
make the steel frame stiff enough to protect the walls and actually do the
bracing work.

Time-Related Stress and Strain

Some stress and strain phenomena are time related. Concrete is subject to
an effect called creep (see Figure 1.50), in which the material sustains a
progressive deformation when held at a constant stress over a long time.
These deformations are added to those produced normally by the initial
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Figure 1.49 Load sharing by elements of different construction.
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loading. Additionally, unlike the initial deformations, they remain per-
manent, similar to the long-term sag of wood beams.

Creep does not affect the stress resistance of concrete, but does result
in some redistribution of stresses between the concrete and its steel rein-
forcing. Since the steel does not creep, it effectively becomes increas-
ingly stiffer in relation to the progressively softening concrete. This
makes the steel even greater in its capability of carrying a major part of
the load in the composite structure.

Soft, wet clay soils are subject to a time-related flow effect, similar to
the slow oozing of toothpaste from a tube as it is squeezed. If the soil
mass is well constrained (similar to putting the cap back on the toothpaste
tube), this effect can be arrested. However, as long as there is some-
where for the clay to ooze toward, and the pressure on it is maintained,
the flow will continue. Instances of buildings that continue to settle over
many years have occurred with this soil condition (see Figure 1.51).

Another time-related stress problem occurs when structures are re-
peatedly loaded and unloaded. The effect of people walking, of wind
and earthquakes, and of machinery rocking on its supports are cases of
this loading condition in buildings. Some materials may fail from the fa-
tigue effects of such loadings. However, a more common problem is that
of loosening of connections or the progressive development of cracks
that were initially created by other effects.
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Figure 1.50 Effect of creep.
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1.9 DYNAMIC EFFECTS

Vibrations, moving loads, and sudden changes in the state of motion,
such as the jolt of rapid braking or acceleration, cause forces that result
in stresses and strains in structures. The study of dynamic forces and their
effects is very complex, although a few of the basic concepts can be il-
lustrated simply.

For structural investigation and design, a significant distinction be-
tween static and dynamic effects has to do with the response of the struc-
ture to the loading. If the principal response of the structure can be
effectively evaluated in static terms (force, stress, linear deformation,
etc.), the effect on the structure is essentially static, even though the load
may be time-dependent in nature. If, however, the structure’s response
can be effectively evaluated only in terms of energy capacity, work done,
or cyclic movement, the effect of the load is truly dynamic in character.

A critical factor in the evaluation of dynamic response is the funda-
mental period of the structure. This is the time required for one full cycle
of motion in the form of a bounce or a continuing vibration. The relation
of this time to the time of buildup of the load is a major factor in deter-
mining that a structure experiences a true dynamic response. The time of
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Figure 1.51 Time-related settlement.
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the period of a structure may vary from a small fraction of a second to
several seconds, depending on the structure’s size, mass (weight), and
stiffness, as well as on support constraints and the presence of damping
effects.

In the example in Figure 1.52, a single blow from the hammer causes
the board to bounce in a vibratory manner described by the time-motion
graph. The elapsed time for one full cycle of this motion is the funda-
mental period of the board. If a 100-lb load is applied to the end of the
board by slowly stacking bricks on it, the load effect on the board is sta-
tic. However, if a 100-lb boy jumps on the end of the board, he will
cause both an increase in deflection and a continued bouncing of the
board, both of which are dynamic effects. If the boy bounces on the end
of the board with a particular rhythm, he can cause an extreme up and
down motion of the board. He can easily find the rate of bouncing 
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Figure 1.52 Dynamic effects on elastic structures.
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required to do this by experimenting with different rhythms. He may
also find the exact variation in his bouncing that will result in an almost
complete, instantaneous stop of the board’s motion. As shown in the
graph in Figure 1.53, the reinforcing bouncing that generates increasing
motion of the board corresponds to the fundamental period of the board.
To stop the board, the boy merely cuts the time of his bounce in half, thus
meeting the board on its way up.

If the boy bounces on the board once and then jumps off, the board
will continue to bounce in ever-decreasing magnitudes of displacement
until it finally comes to rest. The cause of this deterioration of the board’s
motion is called damping. It occurs because of energy dissipated in the
board’s spring mounting and in air friction, as well as because of any
general inefficiencies in the movement of the board. If no damping were
present, the boy’s sympathetic bouncing could eventually cause damage
to the board.

Dynamic forces on structures result from a variety of sources and can
create problems in terms of the total energy delivered to the structure or
in the form of the movements of the structure. Excessive energy loading
can cause structural damage or total collapse. Movements may result in
loosening of connections, toppling of vertical elements, or simply in highly
undesirable experiences for building occupants.

Design for dynamic response usually begins with an evaluation of po-
tential dynamic load sources and their ability to generate true dynamic ef-
fects on the structure. Once the full nature of the dynamic behavior is
understood, measures can be taken to manipulate the structure’s dynamic
character or to find ways to reduce the actual effects of the dynamic
loading itself. Thus, it may be possible to brace a structure more securely
against movements due to an earthquake, but it may also be possible to
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Figure 1.53 Motion of the diving board.
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dissipate some of the actual movement by placing a motion-absorbing
separator between the building and the ground.

1.10 DESIGN FOR STRUCTURAL RESPONSE

In the practice of structural design, the investigation of structural re-
sponse to loads is an important part of the design process. To incorporate
this investigation into the design work, the designer needs to develop a
number of capabilities, including the following:

1. The ability to visualize and evaluate the sources that produce
loads on structures.

2. The ability to quantify the loads and the effects they have on
structures.

3. The ability to analyze a structure’s response to the loads in terms
of internal forces and stresses and strains.

4. The ability to evaluate the structure’s safe limits for load-carrying
capacity.

5. The ability to manipulate the variables of material, form, dimen-
sions, and construction details for the structure in order to maxi-
mize its structural response.

For any structure, it is necessary to perform some computations in
order to demonstrate the existence of an adequate margin of safety for a
given loading. However, the complete design of a structure must also in-
corporate many other considerations in addition to structural perfor-
mance. A successful structure must be structurally adequate, but it must
also be economical, feasible for construction, and must generally facili-
tate the overall task it serves as part of the building construction. It must
also be fire-resistant, time-enduring, maybe weather-resistant, and what-
ever else it takes to be a working part of the building throughout the life
of the building.

Aspects of Structural Investigation

The professional designer or investigator uses all the practical means
available for accomplishment of the work. In this age, mathematical
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modeling is greatly aided by the use of computers. However, routine
problems (that is, 98% of all problems) are still often treated by use of
simple hand computations or by reference to data in handbook tables 
or graphs.

The purpose of this book is essentially educational, so the emphasis
here is on visualization and understanding, not necessarily on efficiency
of computational means. Major use is made of graphical visualization,
and readers are strongly encouraged to develop the habit of using such vi-
sualization. The use of sketches as learning and problem-solving aids
cannot be overemphasized. Four types of graphical devices are espe-
cially useful: the free-body diagram, the cut section, the exaggerated pro-
file of the load-deformed structure, and the graphical plot of critical
equations.

A free-body diagram consists of a picture of any isolated physical el-
ement that shows the full set of external forces that operate on that ele-
ment. The isolated element may be a whole structure or any fractional
part of it. Consider the structure shown in Figure 1.54. Figure 1.54a
shows the entire structure, consisting of attached horizontal and vertical
elements (beams and columns) that produce a planar rigid frame bent.
This may be one of a set of such frames comprising a building structure.
The free-body diagram in Figure 1.54a represents the entire structure,
with forces external to it represented by arrows. The arrows indicate the
location, sense, and direction of each external force. At some stage of in-
vestigation, numbers may be added indicating the magnitude of these
forces. The forces shown include the weight of the structure, the hori-
zontal force of wind, and the net forces acting at the points of support for
the frame.

Shown in Figure 1.54b is a free-body diagram of a single beam from
the framed bent. Operating externally on the beam are its own weight
plus the effects of interaction between the beam and the columns to
which it is attached. These interactions are not visible in the free-body di-
agram of the full frame, so one purpose for the diagram of the single
beam is simply the visualization of the nature of these interactions. It
may now be observed that the columns transmit to the ends of the beams
a combination of vertical and horizontal forces plus rotational bending
actions. The observation of the form of these interactions is a necessary
first step in a full investigation of this beam.

Figure 1.54c shows an isolated portion of the beam length, produced
by slicing vertical planes a short distance apart and removing the portion
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between them. Operating on this free body are its own weight and the ac-
tions of the of the beam segments on the opposite sides of the slicing
planes; that is, the effects that hold this segment in place in the uncut
beam. This slicing device, called a cut section, is used to visualize the in-
ternal force actions in the beam and is a first step in the investigation of
the stresses that relate to the internal forces.
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Figure 1.54 Free-body diagrams.
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Finally, in Figure 1.54d is shown a tiny particle of the material of the
beam, on which the external effects are those of the adjacent particles.
This is the basic device for visualization of stress. In the example, the
particle is seen to be operated on by a combination of vertical shear (and
its horizontal complement) and horizontally directed compression.

Figure 1.55a shows the exaggerated deformed profile of the same
bent under wind loading. The overall form of lateral deflection of the
bent and the character of bending in each member can be visualized from
this figure. As shown in Figure 1.55b, the character of deformation of
segments and particles can also be visualized. These diagrams are very
helpful in establishing the qualitative nature of the relationships between
force actions and overall shape changes or between stresses and strains.
Quantitative computations often become considerably abstract in their
operation, but these diagrams are real exercises in direct visualization 
of behavior.
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Figure 1.55 Visualization of structural deformations.
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For both visualization and quantification, considerable use is made of
graphical plots of mathematical expressions in this book. Figure 1.56
shows the form of damped vibration of an elastic spring. The graph con-
sists of a plot of the variation of displacement (+ or –s) of the spring from
its neutral position as a function of elapsed time t. This is a plot of 
the equation

which describes the function mathematically but not visually. The graph
helps us to literally see the rate of decline of the vibration (damping ef-
fect) and the specific location of the spring at any given point in time.
Only mathematicians can see these things from an equation; for the rest
of us, the graph is a big help.

s
e

P Qt R
t

= 



 +[ ]1

 sin( )

68 STRUCTURES: PURPOSE AND FUNCTION

Figure 1.56 Displacement versus elapsed time plot of a cyclic (harmonic) motion.
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69

2
FORCES AND 

FORCE ACTIONS

The preceding chapter provided an overview of the world of structural
analysis as an activity for the support of design of building structures.
This chapter begins a more deliberate study of the basic applications of
physics and mathematics to the real work of structural analysis. This
study begins with a consideration of forces and their actions.

2.1 LOADS AND RESISTANCE

Loads deriving from the tasks of a structure produce forces. The tasks of
the structure involve the transmission of the load forces to the supports
for the structure. Applied to the structure, these external load and support
forces produce a resistance from the structure in terms of internal forces
that resist changes in the shape of the structure. In building structural sys-
tems, such as that shown in Figure 2.1, load forces are passed from ele-
ment to element, here from deck to rafter to purlin to truss to column to
column support.
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A first task for investigation of structural behavior is the consideration
of the nature of individual forces, of the combinations they occur in, and
of the equilibrium (balance) of all the forces that affect an individual
structure. Equilibrium is an assumed condition based on not wanting the
structure go anywhere. That is, it may deform slightly, but it is supposed
to stay in place. Thus, when we add up all the operating forces on a struc-
ture, we should get a net total of zero force.

The field of mechanics in the basic science of physics provides the
fundamental relationships for dealing with forces and their actions. Using
those relationships to solve practical problems involves some applica-
tions of mathematics—from simple addition to advanced calculus, de-
pending on the complexity of the problems. Here we assume the reader
has some familiarity with basic physics and a reasonable understanding
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Figure 2.1 Developed system for generation of a roof structure. Columns support
spanning trusses that in turn support a combination of purlins, rafters, and decking
to define the roof surface. Forces flow through the system, passing from the deck
to the columns.
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of arithmetic, geometry, elementary algebra, and the first week or so of
a trigonometry course. Having more background in mathematics will 
be useful for advanced study beyond this book, but will not really help
much here.

As the reader has already noticed, we use illustrations considerably in
this book. In the work that follows, these are also used as part of the illu-
mination of the ideas and the steps for analysis procedures. There are
thus three components of study: literal (text description), visual (the
book’s or the reader’s sketches), and mathematical (demonstrations of
computations). It will work best for the reader to be fluent in all three
components of the study, but some shortcomings in the mathematical
area may be compensated for if the words and pictures are fully under-
stood first.

2.2 FORCES AND STRESSES

The idea of force is one of the fundamental concepts of mechanics and
does not yield to simple, precise definition. An accepted definition of
force is that which produces, or tends to produce, motion or a change in
the state of motion of objects. A type of force is the effect of gravity, by
which all objects are attracted toward the center of the earth.

What causes the force of gravity on an object is the mass of the object,
and in U.S. units, this force is quantified as the weight of the body. Grav-
ity forces are thus measured in pounds (lb), or in some other unit such as
tons (T) or kips (one kilopound, or 1000 pounds). In the metric (or SI)
system, force is measured in a more purely scientific manner as directly
related to the mass of objects; the mass of an object is a constant, whereas
weight is proportional to the precise value of the acceleration of gravity,
which varies from place to place. Force in metric units is measured in
newtons (N), kilonewtons (kN), or meganewtons (mN), whereas weight
is measured in grams (g) or kilograms (kg).

Figure 2.2a represents a block of metal weighing 6400 lb supported on
a wooden post having an 8 × 8 in. cross section. The wooden post is, in
turn, supported on a base of masonry. The gravity force of the metal block
exerted on the wood is 6400 lb, or 6.4 kips. Ignoring its own weight, the
wooden post in turn transmits a force of equal magnitude to the masonry
base. If there is no motion (a state described as equilibrium), there must be
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an equal upward force developed by the supporting masonry. Thus, the
wooden post is acted on by a set of balanced forces consisting of the ap-
plied (or active) downward load of 6400 lb and the resisting (called reac-
tive) upward force of 6400 lb.

To resist being crushed, the wooden post develops an internal force of
compression through stress in the material, stress being defined as inter-
nal force per unit area of the post’s cross section. For the situation shown,
each square inch of the post’s cross section must develop a stress equal
to 6400/64 = 100 lb/sq. in. (psi). See Figure 2.2b.
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Figure 2.2 Direct force action and stress.
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2.3 TYPES OF FORCES

External forces may result from a number of sources, as described in
Section 1.1. For the moment, we are treating only static forces, and thus,
only static force effects on responding objects. Direct action of static
forces produces internal force responses of compression, tension, or
shear. The metal weight in Figure 2.2 represents a compressive force,
and the resulting stresses in the wooden post are compressive stresses.

Figure 2.2c represents a 0.5-in. diameter steel rod suspended from an
overhead support. A weight of 1500 lb is attached to the lower end of the
rod, exerting an external tensile force on the rod. The cross-sectional
area of the rod is pR2 = 0.31416(0.25)2 = 0.196 in.2, where R is the radius.
Hence, the tensile stress in the rod is 1500/0.196 = 7653 psi.

Now consider the two steel bars held together by a 0.75-in. diameter
bolt, as shown in Figure 2.2d, and subjected to a tension force of 5000
lb. The tension force in the bars becomes a shear force on the bolt, de-
scribed as a direct shear force. There are many results created by the
force in Figure 2.2d, including tensile stress in the bars and bearing on
the sides of the hole by the bolt. For now, we are concerned with the
slicing action on the bolt (Figure 2.2e), described as direct shear stress.
The bolt cross section has an area of 3.1416(0.375)2 = 0.4418 in.2, and
the shear stress in the bolt is thus equal to 5000/0.4418 = 11,317 psi.
Note that this type of stress is visualized as acting in the plane of the bolt
cross section, as a slicing or sliding effect, while both compressive 
and tensile stresses are visualized as acting perpendicular to a stressed
cross section.

2.4 VECTORS

A quantity that involves magnitude, direction (vertical, e.g.), and sense
(up, down, etc.) is a vector quantity, whereas a scalar quantity involves
only magnitude and sense. Force, velocity, and acceleration are vector
quantities, while energy, time, and temperature are scalar quantities. A
vector can be represented by a straight line, leading to the possibility of
constructed graphical solutions in some cases; a situation that will be
demonstrated later. Mathematically, a scalar quantity can be represented
completely as +50 or –50; while a vector must somehow have its direc-
tion represented as well (50 vertical, horizontal, etc.).
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2.5 PROPERTIES OF FORCES

As stated previously, in order to completely identify a force it is neces-
sary to establish the following:

Magnitude of the Force: This is the amount of the force, which is
measured in weight units such as pounds or tons.

Direction of the Force: This refers to the orientation of its path, called
its line of action. Direction is usually described by the angle 
that the line of action makes with some reference, such as the
horizontal.

Sense of the Force: This refers to the manner in which the force acts
along its line of action (up or down, right or left, etc.). Sense is usu-
ally expressed algebraically in terms of the sign of the force, either
plus or minus.

Forces can be represented graphically in terms of these three properties by
the use of an arrow, as shown in Figure 2.3a. Drawn to some scale, the
length of the arrow represents the magnitude of the force. The angle of in-
clination of the arrow represents the direction of the force. The location of
the arrowhead represents the sense of the force. This form of representa-
tion can be more than merely symbolic, since actual mathematical ma-
nipulations may be performed using the vector representation that the
force arrows constitute. In the work in this book, arrows are used in a sym-
bolic way for visual reference when performing algebraic computations,
and in a truly representative way when performing graphical analyses.

In addition to the basic properties of magnitude, direction, and sense,
some other concerns that may be significant for certain investigations
are:

Position of the Line of Action of the Force: This is considered with
respect to the lines of action of other forces or to some object on
which the force operates, as shown in Figure 2.3b. For the beam,
shifting of the location of the load (active force) effects changes in
the forces at the supports (reactions).

Point of Application of the Force: Exactly where along its line of ac-
tion the force is applied may be of concern in analyzing for the spe-
cific effect of the force on an object, as shown in Figure 2.3c.
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When forces are not resisted, they tend to produce motion. An inher-
ent aspect of static forces is that they exist in a state of static equilibrium,
that is, with no motion occurring. In order for static equilibrium to exist,
it is necessary to have a balanced system of forces. An important consid-
eration in the analysis of static forces is the nature of the geometric
arrangement of forces in a given set of forces that constitute a single sys-
tem. The usual technique for classifying force systems involves consid-
eration of whether the forces in the system are:
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Figure 2.3 Properties of forces. (a) Graphical representation of a force. (b) Re-
active forces. (c) Effect of point of application of a force.
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Coplanar: All acting in a single plane, such as the plane of a vertical
wall.

Parallel: All having the same direction.

Concurrent: All having their lines of action intersect at a common
point.

Using these three considerations, the possible variations are given in
Table 2.1 and illustrated in Figure 2.4. Note that variation 5 in the table
is really not possible, since a set of coacting forces that is parallel and
concurrent cannot be noncoplanar; in fact, the forces all fall on a single
line of action and are called collinear.

It is necessary to qualify a set of forces in the manner just illustrated
before proceeding with any analysis, whether it is to be performed alge-
braically or graphically.

2.6 MOTION

A force was defined earlier as that which produces or tends to produce
motion or a change of motion of bodies. Motion is a change of position
with respect to some object regarded as having a fixed position. When
the path of a moving point is a straight line, the point has motion of
translation. When the path of a point is curved, the point has curvilinear
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TABLE 2.1 Classification of Force Systemsa

Qualifications

System Variation Coplanar Parallel Concurrent

1 Yes Yes Yes
2 Yes Yes No
3 Yes No Yes
4 Yes No No
5 Nob Yes Yes
6 No Yes No
7 No No Yes
8 No No No

aSee Figure 2.4.
bNot possible—parallel, concurrent forces are automatically coplanar.
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motion or motion of rotation. When the path of a point lies in a plane, the
point has plane motion. Other motions are space motions.

Mostly, in the design of structures, a basic goal is to prevent motion.
However, for visualization of potential force actions and the actual de-
formation of force resisting structures, it is very useful to both graphi-
cally and mathematically identify the nature of motion implied by the
active forces. Ultimately, of course, the desired state for the structure is
a final condition described as one of static equilibrium, with the external
forces balanced by the internal forces, and with no movement, except for
small deformations.

Static Equilibrium

As stated previously, an object is in equilibrium when it is either at rest
or has uniform motion. When a system of forces acting on an object pro-
duces no motion, the system of forces is said to be in static equilibrium.

A simple example of equilibrium is illustrated in Figure 2.5a. Two
equal, opposite, and parallel forces, P1 and P2, have the same line of ac-
tion, and act on a body. If the two forces balance each other, the body
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Figure 2.4 Types of force systems.
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does not move and the system of forces is in equilibrium. These two
forces are concurrent. If the lines of action of a system of forces have a
point in common, the forces are concurrent.

Another example of forces in equilibrium is illustrated in Figure 2.5b.
A vertical downward force of 300 lb acts at the midpoint in the length of
a beam. The two upward vertical forces of 150 lb each (the reactions) act
at the ends of the beam. The system of three forces is in equilibrium. The
forces are parallel and, not having a point in common, are nonconcurrent.

2.7 FORCE COMPONENTS AND COMBINATIONS

Individual forces may interact and be combined with other forces in var-
ious situations. The net effect of such action produces a singular action
that is sometimes required to be observed. Conversely, a single force
may have more than one effect on an object, such as a vertical action and
a horizontal action simultaneously. This section considers both of these
issues: the adding up of single forces (combination) and breaking down
of single forces (resolution).

Resultant of Forces

The resultant of a system of forces is the simplest system (usually a sin-
gle force) that has the same effect as the various forces in the system act-
ing simultaneously. The lines of action of any system of two nonparallel
forces must have a point in common, and the resultant of the two forces
will pass through this common point. The resultant of two coplanar,
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Figure 2.5 Equilibrium of forces.
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nonparallel forces may be found graphically by constructing a parallel-
ogram of forces.

This graphical construction is based on the parallelogram law, which
may be stated thus: two nonparallel forces are laid off at any scale (of so
many pounds to the inch) with both forces pointing toward, or both
forces pointing away, from the point of intersection of their lines of ac-
tion. A parallelogram is then constructed with the two forces as adjacent
sides. The diagonal of the parallelogram passing through the common
point is the resultant in magnitude, direction, and line of action, the di-
rection of the resultant being similar to that of the given forces, toward
or away from the point in common. In Figure 2.6a, P1 and P2 represent
two nonparallel forces whose lines of action intersect at point O. The
parallelogram is drawn, and the diagonal R is the resultant of the given
system. In this illustration, note that the two forces point away from the
point in common; hence, the resultant also has its direction away from
point O. It is a force upward to the right. Notice that the resultant of
forces P1 and P2 shown in Figure 2.6b is R; its direction is toward the
point in common.

Forces may be considered to act at any points on their lines of action.
In Figure 2.6c, the lines of action of the two forces P1 and P2 are ex-
tended until they meet at point O. At this point, the parallelogram of
forces is constructed, and R, the diagonal, is the resultant of forces P1 and
P2. In determining the magnitude of the resultant, the scale used is, of
course, the same scale used in laying off the given system of forces.

Example 1. A vertical force of 50 lb and a horizontal force of 100 lb, as
shown in Figure 2.7a, have an angle of 90° between their lines of action.
Determine the resultant.
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Figure 2.6 Parallelogram of forces.
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Solution: The two forces are laid off from their point of intersection at a
scale of 1 in. = 80 lb. The parallelogram is drawn, and the diagonal is the
resultant. Its magnitude scales approximately 112 lb, its direction is up-
ward to the right, and its line of action passes through the point of inter-
section of the lines of action of the two given forces. By use of a
protractor it is found that the angle between the resultant and the force of
100 lb is approximately 26.5°.

Example 2. The angle between two forces of 40 and 90 lb, as shown in
Figure 2.7b, is 60°. Determine the resultant.

Solution: The forces are laid off from their point of intersection at a
scale of 1 in. = 80 lb. The parallelogram of forces is constructed, and the
resultant is found to be a force of approximately 115 lb, its direction is
upward to the right, and its line of action passes through the common
point of the two given forces. The angle between the resultant and the
force of 90 lb is approximately 17.5°.

Attention is called to the fact that these two problems have been
solved graphically by the construction of diagrams. Mathematics might
have been employed. For many practical problems, graphical solutions
give sufficiently accurate answers and frequently require far less time.
Do not make diagrams too small. Remember that greater accuracy is ob-
tained by using larger parallelograms of forces.

Problems 2.7.A–F
By constructing the parallelogram of forces, determine the resultants for
the pairs of forces shown in Figures 2.8a–f.
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Figure 2.7 Examples 1 and 2.
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Components of a Force

In addition to combining forces to obtain their resultant, it is often neces-
sary to replace a single force by its components. The components of a
force are the two or more forces that, acting together, have the same effect
as the given force. In Figure 2.7a, if we are given the force of 112 lb, its
vertical component is 50 lb and its horizontal component is 100 lb. That
is, the 112-lb force has been resolved into its vertical and horizontal com-
ponents. Any force may be considered as the resultant of its components.

Combined Resultants

The resultant of more than two nonparallel forces may be obtained by
finding the resultants of pairs of forces and finally the resultant of the
resultants.

Example 3. Let it be required to find the resultant of the concurrent
forces P1, P2, P3, and P4, shown in Figure 2.9.

Solution: By constructing a parallelogram of forces, the resultant of P1

and P2 is found to be R1. Similarly, the resultant of P3 and P4 is R2. Fi-
nally, the resultant of R1 and R2 is R, the resultant of the four given forces.
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Figure 2.8 Problems 2.8.A–F.
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Problems 2.7.G–I
Using graphical methods, find the resultants of the systems of concurrent
forces shown in Figures 2.10(g)–(i).

Equilibrant

The force required to maintain a system of forces in equilibrium is called
the equilibrant of the system. Suppose that we are required to investigate
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Figure 2.9 Finding a resultant by pairs.

Figure 2.10 Problems 2.7.G–I.
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the system of two forces, P1 and P2, as shown in Figure 2.11. The paral-
lelogram of forces is constructed, and the resultant is found to be R. The
system is not in equilibrium. The force required to maintain equilibrium
is force E, shown by the dotted line. E, the equilibrant, is the same as the
resultant in magnitude and direction, but is opposite in sense. The three
forces, P1, P2, and E, constitute a system in equilibrium.

If two forces are in equilibrium, they must be equal in magnitude, op-
posite in sense, and have the same direction and line of action. Either of
the two forces may be said to be the equilibrant of the other. The resul-
tant of a system of forces in equilibrium is zero.

2.8 GRAPHICAL ANALYSIS OF FORCES

Force Polygon

The resultant of a system of concurrent forces may be found by con-
structing a force polygon. To draw the force polygon, begin with a point
and lay off, at a convenient scale, a line parallel to one of the forces, with
its length equal to the force in magnitude, and having the same sense.
From the termination of this line, draw similarly another line corre-
sponding to one of the remaining forces and continue in the same man-
ner until all the forces in the given system are accounted for. If the
polygon does not close, the system of forces is not in equilibrium, and the
line required to close the polygon drawn from the starting point is the re-
sultant in magnitude and direction. If the forces in the given system are
concurrent, the line of action of the resultant passes through the point
they have in common.
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Figure 2.11 Resultant and equilibrant.
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If the force polygon for a system of concurrent forces closes, the sys-
tem is in equilibrium, and the resultant is zero.

Example 4. Let it be required to find the resultant of the four concurrent
forces P1, P2, P3, and P4 shown in Figure 2.12a. This diagram is called
the space diagram; it shows the relative positions of the forces in a given
system.

Solution: Beginning with some point such as O, shown in Figure 2.12b,
draw the upward force P1. At the upper extremity of the line representing
P1, draw P2, continuing in a like manner with P3 and P4. The polygon
does not close; therefore the system is not in equilibrium. The resultant
R, shown by the dot-and-dash line, is the resultant of the given system.
Note that its direction is from the starting point O, downward to the 
right. The line of action of the resultant of the given system shown in
Figure 2.12a has its line of action passing through the point they have 
in common, its magnitude and direction having been found in the force
polygon.

In drawing the force polygon, the forces may be taken in any se-
quence. In Figure 2.12c, a different sequence is taken, but the resultant R
is found to have the same magnitude and direction as previously found in
Figure 2.12b.
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Figure 2.12 Force polygon for a set of concurrent forces.
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Bow’s Notation

Thus far, forces have been identified by the symbols P1, P2, and so on. A
system of identifying forces, known as Bow’s notation, affords many ad-
vantages. In this system, letters are placed in the space diagram on each
side of a force, and a force is identified by two letters. The sequence in
which the letters are read is important. Figure 2.13a shows the space di-
agram of five concurrent forces. Reading about the point in common in
a clockwise manner, the forces are AB, BC, CD, DE, and EA. When a
force in the force polygon is represented by a line, a letter is placed at
each end of the line. As an example, the vertical upward force in Figure
2.13a is read AB (note that this is read clockwise about the common
point); in the force polygon (Figure 2.13b), the letter a is placed at the
bottom of the line representing the force AB and the letter b is at the top.
Use capital letters to identify the forces in the space diagrams and low-
ercase letters in the force polygon. From point b in the force polygon,
draw force bc, then cd, and continue with de and ea. Since the force
polygon closes, the five concurrent forces are in equilibrium.

In reading forces, a clockwise manner is used in all the following dis-
cussions. It is important that this method of identifying forces be thor-
oughly understood. To make this clear, suppose that a force polygon is
drawn for the five forces shown in Figure 2.13a, reading the forces in
sequence in a counterclockwise manner. This will produce the force
polygon shown in Figure 2.13c. Either method may be used, but for con-
sistency the method of reading clockwise is used here.
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Figure 2.13 Use of Bow’s notation.
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Use of the Force Polygon

Two ropes are attached to a ceiling and their lower ends are connected to
a ring, making the arrangement shown in Figure 2.14a. A weight of 100
lb is suspended from the ring. Obviously, the force in the rope AB is 100
lb, but the magnitudes of the forces in ropes BC and CA are unknown.

The forces in the ropes AB, BC, and CA constitute a concurrent force
system in equilibrium. The magnitude of only one of the forces is known
—it is 100 lb in rope AB. Since the three concurrent forces are in equi-
librium, their force polygon must close, and this fact makes it possible to
find the magnitudes of the BC and CA. Now, at a convenient scale, draw
the line ab (Figure 2.14c) representing the downward force AB, 100 lb.
The line ab is one side of the force polygon. From point b, draw a line
parallel to rope BC; point c will be at some location on this line. Next,
draw a line through point a parallel to rope CA; point c will be at some
position on this line. Since point c is also on the line though b parallel to
BC, the intersection of the two lines determines point c. The force poly-
gon for the three forces is now completed; it is abc, and the lengths of the
sides of the polygon represent the magnitudes of the forces in ropes BC
and CA, 86.6 lb and 50 lb, respectively.

Particular attention is called to the fact that the lengths of the ropes in
Figure 2.14a are not an indication of magnitude of the forces within the
ropes; the magnitudes are determined by the lengths of the correspond-
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Figure 2.14 Solution of a problem with concurrent forces.
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ing sides of the force polygon (Figure 2.14c). Figure 2.14a merely deter-
mines the geometric layout for the structure.

Problems 2.8.A–D
Find the sense (tension or compression) and magnitude of the internal
forces in the members indicated by question marks in Figures 2.15a–d,
using graphical methods.

2.9 INVESTIGATION OF FORCE ACTIONS

A convenient way to determine the unknown forces acting on a body, or
the unknown internal forces in a structure, is to construct a free-body di-
agram. This may be for a whole structure or a part of a structure. The
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usual procedure is to imagine the defined element (body) to be cut away
from adjoining parts and moved to a free position in space. See the dis-
cussion in Section 1.10.

Graphical Solution of Forces

Consider Figure 2.16a, which represents two members framing into a
wall, the upper member being horizontal and the angle between the mem-
bers being 30°. A weight of 200 lb is placed at the point where the mem-
bers meet. Figure 2.16b is a diagram showing the block as a free body
with the forces acting on it consisting of its own weight and the two un-
known internal forces in the members. This concurrent force system is
represented in Figure 2.16c, with letters placed on the figure to utilize
Bow’s notation. Thus, the forces acting on the body are AB (the force due
to gravity), and the unknowns BC and CA. The arrows placed on the un-
known forces, indicating their sense, would seem to be evident, although
they have not actually been determined at this point.

To determine the unknown internal forces in the frame members, a
force polygon of this concurrent set of forces may be constructed. Start
by drawing the vector ab downward to a convenient scale measured at
200, as shown in Figure 2.16d. On this diagram, through point a, draw a
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horizontal line representing force ca. Then, through point b, draw a line
at 30° representing the force bc. The intersection of these two lines lo-
cates the point c on the diagram and completes the force polygon. By
using the scale that was used to lay out force ab, the lengths of the other
two sides of the polygon can be measured; these are the magnitudes of
the unknown forces. Accuracy in this case will depend on how large a
figure is drawn and how carefully it is constructed. The sense of the
forces can be determined by following the sequence of force flow on the
polygon: from a to b to c to a. Thus, the assumed senses are shown to 
be correct.

Algebraic Solution

The preceding problem obviously also lends itself to a mathematical so-
lution. Consider the free-body diagram of the forces as shown in Figure
2.16e. On this figure, the force BC is shown both as a single force and as
a combination of its horizontal and vertical components; either represen-
tation can be used for this force. The relationship of force BC to its com-
ponents is shown in Figure 2.16f. The purpose for consideration of the
components of BC is demonstrated in the following work.

The forces in the free-body diagram in this example are constituted as
a concentric, coplanar force system (see Section 2.5). For such a system,
the algebraic conditions for static equilibrium may be stated as follows:

ΣFH = 0 and ΣFV = 0

That is to say, the summation of the horizontal force components of all
the forces is zero, and the summation of the vertical components of 
all the forces is zero. Referring to Figure 2.16e, and applying these con-
ditions to the example,

ΣFH = 0 = CA + BCH

ΣFV = 0 = AB + BCV

To implement these algebraically, a sign convention must be assumed.
Assume the following:

For vertical forces, + is up, – is down.

For horizontal forces: + is to the right, – is to the left.
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Thus, from the summation of the vertical forces, using the known value
of AB,

ΣFV = 0 = (–200) + BCV

from which

BCV = +200, or 200 lb up

If this component is up, then the force BC, as indicated in Figure 2.16, is
correctly shown as a compression force. To obtain the value for BC, con-
sider the relation of the force to its components, as shown in Figure 2.16f.
Thus,

Then, using the summation of horizontal forces,

ΣFH = 0 = CA + BCH = CA + (+400 × cos 30°)

from which CA is obtained as –346 lb; the minus sign indicates the cor-
rectness of the assumption shown in Figure 2.16e: namely, that CA is in
tension.

Two-Force Members

When a member in equilibrium is acted on by forces at only two points,
it is known as a two-force member. The resultant of all the forces at 
one point must be equal, opposite in sense, and have the same direction
and line of action as the resultant of the forces at the other point. The 
internal force in a linear two-force member is either tension or 
compression.

In Figure 2.16a, each of the two members in the frame is a two-force
member. A free-body diagram of either member will show only one
force at an end, equal and opposite in sense to the force at the other end.
The members of planar trusses are assumed to be of this form, so that the
analysis of the truss may be achieved by a solution of the concentric
forces at the joints of the truss. This is demonstrated in Chapter 3.

BC
BCV=

°
= =

sin
 lb

30

200

0 5
400

.

90 FORCES AND FORCE ACTIONS

3751 P-02  11/13/01  12:19 PM  Page 90



 

2.10 FRICTION

Friction is a force of resistance to movement that is developed at the con-
tact face between objects when the objects are made to slide with respect
to each other. For the object shown in Figure 2.17a, being acted on by its
own weight and the inclined force F, the impending motion is that of the
block toward the right along the supporting surface. The force tending to
cause the motion is the horizontal component of F, that is, the component
parallel to the sliding surface. The vertical component of F combines
with the weight of the block W to produce a force pressing the block
against the plane. This pressure-generating force, called the normal force,
is what produces friction.

A free-body diagram of the forces is shown in Figure 2.17b. For equi-
librium of the block, two components of resistance must be developed.
For equilibrium in a direction normal to the plane of friction (vertical
here), the reactive force N is required, being equal and opposite in sense
to the normal force on the plane. For equilibrium in a direction parallel
to the plane (horizontal here), a frictional resistance F¢ must be developed
that is at least as great as the force tending to cause sliding. For this situ-
ation there are three possibilities, as follows:

1. The block does not move because the potential friction resistance
is greater than the impelling force, that is,

F¢ is greater than F cos Q
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Figure 2.17 Development of sliding friction.
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2. The block moves because the friction is not of sufficient magni-
tude, that is,

F ¢ is less than F cos Q

3. The block is in equilibrium, but just on the verge of moving be-
cause the potential friction force is exactly equal to the force
tending to induce sliding, that is,

F ¢ = F cos Q

From observations and experimentation, the following deductions
have been made about friction.

1. The friction-resisting force (F ¢ in Figure 2.17) always acts in a di-
rection to oppose motion; that is, it acts opposite to the slide-
inducing force.

2. For dry, smooth surfaces, the frictional resistance developed up to
the moment of sliding is directly proportional to the normal pres-
sure between the surfaces. This limiting value for the force is ex-
pressed as

F ¢ = mN

in which m (Greek lowercase mu) is called the coefficient of
friction.

3. The frictional resistance is independent of the amount of contact
area.

4. The coefficient of static friction (before motion occurs) is greater
than the coefficient of kinetic friction (during actual sliding). That
is, for the same amount of normal pressure, the frictional resis-
tance is reduced once motion actually occurs.

Frictional resistance is ordinarily expressed in terms of its maximum
potential value. Coefficients for static friction are determined by finding
the ratio between the slide-inducing force and the normal force that cre-
ates pressure just at the point of sliding. A simple experiment consists of
placing a block on an inclined surface and steadily increasing the angle
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of inclination until sliding occurs (see Figure 2.18a). Referring to the
free-body diagram of the block in Figure 2.18b, we note

F¢ = mN = W sin f
N = W cos f

and, as previously noted, the coefficient of friction is expressed as the
ratio of F¢ to N, or

Approximate values for the coefficient of static friction for various com-
binations of objects in contact are given in Table 2.2.

Problems involving friction are usually one of two types. The first in-
volves situations in which friction is one of the forces in a system, and the
problem is to determine whether the frictional resistance is sufficient to
maintain the equilibrium of the system. For this type of problem, the 

µ φ
φ

φ= ′ = =F

N

W

W

 sin 

 cos 
tan
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Figure 2.18 Derivation of the coefficient of friction.

TABLE 2.2 Range of Values for Coefficient of Static Friction

Contact Surfaces Coefficient m

Wood on wood 0.40–0.70
Metal on wood 0.20–0.65
Metal on metal 0.15–0.30
Metal on stone, masonry, concrete 0.30–0.70
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solution consists of writing the equations for equilibrium, including the
maximum potential friction, and interpreting the results. If the frictional
resistance is not large enough, sliding will occur; if it is just large enough
or excessive, sliding will not occur.

The second type of problem involves situations in which the force 
required to overcome friction must be found. In this case, the slide-
inducing force is simply equated to the maximum potential friction re-
sistance, and the required force is determined.

Example 5. A block is placed on an inclined plane whose angle is slowly
increased until sliding occurs (see Figure 2.19). If the angle of the plane
with the horizontal is 35° when sliding begins, what is the coefficient for
sliding friction between the block and the plane?

Solution: As previously derived, the coefficient of friction may be stated
as the tangent of the angle of inclination of the plane; thus,

m = tan f = tan 35° = 0.70

Example 6. Find the horizontal force P required to slide a block
weighing 100 lb if the coefficient of static friction is 0.30 (see Figure
2.20).

Solution: For sliding to occur, the slide-inducing force P must be
slightly larger than the frictional resistance F¢. Thus,

P = F¢ = mN = 0.30(100) = 30 lb

The force must be slightly larger than 30 lb.
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Example 7. A block is pressed against a vertical wall with a 20-lb force
that acts upward at an angle of 30° with the horizontal (see Figure 2.21a).

(a) Express the frictional resistance to motion in terms of the avail-
able pressure.

(b) If the block weighs 15 lb and the coefficient of static friction is
0.40, will the block slide?
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Figure 2.20 Example 6.

Figure 2.21 Example 7.
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(c) At what angle must the 20-lb force act to cause the 15-lb block to
slide upward, if the coefficient of static friction is 0.40?

Solution: For (a),

F ¢ = mN = m(20 cos 30°) = 17.32m lb

For (b), the sliding resistance must equal the net slide-inducing force, or

required F ¢ = [W – (20 sin 30°)] = W – 10 = 15 – 10 = 5 lb

From (a), the available resistance is

F ¢ = 17.32(0.40) = 6.93 lb

Therefore, the block will not slide.

For (c),

F ¢ = (20 sin f) – 15

or

0.40(20 cos f) = (20 sin f) – 15

from which f = 81.1°.

Problem 2.10.A
Find the angle at which the block shown in Figure 2.18 will slip if the co-
efficient of static friction is 0.35.

Problem 2.10.B
For the block shown in Figure 2.22, find the value of P required to keep
the block from slipping if f = 10° and W = 10 lb.

Problem 2.10.C
For the block shown in Figure 2.22, find the weight for the block that will
result in slipping if f = 15° and P = 10 lb.
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2.11 MOMENTS

The term moment is commonly used to designate the tendency of a force
to cause rotation about a given point or axis. The unit of measurement for
moments is a compound produced by the multiplication of the force (in
pounds, tons, etc.) times a distance (in feet, inches, etc.). A moment is
thus said to consist of so many ft-lb, kip-in., and so on. The point or axis
about which rotation is induced is called the center of moments. The per-
pendicular distance between the line of action of the force and the center
of moments is called the lever arm or moment arm. Thus, a moment has
a magnitude that is determined as

moment = (magnitude of force) × (length of moment arm)

Consider the horizontal force of 100 lb shown in Figure 2.23. If point
A is the center of moments, the lever arm of the force is 5 ft. Then the
moment of the 100-lb force with respect to point A is 100 × 5 = 500 
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Figure 2.22 Problems 2.10.B, C.

Figure 2.23 Moment of a force
about a point.
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ft-lb. In this illustration, the force tends to cause a clockwise rotation
about point A, which is the sense, or sign, of the moment. Ordinarily,
clockwise rotation is considered to be positive and counterclockwise
moment to be negative. Thus, the complete designation of the moment
is +500 ft-lb.

In Figure 2.23, the 100-lb force has a moment arm of 3 ft with respect
to point B. With respect to point B, the force has a counterclockwise mo-
ment, determined to be 100 × 3 = –300 ft-lb.

Increasing Moments

A moment may be increased by increasing the magnitude of the force or
by increasing the distance of the moment arm. For the wrench in Figure
2.24, the limit for rotational effort in terms of moment on the bolt head is
limited by the effective wrench length and the force exerted on the han-
dle. Additional twisting moment on the bolt can be developed by in-
creasing the force. However, for a limited force, the wrench length might
be extended by slipping a pipe over the wrench handle, thus producing a
larger moment with the same force.

If a given moment is required, various combinations of force and
moment arm may be used to produce the moment. For example, if the
combination of the given force of 50 lb was found to be just sufficient to
twist the nut in Figure 2.24 with the pipe over the wrench handle, what
force would have been required if the pipe was not used? With the pipe,
the moment is 50 × 25 = 1250 in.-lb. If the pipe is not used, the required
force is thus found as 1250 / 10 = 125 lb.
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Moment of a Mechanical Couple

A mechanical couple is a means for visualization of a pure rotational ef-
fect. As produced by a couple, it takes a form as shown in Figure 2.25,
with two parallel forces (the couple) acting in opposite directions at some
distance apart. If the two forces are equal in magnitude, the resultant of
the forces is zero as a force magnitude. However, the resultant effect 
of the forces produces a moment, which is the true resultant of the force
system: a mechanical couple. The magnitude of the moment is simply the
product of one of the forces times the distance between the separated
lines of action of the parallel forces. In the illustration, the sense of the
moment is counterclockwise.

An example of a mechanical couple is that produced when a person
uses two hands to turn a steering wheel. The result of this push-pull ef-
fort is neither a net push or a net pull on the wheel, but rather a pure ro-
tation of the steering column. This is directly analogous to the
development of internal bending resistance in structural members, where
opposed tension and compressive stresses produce pure rotational effort.
This phenomenon is discussed for beams in Chapter 11.

Force Required to Produce Motion

Figure 2.26a shows a wheel under the action of a horizontal force that is
attempting to roll the wheel over a fixed block. In order to produce mo-
tion, the force must be slightly greater than that required for equilibrium.
Pushing on the wheel produces a set of forces consisting of the weight of
the wheel, the pushing force, and the force of the corner of the fixed
block that pushes back on the wheel. The combination of these three
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Figure 2.25 A mechanical couple.
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forces is shown in the free-body diagram of the wheel in Figure 2.26b.
They constitute a concentric force system for which a force polygon is
shown in Figure 2.26c.

If the wheel weighs 400 lb and the vector for this force is drawn to a
scale in proportion to the 400-lb magnitude (ca on the force polygon), the
force required for equilibrium may be found by measuring the vector bc
on the polygon. A graphic solution that begins with the scaled layout of
the wheel, the block, and the pushing force (Figure 2.26a) to determine
the angle of force CA, will determine that the pushing force at the point
of motion must exceed a value of approximately 330 lb. An algebraic so-
lution can also be performed, for example, a summation of moments
about the contact point between the wheel and the fixed block.

Example 8. Figure 2.27a shows a masonry pier that weighs 10,000 lb.
Determine the magnitude of the horizontal force applied at the upper left
corner that will be required to overturn the pier.

Solution: Tipping of the pier will occur with rotation about the lower
right corner of the pier. The forces on the pier at the point of tipping will
consist of the pier weight, the horizontal push at the top, and the force ex-
erted by the ground at the bottom right corner. A free-body diagram of
the pier under the action of these three forces is shown in Figure 2.27b.
Figure 2.27c shows a force polygon for these forces that includes a mag-
nitude for the pushing force at the moment of the beginning of tipping. A
slight increase in the tipping force above this value will produce tipping
(more often described as overturning in engineering).

As with the wheel in the preceding illustration, a scaled layout may be
used to determine the magnitude of the pushing force. However, a sim-
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Figure 2.26 Force required to produce motion; graphical solution.

3751 P-02  11/13/01  12:19 PM  Page 100



 

ple algebraic solution may be performed using a summation of moments
about the lower right corner (point O in Figure 2.27b). As the line of 
action of the force at this point has no moment in this summation, the
equation for moments is reduced to that involving only the pushing force
and the weight of the pier. Thus,

ΣMo =  +(BC × 8) –(AB × 2)

Entering the known value of 10,000 lb for AB in this equation will pro-
duce an answer of 2500 lb for the pushing force. Any force exceeding
2500 lb will tend to tip the pier.

Problem 2.11.A
Using a graphical solution, find the horizontal force P required to roll the
cylinder in Figure 2.28a over the fixed block. The cylinder is 20 in. in di-
ameter and weighs 500 lb.
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Figure 2.27 Example 8.

Figure 2.28 Problems 2.11.A–C.
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Problem 2.11.B
The masonry pier in Figure 2.28b weighs 3600 lb. If the force P as shown
is 800 lb, will the pier tip about its lower right corner?

Problem 2.11.C
If the pier in Figure 2.11b weighs 5000 lb, find the magnitude required
for force P to cause overturning.

2.12 FORCES ON A BEAM

Figure 2.29a shows a cantilever beam with a single concentrated load of
100 lb placed 4 ft from the face of the supporting wall. In this position,
the moment of the force about point A (the face of the support) is 100 ×
4 = 400 ft-lb. If the load is moved 2 ft farther to the right, the moment
about point A is 600 ft-lb. When the load is moved to the end of the beam,
the moment at point A is 800 ft-lb.

Figure 2.29b shows a cantilever beam with a uniformly distributed
load over part of its length. For finding moments due to distributed loads,
a procedure commonly used is to find the total of the distributed load and
to consider it to be a single concentrated load placed at the center of the
distributed load. In this case, the total load is 200 × 6 = 1200 lb, and its
effective location is at a point 3 ft from the end of the beam. Thus, the
moment of the load about point A is 1200 × 7 = 8400 ft-lb.

Equilibrium of Coplanar Forces

For a general coplanar force system, equilibrium can be established with
the satisfying of three equations, as follows:
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3751 P-02  11/13/01  12:19 PM  Page 102



 

1. The algebraic sum of the horizontal forces is zero.

2. The algebraic sum of the vertical forces is zero.

3. The algebraic sum of the moments of all the forces about any
point in the plane is zero.

These summations can be made for any coplanar system of forces.
However, any additional qualifications of the forces may result in sim-
plification of the algebraic conditions. For example, when the forces are
concurrent (all meeting at a single point), they have no moments with re-
spect to each other and the condition for equilibrium of moments can be
eliminated, leaving only the two force equations. This was the case for
the system shown in Figure 2.26. An even simpler qualification is that of
colinear forces, all acting on a single line of action, such as the system
shown in Figure 2.30a. Such a system, if in equilibrium, consists of two
equal forces of opposite sense.

Beams are generally operated on by parallel, coplanar forces. This
eliminates one of the force summations from the condition for general
coplanar systems, since all the forces are in a single direction. There are
thus only two equations of equilibrium necessary for the parallel system,
and consequently only two available for solution of the system. Elimi-
nating one force equation from the general set leaves

1. The sum of the vertical forces equals zero.

2. The sum of the moments about any point equals zero.
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However, another possibility for establishing equilibrium is to satisfy
the condition that the sum of the moments of the forces about two sepa-
rate points is zero. Thus, another set of equations that may be used for the
beam is

1. The sum of the moments about point A is zero.

2. The sum of the moments about point B is zero
Where: point A is a different point in the plane than point B.

Consider the simple beam in Figure 2.30b. Four vertical forces act on
this beam and are in equilibrium. The two downward forces, or loads, are
4 kips and 8 kips. Opposing these are the support reaction forces at the
ends of the beam, 4.4 kips and 7.6 kips. If these parallel forces are indeed
in equilibrium, they should satisfy the equilibrium equations for a paral-
lel system. Thus,

ΣFv = 0 = +4.4 – 4 – 8 + 7.6 = (+12) + (–12)

and the forces are in balance.

ΣMA = 0 = +(4.4 × 20) – (4 × 14) – (8 × 4) = (+88) + (–88)

and the sum of the moments about point A is indeed zero.
To further demonstrate the equilibrium of the force values, moments

may be taken about any other point in the plane. For example, for point
B, which is the location of the 4-kip load,

ΣMB = +(4.4 × 6) + (8 × 10) – (7.6 × 14) = +(106.4) – (106.4)

which verifies the balance of moments about point B.
Another type of problem involves the finding of some unknown

forces in a parallel system. Remember that the two conditions of equi-
librium for the parallel system provide two algebraic equations, which
potentially may be used to find two unknown forces in the system. Con-
sider the beam shown in Figure 2.31, with a single support and a load of
800 lb at one end. The problem is to determine the required value for a
load at the other end of the beam that will maintain equilibrium and the
value for the single support reaction. A summation of vertical forces will
produce an equation with two unknowns. Indeed, the two unknown
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forces could be solved using two equations in two unknowns. However,
a simpler procedure frequently used is to write equations involving only
one unknown in a single equation at a time, if possible. For example, an
equation for the sum of moments about either the right end or the support
will produce such an equation. Thus, for moments about the support,
calling the unknown load x,

ΣM = 0 = –(800 × 6) + (x × 3); thus, x = 1600 lb

Then, from a summation of vertical forces, calling the reaction force R,

ΣF = 0 = –800 +R –1600; thus, R = 2400 lb

This form of solution is frequently used to find reactions for ordinary
beams with two supports, which is discussed next.

Problem 2.12.A
Write the two equations for moments for the four forces in Figure 2.30b,
taking points C and D as the centers of moments, to verify the equilib-
rium of the system.

Determination of Reactions for Beams

As noted earlier, reactions are the forces at the supports of beams that
hold the loads in equilibrium. A single-span beam is shown in Figure
2.32, with two supports, one at each end of the beam. As these supports
are not shown to have resistance to rotation (called fixed supports), they
are assumed to be resistant only to the necessary vertical forces, and de-
scribed as simple supports. This common beam, with a single span and
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two simple supports, is referred to as a simple beam. The computations
that follow will demonstrate the common procedure for finding the val-
ues for the magnitudes of the two support reactions for a simple beam.
Note that the two reactions in Figure 2.32 are designated R1 and R2, for
the left and right reactions, respectively. This is a common practice that
is followed throughout the work in this book.

Example 9. Compute the reactions for the beam in Figure 2.32.

Solution: Taking the right reaction as the center of moments,

Taking the left reaction as the center of moments,

To see whether a mistake has been made, the three forces (load and two
reactions) may be checked for equilibrium of the vertical forces; thus,

ΣF = 0 = +450 –1800 +1350,

and the net force is indeed zero.

Example 10. Compute the reactions for the simple beam in Figure 2.33
with three concentrated loads.

Σ = = + × − × = =M R R0 1800 9 12
16 200

12
13502 2( ) ( );

,
thus,   lb

Σ = = + × − × = =M R R0 12 1800 3
5400

12
4501 1( ) ( ); thus,   lb
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Solution: Regardless of the type or number of loads, the procedure is the
same. Thus, considering the right reaction as the center of moments,

ΣM = 0 = +(R1 × 15) –(400 × 12) –(1000 × 10) –(600 × 4)

Thus,

Using the same procedure with the left reaction as the center of moments,

And, for a check, the summation of vertical forces is

ΣF = +1146.7 – 400 – 1000 – 600 + 853.3 = 0

For any beam with two simple supports, the procedure is the same.
Care must be taken, however, to note carefully the sign of the moments:
that is, plus for clockwise moments and minus for counterclockwise mo-
ments about the selected center of moments. The following example has
its supports drawn in from the ends of the beam, producing cantilevered
or overhanging ends.

Example 11. Compute the reactions for the beam in Figure 2.34 with
overhanging ends.

R2
400 3 1000 5 600 11

15

12 800

15
853 3= × + × + × = =( ) ( ) ( ) ,

.  lb

R1
4800 10 000 2400

15

17 200

15
1146 7= + + = =, ,

.  lb
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Solution: Using the same procedure as in the preceding two examples,
first take moments about the right reaction; thus,

ΣM = 0 = –(200 × 22) + (R1 × 18) – (1000 × 10) – (800 × 4) + (600 × 2)

from which

Then, with a summation of moments about the left reaction,

ΣM = 0 = –(200 × 4) + (1000 × 8) + (800 × 14) – (R2 × 18) + (600 × 20)

Thus,

A summation of vertical forces can be used to verify the answers.

Example 12. The simple beam shown in Figure 2.35a has a single con-
centrated load and a uniformly distributed load over a portion of the
span. Compute the reactions.

R2
30 400

18
1688 9= =,

.  lb

R1
16 400

18
911 1= =,

.  lb
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Figure 2.34 Example 11.
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Solution: For a simplification in finding the reactions, it is common to
consider the uniformly distributed load to be replaced by its resultant in
the form of a single concentrated load at the center of the distributed load.
The total of the uniform load is 200 × 8 = 1600 lb, and the beam is thus
considered to be as shown in Figure 2.35b. With the modified beam, a
summation of moments about the right reaction is

A summation of moments about the left reaction will determine a value
of 1940 lb for R2, and a summation of vertical forces may be used to ver-
ify the answers.

This shortcut, consisting of replacing the distributed load by its resul-
tant, is acceptable for finding the reactions, but the real nature of the dis-
tributed load must be considered for other investigations of the beam, as
will be demonstrated in some of the later chapters.

Problems 2.12.B–G
Compute the reactions for the beams shown in Figures 2.36b–g.

Σ = = + × − × − × = =M R R0 20 2200 14 1600 4
37 200

20
18601 1( ) ( ) ( ),

,
 lb
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Figure 2.35 Example 12.
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Figure 2.36 Problems
2.12.B–G.
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3
ANALYSIS OF TRUSSES

Planar trusses, comprised of linear elements assembled in triangulated
frameworks, have been used for spanning structures in buildings for
many centuries. Figure 3.1 shows a form of construction used for such a
truss in the early twentieth century. While construction materials, details,
and processes have changed considerably, this classic form of truss is
still widely used. Investigation for internal forces in such trusses is typi-
cally performed by simple analytical procedures using the basic methods
illustrated in the preceding chapters. In this chapter, these procedures are
demonstrated, using both graphical and algebraic methods of solution.

3.1 GRAPHICAL ANALYSIS OF TRUSSES

When the so-called method of joints is used, finding the internal forces in
the members of a planar truss consists of solving a series of concurrent
force systems. Figure 3.2, at the top, shows a truss with the truss form,
the loads, and the reactions displayed in a space diagram. Below the
space diagram is a figure consisting of the free-body diagrams of the
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individual joints of the truss. These are arranged in the same manner as
they are in the truss in order to show their interrelationships. However,
each joint constitutes a complete concurrent planar force system that
must have its independent equilibrium. “Solving” the problem consists of
determining the equilibrium conditions for all of the joints. The proce-
dures used for this solution are now illustrated.

Figure 3.3 shows a single-span planar truss that is subjected to verti-
cal gravity loads. This example will be used to illustrate the procedures
for determining the internal forces in the truss, that is, the tension and
compression forces in the individual members of the truss. The space di-
agram in the figure shows the truss form and dimensions, the support
conditions, and the loads. The letters on the space diagram identify indi-
vidual forces at the truss joints, as discussed in Section 2.8. The sequence
of placement of the letters is arbitrary, the only necessary consideration
being to place a letter in each space between the loads and the individual

112 ANALYSIS OF TRUSSES

Figure 3.1 Details of an early twentieth century timber truss. Reproduced from
Materials and Methods of Construction, by C. Gay and H. Parker, 1932, with per-
mission of the publisher, John Wiley & Sons, New York. This is a classic truss pat-
tern still in frequent use, although neither the forms of the members—steel rods
and solid timbers—nor any of the joint details are likely to be used today.
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truss members so that each force at a joint can be identified by a two-
letter symbol.

The separated joint diagram in the figure provides a useful means for
visualization of the complete force system at each joint as well as the in-
terrelation of the joints through the truss members. The individual forces
at each joint are designated by two-letter symbols that are obtained by
simply reading around the joint in the space diagram in a clockwise di-
rection. Note that the two-letter symbols are reversed at the opposite
ends of each of the truss members. Thus, the top chord member at the left
end of the truss is designated as BI when shown in the joint at the left
support (joint 1) and is designated as IB when shown in the first interior
upper chord joint (joint 2). The purpose of this procedure will be demon-
strated in the following explanation of the graphical analysis.

The third diagram in Figure 3.3 is a composite force polygon for the
external and internal forces in the truss. It is called a Maxwell diagram
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Figure 3.2 Examples of diagrams used to represent trusses and their actions.
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after one of its early promoters, James Maxwell, a British engineer. The
construction of this diagram constitutes a complete solution for the mag-
nitudes and senses of the internal forces in the truss. The procedure for
this construction is as follows.

1. Construct the force polygon for the external forces. Before this
can be done, the values for the reactions must be found. There are
graphic techniques for finding the reactions, but it is usually
much simpler and faster to find them with an algebraic solution.
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Figure 3.3 Examples of graphic diagrams for a planar truss.
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In this example, although the truss is not symmetrical, the load-
ing is, and it may simply be observed that the reactions are each
equal to one-half of the total load on the truss, or 5000 ÷ 2 = 2500
lb. Since the external forces in this case are all in a single direc-
tion, the force polygon for the external forces is actually a straight
line. Using the two-letter symbols for the forces and starting with
the letter A at the left end, we read the force sequence by moving
in a clockwise direction around the outside of the truss. The loads
are thus read as AB, BC, CD, DE, EF, and FG, and the two reac-
tions are read as GH and HA. Beginning at A on the Maxwell di-
agram, the force vector sequence for the external forces is read
from A to B, B to C, C to D, and so on, ending back at A, which
shows that the force polygon closes and the external forces are in
the necessary state of static equilibrium. Note that we have pulled
the vectors for the reactions off to the side in the diagram to indi-
cate them more clearly. Note also that we have used lowercase
letters for the vector ends in the Maxwell diagram, whereas up-
percase letters are used on the space diagram. The alphabetic cor-
relation is thus retained (A to a), while any possible confusion
between the two diagrams is prevented. The letters on the space
diagram designate open spaces, while the letters on the Maxwell
diagram designate points of intersection of lines.

2. Construct the force polygons for the individual joints. The
graphic procedure for this consists of locating the points on the
Maxwell diagram that correspond to the remaining letters, I
through P, on the space diagram. When all the lettered points on
the diagram are located, the complete force polygon for each joint
may be read on the diagram. In order to locate these points, we
use two relationships. The first is that the truss members can re-
sist only forces that are parallel to the members’ positioned di-
rections. Thus, we know the directions of all the internal forces.
The second relationship is a simple one from plane geometry: a
point may be located at the intersection of two lines. Consider the
forces at joint 1, as shown in the separated joint diagram in Fig-
ure 3.3. Note that there are four forces and that two of them are
known (the load and the reaction) and two are unknown (the in-
ternal forces in the truss members). The force polygon for this
joint, as shown on the Maxwell diagram, is read as ABIHA. AB
represents the load, BI the force in the upper chord member, IH

GRAPHICAL ANALYSIS OF TRUSSES 115

3751 P-03  11/13/01  12:21 PM  Page 115



 

the force in the lower chord member, and HA the reaction. Thus,
the location of point i on the Maxwell diagram is determined by
noting that i must be in a horizontal direction from h (corre-
sponding to the horizontal position of the lower chord) and in a
direction from b that is parallel to the position of the upper chord.

The remaining points on the Maxwell diagram are found by the same
process, using two known points on the diagram to project lines of
known direction whose intersection will determine the location of an un-
known point. Once all the points are located, the diagram is complete and
can be used to find the magnitude and sense of each internal force. The
process for construction of the Maxwell diagram typically consists of
moving from joint to joint along the truss. Once one of the letters for an
internal space is determined on the Maxwell diagram, it may be used as
a known point for finding the letter for an adjacent space on the space di-
agram. The only limitation of the process is that it is not possible to find
more than one unknown point on the Maxwell diagram for any single
joint. Consider joint 7 on the separated joint diagram in Figure 3.3. To
solve this joint first, knowing only the locations of letters a through h on
the Maxwell diagram, it is necessary to locate four unknown points: l, m,
n, and o. This is three more unknowns than can be determined in a single
step, so three of the unknowns must be found by using other joints.

Solving for a single unknown point on the Maxwell diagram corre-
sponds to finding two unknown forces at a joint, since each letter on the
space diagram is used twice in the force identification for the internal
forces. Thus for joint 1 in the previous example, the letter I is part of the
identity of forces BI and IH, as shown on the separated joint diagram.
The graphic determination of single points on the Maxwell diagram,
therefore, is analogous to finding two unknown quantities in an algebraic
solution. As discussed previously, two unknowns are the maximum that
can be solved for in equilibrium of a coplanar, concurrent force system,
which is the condition of the individual joints in the truss.

When the Maxwell diagram is completed, the internal forces can be
read from the diagram as follows:

1. The magnitude is determined by measuring the length of the line
in the diagram, using the scale that was used to plot the vectors
for the external forces.
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2. The sense of individual forces is determined by reading the forces
in clockwise sequence around a single joint in the space diagram
and tracing the same letter sequences on the Maxwell diagram.

Figure 3.4a shows the force system at joint 1 and the force polygon
for these forces as taken from the Maxwell diagram. The forces known
initially are shown as solid lines on the force polygon, and the unknown
forces are shown as dashed lines. Starting with letter A on the force sys-
tem, we read the forces in a clockwise sequence as AB, BI, IH, and HA.
Note that, on the Maxwell diagram, moving from a to b is moving in the
order of the sense of the force, that is from tail to end of the force vector
that represents the external load on the joint. Using this sequence on the
Maxwell diagram, this force sense flow will be a continuous one. Thus,
reading from b to i on the Maxwell diagram is reading from tail to head
of the force vector, which indicates that force BI has its head at the left
end. Transferring this sense indication from the Maxwell diagram to the
joint diagram indicates that force BI is in compression; that is, it is push-
ing, rather than pulling, on the joint. Reading from i to h on the Maxwell
diagram shows that the arrowhead for this vector is on the right, which
translates to a tension effect on the joint diagram.

Having solved for the forces at joint 1 as described, the fact that the
forces in truss members BI and IH are known can be used to consider the
adjacent joints, 2 and 3. However, it should be noted that the sense re-
verses at the opposite ends of the members in the joint diagrams. Refer-
ring to the separated joint diagram in Figure 3.3, if the upper chord
member shown as force BI in joint 1 is in compression, its arrowhead is
at the lower left end in the diagram for joint 1, as shown in Figure 3.4a.
However, when the same force is shown as IB at joint 2, its pushing ef-
fect on the joint will be indicated by having the arrowhead at the upper
right end in the diagram for joint 2. Similarly, the tension effect of the
lower chord is shown in joint 1 by placing the arrowhead on the right end
of the force IH, but the same tension force will be indicated in joint 3 by
placing the arrowhead on the left end of the vector for force HI.

If the solution sequence of solving joint 1 and then joint 2 is chosen,
it is now possible to transfer the known force in the upper chord to joint
2. Thus, the solution for the five forces at joint 2 is reduced to finding
three unknowns, since the load BC and the chord force IB are now
known. However, it is still not possible to solve joint 2, since there are
two unknown points on the Maxwell diagram (k and j) corresponding to
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Figure 3.4 Graphic solutions for joints 1, 2, and 3. (a) Joint 1. (b) Joint 3. (c) Joint 2.
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the three unknown forces. An option, therefore, is to proceed from joint
1 to joint 3, at which there are now only two unknown forces. On the
Maxwell diagram, the single unknown point j can be found by projecting
vector IJ vertically from i and projecting vector JH horizontally from
point h. Since point i is also located horizontally from point h, this shows
that the vector IJ has zero magnitude, since both i and j must be on a hor-
izontal line from h in the Maxwell diagram. This indicates that there is
actually no stress in this truss member for this loading condition and that
points i and j are coincident on the Maxwell diagram. The joint force di-
agram and the force polygon for joint 3 are as shown in Figure 3.4b. In
the joint force diagram, place a zero, rather than an arrowhead, on the
vector line for IJ to indicate the zero stress condition. In the force poly-
gon in Figure 3.4b, the two force vectors are slightly separated for clar-
ity, although they are actually coincident on the same line.

Having solved for the forces at joint 3, proceed to joint 2, since there
remain only two unknown forces at this joint. The forces at the joint 
and the force polygon for joint 2 are shown in Figure 3.4c. As for joint 1,
read the force polygon in a sequence determined by reading clockwise
around the joint: BCKJIB. Following the continuous direction of the
force arrows on the force polygon in this sequence, it is possible to es-
tablish the sense for the two forces CK and KJ.

It is possible to proceed from one end and to work continuously across
the truss from joint to joint to construct the Maxwell diagram in this ex-
ample. The sequence in terms of locating points on the Maxwell diagram
would be i-j-k-l-m-n-o-p, which would be accomplished by solving the
joints in the following sequence: 1, 3, 2, 5, 4, 6, 7, 9, 8. However, it is ad-
visable to minimize the error in graphic construction by working from
both ends of the truss. Thus, a better procedure would be to find points i-
j-k-l-m, working from the left end of the truss, and then to find points p-
o-n-m, working from the right end. This would result in finding two
locations for the point m, whose separation constitutes the error in draft-
ing accuracy.

Problems 3.1.A, B
Using a Maxwell diagram, find the internal forces in the trusses in 
Figure 3.5.
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3.2 ALGEBRAIC ANALYSIS OF TRUSSES

Graphical solution for the internal forces in a truss using the Maxwell di-
agram corresponds essentially to an algebraic solution by the method of
joints. This method consists of solving the concentric force systems at the
individual joints using simple force equilibrium equations. The process
will be illustrated using the previous example.

As with the graphic solution, first determine the external forces, 
consisting of the loads and the reactions. Then proceed to consider the
equilibrium of the individual joints, following a sequence as in the graphic
solution. The limitation of this sequence, corresponding to the limit of
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Figure 3.5 Problems 3.1.A, B.
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finding only one unknown point in the Maxwell diagram, is that only two
unknown forces at any single joint can be found in a single step. (Two
conditions of equilibrium produce two equations.) Referring to Figure
3.6, the solution for joint 1 is as follows.

The force system for the joint is drawn with the sense and magnitude
of the known forces shown, but with the unknown internal forces repre-
sented by lines without arrowheads, since their senses and magnitudes
initially are unknown (Figure 3.6a). For forces that are not vertical or
horizontal, replace the forces with their horizontal and vertical compo-
nents. Then consider the two conditions necessary for the equilibrium of
the system: the sum of the vertical forces is zero and the sum of the hor-
izontal forces is zero.

ALGEBRAIC ANALYSIS OF TRUSSES 121

Figure 3.6 Algebraic solution for joint 1. (a) The initial condition. (b) Unknowns
reduced to components. (c) Solution of vertical equilibrium. (d ) Solution of hori-
zontal equilibrium. (e) Final answer.
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If the algebraic solution is performed carefully, the sense of the forces
will be determined automatically. However, it is recommended that,
whenever possible, the sense be predetermined by simple observations of
the joint conditions, as will be illustrated in the solutions.

The problem to be solved at joint 1 is as shown in Figure 3.6a. In 
Figure 3.6b, the system is shown with all forces expressed as vertical and
horizontal components. Note that, although this now increases the num-
ber of unknowns to three (IH, BIv, and BIh), there is a numeric relation-
ship between the two components of BI. When this condition is added to
the two algebraic conditions for equilibrium, the number of usable re-
lationships totals three, so that the necessary conditions to solve for the
three unknowns are present.

The condition for vertical equilibrium is shown in Figure 3.6c. Since
the horizontal forces do not affect the vertical equilibrium, the balance is
between the load, the reaction, and the vertical component of the force in
the upper chord. Simple observation of the forces and the known magni-
tudes makes it obvious that force BIv must act downward, indicating that
BI is a compression force. Thus, the sense of BI is established by simple
visual inspection of the joint, and the algebraic equation for vertical equi-
librium (with upward force considered positive) is

ΣFv = 0 = +2500 – 500 – BIv

From this equation, BIv is determined to have a magnitude of 2000 lb.
Using the known relationships between BI, BIv, and BIh, the values of
these three quantities can be determined if any one of them is known.
Thus,

from which

and

BI = =1 000

0 555
2000 3606

.

.
( )  lb

BIh = =0 832

0 555
2000 3000

.

.
( )  lb

BI BI BIv h

1 000 0 555 0 832. . .
= =
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The results of the analysis to this point are shown in Figure 3.6d, from
which it may be observed that the conditions for equilibrium of the hor-
izontal forces can be expressed. Stated algebraically (with force sense to-
ward the right considered positive), the condition is

ΣFh = 0 = IH – 3000

from which it is established that the force in IH is 3000 lb.
The final solution for the joint is then as shown in Figure 3.6e. On this

diagram, the internal forces are identified as to sense by using C to indi-
cate compression and T to indicate tension.

As with the graphic solution, proceed to consider the forces at joint 3.
The initial condition at this joint is as shown in Figure 3.7a, with the sin-
gle known force in member HI and the two unknown forces in IJ and JH.
Since the forces at this joint are all vertical and horizontal, there is no
need to use components. Consideration of vertical equilibrium makes it
obvious that it is not possible to have a force in member IJ. Stated alge-
braically, the condition for vertical equilibrium is

ΣFv = 0 = IJ (since IJ is the only force)

It is equally obvious that the force in JH must be equal and opposite
to that in HI, since they are the only two horizontal forces. That is, stated
algebraically,

ΣFv = 0 = JH – 3000

The final answer for the forces at joint 3 is as shown in Figure 3.7b.
Note the convention for indicating a truss member with no internal force.
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Figure 3.7 Algebraic solution for joint 3. (a) The initial condition. (b) The solution.
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Now proceed to consider joint 2; the initial condition is as shown in
Figure 3.8a. Of the five forces at the joint, only two remain unknown.
Following the procedure for joint 1, first resolve the forces into their ver-
tical and horizontal components, as shown in Figure 3.8b.

Since the sense of forces CK and KJ is unknown, use the procedure of
considering them to be positive until proven otherwise. That is, if they
are entered into the algebraic equations with an assumed sense, and the
solution produces a negative answer, then the assumption was wrong.
However, be careful to be consistent with the sense of the force vectors,
as the following solution will illustrate.

Arbitrarily assume that force CK is in compression and force KJ is in
tension. If this is so, the forces and their components will be as shown in
Figure 3.8c. Then consider the conditions for vertical equilibrium; the
forces involved will be those shown in Figure 3.8d, and the equation for
vertical equilibrium will be

ΣFv = 0 = – 1000 + 2000 – CKv – KJv

or

0 = + 1000 – 0.555CK – 0.555KJ (3.2.1)

Now consider the conditions for horizontal equilibrium; the forces
will be as shown in Figure 3.8e, and the equation will be

ΣFh = 0 = + 3000 – CKh + KJh

or

0 = + 3000 – 0.832CK + 0.832KJ (3.2.2)

Note the consistency of the algebraic signs and the sense of the force
vectors, with positive forces considered as upward and toward the right.
Now solve these two equations simultaneously for the two unknown
forces, as follows:

1. Multiply equation (3.2.1) by 0.832/0.555.

0
0 832

0 555
1000

0 832

0 555
0 555

0 832

0 555
0 555= + + − + −.

.
( )

.

.
( . )

.

.
( . )CK KJ
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Figure 3.8 Algebraic solution for joint 2. (a) The initial condition. (b) Unknowns
reduced to components. (c) Assumed sense of the unknowns for the algebraic 
solution. (d ) Solution of vertical equilibrium. (e) Solution of horizontal equilibrium.
(f ) Final answer in components. (g) Final answer in true forces.
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or

0 = + 1500 – 0.832CK – 0.832KJ

2. Add this equation to equation (3.2.2) and solve for CK.

Note that the assumed sense of compression in CK is correct, since the al-
gebraic solution produces a positive answer. Substituting this value for
CK in equation (3.2.1),

0 = + 1000 – 0.555(2704) – 0.555(KJ)

and

Since the algebraic solution produces a negative quantity for KJ, the 
assumed sense for KJ is wrong and the member is actually in 
compression.

The final answers for the forces at joint 2 are as shown in Figure 3.8g.
In order to verify that equilibrium exists, however, the forces are 
shown in the form of their vertical and horizontal components in Figure
3.8f.

When all of the internal forces have been determined for the truss, the
results may be recorded or displayed in a number of ways. The most di-
rect way is to display them on a scaled diagram of the truss, as shown in
Figure 3.9a. The force magnitudes are recorded next to each member
with the sense shown as T for tension or C for compression. Zero stress
members are indicated by the conventional symbol consisting of a zero
placed directly on the member.

When solving by the algebraic method of joints, the results may be
recorded on a separated joint diagram, as shown in Figure 3.9b. If the
values for the vertical and horizontal components of force in sloping
members are shown, it is a simple matter to verify the equilibrium of the
individual joints.

KJ = = −500

0 555
901

.
 lb

0 4500 1 664
4500

1 664
2704= + − = =. ,

.
CK CK  lb

126 ANALYSIS OF TRUSSES

3751 P-03  11/13/01  12:21 PM  Page 126



 

Problems 3.2.A, B
Using the algebraic method of joints, find the internal forces in the
trusses in Figure 3.5.

3.3 THE METHOD OF SECTIONS

Figure 3.10 shows a simple-span flat-chorded truss with a vertical load-
ing on the top chord joints. The Maxwell diagram for this loading and the
answers for the internal forces are also shown in the figure. This solution
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Figure 3.9 Presentation of the internal forces in the truss. (a) Member forces. (b)
Separated joint diagram.
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is provided as a reference for comparison with the results that will be ob-
tained by the method of sections.

In Figure 3.11, the truss is shown with a cut plane passing vertically
through the third panel. The free-body diagram of the portion of the truss
to the left of this cut plane is shown in Figure 3.11a. The internal forces
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Figure 3.10 Graphic solution for the flat-chorded truss.
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in the three cut members become external forces on this free body, and
their values may be found using the following analysis of the static equi-
librium of the free body.

In Figure 3.11b, we observe the condition for vertical equilibrium.
Since ON is the only cut member with a vertical force component, it
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Figure 3.11 Investigation of the truss by the method of sections.
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must be used to balance the other external forces, resulting in the value
for ONv of 500 lb acting downward. With the angle of inclination of this
member known, the horizontal component and the true force in the mem-
ber can now be found.

We next consider a condition of equilibrium of moments, selecting a
center of moments as a point that will eliminate all but one of the un-
known forces, thus producing a single algebraic equation with only one
unknown. Selecting the top chord joint, as shown in Figure 3.11c, both
the force in the top chord and in member ON are eliminated. Then the
only remaining unknown force is that in the bottom chord (member NI)
and the summation is

ΣM = 0 = +(3000 × 24) –(500 × 24) –(1000 × 12) –(NI × 10)

or

Note that the sense of the force in NI was assumed to be tension, and the
sign used for NI in the moment summation was based on this assumption.

One way to find the force in the top chord is to do a summation of hor-
izontal forces, since the horizontal component of ON and the force in NI
are now known. An alternative would be to use another moment sum-
mation, this time selecting the bottom chord joint shown in Figure 3.11d
in order to eliminate IN and ON from the summation equation.

ΣM2 = 0 = +(3000 × 36) –(500 × 36) –(1000 × 24) –(1000 × 12) –(DO × 10)

Thus,

The forces in all of the horizontal and diagonal members of the truss
may be found by cutting sections and writing equilibrium equations sim-
ilar to the process just illustrated. In order to find the forces in the verti-
cal members, it is possible to cut the truss with an angled plane, as shown

DO = =54 000

10
5400

,
 lb

10 72 000 12 000 12 000 48 000

48 000

10
4800

( ) , , , ,

,

NI

NI

= + − − = +

= =  lb
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in Figure 3.12. A summation of vertical forces on this free body will
yield the internal force of 1500 lb in compression in member MN.

The method of sections is sometimes useful when it is desired to find
the internal force in individual members of a truss without doing a com-
plete analysis for all of the members.

Problems 3.3.A, B
Find the internal forces in the members of the trusses in Figure 3.13
using: (1) a Maxwell diagram; (2) the algebraic method of sections.
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Figure 3.12 Cut section used to find the
force in the vertical members.

Figure 3.13 Problems 3.3.A, B.
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132

4
ANALYSIS OF BEAMS

A beam is a structural member that resists transverse loads. The supports
for beams are usually at or near the ends, and the supporting upward
forces are called reactions. The loads acting on a beam tend to bend it
rather than shorten or lengthen it. Girder is the name given to a beam that
supports smaller beams; all girders are beams insofar as their structural
action is concerned. For construction usage, beams carry various names,
depending on the form of construction; these include purlin, joist, rafter,
lintel, header, and girt. Figure 4.1 shows a floor structure achieved with
closely spaced wood beams (called joists when occurring in this situa-
tion) that are supported by larger wood beams, which are in turn sup-
ported by masonry bearing walls or wood columns. This classic system
is extensively used, although the materials and elements utilized and the
details of the construction all change over time.
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4.1 TYPES OF BEAMS

There are, in general, five types of beams, which are identified by the
number, kind, and position of the supports. Figure 4.2 shows diagram-
matically the different types, and also the shape each beam tends to as-
sume as it bends (deforms) under the loading. In ordinary steel or
reinforced concrete beams, these deformations are not usually visible to
the eye, but some deformation is always present.

A simple beam rests on a support at each end, the ends of the beam
being free to rotate (Figure 4.2a).

A cantilever beam is supported at one end only. A beam embedded in
a wall and projecting beyond the face of the wall is a typical ex-
ample (Figure 4.2b).

An overhanging beam is a beam whose end or ends project beyond its
supports. Figure 4.2c indicates a beam overhanging one support only.

TYPES OF BEAMS 133

Figure 4.1 Beams were the earliest elements used to achieve spanning struc-
tures—first in the form of untreated cut tree trunks, and then, as tools were devel-
oped, in more useful shaped forms. Large beams used for long spans usually carry
point loadings from other structural elements, such as the joists shown here hung
from the timber beam. Lighter beams, such as the joists, typically carry a uniformly
distributed load from a directly attached deck. Although developed in wood, this
classic system is emulated in steel and concrete. Reproduced from Architects and
Builders Handbook, by H. Parker and F. Kidder, 1931, with permission of the pub-
lisher, John Wiley & Sons, New York.
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A continuous beam rests on more than two supports (Figure 4.2d ).
Continuous beams are commonly used in reinforced concrete and
welded steel construction.

A restrained beam has one or both ends restrained or fixed against ro-
tation (Figure 4.2e).

4.2 LOADS AND REACTIONS

Beams are acted on by external forces that consist of the loads and the re-
action forces developed by the beam’s supports. The two types of loads
that commonly occur on beams are called concentrated and distributed.
A concentrated load is assumed to act at a definite point; such a load is
that caused when one beam supports another beam. A distributed load is
one that acts over a considerable length of the beam; such a load is one
caused by a floor deck supported directly by a beam. If the distributed
load exerts a force of equal magnitude for each unit of length of the
beam, it is known as a uniformly distributed load. The weight of a beam
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Figure 4.2 Types of beams. (a) Simple. (b) Cantilever. (c) Overhanging. (d ) Con-
tinuous. (e) Restrained.
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is a uniformly distributed load that extends over the entire length of the
beam. However, some uniformly distributed loadings supported by the
beam may extend over only a portion of the beam length.

Reactions are the upward forces acting at the supports that hold in
equilibrium the downward forces or loads. The left and right reactions of
a simple beam are usually called R1 and R2, respectively. Determination
of reactions for simple beams is achieved with the use of equilibrium
conditions for parallel force systems, as demonstrated in Section 2.12.

Figure 4.3a shows a portion of a floor framing plan. The diagonal
crosshatching represents the area supported by one of the beams. This
area is 8 × 20 ft, the dimensions of the beam spacing and the beam span.
The beam is supported at each end by girders that span between the sup-
porting columns. If the total load on the crosshatched area is 100 psf, then
the total load on the beam is determined as

W = 8 × 20 × 100 = 16,000 lb or 16 kips

It is common to designate this total load as W, using the capital form of
the letter. However, for a uniformly distributed load, the loading may
also be expressed in the form of a unit load per unit of length of the beam.
This unit load is designated by w, using the lowercase form. Thus, for
this beam,

For the beam in Figure 4.3, the load is symmetrically placed, and the two
reactions will thus each be one-half of the total load. The reactions are
developed as concentrated loads on the girders. The loading diagrams for
the beam and girder are as shown in Figures 4.3b and c.

For unsymmetrical beam loadings, the reaction forces can be deter-
mined by the procedures demonstrated in Section 2.12.

4.3 SHEAR IN BEAMS

Figure 4.4a represents a simple beam with a uniformly distributed load
over its entire length. Examination of an actual beam so loaded would

w = =16 000

20
800

,
 lb /ft or 800 plf (pounds per lineal foot)

SHEAR IN BEAMS 135

3751 P-04  11/13/01  12:21 PM  Page 135



 

136 ANALYSIS OF BEAMS

Figure 4.3 Determination of beam loads and display of the loaded beams for a
framing system. (a) Plan. (b) Loading diagram for the beam. (c) Loading diagram
for the girder.

probably not reveal any effects of the loading on the beam. However,
there are three distinct major tendencies for the beam to fail. Figures
4.4b–d illustrate the three phenomena.

First, there is a tendency for the beam to fail by dropping between the
supports (Figure 4.4b). This is called vertical shear. Second, the beam
may fail by bending (Figure 4.4c). Third, there is a tendency in wood
beams for the fibers of the beam to slide past each other in a horizontal
direction (Figure 4.4d ), an action described as horizontal shear. Natu-
rally, a beam properly designed does not fail in any of the ways just
mentioned, but these tendencies to fail are always present and must be
considered in structural design.
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Vertical Shear

Vertical shear is the tendency for one part of a beam to move vertically
with respect to an adjacent part. The magnitude of the shear force at any
section in the length of a beam is equal to the algebraic sum of the verti-
cal forces on either side of the section. Vertical shear is usually repre-
sented by the letter V. In computing its values in the examples and
problems, consider the forces to the left of the section, but keep in mind
that the same resulting force magnitude will be obtained with the forces
on the right. To find the magnitude of the vertical shear at any section in
the length of a beam, simply add up the forces to the right or the left of
the section. It follows from this procedure that the maximum value of the
shear for simple beams is equal to the greater reaction.

Example 1. Figure 4.5a illustrates a simple beam with concentrated
loads of 600 lb and 1000 lb. The problem is to find the value of the ver-
tical shear at various points along the length of the beam. Although the
weight of the beam constitutes a uniformly distributed load, it is ne-
glected in this example.

Solution: The reactions are computed as previously described, and are
found to be R1 = 1000 lb and R2 = 600 lb.

Consider next the value of the vertical shear V at an infinitely short
distance to the right of R1. Applying the rule that the shear is equal to the
reaction minus the loads to the left of the section, we write

V = R1 – 0, or V = 1000 lb
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Figure 4.4 Characteristic forms of failure for a simple beam. (a) Beam with
uniformly distributed load. (b) Vertical shear. (c) Bending. (d ) Horizontal shear.
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The zero represents the value of the loads to the left of the section, which
of course, is zero. Now take a section 1 ft to the right of R1; again

V(x = 1) = R1 – 0, or V(x = 1) = 1000 lb

The subscript (x = 1) indicates the position of the section at which the
shear is taken, the distance of the section from R1. At this section, the
shear is still 1000 lb and has the same magnitude up to the 600-lb load.

The next section to consider is a very short distance to the right of the
600-lb load. At this section,

V(x = 2+) = 1000 – 600 = 400 lb

Because there are no loads intervening, the shear continues to be the
same magnitude up to the 1000-lb load. At a section a short distance to
the right of the 1000-lb load,

V(x = 6+) = 1000 – (600 + 1000) = –600 lb

This magnitude continues up to the right-hand reaction R2.
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Figure 4.5 Examples 1 and 2.
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Example 2. The beam shown in Figure 4.5b supports a concentrated
load of 12,000 lb located 6 ft from R2 and a uniformly distributed load of
800 pounds per linear foot (lb/ft) over its entire length. Compute the
value of vertical shear at various sections along the span.

Solution: By use of the equations of equilibrium, the reactions are deter-
mined to be R1 = 10,900 lb and R2 = 13,900 lb. Note that the total distrib-
uted load is 800 × 16 = 12,800 lb. Now consider the vertical shear force
at the following sections at a distance measured from the left support.

V(x = 0) = 10,900 – 0 = 10,900 lb
V(x = 1) = 10,900 – (800 × 1) = 10,100 lb
V(x = 5) = 10,900 – (800 × 5) = 6900 lb
V(x = 10–) = 10,900 – (800 × 10) = 2900 lb
V(x = 10+) = 10,900 – {(800 × 10) + 12,000)} = –9100 lb
V(x = 16) = 10,900 – {(800 × 16) + 12,000)} = –13,900

Shear Diagrams

In the two preceding examples, the value of the shear at several sections
along the length of the beams was computed. In order to visualize the re-
sults, it is common practice to plot these values on a diagram, called the
shear diagram, which is constructed as explained below.

To make such a diagram, first draw the beam to scale and locate the
loads. This has been done in Figures 4.6a and b by repeating the load di-
agrams of Figures 4.5a and b, respectively. Beneath the beam draw a
horizontal baseline representing zero shear. Above and below this line,
plot at any convenient scale the values of the shear at the various sec-
tions; the positive, or plus, values are placed above the line and the neg-
ative, or minus, values below. In Figure 4.6a, for instance, the value of
the shear at R1 is +1000 lb. The shear continues to have the same value
up to the load of 600 lb, at which point it drops to 400 lb. The same
value continues up to the next load, 1000 lb, where it drops to –600 lb
and continues to the right-hand reaction. Obviously, to draw a shear di-
agram, it is necessary to compute the values at significant points only.
Having made the diagram, we may readily find the value of the shear 
at any section of the beam by scaling the vertical distance in the dia-
gram. The shear diagram for the beam in Figure 4.6b is made in the 
same manner.
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There are two important facts to note concerning the vertical shear.
The first is the maximum value. The diagrams in each case confirm the
earlier observation that the maximum shear is at the reaction having the
greater value, and its magnitude is equal to that of the greater reaction. In
Figure 4.6a, the maximum shear is 1000 lb, and in Figure 4.6b, it is
13,900 lb. We disregard the positive or negative signs in reading the
maximum values of the shear, for the diagrams are merely conventional
methods of representing the absolute numerical values.

Another important fact to note is the point at which the shear changes
from a plus to a minus quantity. We call this the point at which the shear
passes through zero. In Figure 4.6a, it is under the 1000-lb load, 6 ft from
R1. In Figure 4.6b, it is under the 12,000-lb load, 10 ft from R1. A major con-
cern for noting this point is that it indicates the location of the maximum
value of bending moment in the beam, as discussed in the next section.

Problems 4.3.A–F
For the beams shown in Figures 4.7a–f, draw the shear diagrams and note
all critical values for shear. Note particularly the maximum value for
shear and the point at which the shear passes through zero.

4.4 BENDING MOMENTS IN BEAMS

The forces that tend to cause bending in a beam are the reactions and the
loads. Consider the section X-X, 6 ft from R1 (Figure 4.8). The force R1,
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Figure 4.6 Construction of shear diagrams.
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or 2000 lb, tends to cause a clockwise rotation about this point. Because the
force is 2000 lb and the lever arm is 6 ft, the moment of the force is 2000
× 6 = 12,000 ft-lb. This same value may be found by considering the forces
to the right of the section X-X: R2, which is 6000 lb, and the load 8000 lb,
with lever arms of 10 and 6 ft, respectively. The moment of the reaction is
6000 × 10 = 60,000 ft-lb, and its direction is counterclockwise with respect
to the section X-X. The moment of force 8000 lb is 8000 × 6 = 48,000 
ft-lb, and its direction is clockwise. Then 60,000 ft-lb – 48,000 ft-lb =
12,000 ft-lb, the resultant moment tending to cause counterclockwise rota-
tion about the section X-X. This is the same magnitude as the moment of
the forces on the left, which tends to cause a clockwise rotation.

Thus, it makes no difference whether use is made of the forces to the
right of the section or the left, the magnitude of the moment is the same.
It is called the bending moment (or the internal bending moment) because
it is the moment of the forces that causes bending stresses in the beam. Its
magnitude varies throughout the length of the beam. For instance, at 4 ft
from R1, it is only 2000 × 4, or 8000 ft-lb. The bending moment is the al-
gebraic sum of the moments of the forces on either side of the section.
For simplicity, take the forces on the left; then the bending moment at
any section of a beam is equal to the moments of the reactions minus the
moments of the loads to the left of the section. Because the bending mo-
ment is the result of multiplying forces by distances, the denominations
are foot-pounds or kip-feet.

Bending Moment Diagrams

The construction of bending moment diagrams follows the procedure
used for shear diagrams. The beam span is drawn to scale showing the 
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Figure 4.8 Development of bending at a selected cross section.
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locations of the loads. Below this, and usually below the shear diagram,
a horizontal baseline is drawn representing zero bending moment. Then
the bending moments are computed at various sections along the beam
span, and the values are plotted vertically to any convenient scale. In sim-
ple beams, all bending moments are positive and therefore are plotted
above the baseline. In overhanging or continuous beams, there are also
negative moments, and these are plotted below the baseline.

Example 3. The load diagram in Figure 4.9 shows a simple beam with
two concentrated loads. Draw the shear and bending moment diagrams.

Solution: R1 and R2 are computed first, and are found to be 16,000 lb and
14,000 lb, respectively. These values are recorded on the load diagram.

The shear diagram is drawn as described in Section 4.3. Note that, in
this instance, it is only necessary to compute the shear at one section
(between the concentrated loads) because there is no distributed load,
and we know that the shear at the supports is equal in magnitude to the
reactions.

Because the value of the bending moment at any section of the beam
is equal to the moments of the reactions minus the moments of the loads
to the left of the section, the moment at R1 must be zero, for there are no
forces to the left. Other values in the length of the beam are computed as
follows. The subscripts (x = 1, etc.) show the distance from R1 at which
the bending moment is computed.

M(x = 1)2 = (16,000 × 1) = 16,000 ft-lb
M(x = 2)2 = (16,000 × 2) = 32,000 ft-lb
M(x = 5)2 = (16,000 × 5) – (12,000 × 3) = 44,000 ft-lb
M(x = 8)2 = (16,000 × 8) – (12,000 × 6) = 56,000 ft-lb
M(x = 10) = (16,000 × 10) – {(12,000 × 8) + (18,000 × 2)} = 28,000 ft-lb
M(x = 12) = (16,000 × 12) – {(12,000 × 10) + (18,000 × 4)} = 0

The result of plotting these values is shown in the bending moment di-
agram of Figure 4.9. More moments were computed than were necessary.
We know that the bending moments at the supports of simple beams are
zero, and in this instance, only the bending moments directly under the
loads were needed.
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Relations Between Shear and Bending Moment

In simple beams, the shear diagram passes through zero at some point be-
tween the supports. As stated earlier, an important principle in this re-
spect is that the bending moment has a maximum magnitude wherever
the shear passes through zero. In Figure 4.9, the shear passes through
zero under the 18,000-lb load, that is, at x = 8 ft. Note that the bending
moment has its greatest value at this same point, 56,000 ft-lb.

Example 4. Draw the shear and bending moment diagrams for the beam
shown in Figure 4.10, which carries a uniformly distributed load of 400
lb/ft and a concentrated load of 21,000 lb located 4 ft from R1.

Solution: Computing the reactions, we find R1 = 17,800 lb and R2 =
8800 lb. By use of the process described in Section 4.3, the critical shear
values are determined and the shear diagram is drawn as shown in the
figure.
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Figure 4.9 Example 3.
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Although the only value of bending moment that must be computed is
that where the shear passes through zero, some additional values are de-
termined in order to plot the true form of the moment diagram. Thus,

M(x = 2)2 = (17,800 × 2) – (400 × 2 × 1) = 34,800 ft-lb
M(x = 4)2 = (17,800 × 4) – (400 × 4 × 2) = 68,000 ft-lb
M(x = 8)2 = (17,800 × 8) – {(400 × 8 × 4) + (21,000 × 4)} = 45,600 ft-lb
M(x = 12) = (17,800 × 12) – {(400 × 12 × 6) + (21,000 × 8)} = 16,800 ft-lb

From the two preceding examples (Figures 4.9 and 4.10), it will be ob-
served that the shear diagram for the parts of the beam on which no loads
occur is represented by horizontal lines. For the parts of the beam on
which a uniformly distributed load occurs, the shear diagram consists of
straight inclined lines. The bending moment diagram is represented by
straight inclined lines when only concentrated loads occur, and by a
curved line if the load is distributed.
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Figure 4.10 Example 4.
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Occasionally, when a beam has both concentrated and uniformly dis-
tributed loads, the shear does not pass through zero under one of the con-
centrated loads. This frequently occurs when the distributed load is
relatively large compared with the concentrated loads. Since it is neces-
sary in designing beams to find the maximum bending moment, we must
know the point at which it occurs. This, of course, is the point where the
shear passes through zero, and its location is readily determined by the
procedure illustrated in the following example.

Example 5. The load diagram in Figure 4.11 shows a beam with a con-
centrated load of 7000 lb, applied 4 ft from the left reaction, and a uni-
formly distributed load of 800 lb/ft extending over the full span.
Compute the maximum bending moment on the beam.

Solution: The values of the reactions are found to be R1 = 10,600 lb and
R2 = 7600 lb and are recorded on the load diagram.

The shear diagram is constructed, and it is observed that the shear
passes through zero at some point between the concentrated load of 7000
lb and the right reaction. Call this distance x ft from R2. The value of the
shear at this section is zero; therefore, an expression for the shear for this
point, using the reaction and loads, is equal to zero. This equation con-
tains the distance x:

V x xx( ) , .at  ft= − + = = =7600 800 0
7600

800
9 5
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Figure 4.11 Example 5.
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The zero shear point is thus at 9.5 ft from the right support and (as shown
in the diagram) at 4.5 ft from the left support. This location can also be
determined by writing an equation for the summation of shear from the
left of the point, which should produce the answer of 4.5 ft.

Following the convention of summing up the moments from the left
of the section, the maximum moment is determined as

Problems 4.4.A–F
Draw the shear and bending moment diagrams for the beams in Figure
4.7, indicating all critical values for shear and moment and all significant
dimensions. (Note: These are the beams for Problem 4.3, for which the
shear diagrams were constructed.)

4.5 SENSE OF BENDING IN BEAMS

When a simple beam bends, it has a tendency to assume the shape shown
in Figure 4.12a. In this case, the fibers in the upper part of the beam are
in compression. For this condition, the bending moment is considered as
positive. Another way to describe a positive bending moment is to say
that it is positive when the curve assumed by the bent beam is concave
upward. When a beam projects beyond a support (Figure 4.12b), this
portion of the beam has tensile stresses in the upper part. The bending
moment for this condition is called negative; the beam is bent concave
downward. When constructing moment diagrams, following the method
previously described, the positive and negative moments are shown
graphically.

M x( . ) ( , . ) ( . ) .
.

,  ft-lb= = + × − × − × ×



 =4 5 10 600 4 5 7000 0 5 800 4 5

4 5

2
36 100
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Figure 4.12 Sign of internal bending moment; bending stress convention.
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Example 6. Draw the shear and bending moment diagrams for the over-
hanging beam shown in Figure 4.13.

Solution: Computing the reactions

From ΣM about R1: R2 × 12 = 600 × 16 × 8, R2 = 6400 lb
From ΣM about R2: R1 × 12 = 600 × 16 × 4, R1 = 3200 lb

With the reactions determined, the construction of the shear diagram is
quite evident. For the location of the point of zero shear, considering its
distance from the left support as x,

3200 – 600x = 0, x = 5.33 ft
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Figure 4.13 Example 6.
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For the critical values needed to plot the moment diagram:

The form of the moment diagram for the distributed loading is a curve
(parabolic), which may be verified by plotting some additional points on
the graph.

For this case, the shear diagram passes through zero twice, both of
which points indicate peaks of the moment diagram—one positive and
one negative. As the peak in the positive portion of the moment diagram
is actually the apex of the parabola, the location of the zero moment
value is simply twice the value previously determined as x. This point
corresponds to the change in the form of curvature on the elastic curve
(deflected shape) of the beam; this point is described as the inflection
point for the deflected shape. The location of the point of zero moment
can also be determined by writing an equation for the sum of moments at
the unknown location. In this case, calling the new unknown point x,

Solution of this quadratic equation should produce the value of x =
10.67 ft.

Example 7. Compute the maximum bending moment for the overhang-
ing beam shown in Figure 4.14.

Solution: Computing the reactions gives R1 = 3200 lb and R2 = 2800 lb.
As usual, the shear diagram can now be plotted as the graph of the loads
and reactions, proceeding from left to right. Note that the shear passes
through zero at the location of the 4000-lb load and at both supports. As
usual, these are clues to the form of the moment diagram.

With the usual moment summations, values for the moment diagram
can now be found at the locations of the supports and all of the concen-
trated loads. From this plot, it will be noted that there are two inflection
points (locations of zero moment). As the moment diagram is composed
of straight-line segments in this case, the locations of these points may be

M x x
x= = + × − × ×
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found by writing simple linear equations for their locations. However,
use can also be made of some relationships between the shear and mo-
ment graphs. One of these has already been used, relating to the correla-
tion of zero shear and maximum moment. Another relationship is that the
change of the value of moment between any two points along the beam
is equal to the total area of the shear diagram between the points. If the
value of moment is known at some point, it is thus a simple matter to find
values at other points. For example, starting from the left end, the value
of moment is known to be zero at the left end of the beam; then the value
of the moment at the support is the area of the rectangle on the shear
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Figure 4.14 Example 7.
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diagram with base of 4 ft and height of 800 lb—the area being 4 × 800 =
3200 ft-lb.

Now, proceeding along the beam to the point of zero moment (call it
x distance from the support), the change is again 3200, which relates to
an area of the shear diagram that is x × 2400. Thus,

And now, calling the distance from the right support to the point of zero
moment x,

Problems 4.5.A–D
Draw the shear and bending moment diagrams for the beams in Figure
4.15, indicating all critical values for shear and moment and all signifi-
cant dimensions.

4.6 CANTILEVER BEAMS

In order to keep the signs for shear and moment consistent with those for
other beams, it is convenient to draw a cantilever beam with its fixed end
to the right, as shown in Figure 4.16. We then plot the values for the shear
and moment on the diagrams as before, proceeding from the left end.

Example 8. The cantilever beam shown in Figure 4.16a projects 12 ft
from the face of the wall and has a concentrated load of 800 lb at the un-
supported end. Draw the shear and moment diagrams. What are the val-
ues of the maximum shear and maximum bending moment?

Solution: The value of the shear is –800 lb throughout the entire length
of the beam. The bending moment is maximum at the wall; its value is
800 × 12 = –9600 ft-lb. The shear and moment diagrams are as shown in
Figure 4.16a. Note that the moment is all negative for the cantilever beam,
corresponding to its concave downward shape throughout its length.

2600 400
400

2600
0 154x x= = =, .  ft

2400 3200
3200

2400
1 33x x= = =, .  ft
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Figure 4.15 Problems 4.5.A–D.
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Although they are not shown in the figure, the reactions in this case
are a combination of an upward force of 800 lb and a clockwise resisting
moment of 9600 ft-lb.

Example 9. Draw the shear and bending moment diagrams for the can-
tilever beam shown in Figure 4.16b, which carries a uniformly distrib-
uted load of 500 lb/ft over its full length.

Solution: The total load is 500 × 10 = 5000 lb. The reactions are an up-
ward force of 5000 lb and a moment determined as

which—it may be noted—is also the total area of the shear diagram be-
tween the outer end and the support.

Example 10. The cantilever beam indicated in Figure 4.17 has a con-
centrated load of 2000 lb and a uniformly distributed load of 600 lb/ft at
the positions shown. Draw the shear and bending moment diagrams.

M = − × × = −500 10
10

2
25 000,  ft-lb
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Figure 4.16 Examples 8 and 9.
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What are the magnitudes of the maximum shear and maximum bending
moment?

Solution: The reactions are actually equal to the maximum shear and
bending moment. Determined directly from the forces, they are

The diagrams are quite easily determined. The other moment value
needed for the moment diagram can be obtained from the moment of the
concentrated load or from the simple rectangle of the shear diagram:
2000 × 8 = 16,000 ft-lb.

Note that the moment diagram has a straight-line shape from the outer
end to the beginning of the distributed load, and becomes a curve from
this point to the support.

It is suggested that Example 10 be reworked with Figure 4.17 re-
versed, left for right. All numerical results will be the same, but the shear
diagram will be positive over its full length.

V

M

= + × =

= − × − × ×



 = −

2000 600 6 5600

2000 14 600 6
6

2
38 800

( )

( ) ,

 lb

 ft-lb
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Figure 4.17 Example 10.
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Problems 4.6.A–D
Draw the shear and bending moment diagrams for the beams in Figure
4.18, indicating all critical values for shear and moment and all signifi-
cant dimensions.

4.7 TABULATED VALUES FOR BEAM BEHAVIOR

Bending Moment Formulas

The methods of computing beam reactions, shears, and bending moments
presented thus far in this chapter make it possible to find critical values
for design under a wide variety of loading conditions. However, certain
conditions occur so frequently that it is convenient to use formulas that
give the maximum values directly. Structural design handbooks contain
many such formulas; two of the most commonly used formulas are de-
rived in the following examples.
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Figure 4.18 Problems 4.6.A–D.
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Simple Beam, Concentrated Load at Center of Span

A simple beam with a concentrated load at the center of the span occurs
very frequently in practice. Call the load P and the span length between
supports L, as indicated in the load diagram of Figure 4.19a. For this
symmetrical loading, each reaction is P/2, and it is readily apparent that
the shear will pass through zero at distance x = L/2 from R1. Therefore,
the maximum bending moment occurs at the center of the span, under the
load. Computing the value of the bending moment at this section,

Example 11. A simple beam 20 ft in length has a concentrated load 
of 8000 lb at the center of the span. Compute the maximum bending 
moment.

Solution: As just derived, the formula giving the value of the maximum
bending moment for this condition is M = PL /4. Therefore,

Simple Beam, Uniformly Distributed Load

This is probably the most common beam loading; it occurs time and
again. For any beam, its own dead weight as a load to be carried is usu-
ally of this form. Call the span L and the unit load w, as indicated in Fig-
ure 4.19b. The total load on the beam is W = wL; hence each reaction is
W/2 or wL /2. The maximum bending moment occurs at the center of the
span at distance L /2 from R1. Writing the value of M for this section,

Note the alternative use of the unit load w or the total load W in this for-
mula. Both forms will be seen in various references. It is important to
carefully identify the use of one or the other.

M
wL L

w
L L wL WL= + ×



 − × ×



 =

2 2 2 4 8 8

2

, or 

M
PL= = × =
4

8000 20

4
40 000,  ft-lb

M
P L PL= × =
2 2 4
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Example 12. A simple beam 14 ft long has a uniformly distributed load
of 800 lb/ft. Compute the maximum bending moment.

Solution: As just derived, the formula that gives the maximum bending
moment for a simple beam with uniformly distributed load is M = wL2/8.
Substituting these values,

or, using the total load of 800 × 14 = 11,200 lb,

Use of Tabulated Values for Beams

Some of the most common beam loadings are shown in Figure 4.20. In
addition to the formulas for the reactions R, for maximum shear V, and
for maximum bending moment M, expressions for maximum deflection

M
WL= = × =
8

11 200 14

8
19 600

,
,  ft-lb

M
wL= = × =

2 2

8

800 14

8
19 600,  ft-lb
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Figure 4.19 Loading and internal force diagrams for simple beams.
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D (or ∆) are given also. Deflections formulas are not discussed in this
chapter, but are considered in Chapter 11.

In Figure 4.20, if the loads P and W are in pounds or kips, the vertical
shear V will also be in units of pounds or kips. When the loads are given
in pounds or kips and the span in feet, the bending moment M will be in
units of foot-pounds or kip-feet.
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Figure 4.20 Values and diagrams for typical beam loadings.
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Problem 4.7.A
A simple-span beam has two concentrated loads of 4 kips [17.8 kN],
each placed at the third points of the 24-ft [7.32-m] span. Find the value
for the maximum bending moment in the beam.

Problem 4.7.B
A simple-span beam has a uniformly distributed load of 2.5 kips/ft [36.5
kN/m] on a span of 18 ft [5.49 m]. Find the value for the maximum bend-
ing moment in the beam.

Problem 4.7.C
A simple beam with a span of 32 ft [9.745 m] has a concentrated load of
12 kips [53.4 kN] at 12 ft [3.66 m] from one end. Find the value for the
maximum bending moment in the beam.

Problem 4.7.D
A simple beam with a span of 36 ft [10.97 m] has a distributed load that
varies from a value of 0 at its ends to a maximum of 1000 lb/ft [14.59
kN/m] at its center (Case 8 in Figure 4.20). Find the value for the maxi-
mum bending moment in the beam.
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160

5
CONTINUOUS AND

RESTRAINED BEAMS

Beams were used in combination with vertical posts in ancient cultures
to produce early framed structures, and this type of structure continues to
be used today. In some forms of modern construction, however, a new
factor is the development of continuous members, consisting of multiple-
span beams and multistory columns (see Figure 5.1). In these forms of
construction, beams are continuous through adjacent spans and some-
times are restrained at their ends by rigid attachment to columns. This
chapter presents some basic considerations for continuity and end re-
straint for beams.

5.1 BENDING MOMENTS FOR CONTINUOUS BEAMS

It is beyond the scope of this book to give a detailed discussion of bend-
ing in members continuous over supports, but the material presented in
this section will serve as an introduction to the subject. A continuous
beam is a beam that rests on more than two supports. Continuous beams
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are characteristic of sitecast concrete construction, but occur less often in
wood and steel construction.

The concepts underlying continuity and bending under restraint are il-
lustrated in Figure 5.2. Figure 5.2a represents a single beam resting on
three supports and carrying equal loads at the centers of the two spans. If
the beam is cut over the middle support, as shown in Figure 5.2b, the
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Figure 5.1 Elaborate wood construction for forming of a sitecast concrete slab
and beam structure supported by concrete columns. Reproduced from Architects
and Builders Handbook, by H. Parker and F. Kidder, 1931, with permission of the
publisher, John Wiley & Sons, New York. The continuously cast concrete structure
introduced a degree of structural continuity not formerly experienced with ordinary
wood and steel constructions, necessitating more complex investigations for struc-
tural behaviors to support design work.
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result will be two simple beams. Each of these simple beams will deflect
as shown. However, when the beam is made continuous over the middle
support, its deflected form is as indicated in Figure 5.2a.

It is evident that there is no bending moment developed over the mid-
dle support in Figure 5.2b, while there must be a moment over the sup-
port in Figure 5.2a. In both cases, there is positive moment at the
midspan; that is, there is tension in the bottom and compression in the top
of the beam at these locations. In the continuous beam, however, there is
a negative moment over the middle support; that is, there is tension in the
top and compression in the bottom of the beam. The effect of the nega-
tive moment over the support is to reduce the magnitudes of both maxi-
mum bending moment and deflection at midspan, which is a principal
advantage of continuity.

Values for reaction forces and bending moments cannot be found for
continuous beams by use of the equations for static equilibrium alone.
For example, the beam in Figure 5.2a has three unknown reaction forces,
which constitute a parallel force system with the loads. For this condi-
tion, there are only two conditions of equilibrium, and thus only two
available equations for solving for the three unknowns. This presents a
situation in algebra that is qualified as indeterminate, and the structure so
qualified is said to be statically indeterminate.

Solutions for investigation of indeterminate structures require addi-
tional conditions to supplement those available from simple statics.
These additional conditions are derived from the deformation and the
stress mechanisms of the structure. Various methods for investigation of
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Figure 5.2 Deflected shape of the two-span beam. (a) As a single-piece, two-
span member. (b) With two separate pieces.
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indeterminate structures have been developed. Of particular interest now
are those that yield to application to computer-aided processes. Just about
any structure, with any degree of indeterminacy, can now be investigated
with readily available programs.

A procedural problem with highly indeterminate structures is that
something about the structure must be determined before an investigation
can be performed. Useful for this purpose are shortcut methods that give
reasonably approximate answers without an extensive investigation.

Theorem of Three Moments

One method for determining reactions and constructing the shear and
bending moment diagrams for continuous beams is based on the theorem
of three moments. This theorem deals with the relation among the bend-
ing moments at any three consecutive supports of a continuous beam. Ap-
plication of the theorem produces an equation, called the three-moment
equation. The three-moment equation for a continuous beam of two spans
with uniformly distributed loading and constant moment of inertia is

in which the various terms are as shown in Figure 5.3. The following ex-
amples demonstrate the use of this equation.

M L M L L M L
w L w L

1 1 2 1 2 3 2
1 1

3
2 2

3

2
4 4

+ + + = − −( )
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Figure 5.3 Diagrams for the two-span beam with uniform load.
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Continuous Beam with Two Equal Spans

This is the simplest case with the formula reduced by the symmetry plus
the elimination of M1 and M2 due to the discontinuity of the beam at its
outer ends. The equation is reduced to

With the loads and spans as given data, a solution for this case is reduced
to solving for M2, the negative moment at the center support. Transform-
ing the equation produces a form for direct solution of the unknown mo-
ment; thus,

With this moment determined, it is possible to now use the available
conditions of statics to solve the rest of the data for the beam. The fol-
lowing example demonstrates the process.

Example 1. Compute the values for the reactions and construct the shear
and moment diagrams for the beam shown in Figure 5.4a.

Solution: With only two conditions of statics for the parallel force sys-
tem, it is not possible to solve directly for the three unknown reactions.
However, use of the equation for the moment at the middle support yields
a condition that can be used as shown in the following work.

Next, an equation for the bending moment at 10 ft to the right of the left
support is written in the usual manner, and is equated to the now known
value of 1250 ft-lb.

M(x = 10) = (R1 × 10) – (100 × 10 × 5) = –1250 ft-lb

from which

10R1 = 3750, R1 = 375 lb

M
wL

2

2 2

8

100 10

8
1250= − = − = −( )( )

 ft-lb

M
wL

2

2

8
= −

4
2

2

3

M
wL= −
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By symmetry, this is also the value for R3. The value for R2 can then
be found by a summation of vertical forces; thus,

ΣFV = 0 = (375 + 375 + R2) – (100 × 20), R2 = 1250 lb

Sufficient data have now been determined to permit the complete con-
struction of the shear diagram, as shown in Figure 5.4b. The location of
zero shear is determined by the equation for shear at the unknown dis-
tance x from the left support:

375 – (100 × x) = 0, x = 3.75 ft

The maximum value for positive moment at this location can be deter-
mined with a moment summation or by finding the area of the shear dia-
gram between the end and the zero shear location:
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Figure 5.4 Example 1.
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Because of symmetry, the location of zero moment is determined as twice
the distance of the zero shear point from the left support. Sufficient data are
now available to plot the moment diagram as shown in Figure 5.4c.

Problems 5.1.A, B
Using the three-moment equation, find the bending moments and reac-
tions and draw the complete shear and moment diagrams for the follow-
ing beams that are continuous over two equal spans and carry uniformly
distributed loadings.

Beam Span Length, ft Load, lb/ft

A 16 200
B 24 350

Continuous Beam with Unequal Spans

The following example shows the slightly more complex problem of
dealing with unequal spans.

Example 2. Construct the shear and moment diagrams for the beam in
Figure 5.5a.

Solution: In this case, the moments at the outer supports are again zero,
which reduces the task to solving for only one unknown. Applying the
given values to the equation,

Writing a moment summation about a point 14 ft to the right of the left
end support, using the forces to the left of the point,

14R1 – (1000 × 14 × 7) = – 19,500, R1 = 5607 lb

Then writing an equation about a point 10 ft to the left of the right end,
using the forces to the right of the point,

2 14 10
1000 14

4

1000 10

4
19 500

2

3 3

2

M

M

( )

,

+ = − × − ×

= −  ft-lb

M = × =375 3 75

2
703 125

.
.  ft-lb
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10R3 – (1000 × 10 × 5) = – 19,500, R3 = 3050 lb

A vertical force summation will yield the value of R2 = 15,343 lb.
With the three reactions determined, the shear values for completing the
shear diagram are known. Determination of the points of zero shear and
zero moment and the values for positive moment in the two spans can be
done as demonstrated in Exercise 1. The completed diagrams are shown
in Figures 5.5b and c.

Problems 5.1.C, D
Find the reactions and draw the complete shear and moment diagrams for
the following continuous beams with two unequal spans and uniformly
distributed loading.
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Figure 5.5 Example 2.
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Beam First Span, ft Second Span, ft Load, lb/ft

C 12 16 2000
D 16 20 1200

Continuous Beam with Concentrated Loads

In the previous examples, the loads were uniformly distributed. Figure
5.6a shows a two-span beam with a single concentrated load in each
span. The shape for the moment diagram for this beam is shown in Fig-
ure 5.6b. For these conditions, the form of the three-moment equation is

M1 L1 + 2M2 (L1 + L2) + M3 L2 = – P1 L1
2 [n1 (1 – n1)(1 + n1)] –

P2 L2
2 [n2 (1 – n2)(2 – n2)]

in which the various terms are as shown in Figure 5.6.

Example 3. Compute the reactions and construct the shear and moment
diagrams for the beam in Figure 5.7a.

Solution: For this case, note that L1 = L2, P1 = P2, M1 = M3 = 0, and both
n1 and n2 = 0.5. Substituting these conditions and given data into the
equation,

2M2 (20 + 20) = –4000(202)(0.5 × 0.5 × 1.5) –4000(202)(0.5 × 0.5 × 1.5)

from which M2 = 15,000 ft-lb.
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Figure 5.6 Diagrams for the two-span beam with concentrated loads.
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The value of moment at the middle support can now be used as in the
previous examples to find the end reaction, from which it is determined that
the value is 1250 lb. Then a summation of vertical forces will determine the
value of R2 to be 5500 lb. This is sufficient data for construction of the shear
diagram. Note that points of zero shear are evident on the diagram.

The values for maximum positive moment can be determined from
moment summations at the sections or simply from the areas of the rec-
tangles in the shear diagrams. The locations of points of zero moment can
be found by simple proportion, since the moment diagram is composed
of straight lines.

Problems 5.1.E, F
Find the reactions and draw the complete shear and moment diagrams for
the following continuous beams with two equal spans and a single con-
centrated load at the center of each span.

Beam Span Length, ft Load, kips

E 24 3.0
F 32 2.4
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Figure 5.7 Example 3.
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Continuous Beam with Three Spans

The preceding examples demonstrate that the key operation in investi-
gation of continuous beams is the determination of negative moment
values at the supports. Use of the three-moment equation has been
demonstrated for a two-span beam, but the method may be applied to
any two adjacent spans of a beam with multiple spans. For example,
when applied to the three-span beam shown in Figure 5.8a, it would first
be applied to the left span and the middle span, and next to the middle
span and right span. This would produce two equations involving the
two unknowns: the negative moments at the two interior supports. In
this example case, the process would be simplified by the symmetry of
the beam, but the application is a general one, applicable to any arrange-
ment of spans and loads.

As with simple beams and cantilevers, common situations of spans
and loading may be investigated and formulas for beam behavior 
values derived for subsequent application in simpler investigation
processes. Thus, the values of reactions, shears, and moments displayed
for the beam in Figure 5.8 may be used for any such support and loading
conditions. Tabulations for many ordinary situations are available from
various references.

Example 4. A continuous beam has three equal spans of 20 ft [6 m]
each and a uniformly distributed load of 800 lb/ft [12 kN/m] extending
over the entire length of the beam. Compute the maximum bending mo-
ment and the maximum shear.

Solution: Referring to Figure 5.8d, the maximum positive moment
(0.08wL2) occurs near the middle of each end span, and the maximum
negative moment (0.10wL2) occurs over each of the interior supports.
Using the larger value, the maximum bending moment on the beam is

M = –0.10wL2 = –(0.10 × 800 × 20 × 20)
= –32,000 ft-lb [43.2 kN-m]

Figure 5.8c shows that the maximum shear occurs at the face of the first
interior support and is

V = 0.6wL = (0.6 × 800 × 20) = 9600 lb [43.2 kN]
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Using this process, it is possible to find the values of the reactions and
then to construct the complete shear and moment diagrams, if the work
at hand warrants it.

Problem 5.1.G, H
For the following continuous beams with three equal spans and uni-
formly distributed loading, find the reactions and draw the complete
shear and moment diagrams.

Beam Span Length, ft Load, lb/ft

G 24 1000
H 32 1600
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Figure 5.8 Diagrams and values for the three-span beam with uniform load.
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5.2 RESTRAINED BEAMS

A simple beam was previously defined as a beam that rests on a support
at each end, there being no restraint against bending at the supports; the
ends are simply supported. The shape a simple beam tends to assume
under load is shown in Figure 5.9a. Figure 5.9b shows a beam whose left
end is restrained or fixed; meaning that free rotation of the beam end is
prevented. Figure 5.9c shows a beam with both ends restrained. End re-
straint has an effect similar to that caused by the continuity of a beam at
an interior support: a negative bending moment is induced in the beam.
The beam in Figure. 5.9b, therefore, has a profile with an inflection point,
indicating a change of sign of the moment within the span. This span be-
haves in a manner similar to one of the spans in the two-span beam.

The beam with both ends restrained has two inflection points, with a
switch of sign to negative bending moment near each end. Although val-
ues are slightly different for this beam, the general form of the deflected
shape is similar to that for the middle span in the three-span beam (see
Figure 5.8).

Although they have only one span, the beams in Figures 5.9b and c are
both indeterminate. Investigation of the beam with one restrained end in-
volves finding three unknowns: the two reactions plus the restraining
moment at the fixed end. For the beam in Figure 5.9c, there are four un-
knowns. There are, however, only a few ordinary cases that cover most
common situations, and tabulations of formulas for these ordinary cases
are readily available from references. Figure 5.10 gives values for the
beams with one and two fixed ends under both uniformly distributed
load and a single concentrated load at center span. Values for other load-
ings are also available from references.
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Figure 5.9 Deflected shape of the single-span beam. (a) With simple supports.
(b) With one end fixed. (c) With both ends fixed.
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Example 5. Figure 5.11a represents a 20-ft span beam with both ends
fixed and a total uniformly distributed load of 8 kips. Find the reactions
and construct the complete shear and moment diagrams.

Solution: Despite the fact that this beam is indeterminate to the second
degree (four unknowns; only two equations of static equilibrium), its
symmetry makes some investigation data self-evident. Thus, it can be ob-
served that the two vertical reaction forces, and thus, the two end shear
values, are each equal to one half of the total load, or 4000 lb. Symmetry
also indicates that the location of the point of zero moment, and thus, the
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Figure 5.10 Values and diagrams for single-span beams with restrained supports.
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point of maximum positive bending moment, is at the center of the span.
Also, the end moments, although indeterminate, are equal to each other,
leaving only a single value to be determined.

From data in Figure 5.10a, the negative end moment is 0.0833WL (ac-
tually WL/12) = (8000 × 20)/12 = 13,333 ft-lb. The maximum positive
moment at midspan is 0.04167WL (actually WL/24) = (8000 × 20)/24 =
6667 ft-lb. And the point of zero moment is 0.212L = (0.212)(20) = 4.24
ft from the beam end. The complete shear and moment diagrams are as
shown in Figures 5.11b and c.

Example 6. A beam fixed at one end and simply supported at the other
end has a span of 20 ft and a total uniformly distributed load of 8000 lb
(Figure 5.12a). Find the reactions and construct the shear and moment
diagrams.

Solution: This is the same span and loading as in the preceding example.
Here, however, one end is fixed and the other simply supported (the load-
ing case shown in Figure 5.10c). The beam vertical reactions are equal to
the end shears; thus, from the data in Figure 5.10c,
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Figure 5.11 Example 5.

3751 P-05  11/13/01  12:22 PM  Page 174



 

R1 = V1 = 0.375(8000) = 3000 lb
R2 = V2 = 0.625(8000) = 5000 lb

and for the maximum moments

+M = 0.0703(8000 × 20) = 11,248 ft-lb
–M = 0.125(8000 × 20) = 20,000 ft-lbk

The point of zero shear is at 0.375(20) = 7.5 ft from the left end, and the
point of zero moment is at twice this distance, 15 ft, from the left end.
The complete shear and moment diagrams are shown in Figures 5.12b
and c.

Problem 5.2.A
A 22-ft [6.71-m] span beam is fixed at both ends and carries a single con-
centrated load of 16 kips [71.2 kN] at midspan. Find the reactions and
construct the complete shear and moment diagrams.
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Figure 5.12 Example 6.
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Problem 5.2.B
A 16-ft [4.88-m] span beam is fixed at one end and simply supported at
the other end. A single concentrated load of 9600 lb [42.7 kN] is placed
at the center of the span. Find the vertical reactions and construct the
complete shear and moment diagrams.

5.3 BEAMS WITH INTERNAL PINS

In many structures, conditions exist at supports or within the structure
that modify the behavior of the structure, often eliminating some poten-
tial components of force actions. Qualification of supports as fixed or
pinned (not rotation-restrained) has been a situation in most of the struc-
tures presented in this work. We now consider some qualification of con-
ditions within the structure that modify its behavior.

Internal Pins

Within a structure, members may be connected in a variety of ways. If a
structural joint is qualified as pinned, it is considered to be capable only
of transfer of direct forces of shear, tension, or compression. Such joints
are commonly used for wood and steel framed structures. In some cases,
a pinned joint may deliberately be used to eliminate the possibility for
transfer of bending moment through the joint; such is the case in the fol-
lowing examples.

Continuous Beams with Internal Pins

The typical continuous beam, such as that shown in Figure 5.13a, is sta-
tically indeterminate, in this case having a number of reaction compo-
nents (three) in excess of the conditions of equilibrium for the parallel
force system (two). The continuity of such a beam results in the deflected
shape and variation of moment as shown beneath the beam in Figure
5.13a. If the beam is made discontinuous at the middle support, as shown
in Figure 5.13b, the two spans each behave independently as simple
beams, with the deflected shapes and moment as shown.

If a multiple-span beam is made internally discontinuous at some
point off of the supports, its behavior may emulate that of a truly contin-
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BEAMS WITH INTERNAL PINS 177

uous beam. For the beam shown in Figure 5.13c, the internal pin is lo-
cated at the point where the continuous beam inflects. Inflection of the
deflected shape is an indication of zero moment, and thus the pin does
not actually change the continuous nature of the structure. The deflected
shape and moment variation for the beam in Figure 5.13c is therefore the
same as for the beam in Figure 5.13a. This is true, of course, only for 

Figure 5.13 Behavior of two-span
beams. (a) As a continuous, single-
piece beam. (b) As separate pieces
in each span. (c) With internal pin in
one span.
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the single loading pattern that results in the inflection point at the same
location as the internal pin.

In the first of the following examples, the internal pin is deliberately
placed at the point where the beam would inflect if it were continuous. In
the second example, the pins are placed slightly closer to the support,
rather than in the location of the natural inflection points. The modifica-
tion in the second example results in slightly increasing the positive mo-
ment in the outer spans, while reducing the negative moments at the
supports; thus, the values of maximum moment are made closer. If it is
desired to use a single-size beam for the entire length, the modification in
Example 8 permits design selection of a slightly smaller size member.

Example 7. Investigate the beam shown in Figure 5.14a. Find the reac-
tions, draw the shear and moment diagrams, and sketch the deflected shape.

Solution: Because of the internal pin, the first 12 ft of the left-hand span
acts as a simple beam. Its two reactions are therefore equal, being one-
half the total load, and its shear, moment, and deflected shape diagrams
are those for a simple beam with a uniformly distributed load. (See Case
2, Figure 4.20.) As shown in Figures 5.14b and c, the simple beam reac-
tion at the right end of the 12-ft portion of the left span becomes a 6-kip
concentrated load at the left end of the remainder of the beam. This beam
(Figure 5.14c) is then investigated as a beam with one overhanging end,
carrying a single concentrated load at the cantilevered end and the total
distributed load of 20 kips. (Note that on the diagram the total uniformly
distributed load is indicated in the form of a single force, representing its
resultant). The second portion of the beam is statically determinate, and
its reactions can now be determined by statics equations.

With the reactions known, the shear diagram can be completed. Note
the relation between the point of zero shear in the span and the location
of maximum positive moment. For this loading, the positive moment
curve is symmetrical, and thus the location of the zero moment (and
beam inflection) is at twice the distance from the end as the point of zero
shear. As noted previously, the pin in this example is located exactly at
the inflection point of the continuous beam. (For comparison, see Section
5.1, Example 1.)

Example 8. Investigate the beam shown in Figure 5.15.
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Solution: The procedure is essentially the same as for Example 7. Note
that this beam with four supports requires two internal pins to become
statically determinate. As before, the investigation begins with the
consideration of the two end portions acting as simple beams. The second
step is to consider the center portion as a beam with two overhanging ends.
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Figure 5.14 Example 7.
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Problems 5.3.A–C
Investigate the beams shown in Figures 5.16a–c. Find the reactions and
draw the shear and moment diagrams, indicating all critical values.
Sketch the deflected shapes and determine the locations of any inflection
points not related to the internal pins. (Note: Problem 5.3.B has the same
spans and loading as Example 2 in Section 5.1.)
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Figure 5.15 Example 8.
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 5.4 APPROXIMATE ANALYSIS OF CONTINUOUS BEAMS

In some situations, it may be acceptable to perform an approximate
analysis of a continuous beam for the purpose of its design. This process
may be adequate for actual construction or may be simply a first approx-
imation in a multistage design process in which some aspects of the beam
must be defined before an exact analysis can proceed.

The ACI Code (Ref. 4) permits analysis of some continuous rein-
forced concrete beams by approximate methods. Use of these methods is
limited by several conditions, including those of only uniformly distrib-
uted loads, a relatively high dead load in proportion to live load, and ap-
proximately equal values for the beam spans. Figure 5.17 shows a
summary of the approximation factors used to establish design moments
and design shears with this method. Values displayed may be compared
with those indicated for various load, span, and support conditions in 
Figures 4.20, 5.8, and 5.10.
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Figure 5.16 Problems 5.3.A–C.
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Figure 5.17 Approximate design factors for continuous beams.
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6
RETAINING WALLS

Strictly speaking, any wall that sustains significant lateral soil pressure is
a retaining wall. That definition includes basement walls, but the term is
usually applied to site structures outside of buildings (see Figure 6.1). For
the site retaining wall, a critical concern is for the dimension of the dif-
ference in the ground surface elevation on the two sides of the wall. The
greater this dimension, the more the lateral force that will be exerted on
the wall, attempting to topple the wall onto the lower side. This chapter
treats some aspects of the structural behavior of the cantilever retaining
wall, an example of which is shown in the upper figure in Figure 6.1. 
The three major concerns for such a structure are its stability against
sliding, against overturning (toppling), and the maximum soil pressure
developed on the bottom of the footing. The latter two effects will be
considered here.
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6.1 HORIZONTAL EARTH PRESSURE

Horizontal earth pressures are classified as either active or passive. Pas-
sive pressure is the resistance offered by a soil mass to something being
pushed against it. For example, passive pressure against the sides of a
building’s below-grade construction is generally what resists the overall
push of the wind against the building.
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Figure 6.1 Achieving abrupt changes in the elevation of the ground surface has
been accomplished by various means over the years. Shown here are two forms
of construction in current use, depending on various requirements. The semi-open
interlocking units shown in the lower drawing permit easy drainage of the soil mass
behind the wall and let air get to roots of plant growth behind the wall. But a com-
mon solution for abrupt changes of significant height is the cantilever structure of
reinforced concrete or masonry, as shown in the upper drawing.
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Active pressure is that exerted by a soil mass against some restraining
structure, such as a basement wall or a retaining wall. This is the form of
pressure that will be treated here. The nature of active horizontal soil
pressure can be visualized by considering the situation of an unrestrained
vertical cut in a soil mass, as shown in Figure 6.2a. In most soils, such a
cut will not stand for long. Under the action of various influences—pri-
marily gravity—the soil mass will tend to move to the profile shown in
Figure 6.2b.

There are two force effects that tend to move the soil mass at the ver-
tical cut. First is the simple downward push of the soil at the top of the
cut. The second effect is the outward horizontal push by the soil at the
bottom of the cut, responding to the downward push of the soil above. A
common form of the actual soil movement consists of the rotational slip
of the soil mass along a curved slip plane, as shown in Figure 6.2c, with
the slip plane indicated by the dashed line.
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Figure 6.2 Aspects of the development of lateral soil pressure. (a) Unrestrained
vertical cut. (b) General form of failure at the face of a vertical cut. (c) Common form
of failure by rotational slip. (d ) Net force effect by the soil on a bracing structure at
the cut soil face and indication of the form of horizontal pressure assumed in the
equivalent fluid method.
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If a restraining structure is placed at the cut face, the force effects de-
scribed for the unrestrained soil will be exerted against the restraining
structure, as shown in Figure 6.2d. The most critical part of this effect on
the restraining structure is the horizontal push; consequently, a common
practice for design is to consider the soil mass to behave in the manner of
an equivalent fluid, with pressure varying directly with the height, as it
does on the side of a water tank. This pressure variation is shown in 
Figure 6.2d, with the maximum pressure at the base of the wall indicated
as some constant times the wall height. For a pure fluid, this constant
would be the unit density (weight) of the fluid. For soil, it is some partial
fraction of the soil weight, typically about one-third.

6.2 STABILITY OF RETAINING WALLS

The two basic concerns for stability of a retaining wall are with regard to
its toppling (rotation) and its sliding in a horizontal direction away from
the cut face of soil. A typical investigation for toppling (more often
called overturning) is to do a summation of the rotational moments of all
the forces on the wall about a point at the low side toe of its foundation.
This analysis is demonstrated in the following example.

Example 1. Investigate the safety of the concrete retaining wall shown
in Figure 6.3a with regard to rotation about the toe of its footing. Use the
following data:

Lateral soil pressure = 30 psf/ft of height

Soil weight = 100 pcf

Concrete weight = 150 pcf

Solution: The loading condition for this analysis is shown in Figure 6.3b.
Rotation about the lower left corner of the footing (toe) is induced by the
single horizontal force, acting as a resultant at one-third the height of 
the triangular pressure variation. Resistance to this rotation is offered by the
weight of the wall itself and by the weight of the soil above the footing. At
a minimum, the effect of the soil behind the wall is taken as the component
W3, which is the soil mass directly above the footing. The computation of
the component forces and their moments is summarized in Table 6.1.
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Figure 6.3 Example 1.
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Safety is indicated by the ratio of the resisting moment to the over-
turning moment, a computation usually described as the safety factor. In
this example, the safety factor SF against overturn is thus

Whether this is adequate safety or not is a judgement for the designer.
In most cases, building codes require a minimum safety factor of 1.5 for
this situation, in which case the wall seems quite adequate.

Problems 6.2.A, B
Investigate the stability of the concrete retaining walls shown in Figure
6.4 with regard to overturning. Use the data given in Example 1.

6.3 VERTICAL SOIL PRESSURE

Stability of a cantilever retaining wall depends partly on the resistance of
the supporting soil beneath the wall footing. If this is a highly compress-
ible soil, the footing may settle considerably. While a direct vertical set-
tlement of some minor dimension is to be expected, of greater concern is
the effect of a nonuniformly distributed pressure on the bottom of the
footing. With a major horizontal force exerted on the retaining wall, this
may well be the case; thus, an investigation is often made for the actual
vertical pressure.

SF = = =(resisting moment)

(overturning moment)

21 700

9988
2 17

,
.
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TABLE 6.1 Analysis for Overturning Effect

Force, lb Moment Arm, in. Moment, lb-in.

Overturn
H = 1⁄2 × 5.5 × 165 = 454 22 M1 = –9988

Restoring Moment
w1 = 0.667 × 4.667 × 150 = 467 18 8406
w2 = (10/12) × 2.5 × 150 = 312 15 4680
w3 = 0.667 × 4.667 × 100 = 311 26 8086
w4 = (14/12) × 0.667 × 100 = 78 7 546____ ____ ______
Totals ΣW = 1168 M2 = +21,718
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Unless the vertical loads are exactly centered on the footing, and the
resisting moment exactly equals the overturning moments, there is likely
to be some net moment at the bottom of the footing. The usual practice
is to investigate for the combination of vertical compression due to the
vertical forces, and add to it any vertical stress due to a bending moment
with respect to the center of the footing. The general form of such an
analysis is demonstrated in Section 13.2, Example 1. The method pre-
sented there is used in the following example.

Example 2. Investigate the retaining wall in Example 1 (Figure 6.3) for
the maximum vertical soil pressure at the bottom of the footing.

Solution: The vertical soil pressure at the bottom of the footing is pro-
duced by the combination of the vertical load and the net moment with
regard to the center of the footing. The true loading condition, as a result
of the vertical and horizontal loads shown in Figure 6.3, is indicated 
by the resultant shown in Figure 6.5a. At the base of the footing, the
eccentricity of this resultant from the toe of the footing can be computed
from the sum of the vertical load and the net moment about the toe. The
data for this computation are provided in Table 6.1. Thus, the eccentric-
ity e1 is found as
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Figure 6.4 Problems 6.2.A, B.
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Referring to Figure 6.5a, with the value for e1 determined, the distance
indicated as e2 may be found by subtraction from the dimension of one-
half the footing width. Thus, e2 = 15 – 10.04 = 4.96 in. This is the ec-
centricity that relates to the combined stress analysis for the footing
vertical soil pressure.

A first determination at this point is that made with regard to the sig-
nificance of the eccentricity with respect to the kern of the footing (see
discussion in Section 13.2). For this case, the kern limit is one-sixth of
the footing width, or 5 in. The eccentricity as computed is thus seen to be
just inside the limit, allowing for an investigation for Case 1, as shown in
Figure 13.5. The analysis for this is illustrated in Figure 6.5b, and the
computation of the stress is shown in Figure 6.5c. The two components
for this computation are as follows:

1. For the normal compression stress,

2. For the bending stress,

Then

The limiting values of the combined stress, as shown in Figure 6.5c,
are thus 930 psf and 4 psf.

Problems 6.3.A, B
Compute the values for the vertical soil pressure for the retaining walls
in Figures 6.4a and b.
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Figure 6.5 Example 2.
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7
RIGID FRAMES

Frames in which two or more of the members are attached to each other
with connections that are capable of transmitting bending between the
ends of the members are called rigid frames. The connections used to
achieve such a frame are called moment connections or moment-resisting
connections. Most rigid frame structures are statically indeterminate and
do not yield to investigation by consideration of static equilibrium alone.
The rigid-frame structure occurs quite frequently as a multiple-level,
multiple-span bent, constituting part of the structure for a multistory
building (see Figure 7.1). In most cases, such a bent is used as a lateral
bracing element, although once it is formed as a moment-resistive frame-
work, it will respond as such for all types of loads. The computational ex-
amples presented in this section are all rigid frames that have conditions
that make them statically determinate and thus capable of being fully in-
vestigated by methods developed in this book.
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7.1 CANTILEVER FRAMES

Consider the frame shown in Figure 7.2a, consisting of two members
rigidly joined at their intersection. The vertical member is fixed at its
base, providing the necessary support condition for stability of the frame.
The horizontal member is loaded with a uniformly distributed loading
and functions as a simple cantilever beam. The frame is described as a
cantilever frame because of the single fixed support. The five sets of fig-
ures shown in Figures 7.2b through f are useful elements for the investi-
gation of the behavior of the frame. They consist of the following:
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Figure 7.1 The rigid frame derives its name from the nature of the joint between
the frame members—being one that rigidly resists the rotation of member ends
with respect to each other at the joint. Sitecast concrete frames develop this qual-
ity naturally, and steel frames may be formed with special connections to develop
the rigid joints. Individual rows of beams and columns may be visualized as planar
rigid frames in such construction—as shown here.
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1. The free-body diagram of the entire frame, showing the loads
and the components of the reactions (Figure 7.2b). Study of this
figure will help in establishing the nature of the reactions and in
the determination of the conditions necessary for stability of the
frame as a whole.

2. The free-body diagrams of the individual elements (Figure 7.2c).
These are of great value in visualizing the interaction of the parts
of the frame. They are also useful in the computations for the in-
ternal forces in the frame.

3. The shear diagrams of the individual elements (Figure 7.2d ).
These are sometimes useful for visualizing, or for actually com-
puting, the variations of moment in the individual elements. No
particular sign convention is necessary unless in conformity with
the sign used for moment.

4. The moment diagrams for the individual elements (Figure 7.2e).
These are very useful, especially in determination of the defor-
mation of the frame. The sign convention used is that of plotting
the moment on the compression (concave) side of the flexed
element.

5. The deformed shape of the loaded frame (Figure 7.2f ). This is the
exaggerated profile of the bent frame, usually superimposed on
an outline of the unloaded frame for reference. This is very use-
ful for the general visualization of the frame behavior. It is par-
ticularly useful for determination of the character of the external
reactions and the form of interaction between the parts of the
frame. Correlation between the deformed shape and the form of
the moment diagram is a useful check.

When performing investigations, these elements are not usually pro-
duced in the sequence just described. In fact, it is generally recommended
that the deformed shape be sketched first so that its correlation with other
factors in the investigation may be used as a check on the work. The fol-
lowing examples illustrate the process of investigation for simple can-
tilever frames.

Example 1. Find the components of the reactions and draw the free-
body diagrams, shear and moment diagrams, and the deformed shape of
the frame shown in Figure 7.3a.
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Solution: The first step is the determination of the reactions. Consider-
ing the free-body diagram of the whole frame (Figure 7.3b),

ΣF = 0 = +8 – Rv, Rv = 8 kips (up)

and with respect to the support,

ΣM = 0 = MR – (8 × 4), MR = 32 kip-ft (clockwise)
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Figure 7.2 Diagrams for investigation of the rigid frame.

3751 P-07  11/13/01  12:23 PM  Page 195



 

196 RIGID FRAMES

Figure 7.3 Example 1.
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Note that the sense, or sign, of the reaction components is visualized
from the logical development of the free-body diagram.

Consideration of the free-body diagrams of the individual members
will yield the actions required to be transmitted by the moment connec-
tion. These may be computed by application of the conditions for equi-
librium for either of the members of the frame. Note that the sense of the
force and moment is opposite for the two members, simply indicating
that what one does to the other is the opposite of what is done to it.

In this example there is no shear in the vertical member. As a result,
there is no variation in the moment from the top to the bottom of the
member. The free-body diagram of the member, the shear and moment
diagrams, and the deformed shape should all corroborate this fact. The
shear and moment diagrams for the horizontal member are simply those
for a cantilever beam.

It is possible with this example, as with many simple frames, to visual-
ize the nature of the deformed shape without recourse to any mathematical
computations. It is advisable to attempt to do so as a first step in investiga-
tion, and to check continually during the work that individual computations
are logical with regard to the nature of the deformed structure.

Example 2. Find the components of the reactions and draw the shear and
moment diagrams and the deformed shape of the frame in Figure 7.4a.

Solution. In this frame, there are three reaction components required for
stability, since the loads and reactions constitute a general coplanar force
system. Using the free-body diagram of the whole frame (Figure 7.4b),
the three conditions for equilibrium for a coplanar system are used to find
the horizontal and vertical reaction components and the moment compo-
nent. If necessary, the reaction force components could be combined 
into a single-force vector, although this is seldom required for design
purposes.

Note that the inflection occurs in the larger vertical member because
the moment of the horizontal load about the support is greater than that
of the vertical load. In this case, this computation must be done before the
deformed shape can be accurately drawn.

The reader should verify that the free-body diagrams of the individual
members are truly in equilibrium and that there is the required correlation
between all the diagrams.
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Figure 7.4 Example 2.

Problems 7.1.A–C
For the frames shown in Figure 7.5a–c, find the components of the reac-
tions, draw the free-body diagrams of the whole frame and the individual
members, draw the shear and moment diagrams for the individual mem-
bers, and sketch the deformed shape of the loaded structure.
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7.2 SINGLE-SPAN FRAMES

Single-span rigid frames with two supports are ordinarily statically inde-
terminate. The following example illustrates the case of a statically de-
terminate, single-span frame, made so by the particular conditions of its
support and internal construction. In fact, these conditions are technically
achievable, but a little weird for practical use. The example is offered
here as an exercise for readers, an exercise that is within the scope of the
work in this section.

Example 3. Investigate the frame shown in Figure 7.6 for the reactions
and internal conditions. Note that the right-hand support allows for an
upward vertical reaction only, whereas the left-hand support allows for
both vertical and horizontal components. Neither support provides mo-
ment resistance.

Solution: The typical elements of investigation, as illustrated for the pre-
ceding examples, are shown in Figure 7.6. The suggested procedure for
the work is as follows:
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Figure 7.5 Problems 7.1.A–C.
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Figure 7.6 Example 3.
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1. Sketch the deflected shape (a little tricky in this case, but a good

exercise).

2. Consider the equilibrium of the free-body diagram for the whole
frame to find the reactions.

3. Consider the equilibrium of the left-hand vertical member to find
the internal actions at its top.

4. Proceed to the equilibrium of the horizontal member.

5. Finally, consider the equilibrium of the right-hand vertical
member.

6. Draw the shear and moment diagrams and check for correlation
of all work.

Before attempting the exercise problems, the reader is advised to at-
tempt to produce the results shown in Figure 7.6 independently.

Problems 7.2.A, B
Investigate the frames shown in Figures 7.7a and b for reactions and in-
ternal conditions, using the procedure shown for the preceding examples.
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Figure 7.7 Problems 7.2.A, B.
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8
NONCOPLANAR

FORCE SYSTEMS

Forces and structures exist in reality in a three-dimensional world (see
Figure 8.1). The work in preceding chapters has been limited mostly to
systems of forces operating in two-dimensional planes. This is com-
monly done in design practice, primarily for the same reasons that we
have done it here: it makes both visualization and computations easier.
As long as the full three-dimensional character of the forces and the
structures is eventually dealt with, this approach is usually quite ade-
quate. For visualization, as well as for some computations, however, it is
sometimes necessary to work directly with forces in noncoplanar sys-
tems. This chapter presents some exercises that will help in the develop-
ment of an awareness of the problems of working with such force
systems.

Graphical representation, visualization, and any mathematical com-
putation all become more complex with noncoplanar systems. The fol-
lowing discussions rely heavily on the examples to illustrate basic
concepts and procedures. The orthogonal axis system x-y-z is used for
ease of both visualization and computation.
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 Units of measurement for both forces and dimensions are of small sig-
nificance in this work. Because of this, and because of the complexity of
both the graphical representations and the mathematical computations,
the conversions for metric units have been omitted, except for the data
and answers for the exercise problems.

8.1 CONCURRENT SYSTEMS

Figure 8.2 shows a single force acting in such a manner that it has com-
ponent actions in three dimensions. That is, it has x, y, and z components.
If this force represents the resultant of a system of forces, it may be iden-
tified as follows:

For its magnitude,

R F F Fx y z= Σ( ) + Σ( ) + Σ( )2 2 2
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Figure 8.1 All building structures are three-dimensional in their general form.
Nevertheless, most can be broken down into component linear and planar (two-
dimensional) elements for investigation of behavior. However, some systems are
fundamentally three-dimensional and must be treated as such for investigation.
The two-way spanning truss—also called a space frame—is one such structure.
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and for its direction,

Equilibrium for this system can be established by fulfilling the following
conditions:

ΣFx = 0, ΣFy = 0, ΣFz = 0

Example 1. Find the resultant of the three forces shown in Figure 8.3a.

Solution: Various methods may be used, employing trigonometry, polar
coordinates, and so on. The method used here is to first find the geome-
try of the force lines for the three forces. Then the vectors for the forces
and their x, y, and z components can be expressed using the proportion-
ate values from the force line geometry. The construction for this com-
putation is shown in Figure 8.3a.

Referring to the line lengths shown in Figure 8.3a:
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Figure 8.2 Components of a noncoplanar force.
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Note: To reinforce the point that the unit of measurement for dimensions
is not relevant for these computations, it is omitted.

The other line lengths can be determined in the same manner. Their
values are shown on the figure. The determination of the force compo-
nents and their summation is presented in Table 8.1. Note that the sense
of the components is established with reference to the positive directions
indicated for the three axes, as shown in Figure 8.3a. To aid in visual-
ization, the sense of the forces in Table 8.1 is indicated with arrows,
rather than with plus and minus signs.

Using the summations from the table, the value of the resultant is de-
termined as

R = + + = =( . ) ( . ) ( . ) , .2 4 466 1 22 4 217 757 466 72 2 2
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Figure 8.3 Example 1.

TABLE 8.1 Summation of Forces, Example 1

Force x Component y Component z Component

F1 200(5/13.34) = 75 200(12/13.34) = 180 ↓ 200(3/13.34) = 45

F2 160(2/13.56) = 23.6 160(12/13.56) = 141.7 ↓ 160(6/13.56) = 70.8

F3 180(8/14.97) = 96.2 180(12/14.97) = 144.4 ↓ 180(4/14.97) = 48.2____ _____ ____

ΣFx = 2.4 lb ΣFy = 466.1 lb ↓ ΣFz = 22.4 lb ←
←

←←

←←
←

←
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The direction of R may be established by expressing the three cosine
equations, as described earlier, or by establishing its points of intersec-
tion with the x-z plane, as shown in Figure 8.3b. Using the latter method,
and calling the x distance from the z-axis L3,

Then

And, similarly, calling the z distance from the x-axis L4,

Example 2. For the structure shown in Figure 8.4a, find the tension in
the guy wires and the compression in the mast for the loading indicated.

Solution: The basic problem here is the resolution of the concentric force
system at the top of the mast. As in Example 1, the geometry of the wires
is established first. Thus,

Consider the concentric forces at the top of the mast. For equilibrium in
the x direction,

ΣFx = 0 = +1000 – 2(Tx), Tx = 500 lb

Then, from the geometry of the wire,
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 For the compression in the mast, consider the equilibrium of the forces in
the y direction. Thus,

ΣFy = 0 = +C – 2(Ty), C = 2(Ty)

where

Thus,

C Ty= = =2 2
20

12
500 1666 67( ) ( ) .  lb

T

T

T T

y

x

y x

=

= =

20

12

20

12

20

12
500( ) ( )
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Figure 8.4 Examples 2 and 3.
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Example 3. Find the tension in each of the three wires in Figure 8.4c due
to the force indicated.

Solution: As before, the first step is to find the lengths of the three wires.
Thus,

The three static equilibrium equations for the concentric forces are thus

Solution of these three simultaneous equations with three unknowns
yields the following:

T1 = 525 lb, T2 = 271 lb, T3 = 290 lb

Problem 8.1.A
Find the resultant of the three forces shown in Figure 8.5a. Establish the
direction of the resultant by finding the coordinates of its intersection
with the x-z plane.

Problem 8.1.B
Find the compression force in the struts and the tension force in the wire
for the structure in Figure 8.5b.

Problem 8.1.C
Find the tension force in each of the wires for the system shown in 
Figure 8.5c.

Σ = = + −

Σ = = + + + −

Σ = = + + −
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8.2 PARALLEL SYSTEMS

Consider the force system shown in Figure 8.6. Assuming the direction
of the forces to be parallel to the y-axis, the resultant force can be stated
as

R = ΣFy

and its location in the x-z plane can be established by two moment equa-
tions, taken with respect to the x-axis and the z-axis; thus,

L
M

R
L

M

R
x

z
z

x= Σ = Σ
and
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Figure 8.5 Problems 8.1.A–C.
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The static equilibrium for the system can be established by fulfilling
the following conditions:

ΣFy = 0, ΣMx = 0, ΣMz = 0

As with the coplanar parallel systems, the resultant may be a couple.
That is, the summation of forces may be zero, but there may be a net ro-
tational effect about the x-axis and/or the z-axis. When this is the case,
the resultant couple may be visualized in terms of two component cou-
ples, one in the x-y plane (for ΣMz) and one in the z-y plane (for ΣMx). See
Example 5 in the following work.

Example 4. Find the resultant of the system shown in Figure 8.7a.

Solution: The magnitude of the resultant is found as the simple alge-
braic sum of the forces. Thus,

R = ΣF = 50 + 60 + 160 + 80 = 350 lb

Then, for its location in the x-z plane:

ΣMx = +(160 × 8) –(60 × 6) = 920 ft-lb
ΣMz = +(50 × 8) –(80 × 15) = 800 ft-lb

210 NONCOPLANNAR FORCE SYSTEMS

Figure 8.6 Resultant of a parallel, noncoplanar force system.
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and the distances from the axes are

Example 5. Find the resultant of the system shown in Figure 8.7b.

Solution: As in the previous example, three summations are made:

ΣF = R = +40 +20 –10 –50 = 0
ΣMx = +( 40 × 8) –(20 × 8) = 160 ft-lb
ΣMz = +(10 × 6) –(50 × 10) = 440 ft-lb

The resultant is seen to be a couple with the two moment components
described by the moment summations. If necessary, these two compo-

L Lx z= = = =800

350
2 29

920

350
2 63. . ft,  ft
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Figure 8.7 Examples 4, 5, and 6.
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Figure 8.8 Problems 8.2.A, B.

nents can be combined into a single couple about an axis at some angle
to the x-axis or the z-axis, although it may be sufficient to use the com-
ponents for some problems.

Example 6. Find the tension in the three wires in the system shown in
Figure 8.7c.

Solution: Using the three static equilibrium equations:

ΣF = 0 = T1 + T2 + T3 – 1000
ΣMx = 0 = 4T1 – 6T2

ΣMz = 0 = 6T1 – 8T3

Solution of these three simultaneous equations yields

T1 = 414 lb, T2 = 276 lb, T3 = 310 lb

Problem 8.2.A
Find the resultant and its location with respect to the x- and z-axes for the
system shown in Figure 8.8a.

Problem 8.2.B
Find the tension in the three wires of the system shown in Figure 8.8b.
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8.3 GENERAL NONCOPLANAR SYSTEMS

This is the general spatial force system with no simplifying conditions re-
garding geometry. The resultant for such a system may be any of four
possibilities, as follows:

1. Zero, if the system is in equilibrium.

2. A force, if the sum of forces is not zero.

3. A couple, if the sum of moments is not zero.

4. A force plus a couple, which is the general case when equilibrium
does not exist.

If the resultant is a force, its magnitude is determined as

and its direction by

If the resultant is a couple, it may be determined in terms of its com-
ponent moments about the three axes in a procedure similar to that shown
for the parallel systems in Section 8.2.

Solution of general spatial force systems is often quite complex and
laborious. However, in some situations, the existence of symmetry or
other qualifications may simplify the work. In structural design practice,
such systems are usually broken down into simpler component systems
for investigation and design.

cos cos cos Θ Θ Θx
x

y
y

z
zF

R

F

R
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R
= Σ =

Σ
= Σ
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GENERAL NONCOPLANAR SYSTEMS 213

3751 P-08  11/13/01  12:24 PM  Page 213



 

214

9
PROPERTIES

OF SECTIONS

This chapter deals with various geometric properties of plane (two-
dimensional) areas. The areas referred to are the cross-sectional areas of
structural members. The geometric properties are used in the analysis of
stresses and deformations and in the design of the structural members.
Most structural members used for building structures have cross sections
that are standardized for the industrial production of products. In the top
row in Figure 9.1 are shown four such common shapes, produced from
steel and frequently used for building columns: the round pipe, the square
or oblong tube, and the I- or H-shape (actually called a W-shape). How-
ever, these and other elements are sometimes combined to produce built-
up sections, such as those shown in the middle and bottom rows in Figure
9.1. Geometric properties for standard cross sections are tabulated in in-
dustry publications, but properties for special sections that are cut from
or built up from standard shapes must be computed. This chapter presents
some of the basic structural geometric properties and the processes for
their computation.
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9.1 CENTROIDS

The center of gravity of a solid is the imaginary point at which all its
weight may be considered to be concentrated or the point through which
the resultant weight passes. Since a two-dimensional, planar area has no
weight, it has no center of gravity. The point in a plane area that corre-
sponds to the center of gravity of a very thin plate of the same area and
shape is called the centroid of the area. The centroid is a useful reference
for various geometric properties of a planar area.

For example, when a beam is subjected to forces that cause bending,
the fibers above a certain plane in the beam are in compression and the

CENTROIDS 215

Figure 9.1 Cross sections for steel compression members. Top row shows com-
mon single-piece sections: pipe, tubes, and I-shape (called W-shape). Other sec-
tions are combinations of various individual elements. Geometric properties for
these planar sections must be obtained for use in the investigation of stresses and
strains induced by loading of the structural member.
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fibers below the plane are in tension. This plane is the neutral stress
plane, also called simply the neutral surface (see Section 11.1). For a
cross section of the beam, the intersection of the neutral surface with the
plane of the cross section is a line; this line passes through the centroid
of the section and is called the neutral axis of the beam. The neutral axis
is important for investigation of flexural stresses in a beam.

The location of the centroid for symmetrical shapes is usually quite
readily apparent. If an area possesses a line (axis) of symmetry, the cen-
troid will be on that line. If there are two distinct lines of symmetry, the
centroid will lie at their intersection point. Consider the rectangular area
shown in Figure 9.2a; obviously, its centroid is at its geometric center,
which is readily determined. This point may be located by measured dis-
tances (half the width and half the height) or may be obtained by geo-
metric construction as the intersection of the two diagonals of the
rectangle.

(Note: Tables 9.3 through 9.7 and Figure 9.13, referred to in the dis-
cussion that follows, are located at the end of this chapter.)

For more complex forms, such as those of rolled steel members
(called shapes), the centroid will also lie on any axis of symmetry. Thus,
for a W-shape (actually I- or H-shaped), the two bisecting major axes
will define the centroid by their intersection. (See reference figure for
Table 9.3.) For a channel shape (actually U-shaped), there is only one
axis of symmetry (the axis labeled X-X in the reference figure for Table
9.4), and it is therefore necessary to determine the location of the centroid
along this line by computation. Given the dimensions of a channel shape,
this determination is possible; it is listed as dimension x in the properties
in Table 9.4.

216 PROPERTIES OF SECTIONS

Figure 9.2 Centroids of various planar shapes.
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For many structural members, their cross sections are symmetrical
about two axes: squares, rectangles, circles, hollow circular cylinders
(pipe), and so on. Or, their properties are defined in a reference source,
such as the Manual of Steel Construction (Ref. 3), from which properties
of steel shapes are obtained. However, it is sometimes necessary to de-
termine some geometric properties, such as the centroid, for composite
shapes produced by combinations of multiple parts. The process for de-
termining centroids involves the use of the statical moment, which is 
defined as the product of an area times the perpendicular distance of the
centroid of the area from a reference axis in the plane of the area. If 
the area can be reduced to simple components, then its total statical mo-
ment can be obtained by summation of the moments of the components.
Since this sum is equal to the total area times its centroidal distance from
the reference axis, the centroidal distance may be determined by dividing
the summation of moments by the total area. As with many geometric
postulations, the saying is more difficult than the doing, as the following
simple demonstrations will show,

Example 1. Figure 9.3 is a beam cross section, unsymmetrical with re-
spect to the horizontal axis (X-X in Figure 9.3c). Find the location of the
horizontal centroidal axis for this shape.

Solution: The usual process for this problem is to first divide the shape
into units for which both the area and centroid of the unit are easily

CENTROIDS 217

Figure 9.3 Example 1.
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determined. The division chosen here is shown in Figure 9.3b, with two
parts labeled 1 and 2.

The second step is to chose an arbitrary reference axis about which to
sum statical moments and from which the centroid of the shape is read-
ily measured. A convenient reference axis for this shape is one at either
the top or bottom of the shape. With the bottom chosen, the distances
from the centroids of the parts to this reference axis are as shown in 
Figure 9.3b.

The computation next proceeds to the determination of the unit areas
and the unit statical moments. This work is summarized in Table 9.1,
which shows the total area to be 80 in.2 and the total statical moment to
be 520 in.3. Dividing the moment by the area produces the value of 6.5
in., which is the distance from the reference axis to the centroid of the
whole shape, as shown in Figure 9.3c.

Problems 9.1.A–F.
Find the location of the centroid for the cross-sectional areas shown in
Figures 9.4a–f. Use the reference axes and indicate the distances from the
reference axes to the centroid as cx and cy, as shown in Figure 9.4b.

9.2 MOMENT OF INERTIA

Consider the area enclosed by the irregular line in Figure 9.5a. In this
area, designated A, a small unit area a is indicated at z distance from the
axis marked X-X. If this unit area is multiplied by the square of its dis-
tance from the reference axis, the quantity a × z2 is defined. If all of the

218 PROPERTIES OF SECTIONS

TABLE 9.1 Summary of Computations for
Centroid: Example 1

Area y A × y
Part (in.2) (in.) (in.3)

1 2 × 10 = 20 11 220
2 6 × 10 = 60 5 300
Σ 6 × 10 = 80 520

yx = 520/80 = 6.5 in.
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units of the total area are thus identified and the summation of these
products is made, the result is defined as the moment of inertia or the sec-
ond moment of the area, indicated as I; thus,

Σ az2 = I, or specifically IX-X

MOMENT OF INERTIA 219

Figure 9.4 Problems 9.1.A–F.
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which is identified as the moment of inertia of the area about the X-X
axis.

The moment of inertia is a somewhat abstract item, somewhat harder
to grasp than the concepts of area, weight, or center of gravity. It is, nev-
ertheless, a real geometric property that becomes an essential factor in in-
vestigations for stresses and deformations in structural members. Of
particular interest is the moment of inertia about a centroidal axis, and—
most significantly—about a principal axis for a shape. Figures 9.5b, c, e,
and f indicate such axes for various shapes.

Inspection of Tables 9.3 through 9.7 will reveal the properties of mo-
ment of inertia about the principal axes of the shapes in the tables. Use of
these values is demonstrated in various computations in this book.

Moment of Inertia of Geometric Figures

Values for moments of inertia can often be obtained from tabulations of
structural properties. Occasionally, it is necessary to compute values for
a given shape. This may be a simple shape, such as a square, rectangular,
circular, or triangular area. For such shapes, simple formulas are derived
to express the value for the moment of inertia (as they are for area, cir-
cumference, etc.).

Squares and Other Rectangles. Consider the rectangle shown in
Figure 9.5c. Its width is b and its depth is d. The two principal axes are
X-X and Y-Y, both passing through the centroid (in this case the simple
center) of the area. For this case, the moment of inertia with respect to the
centroidal axis X-X is computed as

and the moment of inertia with respect to the axis Y-Y is

Example 2. Find the value of the moment of inertia for a 6 × 12-in. wood
beam about an axis through its centroid and parallel to the narrow base of
the section.

I
db

Y-Y =
3

12

I
bd

X-X =
3

12
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Solution: Referring to Table 9.7, the actual dimensions of the section are
5.5 × 11.5 in. Then

which is in agreement with the value of IX-X in the table.

Circles. Figure 9.5e shows a circular area with diameter d and axis X-X
passing through its center. For the circular area, the moment of inertia is

Example 3. Compute the moment of inertia of a circular cross section,
10 in. in diameter, about an axis through its centroid.

Solution: The moment of inertia about any axis through the center of the
circle is

Triangles. The triangle in Figure 9.5f has a height d and base b. With
respect to the base of the triangle, the moment of inertia about the cen-
troidal axis parallel to the base is

I
bd=

3

36

I
d= = × =π 4 4

4

64

3 1416 10

64
490 9

.
.  in.

I
d= π 4

64

I
bd= = ( )( ) =

3 3
4

12

5 5 11 5

12
697 1

. .
.  in.
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Figure 9.5 Consideration of reference axes for the moment of inertia of various
shapes of cross sections.
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Example 4. Assuming that the base of the triangle in Figure 9.5f is 12 in.
and that the height is 10 in., find the value for the centroidal moment of
inertia parallel to the base.

Solution: Using the given values in the formula,

Open and Hollow Shapes. Values of moment of inertia for shapes
that are open or hollow may sometimes be computed by a method of sub-
traction. This consists of finding the moment of inertia of a solid area—
the outer boundary of the area—and subtracting the voided parts. The
following examples demonstrate the process. Note that this is possible
only for symmetrical shapes.

Example 5. Compute the moment of inertia for the hollow box section
shown in Figure 9.6a about a horizontal axis through the centroid paral-
lel to the narrow side.

Solution: Find first the moment of inertia of the shape defined by the
outer limits of the box:

Then find the moment of inertia for the area defined by the void space:

The value for the hollow section is the difference; thus,

I = 500 – 170.7 = 329.3 in.4

Example 6. Compute the moment of inertia about an axis through the
centroid of the pipe cross section shown in Figure 9.6b. The thickness of
the shell is 1 in.

Solution: As in the preceding example, the two values may be found and
subtracted. Alternatively, a single computation may be made as follows:

I = × =4 8

12
170 7

3
4.  in.

I
bd= = × =

3 3
4

12

6 10

12
500 in.

I
bd= = × =

3 3
4

36

12 10

36
333 3.  in.
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Example 7. Referring to Figure 9.6c, compute the moment of inertia of
the I-section about a horizontal axis through the centroid and parallel to
the flanges.

Solution: This is essentially similar to the computation for Example 5.
The two voids may be combined into a single one that is 7-in.-wide; thus,

Note that this method can only be used when the centroid of the outer
shape and the voids coincide. For example, it cannot be used to find the
moment of inertia for the I-shaped section in Figure 9.6c about its verti-
cal centroidal axis. For this computation, the method discussed in the fol-
lowing section may be used.

9.3 TRANSFERRING MOMENTS OF INERTIA

Determination of the moment of inertia of unsymmetrical and complex
shapes cannot be done by the simple processes illustrated in the preced-
ing examples. An additional step that must be used is that involving the

I = × − × = − =8 10

12

7 8

12
667 299 368

3 3
4 in.

I d do i= 



 ( ) − ( )[ ]

= 



 −( ) = − =

π
64

3 1416

64
10 8 491 201 290

4 4

4 4 4.
 in.
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Figure 9.6 Examples 5, 6, and 7.
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transfer of moment of inertia about a remote axis. The formula for
achieving this transfer is as follows:

I = Io + Az2

In this formula,

I = moment of inertia of the cross section about the required
reference axis

Io = moment of inertia of the cross section about its own centroidal
axis, parallel to the reference axis

A = area of the cross section

z = distance between the two parallel axes

These relationships are illustrated in Figure 9.7, where X-X is the cen-
troidal axis of the area and Y-Y is the reference axis for the transferred
moment of inertia.

Application of this principle is illustrated in the following examples.

Example 8. Find the moment of inertia of the T-shaped area in Figure
9.8 about its horizontal (X-X) centroidal axis. (Note: the location of the
centroid for this section was solved as Example 1 in Section 9.1.)

Solution: A necessary first step in these problems is to locate the posi-
tion of the centroidal axis if the shape is not symmetrical. In this case, the
T-shape is symmetrical about its vertical axis, but not about the horizon-
tal axis. Locating the position of the horizontal axis was the problem
solved in Example 1 in Section 9.1.
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Figure 9.7 Transfer of moment of
inertia to a parallel axis.
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The next step is to break the complex shape down into parts for which
centroids, areas, and centroidal moments of inertia are readily found. As
was done in Example 1, the shape here is divided between the rectangu-
lar flange part and the rectangular web part.

The reference axis to be used here is the horizontal centroidal axis.
Table 9.2 summarizes the process of determining the factors for the par-
allel axis transfer process. The required value for I about the horizontal
centroidal axis is determined to be 1046.7 in.4.

A common situation in which this problem must be solved is in the
case of structural members that are built up from distinct parts. One such
section is that shown in Figure 9.9, where a box-shaped cross section is
composed by attaching two plates and two rolled channel sections. While
this composite section is actually symmetrical about both its principal
axes, and the locations of these axes are apparent, the values for moment
of inertia about both axes must be determined by the parallel axis trans-
fer process. The following example demonstrates the process.
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Figure 9.8 Example 8.

TABLE 9.2 Summary of Computations for Moment of Inertia: Example 9

Area y Io A × y2 Ix

Part (in.2) (in.) (in.4) (in.4) (in.4)

1 20 4.5 10(2)3/12 = 6.7 20(4.5)2 = 405 411.7
2 60 1.5 6(10)3/12 = 500 60(1.5)2 = 135 635.7

–——
Σ 1046.7
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Example 9. Compute the moment of inertia about the centroidal X-X
axis of the built-up section shown in Figure 9.9.

Solution: For this situation, the two channels are positioned so that their
centroids coincide with the reference axis. Thus, the value of Io for the
channels is also their actual moment of inertia about the required refer-
ence axis, and their contribution to the required value here is simply
twice their listed value for moment of inertia about their X-X axis, as
given in Table 9.4: 2(162) = 324 in.4.

The plates have simple rectangular cross sections, and the centroidal
moment of inertia of one plate is thus determined as

The distance between the centroid of the plate and the reference X-X
axis is 6.25 in. and the area of one plate is 8 in.2. The moment of inertia
for one plate about the reference axis is thus

Io + Az2 = 0.1667 + (8)(6.25)2 = 312.7 in.4

and the value for the two plates is twice this, or 625.4 in.4.
Adding the contributions of the parts, the answer is 324 + 625.4 =

949.4 in.4.

I
bd

o = = × =
3 3

4

12

16 0 5

12
0 1667

.
.  in.
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Figure 9.9 Example 9.
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Problems 9.3.A–F.
Compute the moments of inertia about the indicated centroidal axes for
the cross-sectional shapes in Figure 9.10.

Problems 9.3.G–I.
Compute the moments of inertia with respect to the centroidal X-X axes
for the built-up sections in Figure 9.11. Make use of any appropriate data
from the tables of properties for steel shapes.

TRANSFERRING MOMENTS OF INERTIA 227

Figure 9.10 Problems 9.3.A–F.
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9.4 MISCELLANEOUS PROPERTIES

Section Modulus

As noted in Section 11.2, the term I/c in the formula for flexural stress is
called the section modulus (or S). Use of the section modulus permits a
minor shortcut in the computations for flexural stress or the determina-
tion of the bending moment capacity of members. However, the real
value of this property is in its measure of relative bending strength of
members. As a geometric property, it is a direct index of bending strength
for a given member cross section. Members of various cross sections
may thus be rank-ordered in terms of their bending strength strictly on
the basis of their S values. Because of its usefulness, the value of S is
listed together with other significant properties in the tabulations for steel
and wood members.

For members of standard form (structural lumber and rolled steel
shapes), the value of S may be obtained from tables similar to those pre-
sented at the end of this chapter. For complex forms not of standard form,
the value of S must be computed, which is readily done once the cen-
troidal axes are located and moments of inertia about the centroidal axes
are determined.

Example 10. Verify the tabulated value for the section modulus of a 
6 × 12 wood beam about the centroidal axis parallel to its narrow side.
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Figure 9.11 Problems 9.3.G–I.
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Solution: From Table 9.7, the actual dimensions of this member are 
5.5 × 11.5 in., and the value for the moment of inertia is 697.068 in.4.
Then,

which agrees with the value in Table 9.7.

Radius of Gyration

For design of slender compression members, an important geometric
property is the radius of gyration, defined as

Just as with moment of inertia and section modulus values, the radius
of gyration has an orientation to a specific axis in the planar cross section
of a member. Thus, if the I used in the formula for r is that with respect to
the X-X centroidal axis, then that is the reference for the specific value of r.

A value of r with particular significance is that designated as the least
radius of gyration. Since this value will be related to the least value of I
for the cross section, and since I is an index of the bending stiffness of the
member, then the least value for r will indicate the weakest response of
the member to bending. This relates specifically to the resistance of slen-
der compression members to buckling. Buckling is essentially a sideways
bending response, and its most likely occurrence will be on the axis iden-
tified by the least value of I or r. Use of these relationships for columns
is discussed in Chapter 12.

9.5 TABLES OF PROPERTIES OF SECTIONS

Figure 9.12 presents formulas for obtaining geometric properties of var-
ious simple plane sections. Some of these may be used for single-piece
structural members or for the building up of complex members.

r
I

A
=

S
I

c
= = =697 068

5 75
121 229

.

.
.
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Figure 9.12 Properties of various geometric shapes of cross sections.
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Tables 9.3 through 9.7 present the properties of various plane sec-
tions. These are sections identified as those of standard industry-
produced sections of wood and steel. Standardization means that the
shapes and dimensions of the sections are fixed and each specific section
is identified in some way.

Structural members may be employed for various purposes, and thus,
they may be oriented differently for some structural uses. Of note for any
plane section are the principal axes of the section. These are the two mu-
tually perpendicular, centroidal axes for which the values will be great-
est and least, respectively, for the section; thus, the axes are identified as
the major and minor axes. If sections have an axis of symmetry, it will al-
ways be a principal axis—either major or minor.

For sections with two perpendicular axes of symmetry (rectangle, H,
I, etc.), one axis will be the major axis and the other the minor axis. In the
tables of properties, the listed values for I, S, and r are all identified as to
a specific axis, and the reference axes are identified in a figure for the
table.

Other values given in the tables are for significant dimensions, total
cross-sectional area, and the weight of a 1-ft-long piece of the member.
The weight of wood members is given in the table, assuming an average
density for structural softwood of 35 lb/ft3. The weight of steel members
is given for W and channel shapes as part of their designation; thus, a 
W 8 × 67 member weighs 67 lb/ft. For steel angles and pipes, the weight
is given in the table, as determined from the density of steel at 490 lb/ft3.

The designation of some members indicates their true dimensions.
Thus, a 10-in. channel and a 6-in. angle have true dimensions of 10 and 6
in. For W-shapes, pipe, and structural lumber, the designated dimensions
are nominal, and the true dimensions must be obtained from the tables.

TABLES OF PROPERTIES OF SECTIONS 231

3751 P-09  11/13/01  12:24 PM  Page 231



 

232 PROPERTIES OF SECTIONS

TABLE 9.3 Properties of W-Shapes

Flange Elastic Properties
Web

Width Thickness Axis X-X Axis Y-Y
Plastic

Area Depth Thickness Modulus
A d tw bf tf k I S r I S r Zx

Shape (in.2) (in.) (in.) (in.) (in.) (in.) (in.4) (in.3) (in.) (in.4) (in.3) (in.) (in.3)

W 30 × 116 34.2 30.01 0.565 10.495 0.850 1.625 4930.0 329.0 12.00 164.0 31.30 2.19 378.0
× 108 31.7 29.83 0.545 10.475 0.760 1.562 4470 299.0 11.90 146.0 27.90 2.15 346.0
× 099 29.1 29.65 0.520 10.450 0.670 1.437 3990 269.0 11.70 128.0 24.50 2.10 312.0

W 27 × 094 27.7 26.92 0.490 09.990 0.745 1.437 3270 243.0 10.90 124.0 24.80 2.12 278.0
× 084 24.8 26.71 0.460 09.960 0.640 1.375 2850 213.0 10.70 106.0 21.20 2.07 244.0

W 24 × 084 24.7 24.10 0.470 09.020 0.770 1.562 2370 196.0 09.79 094.4 20.90 1.95 224.0
× 076 22.4 23.92 0.440 08.990 0.680 1.437 2100 176.0 09.69 082.5 18.40 1.92 200.0
× 068 20.1 23.73 0.415 08.965 0.585 1.375 1830 154.0 09.55 070.4 15.70 1.87 177.0

W 21 × 083 24.3 21.43 0.515 08.355 0.835 1.562 1830 171.0 08.67 081.4 19.50 1.83 196.0
× 073 21.5 21.24 0.455 08.295 0.740 1.500 1600 151.0 08.64 070.6 17.00 1.81 172.0
× 057 16.7 21.06 0.405 06.555 0.650 1.375 1170 111.0 08.36 030.6 09.35 1.35 129.0
× 050 14.7 20.83 0.380 06.530 0.535 1.312 0984 094.5 08.18 024.9 07.64 1.30 110.0

W 18 × 086 25.3 18.39 0.480 11.090 0.770 1.437 1530 166.0 07.77 175.0 31.60 2.63 186.0
× 076 22.3 18.21 0.425 11.035 0.680 1.375 1330 146.0 07.73 152.0 27.60 2.61 163.0
× 060 17.6 18.24 0.415 07.555 0.695 1.375 0984 108.0 07.47 050.1 13.30 1.69 123.0
× 055 16.2 18.11 0.390 07.530 0.630 1.312 0890 098.3 07.41 044.9 11.90 1.67 112.0
× 050 14.7 17.99 0.355 07.495 0.570 1.250 0800 088.9 07.38 040.1 10.70 1.65 101.0
× 046 13.5 18.06 0.360 06.060 0.605 1.250 0712 078.8 07.25 022.5 07.43 1.29 090.7
× 040 11.8 17.90 0.315 06.015 0.525 1.187 0612 068.4 07.21 019.1 06.35 1.27 078.4

W 16 × 050 14.7 16.26 0.380 07.070 0.630 1.312 0659 081.0 06.68 037.2 10.50 1.59 092.0
× 045 13.3 16.13 0.345 07.035 0.565 1.250 0586 072.7 06.65 032.8 09.34 1.57 082.3
× 040 11.8 16.01 0.305 06.995 0.505 1.187 0518 064.7 06.63 028.9 08.25 1.57 072.9
× 036 10.6 15.86 0.295 06.985 0.430 1.125 0448 056.5 06.51 024.5 07.00 1.52 064.0

W 14 × 216 62.0 15.72 0.980 15.800 1.560 2.250 2660 338 6.55 1030 130 4.07 390.0
× 176 51.8 15.22 0.830 15.650 1.310 2.000 2140 281 6.43 838 107 4.02 320.0
× 132 38.8 14.66 0.645 14.725 1.030 1.687 1530 209 6.28 548 74.5 3.76 234.0
× 120 35.3 14.48 0.590 14.670 0.940 1.625 1380 190 6.24 495 67.5 3.74 212.0
× 74 21.8 14.17 0.450 10.070 0.785 1.562 796 112 6.04 134 26.6 2.48 126.0
× 68 20.0 14.04 0.415 10.035 0.720 1.500 723 103 6.01 121 24.2 2.46 115.0
× 48 14.1 13.79 0.340 8.030 0.595 1.375 485 70.3 5.85 51.4 12.8 1.91 78.4
× 43 12.6 13.66 0.305 7.995 0.530 1.312 428 62.7 5.82 45.2 11.3 1.89 69.6
× 34 10.0 13.98 0.285 6.745 0.455 1.000 340 48.6 5.83 23.3 6.91 1.53 54.6
× 30 8.85 13.84 0.270 6.730 0.385 0.937 291 42.0 5.73 19.6 5.82 1.49 47.3
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TABLE 9.3 (continued )

Flange Elastic Properties
Web

Width Thickness Axis X-X Axis Y-Y
Plastic

Area Depth Thickness Modulus
A d tw bf tf k I S r I S r Zx

Shape (in.2) (in.) (in.) (in.) (in.) (in.) (in.4) (in.3) (in.) (in.4) (in.3) (in.) (in.3)

W 12 × 136 39.9 13.41 0.790 12.400 1.250 1.937 1240.0 186.0 5.58 398.0 64.2 3.16 214
× 120 35.3 13.12 0.710 12.320 1.105 1.812 1070.0 163.0 5.51 345 56.0 3.13 186
× 72 21.1 12.25 0.430 12.040 0.670 1.375 597.0 97.4 5.31 195 32.4 3.04 108
× 65 19.1 12.12 0.390 12.000 0.605 1.312 533.0 87.9 5.28 174 29.1 3.02 96.8
× 53 15.6 12.06 0.345 9.995 0.575 1.250 425.0 70.6 5.23 95.8 19.2 2.48 77.9
× 45 13.2 12.06 0.335 8.045 0.575 1.250 350.0 58.1 5.15 50.0 12.4 1.94 64.7
× 40 11.8 11.94 0.295 8.005 0.515 1.250 310.0 51.9 5.13 44.1 11.0 1.93 57.5
× 30 8.79 12.34 0.260 6.520 0.440 0.937 238.0 38.6 5.21 20.3 6.24 1.52 43.1
× 26 7.65 12.22 0.230 6.490 0.380 0.875 204.0 33.4 5.17 17.3 5.34 1.51 37.2

W 10 × 88 25.9 10.84 0.605 10.265 0.990 1.625 534.0 98.5 4.54 179 34.8 2.63 113
× 77 22.6 10.60 0.530 10.190 0.870 1.500 455.0 85.9 4.49 154 30.1 2.60 97.6
× 49 14.4 9.98 0.340 10.000 0.560 1.312 272.0 54.6 4.35 93.4 18.7 2.54 60.4
× 39 11.5 9.92 0.315 7.985 0.530 1.125 209.0 42.1 4.27 45.0 11.3 1.98 46.8
× 33 9.71 9.73 0.290 7.960 0.435 1.062 170.0 35.0 4.19 36.6 9.20 1.94 38.8
× 19 5.62 10.24 0.250 4.020 0.395 0.812 96.3 18.8 4.14 4.29 2.14 0.874 21.6
× 17 4.99 10.11 0.240 4.010 0.330 0.750 81.9 16.2 4.05 3.56 1.78 0.844 18.7

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the
publishers, American Institute of Steel Construction, Chicago, IL. This table is a sample from an
extensive set of tables in the reference document.
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Flange Elastic Properties
Web

Width Thickness Axis X-X Axis Y-YArea Depth Thickness
A d tw bf tf k I S r I S r xa eo

b

Shape (in.2) (in.) (in.) (in.) (in.) (in.) (in.4) (in.3) (in.) (in.4) (in.3) (in.) (in.) (in.)

TABLE 9.4 Properties of American Standard Channels

C 15 × 50 14.7 15.0 0.716 3.716 0.650 1.44 404 53.8 5.24 11.0 3.78 0.867 0.798 0.583
× 40 11.8 15.0 0.520 3.520 0.650 1.44 349 46.5 5.44 9.23 3.37 0.886 0.777 0.767
× 33.9 9.96 15.0 0.400 3.400 0.650 1.44 315 42.0 5.62 8.13 3.11 0.904 0.787 0.896

C 12 × 30 8.82 12.0 0.510 3.170 0.501 1.13 162 27.0 4.29 5.14 2.06 0.763 0.674 0.618
× 25 7.35 12.0 0.387 3.047 0.501 1.13 144 24.1 4.43 4.47 1.88 0.780 0.674 0.746
× 20.7 6.09 12.0 0.282 2.942 0.501 1.13 129 21.5 4.61 3.88 1.73 0.799 0.698 0.870

C 10 × 30 8.82 10.0 0.673 3.033 0.436 1.00 103 20.7 3.42 3.94 1.65 0.669 0.649 0.369
× 25 7.35 10.0 0.526 2.886 0.436 1.00 91.2 18.2 3.52 3.36 1.48 0.676 0.617 0.494
× 20 5.88 10.0 0.379 2.739 0.436 1.00 78.9 15.8 3.66 2.81 1.32 0.692 0.606 0.637
× 15.3 4.49 10.0 0.240 2.600 0.436 1.00 67.4 13.5 3.87 2.28 1.16 0.713 0.634 0.796

C 9 × 20 5.88 9.0 0.448 2.648 0.413 0.94 60.9 13.5 3.22 2.42 1.17 0.642 0.583 0.515
× 15 4.41 9.0 0.285 2.485 0.413 0.94 51.0 11.3 3.40 1.93 1.01 0.661 0.586 0.682
× 13.4 3.94 9.0 0.233 2.433 0.413 0.94 47.9 10.6 3.48 1.76 0.962 0.669 0.601 0.743

C 8 × 18.75 5.51 8.0 0.487 2.527 0.390 0.94 44.0 11.0 2.82 1.98 1.01 0.599 0.565 0.431
× 13.75 4.04 8.0 0.303 2.343 0.390 0.94 36.1 9.03 2.99 1.53 0.854 0.615 0.553 0.604
× 11.5 3.38 8.0 0.220 2.260 0.390 0.94 32.6 8.14 3.11 1.32 0.781 0.625 0.571 0.697

C 7 × 14.75 4.33 7.0 0.419 2.299 0.366 0.88 27.2 7.78 2.51 1.38 0.779 0.564 0.532 0.441
× 12.25 3.60 7.0 0.314 2.194 0.366 0.88 24.2 6.93 2.60 1.17 0.703 0.571 0.525 0.538
× 9.8 2.87 7.0 0.210 2.090 0.366 0.88 21.3 6.08 2.72 0.968 0.625 0.581 0.540 0.647

C 6 × 13 3.83 6.0 0.437 2.157 0.343 0.81 17.4 5.80 2.13 1.05 0.642 0.525 0.514 0.380
× 10.5 3.09 6.0 0.314 2.034 0.343 0.81 15.2 5.06 2.22 0.866 0.564 0.529 0.499 0.486
× 8.2 2.40 6.0 0.200 1.920 0.343 0.81 13.1 4.38 2.34 0.693 0.492 0.537 0.511 0.599

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the publishers,
American Institute of Steel Construction, Chicago, IL. This table is a sample from an extensive set of tables in the
reference document.
aDistance to centroid of section.
bDistance to shear center of section.
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TABLE 9.5 Properties of Single-Angle Shapes

8 × 8 × 11⁄8 1.75 56.9 16.7 98.0 17.5 2.42 2.41 98.0 17.5 2.42 2.41 1.56 1.000
× 1 1.62 51.0 15.0 89.0 15.8 2.44 2.37 89.0 15.8 2.44 2.37 1.56 1.000

8 × 6 × 3⁄4 1.25 33.8 9.94 63.4 11.7 2.53 2.56 30.7 6.92 1.76 1.56 1.29 0.551
× 1⁄2 1.00 23.0 6.75 44.3 8.02 2.56 2.47 21.7 4.79 1.79 1.47 1.30 0.558

6 × 6 × 5⁄8 1.12 24.2 7.11 24.2 5.66 1.84 1.73 24.2 5.66 1.84 1.73 1.18 1.000
× 1⁄2 1.00 19.6 5.75 19.9 4.61 1.86 1.68 19.9 4.61 1.86 1.68 1.18 1.000

6 × 4 × 5⁄8 1.12 20.0 5.86 21.1 5.31 1.90 2.03 7.52 2.54 1.13 1.03 0.864 0.435
× 1⁄2 1.00 16.2 4.75 17.4 4.33 1.91 1.99 6.27 2.08 1.15 0.987 0.870 0.440
× 3⁄8 0.87 12.3 3.61 13.5 3.32 1.93 1.94 4.90 1.60 1.17 0.941 0.877 0.446

5 × 31⁄2 × 1⁄2 1.00 13.6 4.00 9.99 2.99 1.58 1.66 4.05 1.56 1.01 0.906 0.755 0.479
× 3⁄8 0.87 10.4 3.05 7.78 2.29 1.60 1.61 3.18 1.21 1.02 0.861 0.762 0.486

5 × 3 × 1⁄2 1.00 12.8 3.75 9.45 2.91 1.59 1.75 2.58 1.15 0.829 0.750 0.648 0.357
× 3⁄8 0.87 9.8 2.86 7.37 2.24 1.61 1.70 2.04 0.888 0.845 0.704 0.654 0.364

4 × 4 × 1⁄2 0.87 12.8 3.75 5.56 1.97 1.22 1.18 5.56 1.97 1.22 1.18 0.782 1.000
× 3⁄8 0.75 9.8 2.86 4.36 1.52 1.23 1.14 4.36 1.52 1.23 1.14 0.788 1.000

4 × 3 × 1⁄2 0.94 11.1 3.25 5.05 1.89 1.25 1.33 2.42 1.12 0.864 0.827 0.639 0.543
× 3⁄8 0.81 8.5 2.48 3.96 1.46 1.26 1.28 1.92 0.866 0.879 0.782 0.644 0.551
× 5⁄16 0.75 7.2 2.09 3.38 1.23 1.27 1.26 1.65 0.734 0.887 0.759 0.647 0.554

31⁄2 × 31⁄2 × 3⁄8 0.75 8.5 2.48 2.87 1.15 1.07 1.01 2.87 1.15 1.07 1.01 0.687 1.000
× 5⁄16 0.69 7.2 2.09 2.45 0.976 1.08 0.990 2.45 0.976 1.08 0.990 0.690 1.000

31⁄2 × 21⁄2 × 3⁄8 0.81 7.2 2.11 2.56 1.09 1.10 1.16 1.09 0.592 0.719 0.650 0.537 0.496
× 5⁄16 0.75 6.1 1.78 2.19 0.927 1.11 1.14 0.939 0.504 0.727 0.637 0.540 0.501

3 × 3 × 3⁄8 0.69 7.2 2.11 1.76 0.833 0.913 0.888 1.76 0.833 0.913 0.888 0.587 1.000
× 5⁄16 0.62 6.1 1.78 1.51 0.707 0.922 0.865 1.51 0.707 0.922 0.865 0.589 1.000

3 × 21⁄2 × 3⁄8 0.75 6.6 1.92 1.66 0.810 0.928 0.956 1.04 0.581 0.736 0.706 0.522 0.676
× 5⁄16 0.69 5.6 1.62 1.42 0.688 0.937 0.933 0.898 0.494 0.744 0.683 0.525 0.680

3 × 2 × 3⁄8 0.69 5.9 1.73 1.53 0.781 0.940 1.04 0.543 0.371 0.559 0.539 0.430 0.428
× 5⁄16 0.62 5.0 1.46 1.32 0.664 0.948 1.02 0.470 0.317 0.567 0.516 0.432 0.435

21⁄2 × 21⁄2 × 3⁄8 0.69 5.9 1.73 0.984 0.566 0.753 0.762 0.984 0.566 0.753 0.762 0.487 1.000
× 5⁄16 0.62 5.0 1.46 0.849 0.482 0.761 0.740 0.849 0.482 0.761 0.740 0.489 1.000

21⁄2 × 2 × 3⁄8 0.69 5.3 1.55 0.912 0.547 0.768 0.831 0.514 0.363 0.577 0.581 0.420 0.614
× 5⁄16 0.62 4.5 1.31 0.788 0.466 0.776 0.809 0.446 0.310 0.584 0.559 0.422 0.620

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the publishers,
American Institute of Steel Construction, Chicago, IL. This table is a sample from an extensive set of tables in the
reference document.

Axis X-X Axis Y-Y Axis Z-ZSize Weight
and per Area

Thickness k ft A I S r y I S r x r tan a
(in.) (in.) (lb) (in.2) (in.4) (in.3) (in.) (in.) (in.4) (in.3) (in.) (in.) (in.)
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TABLE 9.6 Properties of Standard Weight Steel Pipe

Dimensions Properties

Nominal Outside Inside Wall Weight
Diameter Diameter Diameter Thickness per ft A I S r
(in.) (in.) (in.) (in.) (lb) (in.2) (in.4) (in.3) (in.)

1⁄2 0.840 0.622 0.109 0.85 0.250 0.017 0.041 0.261
3⁄4 1.050 0.824 0.113 1.13 0.333 0.037 0.071 0.334

1 1.315 1.049 0.133 1.68 0.494 0.087 0.133 0.421
11⁄4 1.660 1.380 0.140 2.27 0.669 0.195 0.235 0.540
11⁄2 1.900 1.610 0.145 2.72 0.799 0.310 0.326 0.623
2 2.375 2.067 0.154 3.65 1.070 0.666 0.561 0.787
21⁄2 2.875 2.469 0.203 5.79 1.700 1.53 1.060 0.947
3 3.500 3.068 0.216 7.58 2.230 3.02 1.720 1.160
31⁄2 4.000 3.548 0.226 9.11 2.680 4.79 2.390 1.340
4 4.500 4.026 0.237 10.79 3.170 7.23 3.210 1.510
5 5.563 5.047 0.258 14.62 4.300 15.2 5.450 1.880
6 6.625 6.065 0.280 18.97 5.580 28.1 8.500 2.250
8 8.625 7.981 0.322 28.55 8.400 72.5 16.800 2.940

10 10.750 10.020 0.365 40.48 11.90 161 29.900 3.670
12 12.750 12.000 0.375 49.56 14.60 279 43.800 4.380

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the publishers,

American Institute of Steel Construction, Chicago, IL. This table is a sample from an extensive set of tables in the

reference document.
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TABLE 9.7 Properties of Structural Lumber

Dimensions (in.)
Section Moment 

Area Modulus of Inertia
Nominal Actual A S I Weighta

b × h b × h (in.2) (in.3) (in.4) (lb/ft)

2 × 3 1.5 × 2.5 03.750 001.563 0001.953 00.9
2 × 4 1.5 × 3.5 05.250 003.063 0005.359 01.3
2 × 6 1.5 × 5.5 08.250 007.563 0020.797 02.0
2 × 8 1.5 × 7.25 10.875 013.141 0047.635 02.6
2 × 10 1.5 × 9.25 13.875 021.391 0098.932 03.4
2 × 12 1.5 × 11.25 16.875 031.641 0177.979 04.1
2 × 14 1.5 × 13.25 19.875 043.891 0290.775 04.8
3 × 2 2.5 × 1.5 03.750 000.938 0000.703 00.9
3 × 4 2.5 × 3.5 08.750 005.104 0008.932 02.1
3 × 6 2.5 × 5.5 13.750 012.604 0034.661 03.3
3 × 8 2.5 × 7.25 18.125 021.901 0079.391 04.4
3 × 10 2.5 × 9.25 23.125 035.651 0164.886 05.6
3 × 12 2.5 × 11.25 28.125 052.734 0296.631 06.8
3 × 14 2.5 × 13.25 33.125 073.151 0484.625 08.1
3 × 16 2.5 × 15.25 38.125 096.901 0738.870 09.3
4 × 2 3.5 × 1.5 05.250 001.313 0000.984 01.3
4 × 3 3.5 × 2.5 08.750 003.646 0004.557 02.1
4 × 4 3.5 × 3.5 12.250 007.146 0012.505 03.0
4 × 6 3.5 × 5.5 19.250 017.646 0048.526 04.7
4 × 8 3.5 × 7.25 25.375 030.661 0111.148 06.2
4 × 10 3.5 × 9.25 32.375 049.911 0230.840 07.9
4 × 12 3.5 × 11.25 39.375 073.828 0415.283 09.6
4 × 14 3.5 × 13.25 46.375 102.411 0678.475 11.3
4 × 16 3.5 × 15.25 53.375 135.661 1034.418 13.0
06 × 2 5.5 × 1.5 008.25 0002.063 00001.547 02.0
06 × 3 5.5 × 2.5 013.75 0005.729 00007.161 03.3
06 × 4 5.5 × 3.5 019.25 0011.229 00019.651 04.7
06 × 6 5.5 × 5.5 030.25 0027.729 00076.255 07.4
16 × 10 5.5 × 9.5 052.25 0082.729 00392.963 12.7
06 × 12 05.5 × 11.5 063.25 0121.229 00697.068 15.4
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06 × 14 05.5 × 13.5 074.25 0167.063 01127.672 18.0
06 × 16 05.5 × 15.5 085.25 0220.229 01706.776 20.7
08 × 2 7.25 × 1.50 010.875 0002.719 00002.039 02.6
08 × 3 7.25 × 2.50 018.125 0007.552 00009.440 04.4
08 × 4 7.25 × 3.50 025.375 0014.802 00025.904 06.2
08 × 6 7.5 × 5.5 041.25 0037.813 00103.984 10.0
08 × 8 7.5 × 7.5 056.25 0070.313 00263.672 13.7
08 × 10 7.5 × 9.5 071.25 0112.813 00535.859 17.3
08 × 12 07.5 × 11.5 086.25 0165.313 00950.547 21.0
08 × 14 07.5 × 13.5 101.25 0227.813 01537.734 24.6
08 × 16 07.5 × 15.5 116.25 0300.313 02327.422 28.3
08 × 18 07.5 × 17.5 131.25 0382.813 03349.609 31.9
08 × 20 07.5 × 19.5 146.25 0475.313 04634.297 35.5
10 × 10 9.5 × 9.5 090.25 0142.896 00678.755 21.9
10 × 12 9.5 × 11.5 109.25 0209.396 01204.026 26.6
10 × 14 9.5 × 13.5 128.25 0288.563 01947.797 31.2
10 × 16 9.5 × 15.5 147.25 0380.396 02948.068 35.8
10 × 18 9.5 × 17.5 166.25 0484.896 04242.836 40.4
10 × 20 9.5 × 19.5 185.25 0602.063 05870.109 45.0
12 × 12 11.5 × 11.5 132.25 0253.479 01457.505 32.1
12 × 14 11.5 × 13.5 155.25 0349.313 02357.859 37.7
12 × 16 11.5 × 15.5 178.25 0460.479 03568.713 43.3
12 × 18 11.5 × 17.5 201.25 0586.979 05136.066 48.9
12 × 20 11.5 × 19.5 224.25 0728.813 07105.922 54.5
12 × 22 11.5 × 21.5 247.25 0885.979 09524.273 60.1
12 × 24 11.5 × 23.5 270.25 1058.479 12437.129 65.7
14 × 14 13.5 × 13.5 182.25 0410.063 02767.922 44.3
16 × 16 15.5 × 15.5 240.25 0620.646 04810.004 58.4

Source: Compiled from data in the National Design Specification for Wood Construction, 1982 ed.,
with permission of the publishers, National Forest Products Association, Washington, DC.
aBased on an assumed average density of 35 psf.

TABLE 9.7 (Continued )

Dimensions (in.)
Section Moment 

Area Modulus of Inertia
Nominal Actual A S I Weighta

b × h b × h (in.2) (in.3) (in.4) (lb/ft)
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10
STRESS AND

DEFORMATION

Structural actions develop stresses in the material of a structure and ac-
companying shape changes, or deformations (see Figure 10.1). Simple
forces of compression and tension produce corresponding direct stresses
of compression or tension in the material, and accompanying shortening
or lengthening as shape changes. Shear produces a slipping type of stress
and an angular change as deformation. All other force actions and com-
binations of actions produce some combination of these three basic types
of stress: compression, tension, and shear. For example, bending pro-
duces a combination of opposed compression and tension in the affected
structural member, the accumulation of which over the member’s length
results in curvature of the member.

This chapter presents some basic considerations for the structural be-
havior of materials.
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Figure 10.1 Force actions produce stresses in the materials of a structure. These
incremental stresses accumulate to achieve overall deformations of structures,
such as the deflection of beams.
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10.1 MECHANICAL PROPERTIES OF MATERIALS

Stresses are visualized as unit stresses and are measured in terms of force
per unit area. The unit area is usually an increment of the area of a cross
section of a structural member, and the force is that required to be devel-
oped at the cross section. Thus, in Figure 10.2a, the force of 6400 lb pro-
duces a unit stress of 100 psi on the 64 in.2 of the cross section of the post.
In a similar manner, it can be determined that the tension force of the
1500-lb block in Figure 10.2c produces a tension stress of 7653 psi in the
1⁄2-in. diameter rod.

Direct shear actions can also be treated in this manner. Thus, if the
bolt in Figure 10.2d is 3⁄4-in. in diameter and is subjected to a force of
5000 lb, as shown, the direct slicing shear stress will be 11,317 psi.

In these situations, the relationship between the force, the area of the
cross section, and the unit stress may be stated in general terms as

in which

P = axial direct force in pounds, newtons, and so on,

f = unit stress in pounds per square inch (psi), and so on,

A = area of the stressed cross section in units of in.2, and so on.

The first form of the stress equation is used to determine the capacity
of a member with a given cross section and a specific limiting stress. The
second form is used to investigate a stress condition for a given member
under a specified load. The third form is used directly in design work to
determine the required cross-sectional area for a member with a limiting
stress and a required load.

Deformation

Whenever a force acts on a body, there is an accompanying change in
shape or size of the body. In structural mechanics, this is called defor-
mation. Regardless of the magnitude of the force, some deformation is al-
ways present, although often it is so small that it is difficult to measure
even with the most sensitive instruments. In the design of structures, it is

P f A f
P

A
A

P

f
= × = =or or
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often necessary to know what the deformation in certain members will
be. A floor joist, for instance, may be large enough to support a given
load safely but may deflect (the term for deformation that occurs with
bending) to such an extent that the plaster ceiling below it will crack, or
the floor may feel excessively springy to persons walking on it. For the
usual cases, we can readily determine what the deformation will be. This
is considered in more detail later.

Strength

The strength of a material or a structural member is the measure of its ca-
pacity to resist force. Strength of a material may be expressed in terms of
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Figure 10.2 Direct force action and stress.
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its resistance to the three basic stresses: compression, tension, and shear.
Strength of a structural member may be expressed in terms of its resis-
tance to a particular structural action, such as direct compression, direct
tension, bending, and so on.

10.2 DESIGN USE OF DIRECT STRESS

In the examples and problems dealing with the direct stress equation, dif-
ferentiation was made between the unit stress developed in a member
sustaining a given load ( f = P/A) and the allowable unit stress used when
determining the size of a member required to carry a given load (A =
P/f ). The latter form of the equation is, of course, the one used in design.
The procedures for establishing allowable unit stresses in tension, com-
pression, shear, and bending are different for different materials and are
prescribed in industry-prepared specifications. A sample of data from
such references is presented in Table 10.1.

In actual design work, the building code governing the construction of
buildings in the particular locality must be consulted for specific re-
quirements. Many municipal codes are revised infrequently and, conse-
quently, may not be in agreement with current editions of the industry
recommended allowable stresses.
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TABLE 10.1 Selected Values for Common Structural Materials

Common Values

Material and Property psi kPa

Structural Steel
Yield strength 36,000 248,220
Allowable tension 22,000 151,690
Modulus of elasticity, E 29,000,000 200,000,000

Concrete
f ¢c (specified compressive strength) 3,000 20,685
Usable compression in bearing 900 6,206
Modulus of elasticity, E 3,100,000 21,374,500

Structural Lumber (Douglas Fir–Larch,
Select Structural Grade, Posts and Timbers)
Compression, parallel to grain 1,150 7,929
Modulus of elasticity, E 1,600,000 11,032,000
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Except for shear, the stresses discussed so far have been direct or axial
stresses. This means they are assumed to be uniformly distributed over
the cross section. The examples and problems presented fall under three
general types: first, the design of structural members (A = P/f ); second,
the determination of safe loads (P = fA); third, the investigation of mem-
bers for safety ( f = P/A). The following examples will serve to fix in
mind each of these types.

Example 1. Design (determine the size of) a short, square post of Dou-
glas fir, select structural grade, to carry a compressive load of 30,000 lb
[133,440 N].

Solution: Referring to Table 10.1, the allowable unit compressive stress
for this wood parallel to the grain is 1150 psi [7929 kPa]. The required
area of the post is

From Table 9.7, an area of 30.25 in.2 [19,517 mm2] is provided by a 
6 × 6 in. post with a dressed size of 51⁄2 × 51⁄2 in. [139.7 mm].

Example 2. Determine the safe axial compressive load for a short,
square concrete pier with a side dimension of 2 ft [0.6096 m].

Solution: The area of the pier is 4 ft2 or 576 in.2 [0.3716 m2]. Table 10.1
gives the allowable unit compressive stress for concrete as 900 psi [6206
kPa]. Therefore the safe load on the pier is

P = ( f )(A) = (900)(576) = 528,400 lb [206 kN]

Example 3. A running track in a gymnasium is hung from the roof
trusses by steel rods, each of which supports a tensile load of 11,200 lb
[49,818 N]. The round rods have a diameter of 7⁄8 in. [22.23 mm] with the
ends upset, that is, made larger by forging. This upset allows the full
cross-sectional area of the rod (0.601 in.2) [388 mm2] to be utilized; oth-
erwise the cutting of the threads will reduce the cross section of the rod.
Investigate this design to determine whether it is safe.

A
P

f
= = = [ ]30 000

1150
26 09 16 8292 2,

. , in.  mm
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Solution. Since the gross area of the hanger rod is effective, the unit
stress developed is

Table 10.1 gives the allowable unit tensile stress for steel as 22,000
psi [151,690 kPa], which is greater than that developed by the loading.
Therefore, the design is safe.

Shearing Stress Formula

The foregoing manipulations of the direct stress formula can, of course,
be carried out also with the shearing stress formula fv = P/A. However, it
must be borne in mind that the shearing stress acts transversely to the
cross section—not at right angles to it. Furthermore, while the shearing
stress equation applies directly to the situation illustrated by Figures
10.2d and e, it requires modification for application to beams. The latter
situation is considered in more detail in Section 11.5.

Problem 10.2.A
What should be the minimum cross-sectional area of a steel rod to sup-
port a tensile load of 26 kips [115,648 kN]?

Problem 10.2.B
A short, square post of Douglas fir, select structural grade, is to support an
axial load of 61 kips [271.3 kN]. What should its nominal dimensions be?

Problem 10.2.C
A steel rod has a diameter of 1.25 in. [31.75 mm]. What safe tensile load
will it support if its ends are upset?

Problem 10.2.D
What safe load will a short, 12 × 12 in. [actually 292.1 mm] Douglas fir
post support if the grade of the wood is select structural grade?

Problem 10.2.E
A short post of Douglas fir, select structural grade, with nominal dimen-
sions of 6 × 8 in. [actually 139.7 × 190.5 mm] supports an axial load of 50
kips [222.4 kN]. Investigate this design to determine whether it is safe.

f
P

A
= = = [ ]11 200

0 601
18 636 128 397

,

.
, , psi  kPa
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Problem 10.2.F
A short concrete pier, 1 ft 6 in. [457.2 mm] square, supports an axial load
of 150 kips [667.2 kN]. Is the construction safe?

10.3 DEFORMATION AND STRESS: RELATIONS 
AND ISSUES

Stress is a major issue, primarily for determination of the strength of struc-
tures. However, deformation due to stress is often of concern, and the re-
lation of stress to strain is one that must be quantitatively established.
These relations and the issues they raise are discussed in this section.

Hooke’s Law

As a result of experiments with clock springs, Robert Hooke, a mathe-
matician and physicist working in the seventeenth century, developed the
theory that “deformations are directly proportional to stresses.” In other
words, if a force produces a certain deformation, twice the force will pro-
duce twice the amount of deformation. This law of physics is of utmost
importance in structural engineering although, as we shall find, Hooke’s
law holds true only up to a certain limit.

Elastic Limit and Yield Point

Suppose that a bar of structural steel with a cross-sectional area of 1 in.2

is placed into a machine for making tension tests. Its length is accurately
measured and then a tensile force of 5000 lb is applied, which, of course,
produces a unit tensile stress of 5000 psi in the bar. Measuring the length
again, it is found that the bar has lengthened a definite amount, call it x
inches. On applying 5000 lb more, the amount of lengthening is now
2(x), or twice the amount noted after the first 5000 lb. If the test is con-
tinued, it will be found that for each 5000 lb increment of additional
load, the length of the bar will increase the same amount as noted when
the initial 5000 lb was applied; that is, the deformations (length changes)
are directly proportional to the stresses. So far Hooke’s law has held
true, but when a unit stress of about 36,000 psi is reached, the length in-
creases more than x for each additional 5000 lb of load. This unit stress
is called the elastic limit, or the yield stress. Beyond this stress limit,
Hooke’s law will no longer apply.
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Another phenomenon may be noted in this connection. In the test just
described, it will be observed that, when any applied load that produces
a unit stress less than the elastic limit is removed, the bar returns to its
original length. If the load producing a unit stress greater than the elas-
tic limit is removed, it will be found that the bar has permanently in-
creased its length. This permanent deformation is called the permanent
set. This fact permits another way of defining the elastic limit: it is that
unit stress beyond which the material does not return to its original length
when the load is removed.

If this test is continued beyond the elastic limit, a point is reached
where the deformation increases without any increase in the load. The
unit stress at which this deformation occurs is called the yield point; it has
a value only slightly higher than the elastic limit. Since the yield point, or
yield stress, as it is sometimes called, can be determined more accurately
by test than the elastic limit, it is a particularly important unit stress.
Nonductile materials such as wood and cast iron have poorly defined
elastic limits and no yield point.

Ultimate Strength

After passing the yield point, the steel bar of the test described in the pre-
ceding discussion again develops resistance to the increasing load. When
the load reaches a sufficient magnitude, rupture occurs. The unit stress in
the bar just before it breaks is called the ultimate strength. For the grade
of steel assumed in the test, the ultimate strength may occur at a stress as
high as about 80,000 psi.

Structural members are designed so that stresses under normal service
conditions will not exceed the elastic limit, even though there is consid-
erable reserve strength between this value and the ultimate strength. This
procedure is followed because deformations produced by stresses above
the elastic limit are permanent and hence change the shape of the struc-
ture in a permanent manner.

Factor of Safety

The degree of uncertainty that exists, with respect to both actual loading
of a structure and uniformity in the quality of materials, requires that
some reserve strength be built into the design. This degree of reserve
strength is the factor of safety. Although there is no general agreement on
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the definition of this term, the following discussion will serve to fix the
concept in mind.

Consider a structural steel that has an ultimate tensile unit stress of
58,000 psi, a yield-point stress of 36,000 psi, and an allowable stress of
22,000 psi. If the factor of safety is defined as the ratio of the ultimate
stress to the allowable stress, its value is 58,000 ÷ 22,000, or 2.64. On the
other hand, if it is defined as the ratio of the yield-point stress to the al-
lowable stress, its value is 36,000 ÷ 22,000, or 1.64. This is a consider-
able variation, and since deformation failure of a structural member
begins when it is stressed beyond the elastic limit, the higher value may
be misleading. Consequently, the term factor of safety is not employed
extensively today. Building codes generally specify the allowable unit
stresses that are to be used in design for the grades of structural steel to
be employed.

If one should be required to pass judgment on the safety of a structure,
the problem resolves itself into considering each structural element, find-
ing its actual unit stress under the existing loading conditions, and com-
paring this stress with the allowable stress prescribed by the local
building regulations. This procedure is called structural investigation.

Modulus of Elasticity

Within the elastic limit of a material, deformations are directly propor-
tional to the stresses. The magnitude of these deformations can be com-
puted by use of a number (ratio), called the modulus of elasticity, that
indicates the degree of stiffness of a material.

A material is said to be stiff if its deformation is relatively small when
the unit stress is high. As an example, a steel rod 1 in.2 in cross-sectional
area and 10 ft long will elongate about 0.008 in. under a tensile load of
2000 lb. But a piece of wood of the same dimensions will stretch about
0.24 in. with the same tensile load. The steel is said to be stiffer than the
wood because, for the same unit stress, the deformation is not as great.

Modulus of elasticity is defined as the unit stress divided by the unit
deformation. Unit deformation refers to the percent of deformation and is
usually called strain. It is dimensionless since it is expressed as a ratio, as
follows:

strain = =s
e

L
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in which:

s = the strain, or the unit deformation

e = the actual dimensional change

L = the original length of the member

The modulus of elasticity for direct stress is represented by the letter
E, expressed in pounds per square inch, and has the same value in com-
pression and tension for most structural materials. Letting f represent the
unit stress and s the strain, then, by definition,

From Section 10.1, f = P/A. It is obvious that, if L represents the
length of the member and e the total deformation, then s, the deformation
per unit of length, must equal the total deformation divided by the length,
or s = e/L. Now by substituting these values in the equation determined
by definition,

This can also be written in the form

in which:

e = total deformation in inches

P = force in pounds

L = length in inches

A = cross-sectional area in square inches
E = modulus of elasticity in pounds per square inch

Note that E is expressed in the same units as f (pounds per square inch
[kilopascals]) because, in the equation E = f/s, s is a dimensionless
number. For steel, E = 29,000,000 psi [200,000,000 kPa], and for wood,
depending on the species and grade, it varies from something less than
1,000,000 psi [6,895,000 kPa] to about 1,900,000 psi [13,100,000 kPa] .
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For concrete, E ranges from about 2,000,000 psi [13,790,000 kPa] to
about 5,000,000 psi [34,475,000 kPa] for common structural grades.

Example 4. A 2-in. [50.8-mm] diameter round steel rod 10 ft [3.05 m]
long is subjected to a tensile force of 60 kips [266,88 kN]. How much
will it elongate under the load?

Solution: The area of the 2-in. rod is 3.1416 in.2 [2027 mm2]. Checking
to determine whether the stress in the bar is within the elastic limit, we
find that

which is within the elastic limit of ordinary structural steel (36 ksi), so the
formula for finding the deformation is applicable. From data, P = 60
kips, L = 120 (length in inches), A = 3.1416, and E = 29,000,000. Sub-
stituting these values, we calculate the total lengthening of the rod as

Problem 10.3.A
What force must be applied to a steel bar, 1 in. [25.4 mm] square and 2
ft [610 mm] long, to produce an elongation of 0.016 in. [0.4064 mm]?

Problem 10.3.B
How much will a nominal 8 × 8 in. [actually 190.5 mm] Douglas fir post,
12 ft [3.658 m] long, shorten under an axial load of 45 kips [200 kN]?

Problem 10.3.C
A routine quality control test is made on a structural steel bar that is 1 in.
[25.4 mm] square and 16 in. [406 mm] long. The data developed during
the test show that the bar elongated 0.0111 in. [0.282 mm] when sub-
jected to a tensile force of 20.5 kips [91.184 kN]. Compute the modulus
of elasticity of the steel.

Problem 10.3.D
A 1⁄2 in. [12.7-mm] diameter round steel rod 40 ft [12.19 m] long supports
a load of 4 kips [17.79 kN]. How much will it elongate?

e
PL

AE
= = ×

×
= [ ]60 000 120
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10.4 INELASTIC AND NONLINEAR BEHAVIOR

Most of the discussion of stress and strain behavior presented so far in
this book relates to the idealized theories of classic structural analysis,
based on elastic and linear conditions of stress/strain interaction. While
this assumption is useful for simple definitions and for derivations of fun-
damental relationships from which the basic equations for stress and
strain computations are obtained, actual behavior of common structural
materials often varies considerably from this ideal condition.

Figure 10.3 is a repeat of Figure 1.37, where it was initially used to de-
fine some fundamental terms and relationships. Linear stress/strain be-
havior is that represented by curves 1 and 2 in the figure. A nonlinear
stress/strain relationship is demonstrated by curve 3 in the figure. While a
single value for the modulus of elasticity (E ) may be obtained for the
materials represented by curves 1 and 2, such is not the case for the mate-
rial represented by curve 3. Metals and ceramics generally exhibit the
behavior shown by curves 1 and 2, and thus a single value for E may
be used for these materials throughout a considerable range of stress
magnitude. Wood and concrete have responses more of the form of curve
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Figure 10.3 Stress-strain relationships, through a range from zero stress to failure.

3751 P-10  11/13/01  12:25 PM  Page 251



 

3, and thus some adjustment must be made when stress/strain involve-
ments extend over some range of magnitude.

A second consideration concerns the relative elasticity of materials.
This generally refers to how much of the strain is recoverable when the
stress is removed from the material. A good rubber band, for example,
can be stretched considerably and be expected to return entirely to its
original length when let go. The same goes for structural materials—up
to some limit. Consider curve 4 in Figure 10.3, which represents the gen-
eral nature of stress/strain response of a ductile material, such as ordinary
structural steel. Initially, this material displays a linear stress/strain re-
sponse. However, when the yield point of the stress magnitude is
reached, considerable strain occurs without an increase in stress. Up to
the yield point, the strain is recoverable (material remains elastic), but de-
formations beyond this limit will produce some permanent change. This
phenomenon is illustrated in Figure 10.4, in which the portion of the line
with downward-pointing arrows indicates what the stress/strain response
will be when the stress magnitude is reduced to zero after strain beyond
the yield point occurs.

These issues relate to the general behavior of real structural materials.
They become increasingly of concern when behaviors are projected to
the ultimate response limits of materials. It is possible that they may be
of less concern for behaviors within the general usage limits, that is, up
to the maximum anticipated service conditions for a structure. Therefore,
they are not so much a concern for the expected actual use of the struc-
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Figure 10.4 Stress-strain behavior
for a ductile material.
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ture. However, they may—and indeed do—relate quite significantly to
the character of responses at the ultimate capacity of the structure in
terms of material behavior.

The work in this book, being of an introductory nature, deals primarily
with simple, idealized material responses. This is both a logical starting
point and a necessary reference point for more complex investigations.
Most current structural design work uses methods that are based on eval-
uation of ultimate load conditions, called strength behavior or strength de-
sign. The use of the term strength here refers to ultimate strength of the
materials or of the whole structure. It is not possible here to fully present
the background for these methods, which are unavoidably based consid-
erably on inelastic and nonlinear behaviors. However, some discussion of
nonlinear behavior of steel is provided in Section 11.10 and the ultimate
stress limit for concrete is discussed in Chapter 15.
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11
STRESS AND 

STRAIN IN BEAMS

The behavior of beams with regard to their resolution of the external
forces of the loads and support reactions is discussed in Chapter 4. Also
discussed in Chapter 4 is the development of the internal force effects of
shear and bending moment as generated by the external forces. In this
chapter, the discussion relates to how the beam produces the necessary
internal resistance to shear and bending through stresses in the material
of the beam. Since stress is unavoidably accompanied by strain, it is also
necessary to consider the deformation of the beam; the major effect con-
sists of deflection, manifested as a curving of the beam away from its
form prior to loading.

Primary considerations for beam stresses and strains have influenced
the development of widely used structural products, such as the I-shaped
steel shapes shown in Figure 11.1. For the I-shaped beam, the vertical
web is ideally oriented for resistance to vertical shear forces, and the
widely separated flanges are ideally oriented for opposed tension/com-
pression forces to resist bending moment.

3751 P-11  11/13/01  12:25 PM  Page 254



 

11.1 DEVELOPMENT OF BENDING RESISTANCE

As developed in the preceding sections, bending moment is a measure of
the tendency of the external forces on a beam to deform it by bending.
The purpose of this section is to consider the action within the beam that
resists bending, called the resisting moment.

Figure 11.2a shows a simple beam, rectangular in cross section, sup-
porting a single concentrated load P. Figure 11.2b is an enlarged sketch
of the left-hand portion of the beam between the reaction and section X-
X. It is observed that the reaction R1 tends to cause a clockwise rotation
about point A in the section under consideration; this is defined as the
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Figure 11.1 The standard cross section of steel I-shaped beams has been es-
tablished with consideration of the properties of the material, the basic production
process of hot rolling, and the means of attachment of steel members in building
frameworks. However, the primary consideration is the usage of the member as a
beam, with its web oriented in the plane of vertical gravity force. The form and spe-
cific dimensions of each of the several hundred standard shapes thus responds
essentially to the stress and strain functions for beam action. Reproduced from
Fundamentals of Building Construction, 2nd edition, by E. Allen, 1990, with per-
mission of the publisher, John Wiley & Sons, New York.
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 bending moment in the section. In this type of beam, the fibers in the
upper part are in compression, and those in the lower part are in tension.
There is a horizontal plane separating the compressive and tensile
stresses; it is called the neutral surface, and at this plane there are neither
compressive nor tensile stresses with respect to bending. The line in
which the neutral surface intersects the beam cross section (Figure 11.2c)
is called the neutral axis, NA.

Call C the sum of all the compressive stresses acting on the upper part
of the cross section, and call T the sum of all the tensile stresses acting on
the lower part. It is the sum of the moments of those stresses at the sec-
tion that holds the beam in equilibrium; this is called the resisting mo-
ment and is equal to the bending moment in magnitude. The bending
moment about A is R1 × x, and the resisting moment about the same point
is (C × y) + (T × y). The bending moment tends to cause a clockwise ro-
tation, and the resisting moment tends to cause a counterclockwise rota-
tion. If the beam is in equilibrium, these moments are equal, or

R1 × x = (C × y) + (T × y)
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Figure 11.2 Development of bending stress in a beam.
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that is, the bending moment equals the resisting moment. This is the the-
ory of flexure (bending) in beams. For any type of beam, it is possible to
compute the bending moment, and to design a beam to withstand this ten-
dency to bend; this requires the selection of a member with a cross sec-
tion of such shape, area, and material that it is capable of developing a
resisting moment equal to the bending moment.

The Flexure Formula

The flexure formula, M = fS, is an expression for resisting moment (rep-
resented by M) that involves the size and shape of the beam cross section
(represented by S in the formula) and the material of which the beam is
made (represented by f ). It is used in the design of all homogeneous
beams, that is, beams made of one material only, such as steel or wood.
The following brief derivation is presented to show the principles on
which the formula is based.

Figure 11.3 represents a partial side elevation and the cross section of
a homogeneous beam subjected to bending stresses. The cross section
shown is unsymmetrical about the neutral axis, but this discussion ap-
plies to a cross section of any shape. In Figure 11.3a, let c be the distance
of the fiber farthest from the neutral axis, and let f be the unit stress on the
fiber at distance c. If f, the extreme fiber stress, does not exceed the elas-
tic limit of the material, the stresses in the other fibers are directly pro-
portional to their distances from the neutral axis. That is to say, if one
fiber is twice as far from the neutral axis as another fiber, the fiber at the
greater distance will have twice the stress. The stresses are indicated in

DEVELOPMENT OF BENDING RESISTANCE 257

Figure 11.3 Distribution of bending stress on a beam cross section.
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the figure by the small lines with arrows, which represent the compres-
sive and tensile stresses acting toward and away from the section, re-
spectively. If c is in inches, the unit stress on a fiber at 1-in. distance is
f/c. Now imagine an infinitely small area a at z distance from the neutral
axis. The unit stress on this fiber is ( f /c) × z, and because this small area
contains a square inches, the total stress on fiber a is ( f/c) × z × a. The
moment of the stress on fiber a at z distance is

There is an extremely large number of these minute areas. Using the
symbol Σ to represent the sum of this very large number,

means the sum of the moments of all the stresses in the cross section with
respect to the neutral axis. This is the resisting moment, and it is equal to
the bending moment.

Therefore

The quantity Σ(a × z2) may be read “the sum of the products of all the el-
ementary areas times the square of their distances from the neutral axis.”
This is called the moment of inertia and is represented by the letter I (see
Section 9.2). Therefore, substituting in the above,

This is know as the flexure formula or beam formula, and, by its use, it is
possible to design any beam that is composed of a single material. The
expression may be simplified further by substituting S for I/c, called the
section modulus, a term that is described more fully in Section 9.4. Mak-
ing this substitution, the formula becomes

M = fS

M
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11.2 INVESTIGATION OF BEAMS

One use of the flexure formula is for the investigation of beams. A pri-
mary investigation is that performed to determine whether a beam is
strong enough for a certain loading. In regard to bending, the flexure for-
mula may be used to determine the maximum bending stress caused by
the loading. This stress is then compared to the maximum permitted for
the material of the beam.

Another method for achieving the same investigation is to determine
the section modulus required based on the loading and the limiting bend-
ing stress. This value for S is then compared to that for the given beam.

Finally, a third method for achieving this investigation is to compute
the maximum bending moment produced by the loading and then com-
pare it to the maximum resisting moment for the beam as determined by
its section modulus and the limiting bending stress.

These three methods for investigating the same problem simply use
three variations of the form of the basic flexure formula. The following
example demonstrates these methods.

Example 1. A W 10 × 33 steel beam is proposed to carry a total uni-
formly distributed load of 30 kips on a span of 13 ft (see Figure 11.4).
The maximum allowable bending stress is 24 ksi. Determine whether the
beam is safe by (a) finding the maximum bending stress caused by the
loading, (b) comparing the required section modulus to that of the given
beam, (c) comparing the maximum bending moment due to the loading
to the maximum resisting moment of the beam.

Solution: From Case 2 in Figure 4.20, the equation for maximum bend-
ing moment for the loading is found and computed as

M
WL= = × = × =
8

30 13

8
48 8 48 8 12 585 6. . . kip-ft or  kip-in.
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From Table 9.3, the section modulus for the beam is 36.6 in.3. Then

(a) The maximum bending stress due to the maximum moment is

As this is less than the allowable stress, the beam is safe.

(b) The section modulus required for the maximum moment of 585.6
kip-ft, with the allowable stress of 24 ksi, is

As this is less than that of the beam, the beam is safe.

(c) With the beam’s given section modulus and the limiting stress,
the maximum resisting moment for the beam is

MR = fS = 24 × 36.6 = 878.4 kip-in.

As this is greater than the required maximum moment, the beam
is safe.

Obviously, it is not necessary to perform all three of these computa-
tions, as they all use the same basic equation and produce the same an-
swer. We use all three here to gain familiarity with the use of the flexure
formula for different situations.

Problem 11.2.A
A W 12 × 30 has a span of 10 ft with a uniformly distributed load of 36
kips. The allowable bending stress is 24 ksi. Is the beam safe with respect
to bending stress?

Problem 11.2.B
A W 16 × 45 has a loading consisting of 10 kips at each of the quarter
points of a 24-ft span (Figure 4.20, Case 5) and a uniformly distributed
load of 5.2 kips. The allowable bending stress is 24 ksi. Is the beam safe
with regard to bending stress?

S
M

f
= = =585 6

24
24 4 3.

.  in.

f
M

S
= = =585 6

36 6
16 0

.

.
.  ksi
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11.3 COMPUTATION OF SAFE LOADS

The flexure formula can also be used to determine the allowable load that
a given beam may carry. In this case, the given data include the beam span,
the beam section modulus, and the allowable bending stress. This basic
problem is used to establish data for tabulation of safe loads for beams for
various spans. The following examples demonstrate the process.

Example 2. A W 12 × 30 has a span of 14 ft. Find the maximum con-
centrated load it will support at midspan if the allowable bending stress
is 22 ksi.

Solution: From Table 9.3, the section modulus for the beam is 38.6 in.3.
The maximum resisting moment for the beam is thus

This is the maximum resisting moment, but part of it will be used up by
the beam in supporting its own weight. As a uniformly distributed load,
the 30 lb/ft on the 14-ft span will produce a moment of

The resisting moment available for carrying the applied load is thus

M = 70,767 – 735 = 70,032 ft-lb

From Case 1 of Figure 4.20, the maximum moment for the concentrated
loading is PL/4. To solve for P, find

Example 3. A W 12 × 40 is used as a simple beam on a span of 14 ft.
What is the maximum uniformly distributed load that this beam will
carry if the allowable stress is 24 ksi?

M
PL

P
M

L
= = = × =

4

4 4 70 032

14
20 009,

,
,  lb

M
wL= = × =

2 2

8

30 14

8
735 ft-lb

M fSR = = × =

=

22 000 38 6 849 200

849 200

12
70 767

, . ,

,
,

 in.-lb,

or  ft-lb
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Solution: From Table 9.3, the section modulus for this beam is 51.9 in.3.
For this loading, from Case 2 of Figure 4.20, the maximum moment is
WL/8. Then

The maximum resisting moment for the beam is

MR = fS = 24 × 51.9 = 1245.6 kip-in.

Equating these two moments

The beam weighs a total of 14 × 40 = 560 lb or approximately 0.6 kips.
Deducting this, the total load the beam can support is 59.3 – 0.6 = 58.7
kips.

For the steel beams in the following problems, ignore the beam weight
and use an allowable bending stress of 24 ksi.

Problem 11.3.A
Compute the maximum allowable uniformly distributed load for a sim-
ple beam with a span of 16 ft if the section used is a W 12 × 30.

Problem 11.3.B
An 8 × 12 wood beam, for which the allowable bending stress is 1400
psi, has a span of 15 ft with equal concentrated loads at the third points
of the span (Case 3 in Figure 4.20). Compute the maximum permitted
value for the individual load.

Problem 11.3.C
A W 14 × 30 having a span of 14 ft supports a uniformly distributed load
of 7 kips and also a concentrated load at the center of the span. Compute
the maximum allowable value for the concentrated load.

Problem 11.3.D
What is the maximum concentrated load that may be placed at the free
end of a cantilever beam 9 ft long if the section used is a W 12 × 26?

21 1245 6
1245 6

21
59 3W W= = =. ,

.
.  kips

M
WL W

W= = × × =
8

14 12

8
21  kip-in.
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Problem 11.3.E
A simple beam has a span of 20 ft with a concentrated load placed 4 ft
from one of the supports. If the section is a W 16 × 36, compute the al-
lowable value for the concentrated load.

11.4 DESIGN OF BEAMS FOR FLEXURE

The flexure formula is used primarily to determine the size of a beam
with respect to strength in bending. Shear and deflection must also be
considered, but it is common to first pick a size required for bending and
then to investigate its adequacy for shear and deflection. The flexure
formula may be used directly for this task—as demonstrated in the fol-
lowing examples—but the frequency of occurrence of the problem en-
courages the use of various aids to shorten the process. Professional
designers will commonly avail themselves of these aids.

Example 4. A simple beam spans 22 ft and supports a uniformly dis-
tributed load of 36 kips, including the beam weight. If allowable bending
stress is 24 ksi, design a steel beam for strength in bending.

Solution: From Figure 4.20, Case 2,

Using the flexure formula, the required section modulus is found as

From Table 9.3, a W 16 × 36 has an S of 56.5 in.3 and is therefore ac-
ceptable. Other sections having a section modulus of at least 49.5 in.3 are
also acceptable. If there is no other criteria, the lightest-weight section is
usually the most economical. (The last number in the designation for the
W-shape indicates its weight in pounds per foot of length.)

Example 5. A simple beam of wood has a span of 16 ft and supports a
uniformly distributed load of 6500 lb including its own weight. If the

S
M

f
= = =1188

24
49 5 3.  in.

M
WL= = × = × =
8

36 22

8
99 99 12 1188 kip-ft, or  kip-in.
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wood is to be Douglas fir, Select Structural grade, with allowable bend-
ing stress of 1600 psi, determine the required size of the beam with the
least cross-sectional area on the basis of limiting bending stress.

Solution: The maximum bending moment is

The allowable bending stress is 1600 psi. Then the required section mod-
ulus is determined as

From Table 9.7, the wood timber section with the least area to satisfy this
requirement is a 6 × 14 with S = 167 in.3.

Ignore the beam weight in the following problems. Use allowable
bending stresses of 24 ksi for steel and 1600 psi for wood.

Problem 11.4.A
A simple beam has a span of 17 ft and supports a uniformly distributed
load of 23 kips. Determine the size required for a steel W-shape with the
least weight to carry this load.

Problem 11.4.B
Two loads of 11 kips each occur at the third points of the span of a sim-
ple beam with a span of 18 ft. Find the least-weight W-shape that is 
acceptable.

Problem 11.4.C
A simple beam with a 20-ft span has a concentrated load of 20 kips at its
center and also a uniformly distributed load of 200 lb/ft over its entire
length. Find the least-weight W-shape that is acceptable.

Problem 11.4.D
A wood beam of Douglas fir, Select Structural grade, has a span of 15 ft
and carries a concentrated load of 9.6 kips at 5 ft from one end. Find the
least-weight (least cross-sectional area) member that is acceptable.

S
M

f
= = =156 000

1600
97 5 3,

.  in.

M
WL= = × =
8

6500 16

8
13 000 156 000, , lb-ft, or  lb-in.
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11.5 SHEAR STRESS IN BEAMS

Shear is developed in beams in direct resistance to the vertical force at a
beam cross section. Because of the interaction of shear and bending in
the beam, the exact nature of stress resistance within the beam depends
on the form and materials of the beam. For an example, in wood beams,
the wood grain is normally oriented in the direction of the span and the
wood material has a very low resistance to horizontal splitting along the
grain. An analogy to this is represented in Figure 11.5, which shows a
stack of loose boards subjected to a beam loading. With nothing but
minor friction between the boards, the individual boards will slide over
each other to produce the loaded form indicated in the bottom figure.
This is the failure tendency in the wood beam, and the shear phenomenon
for wood beams is usually described as one of horizontal shear.

Shear stresses in beams are not distributed evenly over the cross sec-
tion of the beam, as was assumed for the case of simple direct shear (see
Section 2.3). From observations of tested beams and derivations consid-
ering the equilibrium of beam segments under combined actions of shear
and bending, the following expression has been obtained for shear stress
in a beam.

f
VQ

Ib
v =
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Figure 11.5 Nature of horizontal shear in beams.
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in which:

V = shear force at the beam section

Q = moment about the neutral axis of the portion of the cross-
sectional area between the edge of the section and the point
where stress is being computed

I = moment of inertia of the section with respect to the neutral
(centroidal) axis

b = width of the section at the point where stress is being
computed

It may be observed that the highest value for Q, and thus for shear
stress, will occur at the neutral axis and that shear stress will be zero at
the top and bottom edges of the section. This is essentially opposite to the
form of distribution of bending stress on a section. The form of shear dis-
tribution for various geometric shapes of beam sections is shown in
Figure 11.6.

The following examples illustrate the use of the general shear stress
formula.

Example 6. A rectangular beam section with depth of 8 in. and width of
4 in. sustains a shear force of 4 kips. Find the maximum shear stress (see
Figure 11.7a).
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Figure 11.6 Distribution of shear stress in beams with various cross sections.
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Solution: For the rectangular section, the moment of inertia about the
centroidal axis is (see Figure 9.12).

The static moment (Q) is the product of the area a¢ and its centroidal dis-
tance from the neutral axis of the section (y as shown in Figure 11.7b).
This is the greatest value that can be obtained for Q and will produce the
highest shear stress for the section. Thus,

Q = a¢y = (4 × 4)(2) = 32 in.3

and

Example 7. A beam with the T-section shown in Figure 11.8a is sub-
jected to a shear force of 8 kips. Find the maximum shear stress and the
value of shear stress at the location of the juncture of the web and the
flange of the T.

Solution: Since this section is not symmetrical with respect to its hori-
zontal centroidal axis, the first steps for this problem consist of locating
the neutral axis and determining the moment of inertia for the section
with respect to the neutral axis. To save space, this work is not shown
here, although it is performed as Examples 1 and 8 in Chapter 9. From

f
VQ

Ib
v = = ×

×
=4000 32

170 7 4
187 5

.
.  psi

I
bd= = × =

3 3
4

12

4 8

12
170 7.  in.
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 that work, it is found that the centroidal neutral axis is located at 6.5 in.
from the bottom of the T and the moment of inertia about the neutral axis
is 1046.7 in.4.

For computation of the maximum shear stress at the neutral axis, the
value of Q is found by using the portion of the web below the neutral
axis, as shown in Figure 11.8c. Thus,

and the maximum stress at the neutral axis is thus

For the stress at the juncture of the web and flange, Q is determined
using the area shown in Figure 11.8d. Thus,

Q = (2 × 10)(4.5) = 90 in.3

f
VQ

Ib
v = = ×

×
=8000 126 75

1046 7 6
161 5

.

.
.  psi

Q a y= ′ = ×( ) × 



 =6 5 6

6 5

2
126 75 3.

.
.  in.
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And the two values for shear stress at this location, as displayed in Fig-
ure 11.8b, are

In many situations, it is not necessary to use the complex form of the
general expression for shear stress in a beam. For wood beams, the sec-
tions are mostly simple rectangles, for which the following simplification
can be made.

For the simple rectangle, from Figure 9.12, I = bd3/12. Also,

Thus

This is the formula specified by design codes for investigation of shear in
wood beams.

Problem 11.5.A
A beam has an I-shaped cross section with an overall depth of 16 in. 
[400 mm], web thickness of 2 in. [50 mm], and flanges that are 8 in. wide 
[200 mm] and 3 in. [75 mm] thick. Compute the critical shear stresses
and plot the distribution of shear stress on the cross section if the beam
sustains a shear force of 20 kips [89 kN].

Problem 11.5.B
A T-shaped beam cross section has an overall depth of 18 in. [450 mm],
web thickness of 4 in. [100 mm], flange width of 8 in. [200 mm]. and
flange thickness of 3 in. [75 mm]. Compute the critical shear stresses and
plot the distribution of shear stress on the cross section if the beam sus-
tains a shear force of 12 kips [53.4 kN].
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11.6 SHEAR IN STEEL BEAMS

Shear in beams consists of the vertical slicing effect produced by the op-
position of the vertical loads on the beams (downward) and the reactive
forces at the beam supports (upward). The internal shear force mecha-
nism is visualized in the form of the shear diagram for the beam. With a
uniformly distributed load on a simply supported beam, this diagram
takes the form shown in Figure 11.9a.

As the shear diagram for the uniformly loaded beam shows, this load
condition results in an internal shear force that peaks to a maximum value
at the beam supports and steadily decreases in magnitude to zero at the
center of the beam span. With a beam having a constant cross section
throughout the span, the critical location for shear is thus at the supports,
and—if conditions there are adequate—there is no concern for shear at
other locations along the beam. Since this is the common condition of
loading for many beams, it is therefore necessary only to investigate the
support conditions for such beams.

270 STRESS AND STRAIN IN BEAMS

Figure 11.9 Development of shear in beams. (a) Shear force in a uniformly
loaded beam. (b) Shear force in a beam with a large concentrated load. (c) Rec-
tangular section. (d) I-shaped section. (e) Assumed stress in W-shape.

3751 P-11  11/13/01  12:25 PM  Page 270



 

Figure 11.9b shows another loading condition, that of a major con-
centrated load within the beam span. Framing arrangements for roof and
floor systems frequently employ beams that carry the end reactions of
other beams, so this is also a common condition. In this case, a major 
internal shear force is generated over some length of the beam. If the con-
centrated load is close to one support, a critical internal shear force is cre-
ated in the shorter portion of the beam length between the load and the
closer support.

For a simple rectangular cross section, such as that of a wood beam,
the distribution of beam shear stress is as shown in Figure 11.9c, taking
the form of a parabola with a maximum shear stress value at the beam
neutral axis and a decrease to zero stress at the extreme fiber distances
(top and bottom edges).

For the I-shaped cross section of the typical W-shape rolled steel beam,
the beam shear stress distribution takes the form shown in Figure 11.9d
(referred to as the “derby hat” form). Again, the shear stress is a maximum
at the beam neutral axis, but the falloff is less rapid between the neutral
axis and the inside of the beam flanges. Although the flanges indeed take
some shear force, the sudden increase in beam width results in an abrupt
drop in the beam unit shear stress. A traditional shear stress investigation
for the W-shape, therefore, is based on ignoring the flanges and assuming
the shear-resisting portion of the beam to be an equivalent vertical plate
(Figure 11.9e) with a width equal to the beam web thickness and a height
equal to the full beam depth. An allowable value is established for a unit
shear stress on this basis, and the computation is performed as

in which:

fv = the average unit shear stress, based on an assumed distribution
as shown in Figure 11.9e

V = the value for the internal shear force at the cross section

tw = the beam web thickness

db = the overall beam depth

For ordinary situations, the allowable shear stress for W-shapes is 0.40Fy,
where Fy is the elastic yield value. This is rounded off to 14.5 ksi for A36
steel.

f
V

t d
v

w b

=
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Example 8. A simple beam of A36 steel is 6 ft [1.83 m] long and has a
concentrated load of 36 kips [160 kN] applied 1 ft [0.3 m] from one end.
It is found that a W 10 × 33 is adequate for the bending moment. Inves-
tigate the beam for shear.

Solution: The two reactions for this loading are 30 kips [133 kN] and 6
kips [27 kN]. The maximum shear in the beam is equal to the larger re-
action force.

From Table 9.3, for the given shape, d = 9.73 in. and tw = 0.435 in. Then,

As this is less than the allowable value of 14.5 ksi, the shape is acceptable.

Problems 11.6.A–C
Compute the maximum permissible shears for the following beams of
A36 steel:

(A) W 24 × 84; (B) W 12 × 40; (C) W 10 × 19.

11.7 FLITCHED BEAMS

The discussion of bending stresses presented thus far in this chapter per-
tains to beams consisting of a single material; that is, to homogeneous
beams. Reinforced concrete construction utilizes beams of two mate-
rials—steel and concrete—acting together (Chapter 15). Another exam-
ple of this condition of mixed materials is a flitched beam, in which steel
and wood elements are fastened together so as to act as a single unit. Two
means of achieving such a built-up beam section are shown in Figure
11.10. The stress behavior in a two-material beam will be illustrated by
investigating the flitched beam.

A basic premise for an elastic stress/strain investigation is that the two
materials deform equally when the beam is bent. Then let

s1 and s2 = the deformations per unit length (strain) of the outermost
fibers of the two materials, respectively

f1 and f2 = the unit bending stresses in the outermost fibers of the two
materials, respectively

E1 and E2 = the modulus of elasticity of the two materials, respectively

f
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t d
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w b
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.  ksi
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Since by definition the modulus of elasticity of a material is equal to

the unit stress divided by the unit deformation (strain), then

and, transposing for an expression of the unit deformations,

Since the two deformations must be equal,

from which a basic expression for the relation between the two stresses is

This basic relationship may be used for the investigation or design of the
two-material beam, as demonstrated in the following example.

Example 9. A flitched beam is formed as shown in Figure 11.10a, con-
sisting of two 2 × 12 planks of Douglas fir, Select Structural grade, and
a 0.5 × 11.25 steel plate. Compute the allowable uniformly distributed
load this beam will carry on a span of 14 ft.
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Solution: From other sources, the following data are obtained for the two
materials:

For the steel, E = 29,000,000 psi and the maximum allowable bending
stress is 22 ksi.

For the wood, E = 1,900,000 psi and the maximum allowable bending
stress is 1500 psi.

For a trial, assume the stress in the steel to be the limiting condition. Then
find the stress in the wood that corresponds to this limit in the steel.

As this produces a stress lower than that of the limit for the wood, the as-
sumption is correct. That is, if a stress of 1500 psi is permitted in the
wood, the stress in the steel will exceed 22,000 psi.

Now find the load that can be carried individually by each unit of the
beam, using the limiting stresses just established. A procedure for this is
as follows.

For the wood, the maximum bending resistance is 1441 psi and the
combined section modulus for the two members is 2 × 31.6 = 63.2 in.3 (S
for the 2 × 12 from Table 9.7). Then the limiting moment for the wood is

Mw = fw × Sw = 1441 × 63.2 = 91,071 in.-lb or 7,589 ft-lb

For the plate, the value of S must be computed. From Figure 9.12, the
section modulus for the rectangle is bd2/6; thus, for the plate, with b = 0.5
in. and d = 11.25 in.,

Then

Ms = fs × Ss = 22,000 × 10.55 = 232,100 in.-lb or 19,342 ft-lb

The total capacity for the combined wood and steel section is thus

M = Mw + Ms = 7589 + 19,342 = 26,931 ft-lb

S
bd

s = = × ( ) =
2 2

3

6

0 5 11 25

6
10 55

. .
.  in.

f f
E

E
w s

w

s

= ×






= ( ) × 





=22 000
1 900 000

29 000 000
1441,

, ,

, ,
 psi

274 STRESS AND STRAIN IN BEAMS

3751 P-11  11/13/01  12:25 PM  Page 274



 

Equating this to the maximum moment for a uniformly loaded simple
beam (Figure 4.20, Case 2) and solving for W,

This value for W includes the beam weight, which must be deducted to
determine the allowable superimposed load.

Although the load-carrying capacity of the wood elements is slightly
reduced in this beam, the total capacity is substantially greater than that
of the wood members alone. This significant increase in strength
achieved with a small increase in size is a principal reason for popularity
of the flitched beam. However, often of greater interest is the substantial
reduction of deflection and the virtual elimination of sag over time—a
natural phenomenon in the ordinary wood beam.

For the following problems, use the same allowable stress and modu-
lus of elasticity values for the materials as those given in the example and
neglect the beam weight.

Problem 11.7.A
A flitched beam consists of two 2 × 10 pieces of Douglas fir, Select
Structural grade, and a single 0.375 × 9.25 in. steel plate of A36 steel
(Figure 11.10a). Find the magnitude of the total uniformly distributed
load this beam will carry on a span of 18 ft.

Problem 11.7.B
A flitched beam consists of a single 10 × 14 of Douglas fir, Select Struc-
tural grade, and two A36 steel plates, each 0.5 × 13.5 in. (Figure 11.10b).
Find the magnitude of the single concentrated load that this beam will
carry at the center of a 16 ft span.

11.8 DEFLECTION OF BEAMS

Deformations of structures must often be controlled for various reasons.
These reasons sometimes relate to the proper functioning of the structure
itself, but more often relate to effects on the supported construction or the
overall purposes of the structure.
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To steel’s advantage is the relative stiffness of the material itself. With
a modulus of elasticity of 29,000 ksi, it is 8 to 10 times as stiff as average
structural concrete and 15 to 20 times as stiff as structural lumber. How-
ever, it is usually the overall deformation of whole structural elements or
assemblages that must be controlled; in this regard, steel structures are fre-
quently quite deformable and flexible. Because of its cost, steel is usually
formed into elements with thin parts (beam flanges and webs, for exam-
ple), and because of its high strength, it is frequently formed into rela-
tively slender elements (beams and columns, for example).

For a beam in a horizontal position, the critical deformation is usually
the maximum sag, called the beam’s deflection. For most beams, this de-
flection will be too small in magnitude to be detected by eye. However, any
load on a beam, such as that in Figure 11.11, will cause some amount of de-
flection, beginning with the beam’s own weight. In the case of the simply
supported, symmetrical, single-span beam in Figure 11.11, the maximum
deflection will occur at midspan; this is usually the only deformation value
of concern for design. However, as the beam deflects, its ends rotate unless
restrained, and this deformation may also be of concern in some situations.

If deflection is determined to be excessive, the usual remedy is to se-
lect a deeper beam. Actually, the critical property of the beam cross sec-
tion is its moment of inertia (I ) about its major axis (Ix for a W-shape),
which is typically affected significantly by increases in depth of the
beam. Formulas for deflection of beams take a typical form that involves
variables as follows:

(Note: the Greek uppercase letter delta (∆) is also used as the symbol for 
deflection)

in which:

D = the deflection, measured vertically in units of inches or
millimeters

C = a constant related to the form of the load and support conditions
for the beam

W = the load on the beam
L = the span of the beam
E = the modulus of elasticity of the material of the beam

D C
WL

EI
= 





3
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I = the moment of inertia of the beam cross section for the axis

about which bending occurs

Note that the magnitude of the deflection is directly proportional to
the magnitude of the load; double the load, double the deflection. How-
ever, the deflection is proportional to the third power of the span; double
the span and you get 23 or eight times the deflection. For resistance to de-
flection, increases in either the material’s stiffness or the beams geomet-
ric form (I ) will cause direct proportional reduction of the deflection.

Allowable Deflections

What is permissible for beam deflection is mostly a matter of judgement
by experienced designers. It is difficult to provide specific limitations to
avoid various deflection problems. Each situation must be investigated
individually and some cooperative decisions made about the necessary
design controls by the designers of the structure and those who develop
the rest of the building construction.

For spanning beams in ordinary situations some rules of thumb have
been derived over many years of experience. These usually consist of es-
tablishing some maximum degree of beam curvature described in the form
of a limiting ratio of the deflection to the beam span L, expressed as a frac-
tion of the span; for example, L /100. These are sometimes, although not al-
ways, specified in general design codes or legally enacted building codes.
Some typical limitations recognized by designers are the following:

For a minimum limit to avoid visible sag on short to 
medium spans, a total load deflection of: 1/150

For total load deflection of a roof structure: 1/180

For deflection under live load only for a roof structure: 1/240

For total load deflection of a floor structure: 1/240

For deflection under live load only for a floor structure: 1/360
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Figure 11.11 Deflection of a simple beam under symmetrical loading.
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Deflection of Uniformly Loaded Simple Beams

The most frequently used beam in flat roof and floor systems is the uni-
formly loaded beam with a single, simple span (no end restraint). This
situation is shown in Figure 4.20 as Case 2. For this case, the following
values may be obtained for the beam behavior:

Maximum bending moment:

Maximum stress on the beam cross section:

Maximum midspan deflection:

Using these relationships, together with the typical case of a known
modulus of elasticity (E = 29,000 ksi for steel) and a common limit for
bending stress for W-shapes of 24 ksi, a convenient formula can be de-
rived for deflection of steel beams. Noting that the dimension c in the
bending stress formula is d/2 for symmetrical shapes, and substituting 
the expression for M, we can say

Then
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This is a basic formula for any beam symmetrical about its bending axis.
For a shorter version, use values of 24 ksi for f and 29,000 ksi for E. Also,
for convenience, spans are usually measured in feet, not inches, so a fac-
tor of 12 is figured in. Thus,

In metric units, with f = 165 MPa, E = 200 GPa, and the span in meters,

11.9 DEFLECTION COMPUTATIONS

The following examples illustrate the investigation for deflection of the
uniformly loaded simple beam.

Example 10. A simple beam has a span of 20 ft [6.10 m] and a total uni-
formly distributed load of 39 kips [173.5 kN]. The beam is a steel W 14
× 34. Find the maximum deflection.

Solution: First, determine the maximum bending moment as

Then, from Table 9.3, S = 48.6 in.3, and the maximum bending stress is

which is sufficiently close to the value of the limiting stress of 24 ksi to
consider the beam stressed exactly to its limit. Thus, the derived formula
may be used without modification. From Table 9.3, the true depth of the
beam is 13.98 in. Then

f
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For a check, the general formula for deflection of the simple beam with
uniformly distributed load can be used. For this, it is found that the value
of I for the beam from Table 9.3 is 340 in.4. Then

which is close enough for a verification.
In a more typical situation, the chosen beam is not precisely stressed at

24 ksi. The following example illustrates the procedure for this situation.

Example 11. A simple beam consisting of a W 12 × 26 carries a total
uniformly distributed load of 24 kips [107 kN] on a span of 19 ft 
[5.79 m]. Find the maximum deflection.

Solution: As in Example 1, find the maximum bending moment and the
maximum bending stress.

From Table 9.3, S for the beam is 33.4 in.3; thus,

With the deflection formula that is based only on span and beam depth,
the basis for bending stress is a value of 24 ksi. Therefore, an adjustment
must be made consisting of the ratio of true bending stress to 24 ksi; thus,
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The derived deflection formula involving only span and beam depth
can be used to plot a graph that displays the deflection of a beam of a
constant depth for a variety of spans. Figure 11.12 consists of a series of
such graphs for beams from 6 to 36 in. in depth. Use of these graphs pre-
sents yet another means for determining beam deflections. The reader
may verify that deflections may be found from the graphs for the beams
in Examples 1 and 2, with reasonable agreement with the computed re-
sults. An answer within about 5% should be considered reasonable from
the graphs.

A second deflection graph is shown in Figure 11.13, in this case for
wood beams. While the value of E is constant for steel, it varies over a
considerable range for various species and grades of wood. The graphs in
Figure 11.13 are based on an assumed value of 1,500,000 psi for the
modulus of elasticity. The value of allowable bending stress also varies,
with a value assumed here of 1500 psi. These values are average for the
members typically used for timber beams.

The real value of the graphs in Figures 11.12 and 11.13 is in the de-
sign process. Once the necessary span is known, the designer can deter-
mine from the graphs what beam depth is required for a given deflection.
The limiting deflection may be given in an actual dimension, or more
commonly, as a limiting percentage of the span (1/240, 1/360, etc.), as
previously discussed. To aid in the latter situation, lines are drawn on the
graph representing the usual percentage limits of 1/360, 1/240, and 1/180
(see previous discussion in this section for deflection limits). Thus, if a
steel beam is to be used for a span of 36 ft, and the total load deflection
limit is L /240, it may be observed in Figure 11.12 that the lines for a span
of 36 ft and a ratio of 1/240 intersect almost precisely on the curve for an
18-in. deep beam. This means that an 18-in. deep beam will deflect al-
most precisely 1/240th of the span if stressed in bending to 24 ksi. Thus,
any beam chosen with less depth will be inadequate for deflection, and
any beam greater in depth will be conservative in regard to deflection.

Determination of deflections for other than uniformly loaded simple
beams is considerably more complicated. However, many handbooks
provide formulas for computation of deflections for a variety of beam
loading and support situations.

Problems 11.9.A–C
Find the maximum deflection in inches for the following simple beams
of A36 steel with uniformly distributed load. Find the values using: 

DEFLECTION COMPUTATIONS 281

3751 P-11  11/13/01  12:25 PM  Page 281



 

(a) the equation for Case 2 in Figure 4.20; (b) the formula involving only
span and beam depth; (c) the curves in Figure 11.12.

(A) W 10 × 33, span = 18 ft, total load = 30 kips [5.5 m, 133 kN]

(B) W 16 × 36, span = 20 ft, total load = 50 kips [6 m, 222 kN]

(C) W 18 × 46, span = 24 ft, total load = 55 kips [7.3 m, 245 kN]
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Figure 11.12 Deflection of uniformly loaded, simple-span steel beams with a
maximum bending stress of 24 ksi [165 Mpa].
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11.10 PLASTIC BEHAVIOR IN STEEL BEAMS

The maximum resisting moment by elastic theory is predicted to occur
when the stress at the extreme fiber reaches the elastic yield value Fy, and
it may be expressed as
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Figure 11.13 Deflection of uniformly loaded, simple-span wood beans with max-
imum bending stress of 1500 psi [10 Mpa] and modulus of elasticity of 1,500,000
psi [10 Gpa].
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My = Fy × S

Beyond this condition, the resisting moment can no longer be expressed
by elastic theory equations since an inelastic, or plastic, stress condition
will start to develop on the beam cross section.

Figure 11.14 represents an idealized form of a load-test response for
a specimen of ductile steel. The graph shows that, up to the yield point,
the deformations are proportional to the applied stress and that, beyond
the yield point, there is a deformation without an increase in stress. For
A36 steel, this additional deformation, called the plastic range, is ap-
proximately 15 times that produced just before yield occurs. This relative
magnitude of the plastic range is the basis for qualification of the mate-
rial as significantly ductile.

Note that beyond the plastic range the material once again stiffens,
called the strain-hardening effect, which indicates a loss of the ductility
and the onset of a second range in which additional deformation is pro-
duced only by additional increase in stress. The end of this range estab-
lishes the ultimate stress limit for the material.

For plastic failure to be significant, the extent of the plastic range of
deformation must be several times that of the elastic range, as it is indeed
for A36 steel. As the yield limit of steel is increased in higher grades, the
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Figure 11.14 Idealized form of the stress-strain behavior of ductile steel.
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plastic range decreases, so that the plastic theory of behavior is at present
generally limited in application to steels with a yield point not exceeding
65 ksi [450 MPa].

The following example illustrates the application of the elastic theory
and will be used for comparison with an analysis of plastic behavior.

Example 12. A simple beam has a span of 16 ft [4.88 m] and supports a
single concentrated load of 18 kips [80 kN] at its center. If the beam is a
W 12 × 30, compute the maximum flexural stress.

Solution: See Figure 11.15. For the maximum value of the bending
moment

In Table 9.3, find the value of S for the shape as 38.6 in.3 [632 ×
103 mm3]. Thus, the maximum stress is

and it occurs as shown in Figure 11.15d. Note that this stress condition
occurs only at the beam section at midspan. Figure 11.15e shows the
form of the deformations that accompany the stress condition. This stress
level is well below the elastic stress limit (yield point) and, in this exam-
ple, below the allowable stress of 24 ksi.

f
M

S
= = × = [ ]72 12

38 6
22 4 154

.
.  ksi  MPa

M
PL= = × = [ ]
4

18 16

4
72 kip-ft  98 kN-m
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Figure 11.15 Example 12: elastic behavior of the beam.
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The limiting moment that may be expressed in allowable stress terms
is that which occurs when the maximum flexural stress reaches the yield
stress limit, as stated before in the expression for My. This condition is il-
lustrated by the stress diagram in Figure 11.16a.

If the loading (and the bending moment) that causes the yield limit
flexural stress is increased, a stress condition like that illustrated in Fig-
ure 11.16b begins to develop as the ductile material deforms plastically.
This spread of the higher stress level over the beam cross section indi-
cates the development of a resisting moment in excess of My. With a high
level of ductility, a limit for this condition takes a form, as shown in Fig-
ure 11.16c, and the limiting resisting moment is described as the plastic
moment, designated Mp. Although a small percentage of the cross section
near the beam’s neutral axis remains in an elastic stress condition, its ef-
fect on the development of the resisting moment is quite negligible. Thus,
it is assumed that the full plastic limit is developed by the condition
shown in Figure 11.16d.

Attempts to increase the bending moment beyond the value of Mp will
result in large rotational deformation, with the beam acting as though it
were hinged (pinned) at this location. For practical purposes, therefore,
the resisting moment capacity of the ductile beam is considered to be ex-
hausted with the attaining of the plastic moment; additional loading will
merely cause a free rotation at the location of the plastic moment. This
location is thus described as a plastic hinge (see Figure 11.17), and its ef-
fect on beams and frames is discussed further in what follows.
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Figure 11.16 Progression of development of bending stress, from the elastic to
the plastic range of stress magnitude.
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In a manner similar to that for elastic stress conditions, the value of the
resisting plastic moment is expressed as

M = Fy × Z

The term Z is called the plastic section modulus and its value is deter-
mined as follows:

Referring to Figure 11.18, which shows a W-shape subjected to a level
of flexural stress corresponding to the fully plastic section (Figure 11.16d),

Au = the upper area of the cross section, above the neutral axis

yu = distance of the centroid of Au from the neutral axis

Al = the lower area of the cross section, below the neutral axis

yl = distance of the centroid of Al from the neutral axis

For equilibrium of the internal forces on the cross section (the result-
ing forces C and T developed by the flexural stresses), the condition can
be expressed as

ΣFh = 0

or

[Au × (+fy)] + [Al × (–fy)] = 0
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Figure 11.17 Development of the plastic hinge.
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and thus,

Au = Al

This shows that the plastic stress neutral axis divides the cross section
into equal areas, which is apparent for symmetrical sections, but it ap-
plies to unsymmetrical sections as well. The resisting moment equals 
the sum of the moments of the stresses; thus, the value for Mp may be 
expressed as

Mp = (Au × fy × yu) + (Al × fy × yl)

or

Mp = fy[(Au × yu) + (Al × yl)]

or

Mp = fy × Z

and the quantity [(Au × yu) + (Al × yl)] is the property of the cross section
defined as the plastic section modulus, designated Z.

Using the expression for Z just derived, its value for any cross section
can be computed. However, values of Z are tabulated in the AISC Man-
ual (Ref. 3) for all rolled sections used as beams.

Comparison of the values for Sx and Zx for the same W shape will
show that the values for Z are larger. This presents an opportunity to
compare the fully plastic resisting moment to the yield stress limiting
moment by elastic stress.
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Figure 11.18 Development of the plastic resisting moment.
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Example 13. A simple beam consisting of a W 21 × 57 is subjected to
bending. Find the limiting moments (a) based on elastic stress conditions
and a limiting stress of Fy = 36 ksi, and (b) based on full development of
the plastic moment.

Solution: For (a), the limiting moment is expressed as

My = Fy × Sx

From Table 9.3, for the W 21 × 57, Sx is 111 in.3, so the limiting moment is

For (b), the limiting plastic moment, using the value of Zx = 129 in.3 from
Table 9.3, is

The increase in moment resistance represented by the plastic moment in-
dicates an increase of 387 – 333 = 54 kip-ft, or a percentage gain of
(54/333)(100) = 16.2%.

Advantages of use of the plastic moment for design are not so simply
demonstrated. A different process must be used regarding safety fac-
tors—and if the load and resistance factor design (LRFD) method is
used, a whole different approach. In general, little difference will be
found for the design of simple beams. Significant differences occur with
continuous beams, restrained beams, and rigid column/beam frames, as
demonstrated in the following discussion.

Problem 11.10.A
A simple-span, uniformly loaded beam consists of a W 18 × 50 with Fy

= 36 ksi. Find the percentage of gain in the limiting bending moment if a
fully plastic condition is assumed, instead of a condition limited by elas-
tic stress.

Problem 11.10.B
A simple-span, uniformly loaded beam consists of a W 16 × 45 with 
Fy = 36 ksi. Find the percentage of gain in the limiting bending moment

M F Zp y= × = × = =36 129 4644
4644

12
387 kip-in. or  kip-ft

My = × = =36 111 3996
3996

12
333 kip-in. or  kip-ft
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if a fully plastic condition is assumed, instead of a condition limited by
elastic stress.

Plastic Hinging in Continuous and Restrained Beams

The general behavior of restrained and continuous beams is presented in
Chapter 5. Figure 11.19 shows a uniformly distributed load of w lb/ft on
a beam that is fixed (restrained from rotation) at both ends. The moment
induced by this condition is distributed along the beam length in a man-
ner represented by the moment diagram for a simple-span beam (see
Figure 4.20, Case 2), consisting of a symmetrical parabola with maxi-
mum height (maximum moment) of wL2/8. For other conditions of sup-
port or continuity, this distribution of moment will be altered; however,
the total moment remains the same.

In Figure 11.19a, the fixed ends result in the distribution shown be-
neath the beam, with maximum end moments of wL2/12 and a moment at
the center of wL2/8 – wL2/12 = wL2/24. This distribution will continue as
long as stress does not exceed the yield limit. Thus, the limiting condition
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Figure 11.19 Development of the fully plastic restrained beam.
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for elastic conditions is shown in Figure 11.19b, with a load limit of wy

corresponding to the yield stress limit.
Once the flexural stress at the point of maximum moment reaches the

fully plastic state, further loading will result in the development of a plas-
tic hinge, and the resisting moment at that location will not exceed the
plastic moment for any additional loadings. However, additional loading
of the beam may be possible, with the moment at the plastic hinge re-
maining constant; this may proceed until an additional fully plastic con-
dition occurs at some other location.

For the beam in Figure 11.19, the plastic limit for the beam is shown
in Figure 11.19c; this condition is arrived at when both maximum mo-
ments are equal to the beam’s plastic limit. Thus, if 2(Mp) = wpL2/8, then
the plastic limit (Mp) is equal to wpL /16, as shown in the figure. The fol-
lowing is a simple example of the form of investigation that is carried out
in the LRFD method.

Example 14. A beam with fixed ends carries a uniformly distributed load.
The beam consists of a W 21 × 57 of A36 steel with Fy = 36 ksi. Find the
value for the expression of the uniform load if (a) the limit for flexure is
the limit for elastic behavior of the beam, and (b) the beam is permitted to
develop the fully plastic moment at critical moment locations.

Solution: This is the same shape for which limiting yield stress moment
and limiting fully plastic moment were found in Example 13. As found
there, these are:

My = 333 kip-ft (the elastic stress limit at yield)

Mp = 387 kip-ft (the fully plastic moment)

(a) Referring to Figure 11.19b, maximum moment for elastic stress
is wL2/12, and equating this to the limiting value for moment,

from which

w
L L

y = × =333 12 3996
2 2

 (in kip-ft units)

M
w L

y
y= =333
12

2
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(b) Referring to Figure 11.19c, the maximum value for plastic mo-
ments with hinging at the fixed ends is wL2/16, and equating this
to the limiting value for moment,

from which

Combining the increase due to the plastic moment with the effect
of the redistribution of moments due to plastic hinging, the total
increase is 6192 – 3996 = 2196/L2, and the percentage gain is

This is a substantially greater gain than that indicated in Example 13
(only 16.2%), where difference in moments alone was considered. It is
this combined effect that is significant for applications of plastic analy-
sis and the LRFD method for continuous and rigid frame structures.

Problem 11.10.C
If the beam in Problem 11.10.A has fixed ends instead of simple sup-
ports, find the percentage gain in load-carrying capacity if a fully plastic
condition is assumed, rather than a condition limited by elastic stress.

Problem 11.10.D
If the beam in Problem 11.10.B has fixed ends instead of simple sup-
ports, find the percentage gain in load-carrying capacity if a fully plastic
condition is assumed, rather than a condition limited by elastic stress.

2196

3996
100 55× = %

w
L L

p = × =387 16 6192
2 2

 (in kip-ft units)

M
w L

p
p= =

×
387

16

2
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293

12
COMPRESSION MEMBERS

Compression is developed in a number of ways in structures, including
the compression component that accompanies the development of inter-
nal bending. In this section, consideration is given to elements whose
primary purpose is resistance of compression. In general, this includes
truss members, piers, bearing walls, and bearing footings, although major
treatment here is given to columns, which are linear compression mem-
bers. Building columns may be free-standing architectural elements, with
the structural column itself exposed to view. However, for fire or weather
protection, the structural column must often be incorporated into other
construction (see Figure 12.1) and may in some cases be fully concealed
from view.

12.1 SLENDERNESS EFFECTS

Structural columns are for the most part quite slender, although the spe-
cific aspect of slenderness (called relative slenderness) must be consid-
ered (see Figure 12.2). At the extremes, the limiting situations are those
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of the very stout or short column that fails by crushing, and the very slen-
der or tall column that fails by lateral buckling.

The two basic limiting response mechanisms—crushing and buck-
ling—are entirely different in nature. Crushing is a stress resistance phe-
nomenon, and its limit is represented on the graph in Figure 12.2 as a
horizontal line, basically established by the compression resistance of the
material and the amount of material (area of the cross section) in the
compression member. This behavior is limited to the range labeled zone
1 in Figure 12.2.

294 COMPRESSION MEMBERS

Figure 12.1 Steel column incor-
porated in the construction of a
multistory building. Primarily carry-
ing a vertical compression load,
the column also serves a major
function as part of the general steel
framework for the building, typi-
cally supporting steel beams as
shown in the illustration here.
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Buckling actually consists of lateral deflection in bending, and its ex-
treme limit is affected by the bending stiffness of the member, as related
to the stiffness of the material (modulus of elasticity) and to the geomet-
ric property of the cross section directly related to deflection—the mo-
ment of inertia of the cross-sectional area. The classic expression for
elastic buckling is stated in the form of the equation developed by Euler:

The curve produced by this equation is of the form shown in Figure 12.2.
It closely predicts the failure of quite slender compression members in
the range labeled zone 3 in Figure 12.2.

P
EI

L
= π 2

2
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Figure 12.2 Effect of column slenderness on axial compression capacity.
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In fact, most building columns fall somewhere between very stout
and very slender; in other words, in the range labeled zone 2 in Figure
12.2. Their behavior, therefore, is one of an intermediate form, some-
where between pure stress response and pure elastic buckling. Predic-
tions of structural response in this range must be established by empirical
equations that somehow make the transition from the horizontal line to
the Euler curve. Equations currently used are explained in Section 12.2
for wood columns and in Section 12.3 for steel columns.

Buckling may be affected by constraints, such as lateral bracing that
prevents sideways movement, or support conditions that restrain the ro-
tation of the member’s ends. Figure 12.3a shows the case for the mem-
ber that is the general basis for response as indicated by the Euler
formula. This form of response can be altered by lateral constraints, as
shown in Figure 12.3b, that result in a multimode deflected shape. The
member in Figure 12.3c has its ends restrained against rotation (de-
scribed as a fixed end). This also modifies the deflected shape, and thus,
the value produced from the buckling formula. One method used for ad-
justment is to modify the column length used in the buckling formula to
that occurring between inflection points; thus, the effective buckling
length for the columns in both Figures 12.3b and c would be one half that
of the true column total length. Inspection of the Euler formula will indi-
cate the impact of this modified length on buckling resistance.

296 COMPRESSION MEMBERS

Figure 12.3 Form of buckling of a column as affected by various end conditions
and lateral constraint.
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12.2 WOOD COLUMNS

The wood column that is used most frequently is the solid-sawn section
consisting of a single piece of wood, square or oblong in cross section.
Single piece round columns are also used as building columns or founda-
tion piles. This section deals with these common elements and some other
special forms used as compression members in building construction.

For all columns, a fundamental consideration is the column slender-
ness. For the solid-sawn wood column, slenderness is established as the
ratio of the laterally unbraced length to the least side dimension, or L/d
(Figure 12.4a). The unbraced length (height) is typically the overall ver-
tical length of the column. However, it takes very little force to brace a
column from moving sideways (buckling under compression), so that
where construction constrains a column, there may be a shorter unbraced
length on one or both axes (Figure 12.4b).

An important point to make here is that the short compression mem-
ber is limited by stress resistance, while the very slender member is lim-
ited essentially by its stiffness—that is, by the resistance of the member

WOOD COLUMNS 297

Figure 12.4 Determination of relative slenderness for investigation of buckling.
(a) The relative slenderness for this column is determined as L /d. (b) For buckling
in the direction of the broader dimension (d1), slenderness is determined as L1/d1,
while for buckling in the direction of the narrow dimension (d2), slenderness is de-
termined as L2 /d2.
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to lateral deflection. Deflection resistance is measured in terms of the
stiffness (modulus of elasticity) of the material of the column and the
geometric property of its cross section (moment of inertia). It is, there-
fore, stress that establishes the limit at the low range of relative stiffness
and stiffness (modulus of elasticity, slenderness ratio) that establishes
the limit at extreme values of relative stiffness.

Most building columns, however, fall in a range of stiffness that is
transitional between these extremes (Zone 2, as described in Section
12.1). It becomes necessary, therefore, to establish some means for de-
termination of the axial capacity of columns that treats the complete
range—from very short to very tall, and all points between. Current col-
umn design standards establish complex formulas for description of a
single curve that makes the full transition of column behavior related to
slenderness. It is important to understand the effect of the variables in
these formulas, although for practical design work, use is generally made
of one or more design aids that permit shortcuts to pragmatic answers.

Excessively slender building columns are neither safe nor practical. In
fact, the point of separation between Zones 2 and 3 in Figure 12.2 gener-
ally represents a practical limit for maximum slenderness for columns.
Some codes specify a limit, but this degree of slenderness is a general
guide for designers. For wood columns, a limit used in the past was a
slenderness ratio of 1/50.

Column Load Capacity

The following discussion presents materials from the NDS (National De-
sign Specification—Ref. 2) for design of axially loaded columns. The
basic formula for determination of the capacity of a wood column, based
on the working stress method, is

P = (Fc
*)(Cp)(A)

in which

A = area of the column cross section

Fc
* = the allowable design value for compression parallel to the

grain, as modified by applicable factors, except Cp

Cp = the column stability factor

P = the allowable column axial compression load

298 COMPRESSION MEMBERS
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The column stability factor is determined as follows:

in which

FcE = the Euler buckling stress, as determined by the formula below

c = 0.8 for sawn lumber, 0.85 for round poles, 0.9 for glued-
laminated timbers

For the buckling stress:

in which

KcE = 0.3 for visually graded lumber and machine evaluated lumber,
0.418 for machine stress rated lumber and glued-laminated
timber

E = modulus of elasticity for the wood species and grade

Le = the effective length (unbraced height as modified by any
factors for support conditions) of the column

d = the column cross-sectional dimension (column width)
measured in the direction that buckling occurs

The values to be used for the effective column length and the corre-
sponding column width should be considered as discussed for the condi-
tions displayed in Figure 12.4. For a basic reference, the buckling
phenomenon typically uses a member that is pinned at both ends and pre-
vented from lateral movement only at the ends, for which no modifica-
tion for support conditions is made; this is a common condition for wood
columns. The NDS presents methods for modified buckling lengths that
are essentially similar to those used for steel design (see Section 12.3).
These are illustrated for steel columns in Section 12.3, but not here.

The following examples illustrate the use of the NDS formulas for
columns.
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Example 1. A wood column consists of a 6 × 6 of Douglas fir larch, No.
1 grade. Find the safe axial compression load for unbraced lengths of: (a)
2 ft, (b) 8 ft, (c) 16 ft.

Solution: From the NDS (Ref. 2), find values of Fc = 1000 psi and E =
1,600,000 psi. With no basis for adjustment given, the Fc value is used di-
rectly as the Fc

* value in the column formulas.
For (a): L/d = 2(12)/5.5 = 4.36. Then

And the allowable compression load is

P = (Fc
*)(Cp)(A) = (1000)(0.993)(5.5)2 = 30,038 lb

For (b): L/d = 8(12)/5.5 = 17.45, for which FcE = 1576 psi, FcE/Fc
* =

1.576, Cp = 0.821, and thus,

P = (1000)(0.821)(5.5)2 = 24,835 lb

For (c): L/d = 16(12)/5.5 = 34.9, for which FcE = 394 psi, FcE/Fc
* = 0.394,

Cp = 0.355, and thus,

P = (1000)(0.355)(5.5)2 = 10,736 lb

Example 2. Wood 2 × 4 elements are to be used as vertical compression
members to form a wall (ordinary stud construction). If the wood is
Douglas fir larch, stud grade, and the wall is 8.5 ft high, what is the col-
umn load capacity of a single stud?

Solution: It is assumed that the wall has a covering attached to the studs
or blocking between the studs to brace them on their weak (1.5-in.
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dimension) axis. Otherwise, the practical limit for the height of the wall
is 50 × 1.5 = 75 in. Therefore, using the larger dimension,

From the NDS (Ref. 2): Fc = 850 psi, E = 1,400,000 psi, with the value
for Fc adjusted to 1.05(850) = 892.5 psi. Then

Problems 12.2.A–C
Find the allowable axial compression load for the following wood
columns. Use Fc = 700 psi and E = 1,300,000 psi.

Nominal Size
Unbraced Length

Column (in.) (ft) (mm)

A 6 × 6 10 3.05
B 8 × 8 18 5.49
C 10 × 10 14 4.27

12.3 STEEL COLUMNS

Steel compression members range from small, single-piece columns and
truss members to huge, built-up sections for high-rise buildings and large
tower structures. The basic column function is one of simple compressive
force resistance, but is often complicated by the effects of buckling and
the possible presence of bending actions.
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Column Shapes

For modest load conditions, the most frequently used shapes are the
round pipe, the rectangular tube, and the H-shaped rolled section—most
often the W shapes that approach a square form (see Figure 12.5). 
Accommodation of beams for framing is most easily achieved with 
W-shapes of 10-in. or larger nominal depth.

For various reasons, it is sometimes necessary to make up a column
section by assembling two or more individual steel elements. The cus-
tomized assemblage of built-up sections is usually costly, so a single
piece is typically favored if one is available.

Slenderness and End Conditions

The general effect of slenderness on the axial compression load capacity
of columns is discussed in Section 12.1. For steel columns, the value of
the allowable stress in compression is determined from formulas in the
AISC Specification (found in Ref. 3); it includes variables of the steel
yield stress and modulus of elasticity, the relative slenderness of the col-
umn, and special considerations for any bracing or rotational restraint at
the column ends.

Column slenderness is determined as the ratio of the column unbraced
length to the radius of gyration of the column section: L/r. Effects of end
restraint are considered by use of a modifying factor (K ) resulting in
some reduced or magnified value for L (see Figure 12.6). The modified
slenderness is thus expressed as KL /r.

Figure 12.7 is a graph of the allowable axial compressive stress for a
column for two grades of steel with Fy of 36 ksi and 50 ksi. Values for
full number increments of KL /r are also given in Table 12.1. Values in-
dicated on the graph curve for 36 ksi may be compared with those ob-
tained for the corresponding L/r values in Table 12.1.

302 COMPRESSION MEMBERS

Figure 12.5 Common shapes of cross sections for steel columns.
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Figure 12.6 Determination of modified effective column length for buckling of steel
columns. Reproduced from the Manual of Steel Construction, 8th edition, with per-
mission of the publisher, the American Institute of Steel Construction, Chicago, IL.

Figure 12.7 Allowable axial compressive stress for steel columns as a function
of yield limit and column slenderness. Range 1 involves essentially a yield stress
failure condition. Range 3 involves essentially an elastic buckling limit based on
steel stiffness, which is independent of stress magnitude. Range 2 is the inelastic
buckling condition, which is transitional between the other two ranges.
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It may be noted, in Figure 12.7, that the two curves converge at an L/r
value of approximately 125. This is a manifestation of the fact that elas-
tic buckling takes over beyond this point, making the material’s stiffness
(modulus of elasticity) the only significant property for stiffness values
higher than about 125. Thus, the usefullness of the higher grade steel be-
comes moot for very slender members.

For practical reasons, most building columns tend to have relative
stiffnesses between about 50 and 100, with only very heavily loaded
columns falling below this, and most designers avoid using extremely
slender columns.

304 COMPRESSION MEMBERS

TABLE 12.1 Allowable Unit Stress, Fa, for Columns of A36 Steel (ksi)a

KL/r Fa KL/r Fa KL/r Fa KL/r Fa KL/r Fa KL/r Fa KL/r Fa KL/r Fa

1 21.56 26 20.22 51 18.26 76 15.79 101 12.85 126 9.41 151 6.55 176 4.82

2 21.52 27 20.15 52 18.17 77 15.69 102 12.72 127 9.26 152 6.46 177 4.77

3 21.48 28 20.08 53 18.08 78 15.58 103 12.59 128 9.11 153 6.38 178 4.71

4 21.44 29 20.01 54 17.99 79 15.47 104 12.47 129 8.97 154 6.30 179 4.66

5 21.39 30 19.94 55 17.90 80 15.36 105 12.33 130 8.84 155 6.22 180 4.61

6 21.35 31 19.87 56 17.81 81 15.24 106 12.20 131 8.70 156 6.14 181 4.56

7 21.30 32 19.80 57 17.71 82 15.13 107 12.07 132 8.57 157 6.06 182 4.51

8 21.25 33 19.73 58 17.62 83 15.02 108 11.94 133 8.44 158 5.98 183 4.46

9 21.21 34 19.65 59 17.53 84 14.90 109 11.81 134 8.32 159 5.91 184 4.41

10 21.16 35 19.58 60 17.43 85 14.79 110 11.67 135 8.19 160 5.83 185 4.36

11 21.10 36 19.50 61 17.33 86 14.67 111 11.54 136 8.07 161 5.76 186 4.32

12 21.05 37 19.42 62 17.24 87 14.56 112 11.40 137 7.96 162 5.69 187 4.27

13 21.00 38 19.35 63 17.14 88 14.44 113 11.26 138 7.84 163 5.62 188 4.23

14 20.95 39 19.27 64 17.04 89 14.32 114 11.13 139 7.73 164 5.55 189 4.18

15 20.89 40 19.19 65 16.94 90 14.20 115 10.99 140 7.62 165 5.49 190 4.14

16 20.83 41 19.11 66 16.84 91 14.09 116 10.85 141 7.51 166 5.42 191 4.09

17 20.78 42 19.03 67 16.74 92 13.97 117 10.71 142 7.41 167 5.35 192 4.05

18 20.72 43 18.95 68 16.64 93 13.84 118 10.57 143 7.30 168 5.29 193 4.01

19 20.66 44 18.86 69 16.53 94 13.72 119 10.43 144 7.20 169 5.23 194 3.97

20 20.60 45 18.78 70 16.43 95 13.60 120 10.28 145 7.10 170 5.17 195 3.93

21 20.54 46 18.70 71 16.33 96 13.48 121 10.14 146 7.01 171 5.11 196 3.89

22 20.48 47 18.61 72 16.22 97 13.35 122 9.99 147 6.91 172 5.05 197 3.85

23 20.41 48 18.53 73 16.12 98 13.23 123 9.85 148 6.82 173 4.99 198 3.81

24 20.35 49 18.44 74 16.01 99 13.10 124 9.70 149 6.73 174 4.93 199 3.77

25 20.28 50 18.35 75 15.90 100 12.98 125 9.55 150 6.64 175 4.88 200 3.73

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the
publishers, American Institute of Steel Construction, Chicago, IL.
aValue of K is taken as 1.0. Fy = 36 ksi.
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Safe Axial Loads for Steel Columns

The allowable axial load for a column is computed by multiplying the al-
lowable stress (Fa) by the cross-sectional area of the column. The follow-
ing examples demonstrate the process. For single-piece columns, a more
direct process consists of using column load tables. For built-up sections,
however, it is necessary to compute the properties of the section.

Example 3. A W 12 × 53 is used as a column with an unbraced length
of 16 ft [4.88 m]. Compute the allowable load.

Solution: Referring to Table 9.3, A = 15.6 in.2, rx = 5.23 in., and ry = 2.48
in. If the column is unbraced on both axes, it is limited by the lower r
value for the weak axis. With no stated end conditions, Case (d) in Figure
12.6 is assumed, for which K = 1.0; that is, no modification is made. (This
is the unmodified condition.) Thus, the relative stiffness is computed as

In design work, it is usually considered acceptable to round the slender-
ness ratio off to the nearest whole number. Thus, with a KL/r value of 77,
Table 12.1 yields a value for Fa of 15.69 ksi. The allowable load for the
column is then

P = (Fa)(A) = (15.69)(15.6) = 244.8 kips [1089 kN]

Example 4. Compute the allowable load for the column in Example 3 if
the top is pinned but prevented from lateral movement and the bottom is
totally fixed.

Solution: Referring to Figure 12.6, this is Case (b), and the modifying
factor is 0.8. Then:

From Table 12.1, Fa = 17.24 ksi, and thus,

P = (17.24)(15.6) = 268.9 kips [1196 kN]
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The following example illustrates the situation in which a W-shape is
braced differently on its two axes.

Example 5. Figure 12.8a shows an elevation of the steel framing at the
location of an exterior wall. The column is laterally restrained but rota-
tionally free at the top and bottom in both directions (end condition as for
Case (d) in Figure 12.6). With respect to the x-axis of the section, the col-
umn is laterally unbraced for its full height. However, the existence of the
horizontal framing in the wall plane provides lateral bracing with respect
to the y-axis of the section; thus, the buckling of the column in this di-
rection takes the form shown in Figure 12.8b. If the column is a W 12 ×
53 of A36 steel, L1 is 30 ft, and L2 is 18 ft, what is the allowable com-
pression load?

Solution: The basic procedure here is to investigate both axes separately
and to use the highest value for relative stiffness obtained to find the al-
lowable stress. (Note: This is the same section used in Example 1, for
which properties were previously obtained from Table 9.3.) For the x-
axis, the situation is Case (d) from Figure 12.6. Thus,

For the y-axis, the situation is also assumed to be Case (d) from Figure
12.6, except that the deformation occurs in two parts (see Figure 12.8b).
The lower part is used, as it has the greater unbraced length. Thus,

Despite the bracing, the column is still critical on its weak axis. From
Table 12.1, the value for Fa is 14.56 ksi, and the allowable load is thus

P = Fa A = (14.56)(15.6) = 227.1 kips [1010 kN]

For the following problems, use A36 steel with Fy = 36 ksi.

Problem 12.3.A
Determine the allowable axial compression load for a W 10 × 49 column
with an unbraced height of 15 ft [4.57 m]. Assume K = 1.0.
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Problem 12.3.B
Determine the allowable axial compression load for a W 12 × 120 col-
umn with an unbraced height of 22 ft [6.71 m], if both ends are fixed
against rotation and horizontal movement.

STEEL COLUMNS 307

Figure 12.8 Example 5: biaxial bracing conditions for the column.
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Problem 12.3.C
Determine the allowable axial compression load in Problem 12.3.A if the
conditions are as shown in Figure 12.8 with L1 = 15 ft [4.6 m] and L2 = 8
ft [2.44 m].

Problem 12.3.D
Determine the allowable axial compression load in Problem 10.3.B if the
conditions are as shown in Figure 12.8 with L1 = 40 ft [12 m] and L2 = 22
ft [6.7 m].

308 COMPRESSION MEMBERS
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309

13
COMBINED FORCES 

AND STRESSES

Many structural elements perform singular tasks, as simple tension mem-
bers, compression members, beams, and so on. As such, their stress con-
ditions may be quite simply visualized and investigated. However, it is
not uncommon for structural tasks to be multiple for a given structural
member, as shown in Figure 13.1. In this case it is necessary to consider
both the individual tasks and the effects of their combination. Design of
such multitask members may well produce different results from the
forms taken by simpler elements. Demonstrated versatility in performing
multiple structural tasks establishes some popularity for particular struc-
tural elements, such as the cylindrical steel shape (pipe) shown in Figure
13.1. This chapter presents some considerations for combinations of
force effects and stresses.

13.1 COMBINED ACTION: TENSION PLUS BENDING

Various situations occur in which both an axial force of tension and a
bending moment occur at the same cross section in a structural member.
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Consider the hanger shown in Figure 13.2, in which a 2-in. square steel
bar is welded to a plate and the plate is bolted to the bottom of a wood beam.
A short piece of steel plate with a hole is welded to the face of the bar,
and a load is hung from the hole. In this situation, the steel bar is sub-
jected to combined actions of tension and bending, both of which are pro-
duced by the hung load. The bending moment is the product of the load
times its eccentricity from the centroid of the bar cross section; thus,

M = 5000 × 2 = 10,000 in.-lb
[22 × 50 = 1100 kN-m]

310 COMBINED FORCES AND STRESSES

Figure 13.1 The multifunction structure. In some circumstances, structural ele-
ments must perform several different structural functions simultaneously. Such is
the case for the vertical post in the structure shown here—possibly the support for
a cantilevered sign. Under a combined loading of wind and gravity, the post must
resist compression, twisting (torsion), bending in two directions, and lateral shear.
The single most effective element for this situation is the steel cylinder, produced
for use as piping. No other single element has the versatility and efficiency of the
pipe for multiple functions.
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For this simple case, the stresses due to the two phenomena are found
separately and added as follows. For the direct tension effect (Figure 13.3a),

For the bending stress, the section modulus of the bar is found as

Then, for the bending stress (Figure 13.3b),

and the stress combinations are (Figure 13.3c)

maximum f = 1250 + 7502 = 8752 psi [61.6 MPa] (tension)
minimum f = 1250 – 7502 = –6252 psi [44.0 MPa] (compression)

Although the reversal compression stress is less than the maximum
tension stress, there are situations in which it may be critical. The 2-in.
square bar in this example is probably capable of developing the com-
pression, but other member cross sections may not be so versatile. A thin
bar, for example, may become critical in buckling due to the compres-
sion, even though the tension stress is higher.
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Figure 13.2 An example of combined tension and bending.
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Problem 13.1.A
For the hanger rod shown in Figure 13.4, find the maximum and mini-
mum values of the tension stress.

Problem 13.1.B
A hanger rod similar to that shown in Figure 13.4 consists of a 1-in.
square steel rod. Find the maximum and minimum values of the tension
stress if the load is 120 lb and the eccentricity is 2.5 in.

13.2 COMBINED ACTION: COMPRESSION PLUS BENDING

Combined actions of compression plus bending produce various effects
on structures. In some situations, the actual stress combinations may of
themselves be critical, one such case being the development of bearing

312 COMBINED FORCES AND STRESSES

Figure 13.3 Consideration for the combined stress shown in Figure 13.2. (a) Di-
rect tension. (b) Bending. (c) Combined stress.

Figure 13.4 Problem 13.1.
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stress on soils. At the contact face of a bearing footing and its supporting
soil, the “section” for stress investigation is the contact face; that is, the
bottom of the footing. The following discussion deals with an approach
to this investigation.

Figure 13.5 illustrates a classical approach to the combined direct
force and bending moment at a cross section. In this case, the “cross sec-
tion” is the contact face of the footing bottom with the soil. However the
combined force and moment originate, a common analytical technique is
to make a transformation into an equivalent eccentric force that produces

COMBINED ACTION: COMPRESSION PLUS BENDING 313

Figure 13.5 Investigation for combined stress due to compression and bending.
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the same combined effect. The value for the hypothetical eccentricity e is
established by dividing the moment by the force, as shown in the figure.
The net, or combined, stress distribution at the section is visualized as 
the sum of separate stresses created by the force and the bending. For the
limiting stresses at the edges of the section, the general equation for 
the combined stress is

p = (direct stress) ± (bending stress)

or

Four cases for this combined stress are shown in the figure. The first
case occurs when e is small, resulting in very little bending stress. The
section is thus subjected to all compressive stress, varying from a maxi-
mum value at one edge to a minimum on the opposite edge.

The second case occurs when the two stress components are equal, so
that the minimum stress becomes zero. This is the boundary condition
between the first and third cases, since any increase in e will tend to pro-
duce some reversal stress (in this situation, tension) on the section.

The second stress case is a significant one for the footing, since ten-
sion stress is not possible for the soil-to-footing interface. Case 3 is only
possible for a beam or column, or some other continuously solid element.
The value for e that produces Case 2 can be derived by equating the two
stress components as follows:

This value for e establishes what is known as the kern limit of the sec-
tion. The kern is defined as a zone around the centroid of the section
within which an eccentric force will not cause reversal stress on the sec-
tion. The form and dimensions of this zone may be established for any
geometric shape by application of the derived formula for e. The kern
limit zones for three common geometric shapes are shown in Figure 13.6.

When tension stress is not possible, larger eccentricities of the normal
force will produce a so-called cracked section, which is shown as Case 4
in Figure 13.5. In this situation, some portion of the cross section be-
comes unstressed, or cracked, and the compressive stress on the remain-
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der of the section must develop the entire resistance to the loading effects
of the combined force and moment.

Figure 13.7 shows a technique for the analysis of a cracked section,
called the pressure wedge method. The “wedge” is a volume that repre-
sents the total compressive force as developed by the soil pressure (stress
times stressed area). Analysis of the static equilibrium of this wedge pro-
duces two relationships that may be used to establish the dimensions of
the stress wedge. These relationships are:

1. The volume of the wedge is equal to the vertical force. (Sum of
vertical forces equals zero.)

2. The centroid (center of gravity) of the wedge is located on a ver-
tical line that coincides with the location of the hypothetical ec-
centric force. (Sum of moments equals zero.)

Referring to Figure 13.7, the three dimensions of the wedge are w
(width of the footing), p (maximum soil pressure), and x (limiting di-
mension of the stressed portion of the cracked section). In this situation,
the footing width is known so the definition of the wedge requires only
the determination of p and x.

For the rectangular section, the centroid of the wedge is at the third
point of the triangle. Defining this distance from the edge as a, as shown
in the figure, then x is equal to three times a. And it may be observed that
a is equal to half the footing width minus e. Thus, once the eccentricity
is computed, the values of a and x can be determined.

The volume of the stress wedge may be expressed in terms of its three
dimensions as

V = 1⁄2 (wpx)

COMBINED ACTION: COMPRESSION PLUS BENDING 315

Figure 13.6 Kern limits for common shapes.
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With w and x established, the remaining dimension of the wedge may
then be established by transforming the equation for the volume to

All four cases of combined stress shown in Figure 13.5 will cause ro-
tation (tilt) of the footing due to deformation of the compressible soil.
The extent of this rotation and the concern for its effect on the supported
structure must be carefully considered in the design of the footing. It is

p
N

wx
= 2
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Figure 13.7 Investigation of combined stress on a cracked section by the pres-
sure wedge method.
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generally desirable that long-term loads (such as dead load) not develop
uneven stress on the footing. Thus, the extreme situations of stress shown
in Cases 2 and 4 in Figure 13.5 should be allowed only for short duration
loads. See discussion of the cantilever retaining wall in Chapter 6.

Example 1. Find the maximum value of soil pressure for a square foot-
ing. The axial compression force at the bottom of the footing is 100 kips
and the moment is 100 kip-ft. Find the pressure for footing widths of (a)
8 ft, (b) 6 ft, and (c) 5 ft.

Solution: The first step is to determine the equivalent eccentricity and
compare it to the kern limit for the footing to establish which of the cases
shown in Figure 13.5 applies.

(a) For all parts, the eccentricity is

For the 8-ft-wide footing the kern limit is 8/6 = 1.33 ft; thus, Case
1 applies.

For the computation of soil pressure, the properties of the sec-
tion (the 8 ft by 8 ft square) must be determined. Thus,

and the maximum soil pressure is determined as

(b) For the 6-ft-wide footing, the kern limit is 1 ft, the same as the ec-
centricity. Thus, the situation is stress Case 2 in Figure 13.5, with
N/A = Mc/I. Thus,
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(c) The eccentricity exceeds the kern limit, and the investigation
must be done as illustrated in Figure 13.7.

Problem 13.2.A
The compression force at the bottom of a square footing is 40 kips [178
kN], and the bending moment is 30 kip-ft [40.7 kN-m]. Find the maxi-
mum soil pressure for widths of: (a) 5 ft [1.5 m]; (b) 4 ft [1.2 m].

Problem 13.2.B
The compression force at the bottom of a square footing is 60 kips [267
kN] and the bending moment is 60 kip-ft [81.4 kN-m]. Find the maxi-
mum soil pressure for widths of: (a) 7 ft [2.13 m]; (b) 5 ft [1.5 m].

13.3 DEVELOPMENT OF SHEAR STRESS

Shear force generates a lateral, slicing effect in materials. Visualized in
two dimensions, this direct effect is as shown in Figure 13.8a. For stabil-
ity within the material, there will be a counteracting, or reactive, shear
stress developed at right angles to the active stress, as shown in Figure
13.8b. The interaction of the active and reactive shears produces both
diagonal tension and diagonal compression stresses, as shown in Figures
13.8c and d.
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Figure 13.8 Development of shear and resulting diagonal stresses.

3751 P-13  11/13/01  12:26 PM  Page 318



 

Referring to Figure 13.8, it may be observed that:

1. The unit reactive shear stress is equal in magnitude to the unit ac-
tive shear stress.

2. The diagonal effect (tension or compression) is the vector com-
bination of the active and reactive shear, and thus, has a magni-
tude of 1.414 times the unit shear.

3. The diagonal stress is developed on a diagonal plane, which has
an area 1.414 times that of the area on which the unit shear is de-
veloped; thus, the unit diagonal stresses are the same magnitude
as the shear stresses.

Accepting the observations just made, it is possible to determine the
critical diagonal tension or diagonal compression by simply computing
the unit shear stress. However, the direction of these stresses must also be
noted.

13.4 STRESS ON AN OBLIQUE SECTION

In the preceding section, it has been shown that shear produces direct
stresses as well as shear stresses. We now demonstrate that direct force
produces shear stresses as well as direct stresses. Consider the object
shown in Figure 13.9a, subjected to a tension force. If a section is cut that
is not at a right angle to the force (an oblique section), there may be seen
to exist two components of the internal resistance. One component is at
a right angle to the cut section and the other is in the plane of the cut sec-
tion. These two components produce, respectively, direct tension stress
( f ) and shear stress (v) at the cut section.

With the angle of the cut section defined as shown in the figure, and
the right-angle cross section area defined as A, these stresses may be ex-
pressed as follows:
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The following may be noted for two special values of the angle Θ:

1. For a right-angle section, Θ = 0, cos Θ = 1, and sin Θ = 0, then

2. When Θ = 45°, and cos Θ = sin Θ = 0.707, then

It may be demonstrated that the value for the diagonal shear stress on
the 45° cut section is the highest value generated by the direct force.
Also, the value for the direct stress on an oblique section will always be
less than that on a right-angle section, since any value for the cosine of Θ
will be less than one if Θ is greater than zero.

In some situations, the specific value for these stresses on a particular
oblique plane may be of concern. The following example demonstrates
the use of the derived stress formulas for this situation.

Example 2. The wood block shown in Figure 13.10a has its grain at an
angle of 30° to the direction of a compression force of 1200 lb on the
block. Find the compression and shear stresses on a section that is paral-
lel to the wood grain.
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2 2
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Figure 13.9 Stresses on an oblique section.
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Solution: Note that, as used in Figure 13.9, Θ = 60°. Then, for the free-
body diagram shown in Figure 13.10b,

N = P cos 60°, V = P sin 60°, A = 3 × 4 = 12.0 in.2

Then, applying the data to the stress formulas,

Problems 13.4.A–C
A structural member such as that in Figure 13.9 has a right-angle cross
section of 10 in.2 and is loaded in compression with a force of 10,000 lb.
Find the direct and shear stresses on an oblique section with Θ as shown
in Figure 13.9 equal to: (A) 15°, (B) 20°, (C) 30°.

13.5 COMBINED DIRECT AND SHEAR STRESSES

The stress actions shown in Figure 13.8 represent the conditions that occur
when an internal force of shear alone is considered. When internal shear
occurs simultaneously with other effects, the various resulting stress
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Figure 13.10 Example 2.
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conditions must be combined to produce the net stress effect. Figure 13.11
shows the result of combining a shear stress effect with a direct tension
stress effect. For shear alone, the critical tension stress plane is at 45°, 
as shown in Figure 13.11a. For tension alone, the critical stress plane is 
at 90°, as shown in Figure 13.11b. For the combined shear plus tension
(Figure 13.11c), the net unit tension stress will be some magnitude higher
than either the shear or direct tension stress, and the plane on which this
critical tension stress acts will be somewhere between 45° and 90°.

A common example of the stress condition shown in Figure 13.11 oc-
curs in a beam, in which some combination of internal vertical shear and
internal bending moment exists at all points in the beam span. Consider
the beam shown in profile in Figure 13.12. At all cross sections, the form
of distribution of shear and bending stresses, considered alone, are as
shown in Figures 13.12b and c. Various combinations of shear and direct
stress may be visualized in terms of the conditions at the cross section la-
beled S-S in the figure. With reference to the points on the section la-
beled 1 through 5, the following may be observed:

1. At point 1, the vertical shear stress is zero, and the dominant stress
is compressive stress due to bending, oriented in a horizontal di-
rection. Tension stress here approaches zero in a vertical direction.

2. At point 5, the vertical shear stress is zero, and the dominant stress
is tension stress due to bending, oriented in a horizontal direction.

3. At point 3, the vertical shear stress is maximum, bending stress is
zero, and the maximum tension stress is the diagonal stress due to
shear, oriented in a 45° direction.
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Figure 13.11 Development of principal net stress due to combined shear and di-
rect stresses.
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4. At point 2, the net tension stress acts in a direction between 45°
and 90°.

5. At point 4, the net tension stress acts in a direction between 0°
and 45°.

The direction of the net tension stress is indicated for various points in
the beam by the short dark bars on the beam elevation in Figure 13.12d.
The light dashed lines indicate the direction of flow of internal tension
stress. If Figure 12.12d were inverted, it would show the flow of internal
compression. This is a highly informative device for visualization of the
basic nature of beams.
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Figure 13.12 Direction of development of net tension stresses in a beam.
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14
CONNECTIONS FOR 

STEEL STRUCTURES

Making a steel structure for a building typically involves the connecting
of many parts (see Figure 14.1). The technology available for achieving
connections is subject to considerable variety, depending on the form and
size of the connected parts, the structural forces transmitted between
parts, and the nature of the connecting materials. At the scale of building
structures, the primary connecting methods utilized presently are those
using electric arc welding and high strength steel bolts; these are the
methods treated in this chapter.

14.1 BOLTED CONNECTIONS

Elements of steel are often connected by mating flat parts with common
holes and inserting a pin-type device to hold them together. In times past,
the device was a rivet; today, it is usually a bolt. Many types and sizes of
bolt are available, as are many connections in which they are used.
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Structural Actions of Bolted Connections

Figures 14.2a and b show plan and section of a simple connection be-
tween two steel bars that functions to transfer a tension force from one
bar to another. Although this is a tension-transfer connection, it is also re-
ferred to as a shear connection because of the manner in which the con-
necting device (the bolt) works in the connection (see Figure 14.2c). For
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Figure 14.1 At the scale of
building structures, the con-
necting of individual members
in a frame system usually in-
volves matching of the flat
parts of members. Slipping at
the contact face is then pre-
vented by welding or by in-
serting bolts in matching holes
in the members. Contact be-
tween members may be direct
(a) or through an auxiliary ele-
ment such as the gusset plate
shown in (b).
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structural connections, this type of joint is now achieved mostly with so-
called high strength bolts, which are special bolts that are tightened in a
controlled manner that induces development of yield stress in the bolt
shaft. For a connection using such bolts, there are many possible forms
of failure that must be considered, including the following:

Bolt Shear. In the connection shown in Figures 14.2a and b, the fail-
ure of the bolt involves a slicing (shear) failure that is developed as a
shear stress on the bolt cross section. The resistance of the bolt can be ex-
pressed as an allowable shear stress Fv times the area of the bolt cross
section, or

R = Fv × A

With the size of the bolt and the grade of steel known, it is a simple
matter to establish this limit. In some types of connections, it may be nec-
essary to slice the same bolt more than once to separate the connected
parts. This is the case in the connection shown in Figure 14.2f, in which

326 CONNECTIONS FOR STEEL STRUCTURES

Figure 14.2 Actions of bolted joints.
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it may be observed that the bolt must be sliced twice to make the joint
fail. When the bolt develops shear on only one section (Figure 14.2c), it
is said to be in single shear; when it develops shear on two sections 
(Figure 14.2f), it is said to be in double shear.

Bearing. If the bolt tension (due to tightening of the nut) is relatively
low, the bolt serves primarily as a pin in the matched holes, bearing
against the sides of the holes, as shown in Figure 14.2d. When the bolt di-
ameter is larger or the bolt is made of very strong steel, the connected
parts must be sufficiently thick if they are to develop the full capacity of
the bolt. The maximum bearing stress permitted for this situation by the
AISC Specification (see Ref. 3) is Fp = 1.5Fu, where Fu is the ultimate
tensile strength of the steel in the connected part in which the hole occurs.

Tension on Net Section of Connected Parts. For the connected
bars in Figure 14.2b, the tension stress in the bars will be a maximum at
a section across the bar at the location of the hole. This reduced section
is called the net section for tension resistance. Although this is indeed a
location of critical stress, it is possible to achieve yield here without se-
rious deformation of the connected parts; for this reason, allowable stress
at the net section is based on the ultimate—rather than the yield—
strength of the bars. The value normally used is 0.50Fu.

Bolt Tension. While the shear (slip-resisting) connection shown in
Figures 14.2a and b is common, some joints employ bolts for their resis-
tance in tension, as shown in Figure 14.2g. For the threaded bolt, the
maximum tension stress is developed at the net section through the cut
threads. However, it is also possible for the bolt to have extensive elon-
gation if yield stress develops in the bolt shaft (at an unreduced section).
However stress is computed, bolt tension resistance is established on the
basis of data from destructive tests.

Bending in the Connection. Whenever possible, bolted connec-
tions are designed to have a bolt layout that is symmetrical with regard 
to the directly applied forces. This is not always possible, so that in ad-
dition to the direct force actions, the connection may be subjected to
twisting due to a bending moment or torsion induced by the loads. 
Figure 14.3 shows some examples of this situation.
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In Figure 14.3a, two bars are connected by bolts, but the bars are not
aligned in a way to transmit tension directly between the bars. This may
induce a rotational effect on the bolts, with a torsional twist equal to the
product of the tension force and the eccentricity due to misalignment of
the bars. Shearing forces on individual bolts will be increased by this
twisting action. And, of course, the ends of the bars will also be twisted.

Figure 14.3b shows the single-shear joint, as shown in Figure 14.2a
and b. When viewed from the top, such a joint may appear to have the
bars aligned; however, the side view shows that the basic nature of the
single-shear joint is such that a twisting action is inherent in the joint.
This twisting increases with thicker bars. It is usually not highly critical
for steel structures, where connected elements are usually relatively thin;
for connecting of wood elements, however, this is not a favored form 
of joint.

Figure 14.3c shows a side view of a beam end with a typical form of
connection that employs a pair of angles. As shown, the angles grasp the
beam web between their legs and turn the other legs out to fit flat against
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Figure 14.3 Development of bending in bolted joints.
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a column or the web of another beam. Vertical load from the beam,
vested in the shear in the beam web, is transferred to the angles by the
connection of the angles to the beam web—with bolts as shown here.
This load is then transferred from the angles at their outward-turned face,
resulting in a separated set of forces due to the eccentricity shown. This
action must be considered with others in design of these connections.

Slipping of Connected Parts. Highly tensioned, high-strength
bolts develop a very strong clamping action on the mated flat parts being
connected, analogous to the situation shown in Figure 14.4. As a result,
there is a strong development of friction at the slip face, which is the ini-
tial form of resistance in the shear-type joint. Development of bolt shear,
bearing, and even tension on the net section will not occur until this slip-
ping is allowed. For service level loads, therefore, this is the usual form
of resistance, and the bolted joint with high-strength bolts is considered
to be a very rigid form of joint.

Block Shear. One possible form of failure in a bolted connection is
that of tearing out the edge of one of the attached members. This is called
a block shear failure. The diagrams in Figure 14.5a show this potential-
ity in a connection between two plates. The failure in this case involves
a combination of shear and tension to produce the torn-out form shown.
The total tearing force is computed as the sum required to cause both
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Figure 14.4 Clamping action of highly tightened bolts.
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forms of failure. The allowable stress on the net tension area is specified
at 0.50Fu, where Fu is the maximum tensile strength of the steel. The al-
lowable stress on the shear areas is specified as 0.30Fu. With the edge
distance, hole spacing, and diameter of the holes known, the net widths
for tension and shear are determined and multiplied by the thickness 
of the part in which the tearing occurs. These areas are then multiplied by
the appropriate stress to find the total tearing force that can be resisted. If
this force is greater than the connection design load, the tearing problem
is not critical.

Another case of potential tearing is shown in Figure 14.5b. This is the
common situation for the end framing of a beam in which support is pro-
vided by another beam, whose top is aligned with that of the supported
beam. The end portion of the top flange of the supported beam must be
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Figure 14.5 Tearing (block shear) failure in bolted joints.
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cut back to allow the beam web to extend to the side of the supporting
beam. With the use of a bolted connection, the tearing condition shown
may develop.

Types of Steel Bolts

Bolts used for the connection of structural steel members come in two
basic types. Bolts designated A307 and called unfinished have the low-
est load capacity of the structural bolts. The nuts for these bolts are tight-
ened just enough to secure a snug fit of the attached parts; because of this
low resistance to slipping, plus the over-sizing of the holes to achieve
practical assemblage, there is some movement in the development of full
resistance. These bolts are generally not used for major connections, es-
pecially when joint movement or loosening under vibration or repeated
loading may be a problem. They are, however, used extensively for tem-
porary connections during erection of frames.

Bolts designated A325 or A490 are called high-strength bolts. The
nuts of these bolts are tightened to produce a considerable tension force,
which results in a high degree of friction resistance between the attached
parts. Different specifications for installation of these bolts results in dif-
ferent classifications of their strength, relating generally to the critical
mode of failure.

When loaded in shear-type connections, bolt capacities are based on
the development of shearing action in the connection. The shear capac-
ity of a single bolt is further designated as S for single shear (Figure
14.2c) or D for double shear (Figure 14.2 f ). The capacities of structural
bolts in both tension and shear are given in Table 14.1. These bolts range
in size from 5⁄8 to 11⁄2 in. in diameter, and capacities for these sizes are
given in tables in the AISC Manual (Ref. 3). However, the most com-
monly used sizes for light structural steel framing are 3⁄4 and 7⁄8 in. How-
ever, for larger connections and large frameworks, sizes of 1 to 11⁄4 are
also used. This is the size range for which data are given in Table 14.1:
3⁄4 to 11⁄4.

Bolts are ordinarily installed with a washer under both head and nut.
Some manufactured high-strength bolts have specially formed heads or
nuts that in effect have self-forming washers, eliminating the need for a
separate, loose washer. When a washer is used, it is sometimes the limit-
ing dimensional factor in detailing for bolt placement in tight locations,
such as close to the fillet (inside radius) of angles or other rolled shapes.
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 For a given diameter of bolt, there is a minimum thickness required
for the bolted parts in order to develop the full shear capacity of the bolt.
This thickness is based on the bearing stress between the bolt and the side
of the hole, which is limited to a maximum of Fp = 1.5Fu. The stress limit
may be established by either the bolt steel or the steel of the bolted parts.

Steel rods are sometimes threaded for use as anchor bolts or tie rods.
When they are loaded in tension, their capacities are usually limited by
the stress on the reduced section at the threads. Tie rods are sometimes
made with upset ends, which consist of larger diameter portions at the
ends. When these enlarged ends are threaded, the net section at the thread
is the same as the gross section in the remainder of the rods; the result is
no loss of capacity for the rod.

Layout of Bolted Connections

Design of bolted connections generally involves a number of considera-
tions in the dimensional layout of the bolt-hole patterns for the attached
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TABLE 14.1 Capacity of Structural Bolts (kips)a

Nominal Diameter of Bolt (in.)

3⁄4 7⁄8 1 11⁄8 11⁄4
Area, Based on Nominal Diameter (in.2)

ASTM Loading
Designation Conditionb 0.4418 0.6013 0.7854 0.9940 1.227

A307 S 4.4 6.0 7.9 9.9 12.3
D 8.8 12.0 15.7 19.9 24.5
T 8.8 12.0 15.7 19.9 24.5

A325 S 7.5 10.2 13.4 16.9 20.9
D 15.0 20.4 26.7 33.8 41.7
T 19.4 26.5 34.6 43.7 54.0

A490 S 9.3 12.6 16.5 20.9 25.8
D 18.6 25.3 33.0 41.7 51.5
T 23.9 32.5 42.4 53.7 66.3

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the
publishers, American Institute of Steel Construction, Chicago, IL.
aSlip-critical connections; assuming there is no bending in the connection and that bearing on
connected materials is not critical.
bS = single shear; D = double shear; T = tension.
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structural members. The material in this section presents some basic fac-
tors that often must be included in the design of bolted connections. In
some situations, the ease or difficulty of achieving a connection may af-
fect the choice for the form of the connected members.

Figure 14.6a shows the layout of a bolt pattern with bolts placed in
two parallel rows. Two basic dimensions for this layout are limited by the
size (nominal diameter) of the bolt. The first is the center-to-center spac-
ing of the bolts, usually called the pitch. The AISC Specification (see
Ref. 3) limits this dimension to an absolute minimum of 22⁄3 times the
bolt diameter. The preferred minimum, however, which is used in this
book, is 3 times the diameter.

The second critical layout dimension is the edge distance, which is the
distance from the center line of the bolt to the nearest edge of the mem-
ber containing the bolt hole. There is also a specified limit for this as a
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Figure 14.6 Layout considerations for bolted joints.

3751 P-14  11/13/01  12:27 PM  Page 333



 

function of bolt size and the nature of the edge, the latter referring to
whether the edge is formed by rolling or is cut. Edge distance may also
be limited by edge tearing in block shear, which is discussed later.

Table 14.2 gives the recommended limits for pitch and edge distance
for the bolt sizes used in ordinary steel construction.

In some cases, bolts are staggered in parallel rows (Figure 14.6b). In
this case, the diagonal distance, labeled m in the illustration, must also be
considered. For staggered bolts, the spacing in the direction of the rows
is usually referred to as the pitch; the spacing of the rows is called the
gage. The usual reason for staggering the bolts is that sometimes the
rows must be spaced closer (gage spacing) than the minimum spacing re-
quired for the bolts selected. However, staggering the bolt holes also
helps to create a slightly less critical net section for tension stress in the
steel member with the holes.

Location of bolt lines is often related to the size and type of structural
members being attached. This is especially true of bolts placed in the legs
of angles or in the flanges of W-, M-, S-, C-, and structural tee shapes.
Figure 14.6c shows the placement of bolts in the legs of angles. When a
single row is placed in a leg, its recommended location is at the distance
labeled g from the back of the angle. When two rows are used, the first
row is placed at the distance g1, and the second row is spaced a distance
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TABLE 14.2 Pitch and Edge Distances for Bolts

Minimum Edge Distance for Punched,
Reamed, or Drilled Holes (in.)

Rivet or Bolt At Rolled Edges
Diameter, of Plates, Shapes, Minimum Recommended

d or Bars, or Gas- Pitch, Center-to-Center (in.)

(in.) At Sheared Edges Cut Edgesa 2.667d 3d

0.625 1.125 0.875 1.67 1.875
0.750 1.25 1.0 2.0 2.25
0.875 1.5b 1.125 2.33 2.625
1.000 1.75b 1.25 2.67 3.0

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the
publishers, American Institute of Steel Construction, Chicago, IL.
aMay be reduced to 0.125 in. when the hole is at a point where stress does not exceed 25% of the
maximum allowed in the connected element.
bMay be 1.25 in. at the ends of beam connection angles.
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g2 from the first. Table 14.3 gives the recommended values for these 
distances.

When placed at the recommended locations in rolled shapes, bolts will
end up a certain distance from the edge of the part. Based on the recom-
mended edge distance for rolled edges given in Table 14.2, it is thus pos-
sible to determine the maximum size of bolt that can be accommodated.
For angles, the maximum fastener may be limited by the edge distance,
especially when two rows are used; however, other factors may in some
cases be more critical. The distance from the center of the bolts to the in-
side fillet of the angle may limit the use of a large washer where one is re-
quired. Another consideration may be the stress on the net section of the
angle, especially if the member load is taken entirely by the attached leg.

Tension Connections

When tension members have reduced cross sections, two stress investi-
gations must be considered. This is the case for members with holes for
bolts or for bolts or rods with cut threads. For the member with a hole, the
allowable tension stress at the reduced cross section through the hole is
0.50Fu, where Fu is the ultimate tensile strength of the steel. The total re-
sistance at this reduced section (also called the net section) must be com-
pared with the resistance at other, unreduced sections at which the
allowable stress is 0.60Fy.

For threaded steel rods, the maximum allowable tension stress at the
threads is 0.33Fu. For steel bolts, the allowable stress is specified as a
value based on the type of bolt. The tension load capacities of three types
of bolt for various sizes are given in Table 14.1.
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TABLE 14.3 Usual Gage Dimensions for Angles (in.)

Width of Angle Leg (in.)

Gage
Dimension 8 7 6 5 4 3.5 3 2.5 2

g 4.5 4.0 3.50 3.00 2.5 2.0 1.75 1.375 1.125
g1 3.0 2.5 2.25 2.00
g2 3.0 3.0 2.50 1.75

Source: Adapted from data in the Manual of Steel Construction, 8th edition, with permission of the
publishers, American Institute of Steel Construction, Chicago, IL.
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For W-, M-, S-, C-, and tee shapes, the tension connection is usually
not made in a manner that results in the attachment of all the parts of the
section (e.g., both flanges plus the web for a W). In such cases, the AISC
Specification (see Ref. 3) requires the determination of a reduced effec-
tive net area Ae that consists of

Ae = C1An

in which

An = actual net area of the member

C1 = reduction coefficient

Unless a larger coefficient can be justified by tests, the following val-
ues are specified:

1. For W-, M-, or S-shapes with flange widths not less than two-
thirds the depth and structural tees cut from such shapes, when
the connection is to the flanges and has at least three fasteners per
line in the direction of stress, C1 = 0.75.

2. For W-, M-, or S-shapes not meeting the above conditions and for
tees cut from such shapes, provided the connection has not fewer
than three fasteners per line in the direction of stress, C1 = 0.85.

3. For all members with connections that have only two fasteners
per line in the direction of stress, C1 = 0.75.

Angles used as tension members are often connected by only one leg.
In a conservative design, the effective net area is only that of the con-
nected leg, less the reduction caused by bolt holes.

Rivet and bolt holes are punched larger in diameter than the nominal
diameter of the fastener. The punching damages a small amount of the
steel around the perimeter of the hole; consequently, the diameter of 
the hole to be deducted in determining the net section is 1⁄8 in. greater
than the nominal diameter of the fastener.

When only one hole is involved, as in Figure 14.2, or in a similar con-
nection with a single row of fasteners along the line of stress, the net area
of the cross section of one of the plates is found by multiplying the plate
thickness by its net width (width of member minus diameter of hole).
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When holes are staggered in two rows along the line of stress (Figure

14.7), the net section is determined somewhat differently. The AISC
Specification (see Ref. 3) reads:

In the case of a chain of holes extending across a part in any diagonal or
zigzag line, the net width of the part shall be obtained by deducting from the
gross width the sum of the diameters of all the holes in the chain and adding,
for each gage space in the chain, the quantity s2/4g, where

s = longitudinal spacing (pitch) in inches or any two successive holes.
g = transverse spacing (gage) in inches for the same two holes.

The critical net section of the part is obtained from that chain that gives the
least net width.

The AISC Specification also provides that in no case shall the net sec-
tion through a hole be considered as more than 85% of the correspond-
ing gross section.

14.2 DESIGN OF A BOLTED CONNECTION

The issues raised in the preceding sections are illustrated in the follow-
ing design example.

Example 1. The connection shown in Figure 14.8 consists of a pair of
narrow plates that transfer a tension force of 100 kips [445 kN] to a sin-
gle 10-in.-wide [250-mm] plate. All plates are of A36 steel with Fy = 36
ksi [250 MPa] and Fu = 58 ksi [400 MPa] and are attached with 3⁄4-in.
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Figure 14.7 Determination of net cross-sectional area for a member in a bolted
joint.
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A325 bolts placed in two rows. Using data from Table 14.1, determine
the number of bolts required, the width and thickness of the narrow
plates, the thickness of the wide plate, and the layout for the connection.

Solution: From Table 14.1, the capacity of a single bolt in double shear is
found as 15.5 kips [69 kN]. The required number for the connection is thus

Although placement of seven bolts in the connection is possible, most de-
signers would choose to have a symmetrical arrangement with eight
bolts, four to a row. The average bolt load is thus

From Table 14.2, for the 3⁄4-in. bolts, minimum edge distance for a cut
edge is 1.25 in. and minimum recommended spacing is 2.25 in. The min-
imum required width for the plates is thus (see Figure 14.6)

w = b + 2(a) = 2.25 + 2(1.25) = 4.75 in. [121 mm]

If space is tightly constrained, this actual width could be specified for the
narrow plates. For this example, a width of 6 in. is used. Checking for 

P = = [ ]100

8
12 5 55 6. . kips  kN

n say= =100

15 5
6 45 7

.
. ,  
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the requirement of stress on the gross area of the plate cross section, where
the allowable stress is 0.60Fy = 0.60(36) = 21.6 ksi, the required area is

and, with the 6-in. width, the required thickness is

This permits the use of a minimum thickness of 7⁄16 in. (0.4375 in.) [11 mm].
The next step is to check the stress on the net section, where the al-

lowable stress is 0.50Fu = 0.50(58) = 29 ksi [200 MPa]. For the compu-
tations, it is recommended to use a bolt-hole size at least 1⁄8-in. larger than
the bolt diameter. This allows for the true over-size (usually 1⁄16-in.) and
some loss due to the roughness of the hole edges. Thus, the hole is as-
sumed to be 7⁄8-in. (0.875) in diameter, and the net width is

w = 6 – 2(0.875) = 4.25 in. [108 mm]

and the stress on the net section is

As this is lower than the allowable stress, the narrow plates are adequate
for tension stress.

The bolt capacities in Table 14.1 are based on a slip-critical condition,
which assumes a design failure limit to be that of the friction resistance
(slip resistance) of the bolts. However, the back-up failure mode is the
one in which the plates slip to permit development of the pin-action of
the bolts against the sides of the holes; this then involves the shear ca-
pacity of the bolts and the bearing resistance of the plates. Bolt shear ca-
pacities are higher than the slip failures, so the only concern for this is the
bearing on the plates. For this, the AISC Specification (see Ref. 3) allows
a value of Fp = 1.2Fu = 1.2(58) = 69.6 ksi [480 MPa].

Bearing stress is computed by dividing the load for a single bolt by the
product of the bolt diameter and the plate thickness. Thus, for the narrow
plates,

ft =
×( )
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which is clearly not a critical concern.
For the middle plate, the procedure is essentially the same, except

that the width is given and there is a single plate. As before, the stress on
the unreduced cross section requires an area of 4.63 in.2, so the required
thickness of the 10-in.-wide plate is

which indicates the use of a 1⁄2-in. thickness.
For the middle plate, the width at the net section is

w = 10 – (2 × 0.875) = 8.25 in. [210 mm]

and the stress on the net section is

which compares favorably with the allowable of 29 ksi, as determined
previously.

The computed bearing stress on the sides of the holes in the middle
plate is

which is less than the allowable value of 69.6 ksi, as determined previously.
In addition to the layout restrictions described in Section 14.1, the

AISC Specification (see Ref. 3) requires that the minimum spacing in the
direction of the load be

and that the minimum edge distance in the direction of the load be
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in which

D = the diameter of the bolt

P = the force transmitted by one bolt to the connected part

t = the thickness of the connected part

For this example, for the middle plate, the minimum edge distance is thus

which is considerably less than the distance listed in Table 14.2 for the 
3⁄4-in. bolt at a cut edge: 1.25 in.

For the minimum spacing,

which is also not critical.
A final problem that must be considered is the possibility for tearing

out of the two bolts at the end of a plate in a block shear failure (Figure
14.9). Because the combined thicknesses of the outer plates is greater
than that of the middle plate, the critical case for this connection is that
of the middle plate. Figure 14.9 shows the condition for tearing, which
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Figure 14.9 Example 1: Tearing in the
middle plate.
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involves a combination of tension on the section labeled 1 and shear on
the two sections labeled 2. For the tension section,

net w = 3 – 0.875 = 2.125 in. [54 mm]

and the allowable stress for tension is

Ft = 0.50Fu = 29 ksi [200 MPa]

For the two shear sections,

and the allowable stress for shear is

Fv = 0.30Fu = 17.4 ksi [120 MPa]

The total resistance to tearing is thus

T = (2.125 × 0.5 × 29) + (1.625 × 0.5 × 17.4) = 44.95 kips [205 kN]

Because this is greater than the combined load on the two end bolts (25
kips), the plate is not critical for tearing in block shear.

The solution for the connection is displayed in the top and side views
in Figure 14.10.

Connections that transfer compression between the joined parts are es-
sentially the same with regard to the bolt stresses and bearing on the
parts. Stress on the net section in the joined parts is not likely to be criti-
cal, since the compression members are likely to be designed for a rela-
tively low stress due to column action.

Problem 14.2.A
A bolted connection of the general form shown in Fig. 14.8 is to be used
to transmit a tension force of 175 kips [780 kN] by using 7⁄8-in. A325
bolts and plates of A36 steel. The outer plates are to be 8 in. wide [200
mm] and the center plate is to be 12 in. wide [300 mm]. Find the required
thicknesses of the plates and the number of bolts needed if the bolts are
placed in two rows. Sketch the final layout of the connection.

net  in.  mmw = −
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Problem 14.2.B
Design the connection for the data in Problem 14.2.A, except that the
outer plates are 9 in. wide and the bolts are placed in three rows.

14.3 WELDED CONNECTIONS

Welding is, in some instances, an alternative means of making connec-
tions in a structural joint, the other principal option being structural bolts.
A common situation is that of a connecting device (bearing plate, fram-
ing angles, etc.) that is welded to one member in the shop and fastened by
bolting to a connecting member in the field. However, there are also
many instances of joints that are fully welded, whether done in the shop
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Figure 14.10 Example 1: Layout for the final solution.
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or at the site of the building construction. For some situations, the use of
welding may be the only reasonable means of making an attachment for
a joint. As in many other situations, the design of welded joints requires
considerable awareness of the problems encountered by the welder and
the fabricator of the welded parts.

One advantage of welding is that it offers the possibility for direct
connection of members, often eliminating the need for intermediate de-
vices, such as gusset plates or framing angles. Another advantage is the
lack of need for holes (required for bolts), which permits development 
of the capacity of the unreduced cross section of tension members. Weld-
ing also offers the possibility of developing exceptionally rigid joints, an 
advantage in moment-resistive connections or generally nondeforming
connections.

Electric Arc Welding

Although there are many welding processes, electric arc welding is the
one generally used in steel building construction. In this type of welding,
an electric arc is formed between an electrode and the pieces of metal that
are to be joined. The term penetration is used to indicate the depth from
the original surface of the base metal to the point at which fusion ceases.
The melted metal from the electrode flows into the molten seat and when
cool, unites with the members that are to be welded together. Partial pen-
etration is the failure of the weld metal and base metal to fuse at the root
of a weld. It may result from a number of items, and such incomplete fu-
sion produces welds that are inferior to those of full penetration (called
complete penetration welds).

Types of Welded Connections

There are three common forms of joints: butt joints, lap joints, and tee
joints. Several variations of these joints are shown in Figure 14.11. When
two members are to be joined, the ends or edges may or may not be
shaped in preparation for welding. The scope of this book prevents a de-
tailed discussion of the many joints and their uses and limitations.

A weld commonly used for structural steel in building construction is
the fillet weld. It is approximately triangular in cross section and is
formed between the two intersecting surfaces of the joined members (see
Figures 14.11e, f, and g). As shown in Figure 14.12a, the size of a fillet
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weld is determined by the leg length, AB or BC, of the largest isosceles
right triangle that can be inscribed within the weld cross section. The
throat of a fillet weld is the distance from the root to the hypotenuse of
this same right triangle, distance BD in Figure 14.12a. The exposed sur-
face of a weld is not the plane surface indicated in Figure 14.12a, but is
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Figure 14.11 Common forms for welded joints.
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usually somewhat convex, as shown in Figure 14.12b. Therefore, the ac-
tual throat may be greater than that shown in Figure 14.12a. This addi-
tional material is called reinforcement. It is not included in the
determination of the strength of a weld.

Stresses in Fillet Welds

If the weld size (dimension AB in Figure 14.12a) is one unit in length, the
throat dimension of the weld (BD in Figure 14.12a) is

BD = 1⁄2(12 + 12)1/2 = 1⁄2(2)1/2 = 0.707

Therefore, the throat of a fillet weld is equal to the size of the weld mul-
tiplied by 0.707. As an example, consider a 1⁄2-in. fillet weld. This would
be a weld with dimensions AB or BC equal to 1⁄2 in. In accordance with
the above, the throat would be 0.5 × 0.707, or 0.3535 in. Then, if the al-
lowable unit shearing stress on the throat is 21 ksi, the allowable work-
ing strength of a 1⁄2-in. fillet weld is 0.3535 × 21 = 7.42 kips per lin. in.
of weld. If the allowable unit stress is 18 ksi, the allowable working
strength is 0.3535 × 18 = 6.36 kips per lin. in. of weld.

The permissible unit stresses used in the preceding paragraph are for
welds made with E 70 XX- and E 60 XX-type electrodes on A36 steel.
Particular attention is called to the fact that the stress in a fillet weld is
considered as shear on the throat, regardless of the direction of the ap-
plied load. The allowable working strengths of fillet welds of various
sizes are given in Table 14.4 with values rounded to 0.10 kip.

The stresses allowed for the metal of the connected parts (known as
the base metal) apply to complete penetration groove welds that are
stressed in tension or compression parallel to the axis of the weld or are
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Figure 14.12 Dimensional considerations for welds.
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stressed in tension perpendicular to the effective throat. They apply also
to complete or partial penetration groove welds stressed in compression
normal to the effective throat and in shear on the effective throat. Conse-
quently, allowable stresses for butt welds are the same as for the base
metal.

The relation between the weld size and the maximum thickness of
material in joints connected only by fillet welds is shown in Table 14.5.
The maximum size of a fillet weld applied to the square edge of a plate
or section that is 1⁄4 in. or more in thickness should be 1⁄16 in. less than the
nominal thickness of the edge. Along edges of material less than 1⁄4 in.
thick, the maximum size may be equal to the thickness of the material.

The effective area of butt and fillet welds is considered to be the ef-
fective length of the weld multiplied by the effective throat thickness.
The minimum effective length of a fillet weld should not be less than four
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TABLE 14.4 Safe Service Loads for Fillet Welds

Allowable Load Allowable Load
(kips/in.) (kN/m)

Size of Size of
Weld E 60 XX E 70 XX E 60 XX E 70 XX Weld
(in.) Electrodes Electrodes Electrodes Electrodes (mm)

3⁄16 2.4 2.8 0.42 0.49 4.76
1⁄4 3.2 3.7 0.56 0.65 6.35
5⁄16 4.0 4.6 0.70 0.81 7.94
3⁄8 4.8 5.6 0.84 0.98 9.52
1⁄2 6.4 7.4 1.12 1.30 12.70
5⁄8 8.0 9.3 1.40 1.63 15.90
3⁄4 9.5 11.1 1.66 1.94 19.10

TABLE 14.5 Relation Between Material Thickness and Size of Fillet Welds

Material Thickness of the Minimum Size
Thicker Part Joined of Fillet Weld

in. mm in. mm

To 1⁄4 inclusive To 6.35 inclusive 1⁄8 3.18
Over 1⁄4 to 1⁄2 Over 6.35 to 12.7 3⁄16 4.76
Over 1⁄2 to 3⁄4 Over 12.7 to 19.1 1⁄4 6.35
Over 3⁄4 Over 19.1 5⁄16 7.94
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times the weld size. For starting and stopping the arc, a distance approx-
imately equal to the weld size should be added to the design length of fil-
let welds for specification to the welder.

Figure 14.13a represents two plates connected by fillet welds. The
welds marked A are longitudinal; B indicates a transverse weld. If a load
is applied in the direction shown by the arrow, the stress distribution in
the longitudinal weld is not uniform, and the stress in the transverse weld
is approximately 30% higher per unit of length.

Added strength is given to a transverse fillet weld that terminates at
the end of a member, as shown in Figure 14.13b, if the weld is returned
around the corner for a distance not less than twice the weld size. These
end returns, sometimes called boxing, afford considerable resistance to
the tendency of tearing action on the weld.

The 1⁄4-in. fillet weld is considered to be the minimum practical size,
and a 5⁄16-in. weld is probably the most economical size that can be ob-
tained by one pass of the electrode. A small continuous weld is generally
more economical than a larger discontinuous weld if both are made in
one pass. Some specifications limit the single-pass fillet weld to 5⁄16 in.
Large fillet welds require two or more passes (multipass welds) of the
electrode, as shown in Figure 14.13c.

Design of Welded Connections

Welding in the shop (factory) is now often achieved by automated
processes. However, in the field, welding is almost always achieved by
“hand,” and details must be developed on this basis. The following ex-
amples demonstrate the design for simple fillet welds for some ordinary
connections.
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Figure 14.13 Welding of lapped steel elements with fillet welds.
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Example 2. A bar of A36 steel, 3 × 7⁄16 in. [76.2 × 11 mm] in cross sec-
tion, is to be welded with E 70 XX electrodes to the back of a channel as
show in the two views in Figures 14.14a and b. Determine the size of the
fillet weld required to develop the full tensile strength of the bar.

Solution: The usual allowable tension stress for this situation is 0.6Fy; thus,

Fa = 0.6(Fy) = 0.6(36) = 21.6 ksi

and the tension capacity of the bar is thus

T = Fa A = 21.6(3 × 0.4375) = 28.35 kips

The weld must be of ample size to resist this force.
A practical weld size is 3⁄8 in., for which Table 14.4 yields a strength

of 5.6 kips/in. The required length to develop the bar strength is thus

Adding a minimum distance equal to the weld size to each end for start
and stop of the weld, a practical length for specification would be 6 in.

Figure 14.14 shows three possibilities for the arrangement of the weld.
For Figure 14.14a, the total weld is divided into two equal parts. As there
are now two starts and stops, some additional length should be used.
Placing 4 in. of weld on each side of the bar should be adequate.

For the weld in Figure 14.14c, there are three parts; the first being a 3-
in.-long weld across the end of the bar. That leaves another 3 in. of re-
quired weld, which can be split between the two sides of the bar—each
being a 2-in. weld to assure a total of 3 in. of effective weld.

L = =28 35

5 6
5 06

.

.
.  in.
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Figure 14.14 Example 2: Variations of form of the welded joint.
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Neither of the welds shown in Figures 14.14a or c provides good re-
sistance to the twisting action on the unsymmetrical joint. To accommo-
date this action, most designers would provide some additional weld if
either of these options is selected. The better weld is that shown in Fig-
ure 14.14d, where a weld is provided on the back of the bar, between the
bar and the corner of the channel. This weld could be developed as an ad-
dition to either of the welds in Figures 14.14a or c. The weld on the back
is primarily only a stabilizing weld, and would not be counted for direct
resistance of the required tension force.

As may be seen, there is more than computation involved in develop-
ing a welded joint—and some judgements are those of individual designers.

Example 3. A 31⁄2 × 31⁄2 × 5⁄16-in. [89 × 89 × 8 mm] angle of A36 steel
subjected to a tensile load is to be connected to a plate by fillet welds,
using E 70 XX electrodes (see Figure 14.15). What should the dimen-
sions of the welds be to develop the full tensile strength of the angle?

Solution: From Table 9.5, the cross-sectional area of the angle is 2.09
in.2 [1348 mm2]. The maximum allowable tension stress is 0.60Fy =
0.60(36) = 21.6 ksi [150 MPa]; thus, the tensile capacity of the angle is

T = Ft A = (21.6)(2.09) = 45.1 kips [200 kN]

For the 5⁄16-in. angle leg thickness, the maximum recommended weld
is 1⁄4 in. From Table 14.4, the weld capacity is 3.7 kips/in. The total length
of weld required is thus

This total length could be divided between the two sides of the angle.
However, assuming the tension load in the angle to coincide with its cen-
troid, the distribution of the load to the two sides is not in equal shares.
Thus, some designers prefer to proportion the lengths of the two welds so
that they correspond to their positions on the angle. If this is desired, the
following procedure may be used.

From Table 9.5, the centroid of the angle is at 0.99 in. from the back
of the angle. Referring to the two weld lengths as shown in Figure 14.15,

L = = [ ]45 1

3 7
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.
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their lengths should be in inverse proportion to their distances from the
centroid. Thus,

and

These are the design lengths required, and as noted earlier, each should
be made at least 1⁄4 in. longer at each end. Reasonable specified lengths
are thus: L1 = 9.25 in., L2 = 4.0 in.

When angle shapes are used as tension members, and are connected at
their ends by fastening only one leg, it is questionable to assume a stress
distribution of equal magnitude on the entire angle cross section. Some
designers therefore prefer to ignore the development of stress in the un-
connected leg and to limit the member capacity to the force obtained by
considering only the connected leg. If this is done in this example, the
maximum tension is thus reduced to

T = Ft A = (21.6)(3.5 × 0.3125) = 23.625 kips [105 kN]

and the required total weld length is
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Figure 14.15 Example 3: Form of the welded joint.
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This length would then be divided evenly between the two sides. Adding
an extra length of twice the weld size, a specified length would be for
3.75 in. on each side.

Problem 14.3.A
A 4 × 4 × 1⁄2-in. angle of A36 steel is to be welded to a plate with E 70
XX electrodes to develop the full tensile strength of the angle. Using 
3⁄8-in. fillet welds, compute the design lengths for the welds on the two
sides of the angle, assuming development of tension on the full cross sec-
tion of the angle.

Problem 14.3.B
Same as Problem 14.3.A, except the angle is a 3 × 3 × 3⁄8, welds are made
with E 60 XX electrodes, and are 5⁄16-in. fillet welds.

Problem 14.3.C
Redesign the welded connection in Problem 14.3.A assuming that the
tension force is developed only in the connected leg of the angle.

Problem 14.3.D
Redesign the welded connection in Problem 14.3.B assuming that the
tension force is developed only in the connected leg of the angle.
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15
REINFORCED

CONCRETE BEAMS

This chapter deals primarily with concrete formed with the common bind-
ing agent of Portland cement, and a loose mass consisting of sand and
gravel. With minor variations, this is the material most used for structural
concrete—to produce building structures, pavements, and foundations.

15.1 GENERAL CONSIDERATIONS

Concrete made from natural materials was used by ancient builders thou-
sands of years ago. Modern concrete, made with industrially produced
cement, was developed in the early part of the nineteenth century when
the process for producing Portland cement was developed. Because of its
lack of tensile strength, however, concrete was used principally for
crude, massive structures—foundations, bridge piers, and heavy walls.

In the mid to late nineteenth century, several builders experimented
with the technique of inserting iron or steel rods into relatively thin struc-
tures of concrete to enhance their ability to resist tensile forces. This was
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the beginning of what we now know as reinforced concrete (see Figure
15.1).

For building structures, concrete is mostly used with a method called
sitecast concrete, in which the wet concrete mix is deposited in some
forming at the location where it is to be used. This method is also de-
scribed as cast-in-place or in situ construction.

Design Methods

Traditional structural design was developed primarily with a method now
referred to as stress design. This method utilizes basic relationships de-
rived from classic theories of elastic behavior of materials. The adequacy
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Figure 15.1 Elements of a concrete
frame structure for a building. Most rein-
forced concrete beams occur in this situa-
tion, interacting with simultaneously cast
columns and spanning slabs to form a
whole concrete system.
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or safety of designs is measured by comparison with two primary limits:
an acceptable level for maximum stress and a tolerable limit for the ex-
tent of deformation (deflection, stretch, etc.). These limits are calculated
as they occur in response to the service loads, that is, the loads caused by
the normal usage conditions visualized for the structure. This method is
also called the working stress method. The stress limits are called allow-
able working stresses, and the tolerable movements are called allowable
deflection, allowable elongation, and so on.

The Stress Method

The stress method generally consists of the following.

1. The service (working) load conditions are visualized and quanti-
fied as intelligently as possible. Adjustments may be made here
by the determination of various statistically likely load combina-
tions (dead load plus live load plus wind load?, etc.), by consid-
eration of load duration, and so on.

2. Stress, stability, and deformation limits are set by standards for
the various responses of the structure to the loads: in tension,
bending, shear, buckling, deflection, and so on.

3. The structure is then evaluated (investigated) for its adequacy or
is proposed (designed) for an adequate response.

An advantage obtained in working with the stress method is that the
real usage condition (or at least an intelligent guess about it) is kept con-
tinuously in mind. The principal disadvantage comes from its detached
nature regarding real failure conditions, since most structures develop
much different forms of stress and strain as they approach their failure
limits.

The Strength Method

In essence, the working stress method consists of designing a structure
to work at some established appropriate percentage of its total capacity.
The strength method consists of designing a structure to fail, but at a
load condition well beyond what it should have to experience in use. A
major reason for favoring of strength methods is that the failure of a
structure is relatively easily demonstrated by physical testing. What is
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truly appropriate as a working condition, however, is pretty much a theo-
retical speculation. The strength method is now largely preferred in pro-
fessional design work. It was first largely developed for design of concrete
structures, but is now generally taking over all areas of structural design.

Nevertheless, it is considered necessary to study the classic theories of
elastic behavior as a basis for visualization of the general ways that struc-
tures work. Ultimate responses are usually some form of variant from the
classic responses (because of inelastic materials, secondary effects, mul-
timode responses, etc.). In other words, the usual study procedure is to
first consider a classic, elastic response, and then to observe (or speculate
about) what happens as failure limits are approached.

For the strength method, the process is as follows.

1. The service loads are quantified as in step 1 of the stress method
and then are multiplied by an adjustment factor (essentially a
safety factor) to produce the factored load.

2. The form of response of the structure is visualized and its ulti-
mate (maximum, failure) resistance is quantified in appropriate
terms (resistance to compression, to buckling, to bending, etc.).
Sometimes this quantified resistance is also subject to an adjust-
ment factor called the resistance factor.

3. The usable resistance of the structure is then compared to the ul-
timate resistance required (an investigation procedure), or a struc-
ture with an appropriate resistance is proposed (a design
procedure).

When the design process using the strength method employs both load
and resistance factors, it is now sometimes called load and resistance
factor design (abbreviated LRFD).

Strength of Concrete

The property of concrete of greatest significance for structural purposes
is its resistance to compressive stress. As such, the common practice is to
specify a desired limiting capacity of compressive stress, to design a con-
crete mix to achieve that limit, and to test samples of cast and hardened
concrete to verify its true capacity for compression. This stress is given
the symbol fc¢.
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For design work, the capacity of concrete for all purposes is estab-
lished as some percentage off fc¢. Attainment of a quality of concrete to
achieve a particular level of compressive resistance generally also serves
to certify various other properties, such as hardness, density, and dura-
bility. Choice for the desired strength is typically based on the form of
construction. For most purposes, a strength of 3000 to 5000 psi for fc¢ is
usually adequate. However, strengths of 20,000 psi and higher have re-
cently been achieved for lower columns in very tall structures.

Stiffness of Concrete

As with other materials, the stiffness of concrete is measured by the mod-
ulus of elasticity, designated E. This modulus is established by tests and
is the ratio of stress to strain. Since strain has no unit designation (mea-
sured as inch/inch, etc.), the unit for E thus becomes the unit for stress,
usually psi or ksi [MPa].

The magnitude of elasticity for concrete, Ec, depends on the weight of
the concrete and its strength. For values of unit weight between 90 and
155 lb/ft3 or pcf, the value of Ec is determined as

The unit weight for ordinary stone-aggregate concrete is usually as-
sumed to be an average of 145 pcf. Substituting this value for w in the
equation results in an average concrete modulus of

For metric units, with stress measured in megapascals, the expression be-
comes

Distribution of stresses and strains in reinforced concrete is dependent
on the concrete modulus, the steel modulus being a constant. This is dis-
cussed in Section 15.2. In the design of reinforced concrete members, the
term n is employed. This is the ratio of the modulus of elasticity of steel

E f
c c= ′4730

E f
c c= ′57 000,

E w f
c c= ′1 533.
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to that of concrete, or n = Es/Ec. Es is taken as 29,000 ksi [200,000 MPa],
a constant. Values for n are usually given in tables of properties, although
they are typically rounded off.

In truth, the modulus of elasticity of concrete is a variable, not a con-
stant value. The general form of the stress/strain graph for concrete is
shown in Figure 15.2. When plotted all the way to the failure of the mate-
rial, it describes a considerably curved form. Thus, the material has its
greatest stiffness at low stress and loses stiffness continuously as it ap-
proaches its stress limit. It therefore becomes necessary to decide on the
stress range at which a value for stiffness is to be considered. For deter-
mination of structural deformations (deflection of beams, etc.) at usage
loading well below the ultimate limit, an average value for E may be
taken for the somewhat less curved lower portion of the graph. This is
generally the procedure for computation of E values used for design
work.

Cement

The cement used most extensively in building construction is Portland
cement. Of the five types of standard Portland cement generally available
in the United States and for which the American Society for Testing and
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Figure 15.2 Consideration of the value for modulus of elasticity of concrete.
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Materials has established specifications, two types account for most of
the cement used in buildings. These are a general-purpose cement for use
in concrete designed to reach its required strength in about 28 days, and
a high-early-strength cement for use in concrete that attains its design
strength in a period of a week or less. All Portland cements set and
harden by reacting with water, and this hydration process is accompanied
by generation of heat.

Reinforcement

The steel used in reinforced concrete consists of round bars, mostly of the
deformed type, with lugs or projections on their surfaces. The surface de-
formations help to develop a greater bond between the steel rods and the
enclosing concrete mass.

Purpose of Reinforcement. The essential purpose of steel rein-
forcing is to reduce the failure of the concrete due to tensile stresses (see
Figure 15.3). Structural actions are investigated for the development of
tension in the structural members and steel reinforcement in the proper
amount is placed within the concrete mass to resist the tension. In some
situations, steel reinforcement may also be used to increase compressive
resistance, since the ratio of magnitudes of strength of the two materials
is quite high; thus, the steel displaces a much weaker material and the
member gains significant strength.

Tension stress can be induced by shrinkage of the concrete during its
drying out from the initial wet mix. Temperature variations may also in-
duce tension in many situations. To provide for these latter actions, a
minimum amount of reinforcing is used in surface-type members such as
walls and paving slabs, even when no structural action is visualized.

Stress-Strain Considerations. The most common types of steel
used for ordinary reinforcing bars are Grade 40 and Grade 60, having
yield strengths of 40 ksi [276 MPa] and 60 ksi [414 MPa], respectively.
The yield strength of the steel is of primary interest for two reasons. Plas-
tic yielding of the steel generally represents the limit of its practical uti-
lization for reinforcing of the concrete, since the extensive deformation of
the steel in its plastic range results in major cracking of the concrete.
Thus, for service load conditions, it is desirable to keep the stress in the
steel within its elastic range of behavior where deformation is minimal.
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The second reason for the importance of the yield character of the re-
inforcing is its ability to impart a generally yielding nature (plastic de-
formation character) to the otherwise typically very brittle concrete
structure. This is of particular importance for dynamic loading, and is a
major consideration in design for earthquake forces. Also of importance
is the residual strength of the steel beyond its yield stress limit. The steel
continues to resist stress in its plastic range and then gains a second,
higher, strength before failure. Thus, the failure induced by yielding is
only a first stage response, and a second level of resistance is reserved.
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Figure 15.3 Utilization of reinforcement in concrete beams. (a) Simple beam. (b)
Form of the moment diagram for uniformly distributed loading on a simple beam.
(c) Use of flexural reinforcement for a simple beam. (d ) Continuous beam, typical
of concrete construction. (e) Form of the moment diagram for uniformly distributed
loading on a continuous beam. (f ) Use of flexural reinforcement for a continuous
beam.
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Cover. Ample concrete protection, called cover, must be provided for
the steel reinforcement. This is important to protect the steel from rusting
and to be sure that it is well engaged by the mass of concrete. Cover is
measured as the distance from the outside face of the concrete to the edge
of the reinforcing bar.

Code minimum requirements for cover are 3⁄4 in. for walls and slabs
and 11⁄2 in. for beams and columns. Additional distance of cover is re-
quired for extra fire protection or for special conditions of exposure of
the concrete surface to weather or by contact with the ground.

Spacing of Bars. Where multiple bars are used in concrete members
(which is the common situation), there are both upper and lower limits
for the spacing of the bars. Lower limits are intended to facilitate the flow
of wet concrete during casting and to permit adequate development of the
concrete-to-steel stress transfers for individual bars.

Maximum spacing is generally intended to assure that there is some
steel that relates to a concrete mass of limited size; that is, there is not too
extensive a mass of concrete with no reinforcement. For relatively thin
walls and slabs, there is also a concern of scale of spacing related to the
thickness of the concrete.

Amount of Reinforcement For structural members, the amount of
reinforcement is determined from structural computations as that re-
quired for the tension force in the member. This amount (in total cross-
sectional area of the steel) is provided by some combination of bars. In
various situations, however, there is a minimum amount of reinforcement
that is desirable, which may on occasion exceed the amount determined
by computation. Minimum reinforcement may be specified as a mini-
mum number of bars or as a minimum amount of steel cross-sectional
area, the latter usually based on the amount of the cross-sectional area of
the concrete member.

Standard Reinforcing Bars. In early concrete work, reinforcing
bars took various shapes. An early problem that emerged was the proper
bonding of the steel bars within the concrete mass, due to the tendency of
the bars to slip or pull out of the concrete.

In order to anchor the bars in the concrete, various methods were used
to produce something other than the usual smooth surfaces on bars (see
Figure 15.4). After much experimentation and testing, a single set of bars
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was developed with a form similar to that for the top left bar in Figure
15.4. Deformed bars were produced in graduated sizes with bars identi-
fied by a single number (see Table 15.1).

For bars numbered 2 through 8, the cross-sectional area is equivalent
to a round bar having a diameter of as many eighths of an inch as the bar
number. Thus, a No. 4 bar is equivalent to a round bar of 4⁄8 or 0.5 in. di-
ameter. Bars numbered from 9 up lose this identity, and are essentially
identified by the tabulated properties in a reference document.

The bars in Table 15.1 are developed in U.S. units, but can, of course,
be used with their properties converted to metric units. However, a new set
of bars has recently been developed, deriving their properties more logi-
cally from metric units. The general range of sizes is similar for both sets
of bars, and design work can readily be performed with either set. Metric-
based bars are obviously more popular outside the United States, but for
domestic use (nongovernment) in the United States, the old bars are still in
wide use. This is part of a wider conflict over units that is still going on.

The work in this book uses the old inch-based bars, simply because
the computational examples are done in U.S. units. In addition, many
widely used references still use U.S. units and the old bar sizes.
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Figure 15.4 Forms of early steel reinforcing bars. Reproduced from Concrete—
Plain and Reinforced, by Frederick W. Taylor and Sanford E. Thompson, 1916,
with permission of the publisher, John Wiley & Sons, New York.
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15.2 FLEXURE: STRESS METHOD

For wood or steel beams, the usual concern is only for the singular max-
imum values of bending and shear in a given beam. For concrete beams,
on the other hand, it is necessary to provide for the values of bending and
shear as they vary along the entire length of a beam; even through multi-
ple spans in the case of continuous beams, which are a common occur-
rence in concrete structures. For simplification of the work, it is necessary
to consider the actions of a beam at a specific location, but it should be
borne in mind that this action must be integrated with all the other effects
on the beam throughout its length.

When a member is subjected to bending, such as the beam shown in
Figure 15.5a, internal resistances of two basic kinds are generally re-
quired. Internal actions are “seen” by visualizing a cut section, such as
that taken at X-X in Figure 15.5a. Removing the portion of the beam to
the left of the cut section, its free-body actions are as shown in Figure
15.5b. At the cut section, consideration of static equilibrium requires the
development of the internal shear force (V in the figure) and the internal
resisting moment (represented by the force couple: C and T in the figure).

If a beam consists of a simple rectangular concrete section with ten-
sion reinforcement only, as shown in Figure 15.5c, the force C is consid-
ered to be developed by compressive stresses in the concrete—indicated
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TABLE 15.1 Properties of Deformed Reinforcing Bars

Nominal Dimensions

Cross-Sectional

Bar Size Nominal Weight Diameter Area

Designation lb/ft kg/m in. mm in.2 mm2

No. 3 0.376 0.560 0.375 9.5 0.11 71
No. 4 0.668 0.994 0.500 12.7 0.20 129
No. 5 1.043 1.552 0.625 15.9 0.31 200
No. 6 1.502 2.235 0.750 19.1 0.44 284
No. 7 2.044 3.042 0.875 22.2 0.60 387
No. 8 2.670 3.974 1.000 25.4 0.79 510
No. 9 3.400 5.060 1.128 28.7 1.00 645
No. 10 4.303 6.404 1.270 32.3 1.27 819
No. 11 5.313 7.907 1.410 35.8 1.56 1006
No. 14 7.650 11.390 1.693 43.0 2.25 1452
No. 18 13.600 20.240 2.257 57.3 4.00 2581
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by the shaded area above the neutral axis. The tension force, however, is
considered to be developed by the steel alone, ignoring the tensile resis-
tance of the concrete. For low-stress conditions, the latter is not true, but
at a serious level of stress, the tension-weak concrete will indeed crack,
virtually leaving the steel unassisted, as assumed.

At moderate levels of stress, the resisting moment is visualized as
shown in Figure 15.6a, with a linear variation of compressive stress from
zero at the neutral axis to a maximum value of fc at the edge of the sec-
tion. As stress levels increase, however, the nonlinear stress-strain char-
acter of the concrete becomes more significant, and it becomes necessary
to acknowledge a more realistic form for the compressive stress varia-
tion, such as that shown in Figure 15.6b. As stress levels approach the
limit of the concrete, the compression becomes vested in an almost con-
stant magnitude of unit stress, concentrated near the top of the section.
For strength design, in which the moment capacity is expressed at the ul-
timate limit, it is common to assume the form of stress distribution shown
in Figure 15.6c, with the limit for the concrete stress set at 0.85 times fc¢.
Expressions for the moment capacity derived from this assumed distrib-
ution have been shown to compare reasonably with the response of
beams tested to failure in laboratory experiments.

Response of the steel reinforcement is more simply visualized and ex-
pressed. Since the steel area in tension is concentrated at a small location
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Figure 15.5 Development of bending in a reinforced concrete beam.
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with respect to the size of the beam, the stress in the bars is considered to
be a constant. Thus, at any level of stress, the total value of the internal
tension force may be expressed as

T = As fs

and for the practical limit of T,

T = As fy

In stress design, a maximum allowable (working) value for the ex-
treme fiber stress is established and the formulas are predicated on elas-
tic behavior of the reinforced concrete member under service load. The
straight-line distribution of compressive stress is valid at working stress
levels because the stresses developed vary approximately with the dis-
tance from the neutral axis, in accordance with elastic theory.

The following is a presentation of the formulas and procedures used in
the stress method. The discussion is limited to a rectangular beam section
with tension reinforcement only.

Referring to Figure 15.7, the following are defined.

b = width of the concrete compression zone

d = effective depth of the section for stress analysis; from the
centroid of the steel to the edge of the compressive zone
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Figure 15.6 Distribution of bending stress in a reinforced concrete beam. (a) At
low levels of stress. (b) At the point where the maximum stress in the concrete ap-
proaches the limit. (c) As assumed for investigation by the strength method.
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As = cross-sectional area of reinforcing bars

p = percentage of reinforcement, defined as p = As/bd

n = elastic ratio, defined as n = (E of the steel)/(E of the concrete)

kd = height of the compression stress zone; used to locate the
neutral axis of the stressed section; expressed as a decimal
fraction (k) of d

jd = internal moment arm, between the net tension force and the
net compression force; expressed as a decimal fraction ( j) of d

fc = maximum compressive stress in the concrete

fs = tensile stress in the reinforcement

The compression force C may be expressed as the volume of the com-
pression stress “wedge,” as shown in the figure:

C = 1⁄2(kd )(b)( fc) = 1⁄2kfcbd

Using this force, we may express the moment resistance of the section as

M = Cjd = (1⁄2kfcbd )( jd ) = 1⁄2kjfcbd 2 (15.2.1)

This may be used to derive an expression for the concrete stress:

(15.2.2)
f

M

kjbd
c = 2

2
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Figure 15.7 Development of bending resistance: stress method.
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The resisting moment may also be expressed in terms of the steel and
the steel stress as

M = Tjd = As fs jd

This may be used for determination of the steel stress as

(15.2.3)

or for finding the required area of steel as

(15.2.4)

A useful reference is the so-called balanced section, which occurs
when use of the exact amount of reinforcement results in the simultane-
ous development of the limiting stresses in the concrete and steel. The
properties that establish this relationship may be expressed as follows:

(15.2.5)

(15.2.6)

(15.2.7)

(15.2.8)

in which

R = 1⁄2kjfc (15.2.9)

derived from equation (15.2.1).
If the limiting compression stress in the concrete ( fc = 0.45fc¢) and the

limiting stress in the steel are entered in equation (15.2.5), the balanced
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section value for k may be found. Then the corresponding values for j, p,
and R may be found. The balanced p may be used to determine the max-
imum amount of tensile reinforcement that may be used in a section
without the addition of compressive reinforcing. If less tensile reinforce-
ment is used, the moment will be limited by the steel stress, the maxi-
mum stress in the concrete will be below the limit of 0.45fc¢, the value of
k will be slightly lower than the balanced value, and the value of j will be
slightly higher than the balanced value. These relationships are useful in
design for the determination of approximate requirements for cross 
sections.

Table 15.2 gives the balanced section properties for various combina-
tions of concrete strength and limiting steel stress. The values of n, k, j,
and p are all without units. However, R must be expressed in particular
units; the units in the table are kips per square inch (ksi) and kilopascals
(kPa).

When the area of steel used is less than the balanced p, the true value
of k may be determined by the following formula:

Figure 15.8 may be used to find approximate k values for various com-
binations of p and n.

Beams with reinforcement less than that required for the balanced
moment are called under-balanced sections or under-reinforced sections.
If a beam must carry bending moment in excess of the balanced moment

k np np np= − ( ) −2 2
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TABLE 15.2 Balanced Section Properties for Rectangular Sections with
Tension Reinforcement Only

fs fc¢ R

ksi MPa ksi MPa n k j p ksi kPa

20 138 2 13.79 11.3 0.337 0.888 0.0076 0.135 928
3 20.68 9.2 0.383 0.872 0.0129 0.226 1554
4 27.58 8.0 0.419 0.860 0.0188 0.324 2228
5 34.48 7.1 0.444 0.852 0.0250 0.426 2937

24 165 2 13.79 11.3 0.298 0.901 0.0056 0.121 832
3 20.68 9.2 0.341 0.886 0.0096 0.204 1403
4 27.58 8.0 0.375 0.875 0.0141 0.295 2028
5 34.48 7.1 0.400 0.867 0.0188 0.390 2690
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for the section, it is necessary to provide some compressive reinforce-
ment. The balanced section is not necessarily a design ideal, but is use-
ful in establishing the limits for the section.

In the design of concrete beams, there are two situations that com-
monly occur. The first occurs when the beam is entirely undetermined,
that is, when both the concrete dimensions and the reinforcement needed
are unknown. The second occurs when the concrete dimensions are
given, and the required reinforcement for a specific bending moment
must be determined. The following examples illustrate the use of the for-
mulas just developed for each of these problems.
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Figure 15.8 Flexural k factors for rectangular beams with tensile reinforcing only,
as a function of p and n.
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Example 1. A rectangular concrete beam with concrete having fc¢ of
3000 psi [20.7 MPa] and steel reinforcement with fs = 20 ksi [138 MPa]
must sustain a bending moment of 200 kip-ft [271 kN-m]. Select the
beam dimensions and the reinforcement for a section with tension rein-
forcement only.

Solution: With tension reinforcement only, the minimum size beam is a
balanced section, since a smaller beam would have to be stressed beyond
the capacity of the concrete to develop the required moment. Using equa-
tion (15.2.8),

M = Rbd 2 = 200 kip-ft [271 kN-m]

Then, from Table 15.2, for fc¢of 3000 psi and fs of 20 ksi,

R = 0.226 (in units of kip-in.) [1554 in units of kN-m]

Therefore,

M = 200 × 12 = 0.226(bd 2) and bd 2 = 10,619

Various combinations of b and d may be found; for example:

Although they are not given in this example, there are often consider-
ations other than flexural behavior alone that influence the choice of spe-
cific dimensions for a beam. These may include:

Design for shear.

Coordination of the depths of a set of beams in a framing system.

Coordination of the beam dimensions and placement of reinforcement
in adjacent beam spans.

b d

d

b d
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Coordination of beam dimensions with supporting columns.

Limiting beam depth to provide overhead clearance beneath the 
structure.

If the beam is of the ordinary form shown in Figure 15.9, the specified
dimension is usually that given as h. Assuming the use of a No. 3 U-
stirrup, a cover of 1.5 in. [38 mm], and an average-size reinforcing bar of
1-in. [25-mm] diameter (No. 8 bar), the design dimension d will be less
than h by 2.375 in. [60 mm]. Lacking other considerations, assume a b of
15 in. [380 mm] and an h of 29 in. [740 mm], with the resulting d of
29 – 2.375 = 26.625 in. [680 mm].

Next, use the specific value for d with equation (15.2.4) to find the re-
quired area of steel As. Since the selection is very close to the balanced
section, use the value of j from Table 15.2. Thus,

Or, using the formula for the definition of p and the balanced p value
from Table 15.2,

As = pbd = 0.0129(15 × 26.625) = 5.15 in.2 [3312 mm2]

Next, select a set of reinforcing bars to obtain this area. For the pur-
pose of the example, select bars all of a single size (see Table 15.2); the
number required will be:

A
M

f jd
s

s

= = ×
( )( )( )

= [ ]200 12

20 0 872 26 625
5 17 33122 2

. .
.  in.   mm
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Figure 15.9 Common form of reinforcement for a rectangular concrete beam
section.
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No. 6 bars: 5.17/0.44 = 11.75, or 12 [3312/284 = 11.66].

No. 7 bars: 5.17/0.60 = 8.62, or 9 [3312/387 = 8.56].

No. 8 bars: 5.17/0.79 = 6.54, or 7 [3312/510 = 6.49].

No. 9 bars: 5.17/1.00 = 5.17, or 6 [3312/645 = 5.13].

No. 10 bars: 5.17/1.27 = 4.07, or 5 [3312/819 = 4.04].

No. 11 bars: 5.17/1.56 = 3.31, or 4 [3312/1006 = 3.29].

In real design situations, there are always various additional consider-
ations that influence the choice of the reinforcing bars. One general de-
sire is that of having the bars in a single layer, as this keeps the centroid
of the steel as close as possible to the edge (bottom in this case) of the
member, giving the greatest value for d with a given height (h) of a con-
crete section. With the section as shown in Figure 15.9, a beam width of
15 in. will yield a net width of 11.25 in. inside the No. 3 stirrups (outside
width of 15 less 2 × 1.5 cover and 2 × 0.375 stirrup diameter). Applying
the code criteria for minimum spacing for this situation, the required
width for the various bar combinations can be determined. Minimum
space required between bars is one bar diameter or a lower limit of one
inch. Two examples for this are shown in Figure 15.10. It will be found
that the four No. 11 bars are the only choice that will fit this beam width.
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Figure 15.10 Consideration of beam width for proper spacing of reinforcement in
a single layer.
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Example 2. A rectangular beam of concrete with fc¢ of 3000 psi [20.7
MPa] and steel with fs of 20 ksi [138 MPa] has dimensions of b = 15 in.
[380 mm] and h = 36 in. [910 mm]. Find the area required for the steel
reinforcement for a moment of 200 kip-ft [271 kN-m].

Solution: The first step in this case is to determine the balanced moment
capacity of the beam with the given dimensions. If we assume the section
to be as shown in Figure 15.9, we may assume an approximate value for
d to be h minus 2.5 in. [64 mm], or 33.5 in. [851 mm]. Then, with the
value for R from Table 15.2,

Since this value is considerably larger than the required moment, it is
thus established that the given section is larger than that required for a
balanced stress condition. As a result, the concrete flexural stress will be
lower than the limit of 0.45fc¢, and the section is qualified as being under-
reinforced, which is to say that the reinforcement required will be less
than that required to produce a balanced section (with moment capacity
of 317 kip-ft). In order to find the required area of steel, we use equation
(15.2.4), just as we did in the preceding example. However, the true
value for j in the equation will be something greater than that for the bal-
anced section (0.872 from Table 15.2).

As the amount of reinforcement in the section decreases below the full
amount required for a balanced section, the value of k decreases and the
value of j increases. However, the range for j is small: from 0.872 up to
something less than 1.0. A reasonable procedure is to assume a value for
j, find the corresponding required area, and then perform an investigation
to verify the assumed value for j, as follows. Assume j = 0.90. Then

and
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Using this value for p in Figure 15.8, find k = 0.313. Using equation
(15.2.6), j is found to be

which is reasonably close to the assumption, so the computed area is ad-
equate for design.

For beams that are classified as under-reinforced (section dimensions
larger than the limit for a balanced section), a check should be made for
the minimum required reinforcement. For the rectangular section, the
ACI Code (Ref. 4) specifies that a minimum area be

but not less than

On the basis of these requirements, values for the minimum reinforce-
ment for rectangular sections with tension reinforcement only are given
in Table 15.3 for the two common grades of steel and a range of concrete
strengths.

For the example, with fc¢ of 3000 psi and fy of 40 ksi, the minimum
area of steel is thus

As = 0.005(bd) = 0.005(15 × 33.5) = 2.51 in.2

which is not critical in this case.

A
F

bds
y

=






( )200

A
f

f
bds

c

y

= ( )
′3

j
k= − 



 = − 



 =1

3
1

0 313

3
0 896

.
.

374 REINFORCED CONCRETE BEAMS

TABLE 15.3 Minimum Required Tension
Reinforcement for Rectangular Sectionsa

fc¢ (psi) fy = 40 ksi fy = 60 ksi

3000 0.0050 0.00333
4000 0.0050 0.00333
5000 0.0053 0.00354

aRequired As equals table value times bd of the beam.
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Problem 15.2.A
A rectangular concrete beam has concrete with fc¢= 3000 psi [20.7 MPa]
and steel reinforcement with fs = 20 ksi [138 MPa]. Select the beam di-
mensions and reinforcement for a balanced section if the beam sustains
a bending moment of 240 kip-ft [326 kN-m].

Problem 15.2.B
Same as Problem 15.2.A, except fc¢= 4000 psi, fs = 24 ksi, M = 160 kip-ft.

Problem 15.2.C
Find the area of steel required and select the bars for the beam in Prob-
lem 15.2.A if the section dimensions are b = 16 in. and d = 32 in.

Problem 15.2.D
Find the area of steel required and select the bars for the beam in Prob-
lem 15.2.B if the section dimensions are b = 14 in. and d = 25 in.

15.3 GENERAL APPLICATION OF STRENGTH METHODS

Application of the working stress method consists of designing members
to work in an adequate manner (without exceeding established stress lim-
its) under actual service load conditions. Strength design in effect con-
sists of designing members to fail; thus, the ultimate strength of the
member at failure (called its design strength) is the only type of resis-
tance considered. The basic procedure of the strength method consists of
determining a factored (increased) design load and comparing it to the
factored (usually reduced) ultimate resistance of the structural member.

The ACI Code (Ref. 4) provides various combinations of loads that
must be considered for design. Each type of load (live, dead, wind, earth-
quake, snow, etc.) is given an individual factor in these load equations.
For an example, with only live and dead load considered, the equation for
the factored design load U is

U = 1.4D + 1.7L

in which

D = the effect of dead load

L = the effect of live load
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The design strength of individual members (i.e., their usable ultimate
strength) is determined by the application of assumptions and require-
ments given in the code and is further modified by the use of a strength
reduction factor f as follows:

f = 0.90 for flexure, axial tension, and combinations of flexure
and tension

= 0.75 for columns with spirals

= 0.70 for columns with ties

= 0.85 for shear and torsion

= 0.70 for compressive bearing

= 0.65 for flexure in plain (not reinforced) concrete

Thus, while the formulas for U may imply a somewhat low safety factor,
an additional margin of safety is provided by the strength reduction factors.

15.4 FLEXURE: STRENGTH METHOD

Figure 15.11 shows the rectangular “stress block” that is used for analy-
sis of the rectangular section with tension reinforcing only by the strength
method. This is the basis for investigation and design as provided for in
the ACI Code (Ref. 4).

The rectangular stress block is based on the assumption that a concrete
stress of 0.85fc¢ is uniformly distributed over the compression zone,
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Figure 15.11 Development of bending resistance: strength method.
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which has dimensions equal to the beam width b and the distance a that
locates a line parallel to and above the neutral axis. The value of a is de-
termined from the expression a = b1 × c, where b1 (beta one) is a factor
that varies with the compressive strength of the concrete, and c is the dis-
tance from the extreme fiber to the neutral axis. For concrete having fc¢
equal to or less than 4000 psi [27.6 MPa], the Code gives a maximum
value for a = 0.85c.

With the rectangular stress block, the magnitude of the compressive
force in the concrete is expressed as

C = (0.85fc¢ )(b)(a)

and it acts at a distance of a/2 from the top of the beam. The arm of the
resisting force couple then becomes d – (a/2), and the developed resist-
ing moment as governed by the concrete is

(15.4.1)

With T expressed as As × fy, the developed moment as governed by the re-
inforcement is

(15.4.2)

A formula for the dimension a of the stress block can be derived by
equating the compression and tension forces; thus,

(15.4.3)

By expressing the area of steel in terms of a percentage p, the formula
for a may be modified as follows:

(15.4.4)
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The balanced section for strength design is visualized in terms of
strain rather than stress. The limit for a balanced section is expressed in
the form of the percentage of steel required to produce balanced condi-
tions. The formula for this percentage is

(15.4.5)

in which fc′ and fy are in units of ksi. Although this is a precise formula,
it is advisable to limit the percentage of steel to 75% of this balanced
value in beams with tension reinforcing only.

Returning to the formula for the developed resisting moment, as ex-
pressed in terms of the steel, a useful formula may be derived as follows:

Thus,

Mt = Rbd 2 (15.4.6)

where

(15.4.7)

With the reduction factor applied, the design moment for a section is
limited to nine-tenths of the theoretical resisting moment.

Values for the balanced section factors ( p, R, and a/d ) are given in
Table 15.4 for various combinations of fc¢and fy. The balanced section, as
discussed in the preceding section, is not necessarily a practical one for
design. In most cases, economy will be achieved by using less than the
balanced reinforcing for a given concrete section. In special circum-
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stances, it may also be possible, or even desirable, to use compressive re-
inforcing in addition to tension reinforcing. Nevertheless, just as in the
working stress method, the balanced section is often a useful reference
when design is performed.

The following example illustrates a procedure for the design of a sim-
ple rectangular beam section with tension reinforcing only.

Example 3. The service load bending moments on a beam are 58 kip-ft
[78.6 kN-m] for dead load and 38 kip-ft [51.5 kN-m] for live load. The
beam is 10 in. [254 mm] wide, fc¢ is 4000 psi [27.6 MPa], and fy is 60 ksi
[414 MPa]. Determine the depth of the beam and the tensile reinforcing
required.

Solution: The first step is to determine the required moment, using the
load factors. Thus,

U = 1.4D + 1.7L
Mu = 1.4(MDL) + 1.7(MLL)

= 1.4(58) + 1.7(38) = 145.8 kip-ft [197.7 kN-m]

With the capacity reduction of 0.90 applied, the desired moment ca-
pacity of the section is determined as

M
M

t
u= = =

× [ ]
0 90

145 8

0 90
162

220

.

.

.
 kip-ft

= 162 12 = 1944 kip-in.   kN-m
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TABLE 15.4 Balanced Section Properties for Rectangular Sections with
Tension Reinforcement Only: Strength Method

fy fc¢ Usable R
Balanced Usable a/d Usable

ksi MPa ksi MPa a/d (75% Balanced) p ksi kPa

40 276 2 13.79 0.5823 0.4367 0.0186 0.580 4000
3 20.68 0.5823 0.4367 0.0278 0.870 6000
4 27.58 0.5823 0.4367 0.0371 1.161 8000
5 34.48 0.5480 0.4110 0.0437 1.388 9600

60 414 2 13.79 0.5031 0.3773 0.0107 0.520 3600
3 20.68 0.5031 0.3773 0.0160 0.781 5400
4 27.58 0.5031 0.3773 0.0214 1.041 7200
5 34.48 0.4735 0.3551 0.0252 1.241 8600
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The maximum usable reinforcement ratio, as given in Table 15.4, is
p = 0.0214. If a balanced section is used, the required area of reinforce-
ment may thus be determined from the relationship

As = pbd

While there is nothing especially desirable about a balanced section, it
does represent the beam section with least depth if tension reinforcing
only is used. Therefore, proceed to find the required balanced section for
this example.

To determine the required effective depth d, use equation (15.4.6);
thus,

M1 = Rbd 2

With the value of R = 1.041 from Table 15.4,

M1 = 1944 = 1.041(10)(d )2

and

If this value is used for d, the required steel area may be found as

As = pbd = 0.0214(10)(13.66) = 2.92 in.2 [1880 mm2]

From Table 15.4, the minimum ratio of reinforcing is 0.00333, which is
clearly not critical for this example.

Selection of the actual beam dimensions and the actual number and
size of reinforcing bars involves various considerations, as discussed in
Section 15.2.

If there are reasons, as there often are, for not selecting the least deep
section with the greatest amount of reinforcing, a slightly different pro-
cedure must be used, as illustrated in the following example.

Example 4. Using the same data as in Example 3, find the reinforcement
required if the desired beam section has b = 10 in. [254 mm] and d = 18
in. [457 mm].

d =
( )

= = [ ]1944

1 041 10
186 7 13 66 347

.
. .  in.  mm
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Solution: The first two steps in this situation would be the same as in
Example 1—to determine Mu and Mt. The next step would be to deter-
mine whether the given section is larger than, smaller than, or equal to a
balanced section. Since this investigation has already been done in Ex-
ample 1, observe that the 10 × 18 in. section is larger than a balanced sec-
tion. Thus, the actual value of a /d will be less than the balanced section
value of 0.3773. The next step would then be as follows:

Estimate a value for a /d—something smaller than the balanced value.
For example, try a /d = 0.25. Then

a = 0.25d = 0.25(18) = 4.5 in. [114 mm]

With this value for a, use equation (15.4.2) to find a required value for As.
Referring to Figure 15.11,

Next, test to see if the estimate for a /d was close by finding a/d using
equation (15.4.4). Thus,

and

Thus,
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If this value for d – (a /2) is used to replace that used earlier, the re-
quired value of As will be slightly reduced. In this example, the correction
will be only a few percent. If the first guess of a /d had been way off, it
might have justified another run through the analysis to get closer to an
exact answer.

Problems 15.4.A–C
Using fc¢= 3 ksi [20.7 MPa] and fy = 60 ksi [414 MPa], find the minimum
depth required for a balanced section for the given data. Also find the
area of reinforcement required if the depth chosen is 1.5 times that re-
quired for the balanced section. Use strength design methods.

Moment Due to:

Dead Load Live Load Beam Width

kip-ft kN-m kip-ft kN-m (in.) (mm)

A 40 54.2 20 27.1 12 305
B 80 108.5 40 54.2 15 381
C 100 135.6 50 67.8 18 457

15.5 T-BEAMS

When a floor slab and its supporting beams are cast at the same time, the
result is monolithic construction in which a portion of the slab on each
side of the beam serves as the flange of a T-beam. The part of the section
that projects below the slab is called the web or stem of the T-beam. This
type of beam is shown in Figure 15.12a. For positive moment, the flange
is in compression and there is ample concrete to resist compressive
stresses, as shown in Figures 15.12b or c. However, in a continuous
beam, there are negative bending moments over the supports, and the
flange here is in the tension stress zone with compression in the web.

It is important to remember that only the area formed by the width of
the web bw and the effective depth d is to be considered in computing re-
sistance to shear and to bending moment over the supports. This is the
hatched area shown in Figure 15.12d.

382 REINFORCED CONCRETE BEAMS
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The effective flange width (bf) to be used in the design of symmetri-
cal T-beams is limited to one-fourth the span length of the beam. In ad-
dition, the overhanging width of the flange on either side of the web is
limited to eight times the thickness of the slab or one-half the clear dis-
tance to the next beam.

In monolithic construction with beams and one-way solid slabs, the ef-
fective flange area of the T-beams is usually quite capable of resisting the
compressive stresses caused by positive bending moments. With a large
flange area, as shown in Figure 15.12a, the neutral axis of the section usu-
ally occurs quite high in the beam web. If the compression developed in
the web is ignored, the net compression force may be considered to be lo-
cated at the centroid of the trapezoidal stress zone that represents the stress
distribution in the flange. On this basis, the compression force is located
at something less than t/2 from the top of the beam.

It is possible to conduct an approximate analysis of the T-section by
the working stress method while avoiding the need to find the location of
the neutral axis and the centroid of the trapezoidal stress zone; the pro-
cedure consists of the following steps.

T-BEAMS 383

Figure 15.12 Considerations for T-beams.
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1. Determine the effective flange width for the T, as previously
described.

2. Ignore compression in the web and assume a constant value for
compressive stress in the flange (see Figure 15.13). Thus,

Then, find the required steel area as

3. Check the compressive stress in the concrete as

where

The actual value of maximum compressive stress will be slightly
higher, but will not be critical if this computed value is signifi-
cantly less than the limit of 0.45fc¢.

4. T-beams ordinarily function for positive moments in continuous
beams. Since these moments are typically less than those at the
beam supports, and the required section is typically derived for
the more critical bending at the supports, the T-beam is typically
considerably under-reinforced. This makes it necessary to con-
sider the problem of minimum reinforcement, as discussed for the
rectangular section. The ACI Code (Ref. 4) provides special re-
quirements for this for the T-beam, for which the minimum area
required is defined as the greater value of
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or

in which:

bw = the width of the beam web

bf = the effective width of the T-flange

The following example illustrates the use of this procedure. It assumes
a typical design situation in which the dimensions of the section (bf , bw,
d, and t) are all predetermined by other design considerations and the de-
sign of the T-section is reduced to the work of determining the required
area of tension reinforcement.

Example 5. A T-section is to be used for a beam to resist positive mo-
ment. The following data are given: beam span = 18 ft [5.49 m], beams
are 9 ft [2.74 m] center to center, slab thickness is 4 in. [0.102 m], beam
stem dimensions are bw = 15 in. [0.381 m], and d = 22 in. [0559 m], fc¢=
4 ksi [27.6 MPa], fy = 60 ksi [414 MPa], fs = 24 ksi [165 MPa]. Find the
required area of steel and select reinforcing bars for a moment of 200 kip-
ft [272 kN-m].

Solution: Determine the effective flange width (necessary only for a
check on the concrete stress). The maximum value for the flange width is

A
f

f
b ds

c

y
f= ( )

′3
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Figure 15.13 Basis for simplified analysis of a T-beam.
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or

bf = center-to-center beam spacing = 9(12) = 108 in. [2.74 m]

or

bf = beam stem width plus 16 times the slab thickness = 
15 + 16(4) = 79 in. [201 m]

The limiting value is therefore 54 in. [1.37 m].
Next, find the required steel area as

Select bars using Table 15.5, which incorporates consideration for the
adequacy of the stem width. From the table, choose five No. 9 bars, ac-
tual As = 5.00 in.2. Consideration for the beam width and adequate spac-
ing of the bars is discussed in Example 1 in Section 15.2.

Check the concrete stress:
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TABLE 15.5 Options for the T-Beam Reinforcement

Actual Area Provided Width Required
Bar Size Number of Bars (in.2) (in.)

7 9 5.40 22
8 7 5.53 17
9 5 5.00 14

10 4 5.08 13
11 4 6.28 14
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Compare this to the limiting stress of

0.45fc¢= 0.45(4) = 1.8 ksi [12.4 MPa]

Thus, compressive stress in the flange is clearly not critical.
Using the beam stem width of 15 in. and the effective flange width of

54 in., the minimum area of reinforcement is determined as the greater of

or

As both of these are less than the computed area, minimum area is not
critical in this case.

The example in this section illustrates a procedure that is reasonably ad-
equate for beams that occur in ordinary beam and slab construction. When
special T-sections occur with thin flanges (t less than d /8 or so), these
methods may not be valid. In such cases, more accurate investigation
should be performed, using the requirements of the ACI Code (Ref. 4).

Problem 15.5.A
Find the area of steel reinforcement required for a concrete T-beam for
the following data: fc¢= 3 ksi, allowable fs = 20 ksi [138 MPa], d = 28 in.
[711 mm], t = 6 in. [152 mm], bw = 16 in. [406 mm], and the section sus-
tains a bending moment of 240 kip-ft [326 kN-m].

Problem 15.5.B
Same as Problem 15.5.A, except fc¢ = 4 ksi, fs = 24 ksi, d = 32 in., t = 5
in., bw = 18 in., M = 320 kip-ft.

15.6 SHEAR IN CONCRETE BEAMS

From general consideration of shear effects, as developed in the science
of mechanics of materials, the following observations can be made:
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1. Shear is an ever-present phenomenon, produced directly by slic-
ing actions, by transverse loading in beams, and on oblique sec-
tions in tension and compression members.

2. Shear forces produce shear stress in the plane of the force and
equal unit shear stresses in planes that are perpendicular to the
shear force.

3. Diagonal stresses of tension and compression, having magnitudes
equal to that of the shear stress, are produced in directions of 45°
from the plane of the shear force.

4. Direct slicing shear force produces a constant magnitude shear
stress on affected sections, but beam shear action produces shear
stress that varies on the affected sections, having magnitude of
zero at the edges of the section and a maximum value at the cen-
troidal neutral axis of the section.

In the discussions that follow it is assumed that the reader has a gen-
eral familiarity with these relationships.

Consider the case of a simple beam with uniformly distributed load
and end supports that provides only vertical resistance (no moment re-
straint). The distribution of internal shear and bending moment are as
shown in Figure 15.14a. For flexural resistance, it is necessary to provide
longitudinal reinforcing bars near the bottom of the beam. These bars are
oriented for primary effectiveness in resistance to tension stresses that
develop on a vertical (90°) plane (which is the case at the center of the
span, where the bending moment is maximum and the shear approaches
zero).

Under the combined effects of shear and bending, the beam tends to
develop tension cracks, as shown in Figure 15.14b. Near the center of the
span, where the bending is predominant and the shear approaches zero,
these cracks approach 90°. Near the support, however, where the shear
predominates and bending approaches zero, the critical tension stress
plane approaches 45°, and the horizontal bars are only partly effective in
resisting the cracking.

Shear Reinforcement for Beams

For beams, the most common form of added shear reinforcement consists
of a series of U-shaped bent bars (Figure 15.14d), placed vertically and
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spaced along the beam span, as shown in Figure 15.14c. These bars,
called stirrups, are intended to provide a vertical component of resis-
tance, working in conjunction with the horizontal resistance provided by
the flexural reinforcement. In order to develop flexural tension near the
support face, the horizontal bars must be anchored in the concrete beyond
the point where the stress is developed. Where the ends of simple beams
extend only a short distance over the support (a common situation), it is
often necessary to bend or hook the bars to achieve adequate anchorage,
as shown in Figure 15.14c.

The simple span beam and the rectangular section shown in Figure
15.14d occur only infrequently in building structures. The most common
case is that of the beam section shown in Figure 15.15a, which occurs
when a beam is cast continuously with a supported concrete slab. In ad-
dition, these beams normally occur in continuous spans with negative

SHEAR IN CONCRETE BEAMS 389

Figure 15.14 Considerations
for shear in concrete beams.
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moments at the supports. Thus, the stress in the beam near the support is
as shown in Figure 15.15a, with the negative moment producing com-
pressive flexural stress in the bottom of the beam stem. This is substan-
tially different from the case of the simple beam, where the moment
approaches zero near the support.

For the purpose of shear resistance, the continuous T-shaped beam is
considered to consist of the section indicated in Figure 15.15b. The effect
of the slab is ignored, and the section is considered to be a simple rec-
tangular one. Thus, for shear design, there is little difference between the
simple span beam and the continuous beam, except for the effect of the
continuity on the distribution of internal shear forces along the beam
span. It is important, however, to understand the relationships between
shear and moment in the continuous beam.

Figure 15.16 illustrates the typical condition for an interior span of a
continuous beam with uniformly distributed load. Referring to the por-
tions of the beam span numbered 1, 2, and 3 on the moment diagram:

1. In zone 1, the high negative moment requires major flexural re-
inforcing consisting of horizontal bars near the top of the beam.

2. In zone 2, the moment reverses sign; moment magnitudes are
low; and, if shear stress is high, the design for shear is a predom-
inant concern.

3. In zone 3, shear consideration is minor and the predominant con-
cern is for positive moment requiring major flexural reinforcing
in the bottom of the beam.

(Note: See Figure 15.3f for a typical layout of flexural reinforcement in
a continuous beam.)
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Figure 15.15 Development of negative bending moment and shear in concrete
T-beams.
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Vertical U-shaped stirrups, similar to those shown in Figure 15.17a, may
be used in the T-shaped beam. An alternate detail for the U-shaped stirrup
is shown in Figure 15.17b, in which the top hooks are turned outward; this
makes it possible to spread the negative moment reinforcing bars to make
placing of the concrete somewhat easier. Figures 15.17c and d show possi-
bilities for stirrups in L-shaped beams that occur at the edges of large open-
ings or at the outside edge of the structure. This form of stirrup is used to
enhance the torsional resistance of the section, and also assists in develop-
ing the negative moment resistance in the slab at the edge of the beam.

So-called closed stirrups, similar to ties in columns, are sometimes
used for T- and L-shaped beams, as shown in Figures 15.17c through f.
These are generally used to improve the torsional resistance of the beam
section.

Stirrup forms are often modified by designers or by the reinforcing
fabricator’s detailers to simplify the fabrication and/or the field installa-
tion. The stirrups shown in Figures 15.17d and f are two such modifica-
tions of the basic details in Figures 15.17c and e, respectively.

Design Considerations

The following are some of the general considerations and code require-
ments that apply to current practices of design for beam shear.

SHEAR IN CONCRETE BEAMS 391

Figure 15.16 Shear and bending in continuous concrete beams.
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Concrete Capacity. Whereas the tensile strength of the concrete is
ignored in design for flexure, the concrete is assumed to take some por-
tion of the shear in beams. If the capacity of the concrete is not ex-
ceeded—as is sometimes the case for lightly loaded beams—there may
be no need for reinforcement. The typical case, however, is as shown in
Figure 15.18, where the maximum shear V exceeds the capacity of the
concrete alone (Vc), and the steel reinforcement is required to absorb the
excess, indicated as the shaded portion in the shear diagram.

Minimum Shear Reinforcement. Even when the maximum com-
puted shear stress falls below the capacity of the concrete, the present
code requires the use of some minimum amount of shear reinforcement.
Exceptions are made in some situations, such as for slabs and very shal-
low beams. The objective is essentially to toughen the structure with a
small investment in additional reinforcement.

Type of Stirrup. The most common stirrups are the simple U-shaped
or closed forms shown in Figure 15.17, placed in a vertical position at in-
tervals along the beam. It is also possible to place stirrups at an incline
(usually 45°), which makes them somewhat more effective in direct re-
sistance to the potential shear cracking near the beam ends (see Figure

392 REINFORCED CONCRETE BEAMS

Figure 15.17 Forms for vertical stirrups.
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15.14b). In large beams with excessively high unit shear stress, both ver-
tical and inclined stirrups are sometimes used at the location of the great-
est shear.

Size of Stirrups. For beams of moderate size, the most common size
for U-stirrups is a No. 3 bar. These bars can be bent relatively tightly at
the corners (small radius of bend) in order to fit within the beam section.
For larger beams, a No. 4 bar is sometimes used, its strength (as a func-
tion of its cross-sectional area) being almost twice that of a No. 3 bar.

Spacing of Stirrups. Stirrup spacings are computed (as discussed in
the following sections) on the basis of the amount of reinforcing required
for the unit shear stress at the location of the stirrups. A maximum spac-
ing of d /2 (i.e., one-half the effective beam depth d ) is specified in order
to ensure that at least one stirrup occurs at the location of any potential
diagonal crack (see Figure 15.14b). When shear stress is excessive, the
maximum spacing is limited to d/4.

Critical Maximum Design Shear. Although the actual maximum
shear value occurs at the end of the beam, the ACI Code (Ref. 4) permits
the use of the shear stress at a distance of d (effective beam depth) from
the beam end as the critical maximum for stirrup design. Thus, as shown
in Figure 15.19, the shear requiring reinforcing is slightly different from
that shown in Figure 15.18.

Total Length for Shear Reinforcement. On the basis of com-
puted shear stresses, reinforcement must be provided along the beam
length for the distance defined by the shaded portion of the shear stress
diagram shown in Figure 15.19. For the center portion of the span, the
concrete is theoretically capable of the necessary shear resistance without
the assistance of reinforcement. However, the code requires that some

SHEAR IN CONCRETE BEAMS 393

Figure 15.18 Sharing of shear
resistance in reinforced concrete
beams.
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 shear reinforcement be provided for a distance beyond this computed cut-
off point. Earlier codes required that stirrups be provided for a distance
equal to the effective depth of the beam beyond the computed cutoff point.
Currently, codes require that minimum shear reinforcement be provided
as long as the computed shear stress exceeds one-half of the capacity of
the concrete. However it is established, the total extended range over
which reinforcement must be provided is indicated as R on Figure 15.19.

15.7 DESIGN FOR SHEAR IN CONCRETE BEAMS

The following is a description of the procedure for design of shear rein-
forcement for beams that is in compliance with Appendix A of the 1995
ACI Code (Ref. 4).

Shear stress is computed as

v
V

bd
=
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Figure 15.19 Layout for shear stress analysis: ACI Code requirements.
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in which

V = total shear force at the section

b = beam width (of the stem for T-shapes)

d = effective depth of the section

For beams of normal weight concrete, subjected only to flexure and
shear, shear stress in the concrete is limited to

When v exceeds the limit for vc, reinforcement must be provided,
complying with the general requirements discussed previously. Although
the code does not use the term, the notation of v¢ is used here for the ex-
cess unit shear for which reinforcement is required. Thus,

v¢ = v – vc

Required spacing of shear reinforcement is determined as follows.
Referring to Figure 15.20, note that the capacity in tensile resistance of a
single, two-legged stirrup is equal to the product of the total steel cross-
sectional area Av times the allowable steel stress. Thus,

T = Av fs

v f
c c= ′1 1.
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Figure 15.20 Consideration for
spacing of a single stirrup.
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This resisting force opposes the development of shear stress on the
area s times b, in which b is the width of the beam and s is the spacing
(half the distance to the next stirrup on each side). Equating the stirrup
tension to this force, an equilibrium equation is obtained:

Av fs = bsv¢

From this equation, an expression for the required spacing can be de-
rived; thus,

The following examples illustrate the design procedure for a simple
beam.

Example 6. Design the required shear reinforcement for the simple
beam shown in Figure 15.21a. Use fc¢ = 3 ksi [20.7 MPa] and fs = 20 ksi
[138 MPa] and single U-shaped stirrups.

Solution: The maximum value for the shear is 40 kips [178 kN], and the
maximum value for shear stress is computed as

Now construct the shear stress diagram for one-half of the beam, as
shown in Figure 15.21c. For the shear design, the critical shear stress is
at 24 in. (the effective depth of the beam) from the support. Using pro-
portionate triangles, this value is

The capacity of the concrete without reinforcing is

At the point of critical stress, therefore, there is an excess shear stress
of 104 – 60 = 44 psi [718 – 414 = 304 kPa] that must be carried by 

v f
c c= ′ = = [ ]1 1 1 1 3000 60 414. .  psi  KPa

72

96
139 104 718



( ) = [ ] psi  kPa

v
V

bd
= =

×
= [ ]40 000

12 24
139 957

,
 psi  KPa

s
A f

v b
v s=
′
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reinforcement. Next, complete the construction of the diagram in Figure
15.21c to define the shaded portion, which indicates the extent of the re-
quired reinforcement. Observe that the excess shear condition extends to
54.4 in.[1.382 m] from the support.

In order to satisfy the requirements of the ACI Code, shear reinforce-
ment must be used wherever the computed unit stress exceeds one-half of
vc. As shown in Figure 15.21c, this is a distance of 75.3 in. from the sup-
port. The code further stipulates that the minimum cross-sectional area of
this reinforcing be

A
bs

f
v

y

=






50
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Figure 15.21 Example 6.
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Assuming an fy value of 40 ksi [276 MPa] and the maximum allow-
able spacing of one-half the effective depth, the required area is

which is less than the area of 2 × 0.11 = 0.22 in.2 provided by the two legs
of the No. 3 stirrup.

For the maximum v¢ value of 44 ksi, the maximum spacing permitted
is determined as

Since this is less than the maximum allowable of one-half the depth or 12
in., it is best to calculate at least one more spacing at a short distance be-
yond the critical point. For example, at 36 in. from the support, the stress
is

and the value of v¢ at this point is 87 – 60 = 27 psi. The spacing required
at this point is thus

which indicates that the required spacing drops to the maximum allowed
at less than 12 in. from the critical point. A possible choice for the stir-
rup spacings is shown in Figure 15.21d, with a total of eight stirrups that
extend over a range of 74 in. from the support. There are thus a total of
16 stirrups in the beam, 8 at each end. Note that the first stirrup is placed
at 4 in. from the support, which is one-half the computed required spac-
ing; this is a common practice with designers.

Example 7. Determine the required number and spacings for No. 3 U-
stirrups for the beam shown in Figure 15.22. Use fc¢ = 3 ksi [20.7 MPa]
and fs = 20 ksi [138 MPa].

s
A f

v b
v s=
′

= ×
×

=0 22 20 000

27 10
13 6

. ,
.  in.

v = 



( ) =60

96
139 87 psi

s
A f

v b
v s=
′

= ×
×

=0 22 20 000

44 12
8 3

. ,
.  in.

Av = ×





=50
12 12

40 000
0 18 2

,
.  in.
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Solution: As in Example 1, the shear values and corresponding stresses
are determined, and the diagram in Figure 15.22c. is constructed. In this
case, the maximum critical shear stress of 89 psi results in a maximum v¢
value to 29 psi, for which the required spacing is

Since this value exceeds the maximum limit of d/2 = 10 in., the stir-
rups may all be placed at the limited spacing, and a possible arrangement
is as shown in Figure 15.22d. As in Example 6, note that the first stirrup
is placed at one-half the required distance from the support.

s
A f

v b
v s=
′

= ×
×

=0 22 20 000

29 10
15 2

. ,
.  in.
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Figure 15.22 Example 7.

3751 P-15  11/13/01  12:29 PM  Page 399



 

Example 8. Determine the required number and spacings for No. 3 U-
stirrups for the beam shown in Figure 15.23. Use fc¢ = 3 ksi [20.7 MPa]
and fs = 20 ksi [138 MPa].

Solution: In this case, the maximum critical design shear stress is found
to be less than vc, which in theory indicates that reinforcement is not re-
quired. To comply with the code requirement for minimum reinforce-
ment, however, provide stirrups at the maximum permitted spacing out to
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Figure 15.23 Example 8.
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the point where the shear stress drops to 30 psi (one-half of vc). To ver-
ify that the No. 3 stirrup is adequate, compute

which is less than the area provided, so the No. 3 stirrup at 10-in. is
adequate.

Problem 15.7.A
A concrete beam similar to that shown in Figure 15.21 sustains a total
load of 60 kips [267 kN] on a span of 24 ft [7.32 m]. Determine the lay-
out for a set of No. 3 U-stirrups with fs = 20 ksi [138 MPa] and fc¢ = 3000
psi [20.7 MPa]. The beam section dimensions are b = 12 in. [305 mm]
and d = 26 in. [660 mm].

Problem 15.7.B
Same as Problem 15.7.A, except load is 50 kips [222 kN], span is 20 ft
[6.1 m], b = 10 in. [254 mm], d = 23 in. [584 mm].

Problem 15.7.C
Determine the layout for a set of No. 3 U-stirrups for a beam with the
same data as Problem 15.7.A, except the total load on the beam is 30 kips
[133 kN].

Problem 15.7.D
Determine the layout for a set of No. 3 U-stirrups for a beam with the
same data as Problem 15.7.B, except the total load on the beam is 25 kips
[111 kN].

A
bs

f
v

y

=






= ×





=50 50
10 10

40 000
0 125 2    in.  (See Example 6)

,
.

DESIGN FOR SHEAR IN CONCRETE BEAMS 401

3751 P-15  11/13/01  12:29 PM  Page 401



 

402

REFERENCES

1. Uniform Building Code, Volume 2: Structural Engineering Design
Provisions, 1997 ed., International Conference of Building Officials,
Whittier, CA. (Called simply the UBC.)

2. National Design Specification for Wood Construction (NDS), 1997
ed., American Forest and Paper Association, Washington, DC.
(Called simply the NDS.)

3. Manual of Steel Construction, 8th ed., American Institute of Steel
Construction, Chicago, IL, 1981. (Called simply the AISC Manual.)

4. Building Code Requirements for Reinforced Concrete, ACI 318-95,
American Concrete Institute, Detroit, MI, 1995. (Called simply the
ACI Code.)

5. Timber Construction Manual, 3rd ed., American Institute of Timber
Construction, Wiley, New York, 1985.

6. James Ambrose, Design of Building Trusses, Wiley, New York, 1994.
7. James Ambrose, Simplified Design of Building Foundations, 2nd ed.,

Wiley, New York, 1988.

3751 P-16 (refs)  11/13/01  12:30 PM  Page 402



 

403

ANSWERS TO SELECTED 
EXERCISE PROBLEMS

Chapter 2

2.7.A R = 80.62 lb, upward to the right, 29.74° from the horizontal

2.7.C R = 94.87 lb, downward to the right, 18.43° from the horizontal

2.7.E R = 100 lb, downward to the left, 53.13° from the horizontal

2.7.G R = 58.07 lb, downward to the right, 7.49° from the horizontal

2.7.I R = 91.13 lb, upward to the right, 9.495° from the horizontal

2.8.A 141.4 lb T

2.8.C 300 lb C

2.10.A 19.3°

2.10.C 0.7925 lb

2.11.A 400 lb

2.11.C 1250 lb

2.12.A Sample: M about R1 = + (500 × 4) + (400 × 6) + (600 × 10) –
(650 × 16)

2.12.B R1 = 3593.75 lb [15.98 kN], R2 = 4406.25 lb [19.60 kN]
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404 ANSWERS TO SELECTED EXERCISE PROBLEMS

2.12.D R1 = 7667 lb [34.11 kN], R2 = 9333 lb [41.53 kN]

2.12.F R1 = 7143 lb [31.79 kN], R2 = 11,857 lb [52.76 kN]

Chapter 3

3.1.A Sample values: CI = 2000 C, IJ = 812.5 T, JG = 1250 T

3.2.A Same as 3.1.A.

3.3.A Sample values in kips: DN, 5333 C; KL, 1500 T; OI, 6000 T;
LM, 2500 C

Chapter 4

4.3.A Maximum shear = 10 kips [44.5 kN]

4.3.C Maximum shear = 1114 lb [4.956 kN]

4.3.E Maximum shear = 9.375 kips [41.623 kN]

4.4.A Maximum M = 60 kip-ft [80.1 kN-m]

4.4.C Maximum M = 4286 ft-lb [5.716 kN-m]

4.4.E Maximum M = 18.35 kip-ft [24.45 kN-m]

4.5.A R1 = 1860 lb [8.27 kN], maximum V = 1360 lb [6.05 kN], max-
imum – M = 2000 ft-lb [2.66 kN-m], maximum + M = 3200 ft-
lb [4.27 kN-m]

4.5.C R1 = 2760 lb [12.28 kN], maximum V = 2040 lb [9.07 kN],
maximum – M = 2000 ft-lb [2.67 kN-m], maximum + M = 5520
ft-lb [7.37 kN-m]

4.6.A Maximum V = 1500 lb [6.67 kN], maximum M = 12,800 ft-lb
[17.1 kN-m]

4.6.C Maximum V = 1200 lb [5.27 kN], maximum M = 8600 ft-lb
[11.33 kN-m]

4.7.A M = 32 kip-ft [43.4 kN-m]

4.7.C M = 90 kip-ft [122 kN-m]

Chapter 5

5.1.A R1 = R3 = 1200 lb [5.34 kN], R2 = 4000 lb [17.79 kN], + M =
3600 ft-lb [4.99 kN-m], – M = 6400 ft-lb [8.68 kN-m]

5.1.C R1 = 7.67 kips [33.35 kN], R2 = 35.58 kips [154.79 kN], R3 =
12.75 kips [55.46 kN]
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5.1.E R1 = R3 = 937.5 lb [4.17 kN], R2 = 4125 lb [18.35 kN], + M =
7031 ft-lb [9.53 kN-m], – M = 13,500 lb-ft [18.31 kN-m]

5.1.G R1 = R4 = 9600 lb [42.7 kN], R2 = R3 = 26,400 lb [117.4 kN], +
M1 = 46,080 ft-lb [62.48 kN-m], + M2 = 14,400 lb-ft [19.53 kN-
m], – M = 57,600 ft-lb [78.11 kN-m]

5.2.A Maximum V = 8 kips, maximum + M = maximum – M = 44 kip-
ft, inflection at 5.5 ft from both ends

5.3.A R1 = 16 kips [72 kN], R2 = 48 kips [216 kN], maximum + M =
64 kip-ft [86.4 kN-m], maximum – M = 80 kip-ft [108 kN-m],
inflection at pin location in both spans

5.3.C R1 = 6.4 kips [28.8 kN], R2 = 19.6 kips [88.2 kN], + M = 20.48
kip-ft [27.7 kN-m] in end span and 24.4 kip-ft [33.1 kN-m] in
center span – M = 25.6 kip-ft [34.4 kN-m], inflection at 3.2 ft
from R2 in end span

Chapter 6

6.2.A SF = 2.53

6.3.A Maximum pressure = 1098 psf, minimum pressure = 133 psf

Chapter 7

7.1.A R = 10 kips up and 110 kip-ft counterclockwise

7.1.C R = 6 kips to the left and 72 kip-ft counterclockwise

7.2.A R1 = 4.5 kips down, R2 = 4.5 kips up and 12 kips to the right

Chapter 8

8.1.A R = 216.05 lb, x = 0.769 ft, z = 1.181 ft

8.1.C T1 = 50.8 lb, T2 = 19.7 lb, T3 = 45.0 lb

8.2.A R = 4 lb down, x = 10.75 ft right, z = 15.5 ft left

Chapter 9

9.1.A cy = 2.6 in. [70 mm]

9.1.C cy = 4.2895 in. [107.24 mm]
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9.1.E cy = 4.4375 in. [110.9 mm], cx = 1.0625 in. [26.6 mm]

9.3.A I = 535.86 in.4 [2.11 × 108 mm4]

9.3.C I = 447.33 in.4 [174.74 × 106 mm4]

9.3.E I = 205.33 in.4 [ 80.21 × 106 mm4]

9.3.G I = 438 in.4

9.3.I I = 1672.45 in.4

Chapter 10

10.2.A 1.182 in.2 [762 mm2]

10.2.C 27.0 kips [120 kN]

10.2.E Not acceptable; actual stress exceeds allowable

10.3.A 19,333 lb [86 kN]

10.3.C 29,550,000 psi [203 GPa]

Chapter 11

11.2.A Okay, actual stress = 13.99 ksi, less than allowable of 24 ksi

11.3.A 38.6 kips

11.3.C 20.5 kips

11.3.E 22.6 kips

11.4.A W 12 × 22 or W 14 × 22 (lightest); also W 10 × 26, W 8 × 31

11.4.C W 18 × 35

11.5.A At neutral axis, fv = 811.4 psi; at junction of web and flange, fv

= 175 and 700 psi

11.6.A 168.3 kips

11.6.C 37.1 kips

11.7.A 6.735 kips

11.9.A 0.80 in. [20 mm]

11.10.A 13.6%

11.10.C 51.5%

Chapter 12

12.2.A 15,720 lb
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12.3.A 235 kips [1046 kN]

12.3.C 274 kips [1219 kN]

Chapter 13

13.1.A 3183 psi tension, 2929 psi compression

13.2.A (a) 3.04 ksf [151 kPa]; (b) 5.33 ksf [266 kPa]

13.4.A f = 933 psi [6.43 Mpa], v = 250 psi [1.72 MPa]

13.4.C f = 750 psi [5.17 Mpa], v = 433 psi [2.99 MPa]

Chapter 14

14.2.A 6 bolts, outer plates 1⁄2 in., middle plate 5⁄8 in.

14.3.A Rounding up to the next full inch, L1 = 11 in., L2 = 5 in.

14.3.C Minimum of 4.25 in. weld on each side

Chapter 15

15.2.A Width required to get bars into one layer is critical; least width
is 16 in. with h = 31 in. and five No. 10 bars

15.2.C From work for Problem 15.2.A., this section is under-reinforced;
find actual k = 0.347, j = 0.884, required area of steel = 5.09 in.2,
use four No. 10 bars

15.4.A With d = 11 in., As = 3.67 in.2; with d = 16.5 in., As = 1.97 in.2

15.5.A 5.76 in.2 [3.71 × 103 mm2]

15.7.A Possible choice for spacing: 1 at 6 in., 8 at 13 in.

15.7.C 1 at 6 in., 4 at 13 in.
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INDEX

Accuracy of computations, 3
Active soil pressure, 184
Algebraic analysis of,

forces, 89
truss, 120

Allowable deflection, 277
Allowable loads for:

fillet welds, 347
steel:

bolts, 322
columns, 301

welded joints, 347
wood: columns, 297

Allowable stress design, 354
Allowable stress, 243, 355
Angles, structural steel, 235

gage for bolts, 334
properties of, 235
in tension, 336

Approximate analysis of structures, 181
Architectural elements, 23
Areas of steel reinforcing bars, 363

Balanced reinforcement:
strength design, 378
working stress design, 367

Balanced section, 367, 378
Bars, reinforcing, 363
Beams:

analysis of, 132, 259
bending in, 140
cantilever, 133, 151
concentrated load, 134
concrete, 363
connections, steel, 324
continuous, 134, 160
deflection, 275
diagrams, typical loadings, 155
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distributed load, 134
effective depth, 365
fixed-end, 172
flexure formula, 257
flitched, 272
forces on, 102
indeterminate, 162
inflection, 147
with internal pins, 176
internal resisting moment, 255
investigation of, 132, 259
loading, 13
moment diagram, 142
moment in, 255
neutral axis, 216, 256
overhanging, 107, 133
reactions, 105
resisting moment in, 255
restrained, 172, 290
safe load tables for, steel,
sense (sign) of bending, 147
shear diagram, 139
shear in, 135, 265, 270, 387
simple, 105, 133
statically indeterminate, 162
steel, 270
strength design of, 355
stresses in, 254
T-beams, 382
tabular data for, 155
theorem of three moments, 163
types of, 133
typical loadings, 155
under-reinforced, 373
uniformly distributed load, 134
vertical shear, 136
width, concrete, 372

Bending, 41
in bolted connection, 327
in concrete beams, 383
resistance, 255
stress, 257

Bending moment:
in beam, 140
diagrams, 142
negative, 147
positive, 147

Blast load, 12
Block shear failure, 329, 341
Bolted connections, 324

bearing in, 327
bending in, 328
effective net area, 327, 336, 339
gage for angles, 334
layout of, 332
tearing in, 329, 341
tension stress in, 327, 335

Bolts:
capacity of, in steel, 332
edge distance for in steel, 333
high-strength, 331
spacing in steel, 334
unfinished, 331

Bow’s notation, 85
Buckling, 30, 294
Built-up sections in steel, 226

Cantilever:
beam, 133, 151
frame, 193
retaining wall, 183

Cement, 353, 358
Center of gravity, 2
Centroid, 215
Channels, steel, 234
Classification of force systems, 75
Coefficient of friction, 92
Columns:

buckling, 294
end conditions, 302
relative slenderness of, 293
slenderness of, 293
steel, 301
wood, 297

410 INDEX
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Combined
axial force and moment, 309
load, 20
stress, 49, 321

Component of a force, 81
Composite construction, 58
Compression, 39

in columns, 293
Computations, 3
Concentrated load, 134
Concurrent force systems, 76, 203
Concrete:

balanced section properties, 367,
378

beam, 363
cast-in-place, 354
cover, 361
design methods, 253, 375
k-factors for beams, 369
modulus of elasticity, 357
reinforced, 354
reinforcement for, 358, 363
shear in, 387
sitecast, 354
stirrup, 389
stiffness, 357
strength of, 356
T-beam, 382

Connection:
bolted, steel, 324
tension, 327, 335
welded, 343

Continuous action of beams, 134, 160
Conversion factors for units, 3, 6
Couple, 99
Cover, of reinforcement, 361
Cracked section, 314
Cut section, 66

Damping effect on harmonic motion,
63

Dead load, of building construction, 14

Deflection:
allowable, 277
of beams, general, 275
computations, 279
formulas, typical loadings, 155
of steel beams, 280
of wood beams, 281

Deformation, 2, 241
and stress, 239, 246

Design methods, 354
Development of resisting moment, 

255
in concrete beam, 363

Dispersion of load, 16
Direct stress, 46
Double shear, 48, 252, 327
Ductility, 48
Dynamic behavior, 61
Dynamic effects, 61

harmonic motion, 62
motion, 61

Dynamics, 2

Earth pressure, 184
Earthquake, 12, 19
Eccentric load, 309
Edge distance of bolts in steel, 353
Effective:

column length, 296
depth of concrete beam, 365
net area in tension, 336, 339
width of concrete T-beam flange,

382
Elastic limit, 48, 246
Equilibrant, 82
Equilibrium, 36, 77, 203

static, 2
Euler buckling formula, 33

Factored load, 356
Factor of safety, 247
Fillet weld, 344
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Fixed end beam, 172
Flexure formula, 257
Flitched beam, 272
Floors, 23
Force:

actions, 69
algebraic solution, 89,
on beam, 102
classification of systems, 75
composition, 78, 81
equilibrant, 82
equilibrium, 36, 77, 203
graphical analysis, 83, 88
internal, 28, 39
investigation, 87
line of action, 74
notation for truss analysis, 85
parallelogram, 79
point of application, 74
polygon, 83
properties, 74
resolution, 78
resultant, 78
systems, 75, 202
types, 72

Free body diagram, 65, 194
Friction, 91
Functional requirements of structures,

30
Fundamental period, 5

Gage in angles, 334
Generation of structures, 21
Graphical analysis of :

forces, 83, 88
truss, 11

Handling load, 12
Harmonic motion, 62, 68
High strength bolts, steel, 331
Hooke’s Law, 246

Horizontal:
earth pressure, 184
shear, 136

Hydraulic load, 12

Indeterminate structures, 162
Inelastic behavior, 251
Inflection in beams, 147
Internal forces, 12, 28, 39

in beams, 43, 255
combined, 45
in rigid frames,
in trusses, 111

Internal pins in continuous beams, 176
Internal resisting moment, 255
Investigation of:

beams, 132, 259
columns, 297, 301
forces, 87
frames, 192
trusses, 111, 120

Joints, method of, 111, 120

Kern, 314
k factors for concrete beams, 369
K factors for steel columns, 302

Lateral unsupported length of
columns, 30, 297, 301

Line of action of a force, 74
Live load, 14
Load, 11, 69

blast, 12
combined, 20
concentrated, 16
dead (DL), 14
dispersion, 16
distributed, 16
earthquake, 12
eccentric, 309
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factored, 356
gravity, 11
handling, 12
hydraulic, 12
internal action, 12
live (LL), 14
service, 355
shrinkage, 12
uniformly distributed, 16
vibration, 12
wind, 11, 17

LRFD (load and resistance factor
design), 356

Lumber, properties of standard sizes,
237

Maxwell diagram, 113
Measurement, units of, 2
Mechanical couple, 99
Mechanics, 2
Method of joints, 111, 120
Minimum reinforcement, 373
Modulus:

of elasticity for direct stress, 48,
248, 357

section, 228
Moment, 97

arm, 97
beams, 140, 255
diagram for beam, 142
of a force, 97
general definition, 97
of inertia, 218
internal bending moment, 43, 255
of a mechanical couple, 99
negative, 147
overturning, 186
positive, 147
resistance, 255
restoring, 188
sense of, 147

stabilizing, 188
statical, 217

Moment of inertia, 218
Motion, 76

Net section:
in shear,329, 341
in tension, 327, 336, 339

Neutral axis, 216, 256
Nomenclature, 7
Noncoplanar forces, 202
Nonlinear behavior, 251

Oblique section, 49, 319
Overturning moment on retaining

wall, 186

Passive soil pressure, 184
Parallel forces, 76, 102, 209
Parallelogram of forces, 79
Permanent set, 247
Pin, internal, 176
Pitch of bolts, 334
Plastic:

behavior of steel, 283
hinge, 286
moment, 286
section modulus, 287

Point of inflection, 147
Polygon of forces, 83
Portland cement, 353
Pressure:

soil, 184
wedge method, 315

Properties of:
forces, 74
geometric shapes, 230
reinforcing bars, 363
sections, 214

Properties of sections:
built-up, 217, 226
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Properties of sections: (cont.)
centroid, 215
channels, 234
geometric shapes, 230
kern, 314
lumber, 237
moment of inertia, 218
plastic section modulus, 287
radius of gyration, 30, 229
section modulus, 228
single angle shapes, 235
statical moment, 217
steel angles, 235
steel channels, 234
steel pipe, 236
structural lumber, 237
transfer axis theorem, 223
W shapes, 232

Radius of gyration, 30, 229
Reactions, 24, 105
Rectangular:

beam in concrete, 363
stress block, strength method, 364,

376
Reinforced concrete, 354
Reinforcement for concrete, 358
Relation of shear and moment, 144
Relative:

slenderness, 30, 293
stiffness of columns, 295

Resistance factor, 356
Restrained beam, 172, 290
Restoring moment, 188
Resultant of forces, 78
Retaining wall, 183
Rigid frame, 192
Roofs, 23

S, elastic section modulus, 228
Safe load tables for:

fillet welds, 347
steel bolts, 332

Safety, 247
Section:

balanced, 367
cut, 66
cracked, 314
net, 323, 336, 339
properties, 214

Section modulus:
elastic, 228
plastic, 287

Sense of:
force, 74
bending, 147

Separated joint diagram, 113
Service load, 355
Shapes, steel, 302
Shear, 40

in beams, 135, 265
in bolts, 326
in concrete beam, 387
diagram for beam, 139
double, 327
horizontal, 136, 265
reinforcement, 389
single, 327
in steel beam, 70
stress, 245, 317

Shrinkage load, 12
Sitecast concrete, 354
Simple beam, 105
Simple support, 105
Single shear, 327
Slenderness, 30

of columns, 293
Soil pressure, 184
Solid-sawn wood element, 297
Space diagram, 112, 372
Spacing of:

bars in concrete, 361
steel bolts, 334
stirrups, 393

Spanning structure, 22
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Stability, 30
of retaining wall, 186

Standard notation, 7
Static equilibrium, 2, 77
Static versus dynamic force, 14
Statical moment, 217
Statically indeterminate:

beam, 162
frame, 199

Statics, 2
Steel:

allowable stresses, 243
angle, 235
bolts, 324
columns, 301
connections, 324
pipe, 236
reinforcement, 358

Stiffness, 36, 248
relative, 30

Stirrups, 389
spacing of, 393

Strain:
general definition, 2, 46, 243
hardening, 247

Strength, 34, 242
of concrete, 356
design method, 253, 375
of materials, 2, 242
yield, 246
ultimate, 253

Stress, 2, 46,  71, 243
allowable, 243, 355
in beams, 254
bending, 140. 255
combined, 49
compression, 46
design, 354
and deformation, 239, 246
development of internal force, 46
direct, 46
in ductile material, 48

flexural, 43
general definition, 2
inelastic, 257
kinds of, 46
method, 354, 363
on oblique section, 49, 319
in plastic range, 251
shear, 245, 31
in soils, 184
strain behavior, 46
strength method, 355
tensile, 46
thermally-induced, 12, 53
types of, 46
ultimate, 247
unit, 243
working, method, 354, 363
yield, 246

Stress-strain, 46
diagram, 48, 248, 357
ductility, 48
modulus of elasticity, 48, 248, 357
proportional limit, 243
relations, 46
time-related, 59
yield stress, 243

Stirrup, 389
Structural:

analysis, 1
investigation, 1, 64
mechanics, 2
response, 64

Structures:
composite, 58
functional requirements, 30
generation of, 21
spanning, 21

Symbols, 7

T-beam, concrete, 382
Tearing in bolted connection, 329, 341
Tension, 39
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and combined bending, 309
in bolted connection, 327, 335

Tension elements:
effective area in, 336, 339
net section in, 336, 339
upset end, threaded rod, 244

Three Moment Theorem, 163
Thermally-induced stress, 12, 53
Throat of weld, 345
Time-dependent behavior, 61
Torsion, 41, 45
Trusses:

algebraic analysis, 120
Bow’s notation of forces for, 85
graphical analysis, 111
internal forces in, 111
investigation, methods, 111, 127
joints, method of, 111, 120
Maxwell diagram for, 113
notation of forces for, 85
sections, method of, 127
separated joint diagram, 113
space diagram, 112

Ultimate stress, 247
Under-reinforced concrete beam, 373
Unfinished bolt, 331
Uniform Building Code, UBC, 7
Uniformly distributed load, 134
U.S. units, 2

Units of measurement, 2
conversion of, 3, 6

Unit stress, 243
Upset end, 244

Vector, 73
Velocity of wind, 18
Vertical:

shear, 136
soil pressure, 188

Vibration, 12

W shapes, steel, properties of, 232
Walls, 23
Welded connections, 343
Welds, fillet, 344
Width of concrete beam, 372
Wind, 11, 17
Wood:

allowable stresses for, 243
columns, 297
deflection of beams, 281
properties of structural lumber, 237

Working stress method, 355

Yield:
point, 246
stress, 246

Z, plastic section modulus, 287
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