CHAPTER
19

SIMPLIFIED
SOLUTIONS FOR
STRESSES AND
DEFORMATIONS

In the preceding chapters the solid surfaces in a lubricated conjunction have
been considered to be rigid. This then is the demarcation point where elastic
deformation of the solid surfaces will begin to be considered and remain of
concern until the end of the book.

The classical Hertzian solution for deformation requires calculating the
ellipticity parameter k and the complete elliptic integrals of the first and second
kinds & and &, respectively. Simplifying expressions for &, &, and & as a
function of the radius ratio «, were presented by Brewe and Hamrock (1977) in
a curve-fit analysis. With these expressions researchers could determine the
deformation at the contact center, with a slight sacrifice in accuracy, without
using involved mathematical methods or design charts. The simplified expres-
sions were useful for radius ratios ranging from circular point contact to near
line contact normal to the rolling direction (that is, 1.0 < a, < 100).

. However, in a number of applications the semimajor axis of the elliptical
contact is parallel to the rolling direction, resulting in @, < 1. Some of these
applications are (1) Novikov gear contacts, (2) locomotive wheel-rail contacts,
and (3) roller-flange contacts in an axial loaded roller bearing. The elliptical
contact deformation and stresses presented by Hamrock and Brewe (1983)
are applicable for any contact ranging from something similar to a disk rolling
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on a plane (a, = 0.03) to a ball-on-plane contact (a, = 1) to a contact ap-
proaching a nominal line contact (a, — 100) such as a barrel-shaped roller
bearing against a plane. This chapter focuses on the results obtained by
Hamrock and Brewe in their 1983 paper.

19.1 CURVATURE SUM AND DIFFERENCE

The undeformed geometry of nonconformal contacting solids can be repre-
sented in general terms by two ellipsoids, as shown in Fig. 19.1. The two solids
with different radii of curvature in a pair of principal planes (x and y) passing
through the contact between the solids make contact at a single point under the
condition of zero applied load. Such a condition is called * point contact” and is
shown in Fig. 19.1, where the radii of curvature are denoted by r’s. It is
assumed throughout this book that convex surfaces, as shown in Fig. 19.1,
exhibit positive curvature and concave surfaces, negative curvature. Therefore,
if the center of curvature lies within the solid, the radius of curvature is positive;
if the center of curvature lies outside the solid, the radius of curvature is
negative. Figure 19.2 shows the sign designations for the radii of curvature for
various machine elements such as rolling elements and bearing races. The
importance of the sign of the radius of curvature presents itself later in the

chapter.

FIGURE 19.1
Geometry of contacting eldsllc solids.
[From Hamrock and Dowson (1981).}




404 FUNDAMENTALS OF FLUID FILM LUBRICATION

Sphere Cylinder Conic frustrum | Barrel shaped Concave
Tax Tax
Tay = fay
Thrust Radial inner Radial outer
l’_ R; T
- ’by - fby q T
m - ’by

= Tbox

() -4—-‘ i - M

Cylindrical inner | Cylindrical outer

-l

FIGURE 19.2

Sign designations for radii of curvature of various machi i
. i ine elements. (a) Rolling el ;
bearing races; (c) rolling bearing races. " clements; (0) ball

Note that if coordinates x and y are chosen such that
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(19.1)

ax X y

coordinate x then determines the direction of the semiminor axis of the contact
area when a load is applied and y, the direction of the semimajor axis. The
direction of the entraining motion is always considered to be along the x axis
For those situations in which the principal curvature planes of the two contact-.
ing bodies are not coincident, refer to Timoshenko and Goodier (1970).

The curvature sum and difference, which are quantities of some impor-
tance in analyzing contact stresses and deformation, are
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Equations (19.4) and (19.5) effectively redefine the problem of two ellipsoidal
solids approaching one another in terms of an equivalent solid of radii R, and
R, approaching a plane. Note that the curvature difference expressed in Eq.
(19.3) is dimensionless.

The radius ratio a, defined in Eq. (18.57) is the same for this chapter.

a, = — (18.57)

Thus, if Eq. (19.1) is satisfied, a, > 1; and if it is not satisfied, a, < 1.

19.2 SURFACE STRESSES AND DEFORMATIONS

When an elastic solid is subjected to a load, stresses are produced that increase
as the load is increased. These stresses are associated with deformations, which
are defined by strains. Unique relationships exist between stresses and their
corresponding strains. For elastic solids the stresses are linearly related to the
strains, with the constant of proportionality being an elastic constant that adopts
different values for different materials as covered in Scc. 5.6.2. The modulus of
elasticity £ and Poisson’s ratio v are two important parameters described in
Chap. 5 that are used in this chapter to describe contacting solids.

As the stresses increase within the material, elastic behavior is replaced by
plastic flow in which the material is permanently deformed. The stress state at
which the transition from elastic to plastic behavior occurs, known as the “yield
stress,” has a definite value for a given material at a given temperature. In this
book only elastic behavior is considered.

When two elastic solids are brought together under a load, a contact arca
develops whose shape and size depend on the applied load, the elastic proper-
ties of the materials, and the curvatures of the surfaces. When the two solids
shown in Fig. 19.1 have a normal load applied to them, the contact area is

~ elliptical. It has been common to refer to elliptical contacts as point contacts.

but since under load these contacts become elliptical, they are referred to
herein as such. For the special case where r,, = r,, and r,, =r;, the resulting
contact is a circle rather than an ellipse. Where r, and r,, are both infinite,
the initial line contact develops into a rectangle when load is applied.

Hertz (1881) considered the stresses and deformations in two perfectly
smooth, ellipsoidal, contacting solids much like those shown in Fig. 19.1. His
application of the classical elasticity theory to this problem forms the basis of
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FIGURE 19.3
Pressure distribution in ellipsoidal contact.

stress calcuiations for machine elements such as ball and roller bearmgs gears,
and cams and followers. Hertz made the following assumptions:

1. The matenials are homogeneous and the yield stress is not exceeded.
2. No tangential forces are induced between the solids.

3. Contact is limited to a small portion of the surface such that the dimensions
of the contact region are small in comparison with the radii of the ellipsoids.

4. The solids are at rest and in equilibrium.

Making use of these assumptions, Hertz (1881) was able to obtain the
following expression for thc pressure within the ellipsoidal contact (shown in

Fig. 19.3):
1/2
| 2x\’ 2y 2
=p, |l = =1 - = 19.
pP=n D. D, (19.6)
where D, = diameter of contact ellipse in x direction, m
D, = diameter of contact ellipse in y direction, m
If the pressure is integrated over the contact area, it is found that
) 6w, 19.7
Dy = 7TDX D), ( . )

where w, is the normal applied load. Equation (19.6) determine’:s‘ the distribu-
‘tion of pressure or compressive stress on the common mterface It is clearly a
"maximum at the contact center and decreases to zero at the periphery.

The ellipticity parameter k is defined as the elliptical contact diameter in
the y direction (transverse direg(ion) divided by the elliptical contact diameter
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in the x direction (direction of entraining motion), or
(19.8)

If Eq. (19.1) is satisfied and @, > 1, the contact ellipse will be oriented with its
major diameter transverse to the direction of motion, and consequently k >
Otherwise, the major diameter would lie along the direction’ of motion w1th
both «, < 1 and k < 1. To avoid confusion, the commonly used solutions to the
surface deformation and stresses are presented only for @, > 1. The simplified
solutions are presented, and then their application for a, < 1 is discussed.

Harris (1966) has shown that the ellipticity parameter can be written as a
transcendental equation relating the curvature difference [Eq. (19.3)] and the
elliptic integrals of the first ¥ and second & kinds as

25 -1 +R)] '
where
w2 1 -i/2 .
5= [0 [ ( F)sm ¢>] dé (19.10)
g = f"/z[l - (1 ~ — |sin ¢] (19.11)
0

A one-point iteration method that was adopted by Hamrock and Anderson
(1973) can be used to obtain the ellipticity parameter, where

k., =k, (19.12)

The iteration process is normally continued until k,,, differs from &, by less
than 1.0 X 10~7. Note that the ellipticity parameter is a function only of the
solids’ radii of curvature:

k=f(rax’rbx’ray’rhy) (1913)
That is, as the load increases, the semiaxes in the x and y directions of the
contact ellipse increase proportionately to each other so that the ellipticity
parameter remains constant.

Figure 19.4 shows the ellipticity parameter and the elllptxc integrals of the
first and second Kinds for a radius ratio (a, = R,/R,) range usually encoun-
tered in nonconformal conjunctions. Note from Fig. 19.4 that & =.% when

= 1. Also both & and % are discontinuous at a, = 1.

When the ellipticity parameter &, the normal applied load w,, Poisson’s
ratio », and the modulus of elasticity £ of the contacting solids are known, the
major and minor axes of the contact ellipse and the maximum deformation at
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the contact center can be written from the analysis of Hertz (1881) as

6k? 13
D, =2 Sk7&w, R

mE' (19.14)

t/3

D, = 2( 6&w,R
TKE' (19.15)
i/3

o, =F (e )

2R\ wkE' (19.16)
where E = 2

(19.17)

(1-v2)/E, + (1 - v})/E,

n e/se equa lOllS, x an y are pxopo! onal to wz an m 1S pl()pOTthHal

19.3 SUBSURFACE STRESSES

Fatigue cracks usuall i
y start at a certain depth below the i
\ ' ! surface in
f);r;:ielS? the :ollmg direction. Because of this, special attention must beplg?\r}:rf
ear stress amplitude in this plane. Furthe i
. ¢ . rmore, a maximum
itrezs is reached at a certain depth below the surface. The analysis useS(li]et?r
undberg and Palmgren (1947) is used here to define this stress ’
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The stresses are referred to in a rectangular coordinate system with its
origin at the contact center, its z axis coinciding with the interior normal of the
body considered, its x axis in the rolling direction, and its y axis perpendicular
to the rolling direction. In the analysis that follows, it is assumed that y = 0.

From Lundberg and Palmgren (1947) the following cquations can be

written:
6w, cos” ¢, sin P, 5in v, (19.18)
T = .
i Tr(D)? tanz .Yn + DE COSZ d’a)
x = %(Df + D tan® Ya)l/zsm b, (19-19)
(19.20)

D}’
2= tan y, cos ¢,

es used in place of the coordinate set (x,2).
e relationship of a-conformal ellipsoid to the
and Lundberg and

where ¢, and y, are auxiliary angl
They are defined so as to satisfy th
pressure ellipse (for further details see Hertz, 1881,

Palmgren, 1947).
The maximum shear stress is defined as

Ty = ( sz)mux

The amplitude of 7, is obtained from

97, at,,
= =0
ad, ay,
For the point of maximum shear stress
U tan?eo, =t (19.21)
tan’y, = t* = 1 (19.22)

D . 1/2
_._X_ = *\2 —- * 5
D, {le™ )2 - ) (19.23)

where t* is the auxiliary parameter. The position of the maximum point is

determined by

D,
0T g*’i‘ (19.24)
Xy = £6° (19.25)
wh {* = : (19.26)
o T+ e -0 o
(20t 4+ 1\
§*=t*+1(21*—1) (19:27)
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Furthermore, the magnitude of the maximum shear stress expressed in terms of
t* is given by

(2 - 1!

pmm (19.28)

Ty =

1t should be emphasized that 7 represents the maximum half-amplitude of the
subsurface orthogonal shear stress and is not to be confused with the maximum
subsurface shear stress that occurs below the center of the contact on the plane
oriented 45° to the surface. The Lundberg-Palmgren prediction of fatigue life is
based on the calculation of 7, and was limited to cross sections lying in the
plane of symmetry of the roller path (y = 0). ’

19.4 SIMPLIFIED SOLUTIONS

The classical Hertzian solution presented in the previous sections requires the
calculation of the ellipticity parameter k and the complete elliptic integrals of
the first and second kinds % and &. This entails finding a solution to a
transcendental equation relating &k, %, and & to the geometry of the contacting
solids, as expressed in Eq. (19.9). This is usually accomplished by some iterative
numerical procedure, as described by Hamrock and Anderson (1973), or with
the aid of charts, as shown by Jones (1946).

Table 19.1 shows various radius ratios «, and corresponding values of k,
&, and & obtained from the numerical procedure given in Hamrock and
Anderson (1973). Humrock and Brewe (1983) used a linear regression by the
method of least squares to power fit the set of pairs of data [(k,, a, ),
i=1,2,...,26] shown in Tuble 19.1. They obtained the following equation:

k=aX" (19.29)

The asymptotic behavior of & and & (a, = 1 implies & - & - 7/2,
and «, — ® implies ¥ — © and & — 1) was suggestive of the type of func-
tional dependence that & and % might follow. As a result, both inverse and
logarithmic curve fits were tried for & and 7, respectively. Hamrock and Brewe
(1983) obtained the following:

= g

E=1+-> fora, >1 (19.30)
ar
m
where 9= 7~ 1 (19.31)
— m
and 7 = 5 +4q,Ina, fora, > 1 (19.32)

Values of k, &, and & are also presented in Table 19.1 and compared with the
numerically determined values of k, &, and #. Table 19.1 also gives the
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TABLE 19.1 .
Comparison of numerically determined values with curve-fit

values for geometrically dependent variables
[From Hamrock and Brewe (1983); R, = 1.0 cm]

Radius Ellipticity Complete efliptic Complete elliptic
ratio, " integral of integral of
a k k Error, first kind second kind

r

e, - -
percent | F F Error, & 3 Error,
e,. e,.
percent percent

1.00f 1.00} 1.00 0 1.57| 1571 O 1.571157] 0
1.25| L16| 1.15 66 | 1.68| 1.69| ~.50 | 1.46 1.45 .52
1.50} 131 1.29 1.19 [ 1.78| 1.80| -.70 | 1.39} 1.38 .76
175 1.45| 1.42 1.61 | 1.87] 1.89] -.75 | 1.33( 1.32 87
200 1.58| 1.55 196 | 195} 1.96| —-.73 |1.29( 1.28 91
3.00{ 2.07| 2.0t 2871218 2.19| —-.44 | 1.20] 1.19 .83
400 2.50| 2.4l 3.351235(236] —.11 | 115} L.14 .69
5.00| 2.89| 2.78 361249 2.48 A7 2] L .57
6.00] 325 3.12 3.74 | 2.60| 2.59 40 | 1.10] 1.09 48
7.00( 3.58{ 3.45 3.80 | 2.69 | 2.68 .59 ) 1.08] 1.08 40
8.00| 390} 3.75 3811277275 15 11.07¢ 1.07 .35
9.00( 4.20f 4.05 378 | 2.851 2.82 .88 | 1.06| 1.06 .30
10.00] 4.49f 4.33 374 | 291} 2.88 1.00 [ 1.05} 1.05 .26
1500 579} 5.60 332 316} 3.1 1.38 [ 103} 1.03 A5
20.00f 6.92| 6.73 2.81 1333|328 1.60 | 1.02 ] 1.02 .10
25.000 7.94( 7.76 229 1 346 3.40 1.74 | 1.02] 1.02 07

30.00| 8.87| 871 179 | 3.57 | 3.51 1.84 | 1.01( 1.0l .05
35.00| 9.74| 9.61 1.32 1 3.67| 3.60 1.90 .04
40.00 [ 10.56 | 10.46 871 3.74| 3.67 1.95 .03
45.00] 11.33 1 11.28 .44 | 3.81] 3.74 1.99 .02
50.00 | 12.07 | 12.06 .03 | 388 3.80| 2.02 L .02
60.00 ( 13.45 | 13.52 -.72 {398 3.9 2.06 | 1.00{ 1.00 .01
70.00{ 14.74 | 1494 | —1.40 | 4.08 3.99 2.08 .01
80.00( 15.95] 16.27} ~2.03 | 4.15] 4.07 2.09 .0l
90.00| 17.09} 17.54| —2.61 | 422 4.13 2.10 0

100.00 | 18.18 ] 18.76 | —3.15 4.28| 4.19 2.10 " 0

percentage of error determined as

i —i)100
e, = (Gl (19.33)
i
where i={k, &, or5) (19.34)
i={k,& or 7) (19.35)

The agreement between the exact solution and the approximate formulas is
quite good. The best agreement is with &, which is between 0 and 1 percent;
the worst agreement is with k, which is +4 percent.
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TABLE 192
Effect of radius ratio on auxiliary parameter used in

subsurface stress calculations
[From Hamrock and Brewe (1983))

Radius | Auxiliary parameter Radius | Auxiliary parameter

ratio, ratio,
a, * * | Error, a, " * | Error,
e, e,
percent percent

0.01| 5.71§ 7.00| —22.47 200 L14] 1.18) -3.71
02| 4421 4.86| -9.87 3.001 1.09) 1.13| -3.78
.0313.81|398] -4.49 400 1.06( 1.10} -3.45
041343348 -1.51 5.00| 1.05) 1.08} -3.03
051 3.16] 3.15 .35 600 1.4 1.07] -2.62
061296 2.91 1.58 7.00 | 1.03| t.05| -2.24
0712801 273 2.42 8.00( 1.03f 1.05{ -1.91

08| 267)259] 301]| 900 1.02] 1.04] -161
091256247 3.43/| 1000] 102] 1.03] —135
10| 247 | 238| 3.72|| is.00] o1 | to1] —.s0
20{ 196| 1.88| 3.9 | 2000] 1.00] 1.01] -9
30| 1.73{ 1.68] 2.86| | 25.00 10| 12
40{1.59) 1s6| 1.79)| 30.00 21
so| 150 18] 85| | 3500 26
60( 1.43) 143  os|| 20.00 27
0| 1.38] 1.39] -.62|| 4s.00 27
80| 134 1.3s] —1.19]| s0.00 26
90| 130 1.33| -r1e6|| 60.00 24
100 128 1.30] -2.0{| 70.00 21
1251 122 1.26| —-2.78] | 80.00 19
150 119 123 -3.25{| 90.00 l 17
1.75| 1.16] 120 -3.54] | 100,00 |- 1 15

Table 19.2 shows various radius ratios «, and corresponding values of the
auxiliary parameter ¢* used in calculating the position and value of the
maximum subsurface orthogonal shear stress. The exact solution for ¢* was
obtained from the numerical procedures given in Hamrock and Anderson
(1973). For the set of data [(+},, ), i = 1,2,...,44] shown in Table 19.2 the
following simplified formula was obtained from Hamrock and Brewe ( 1983):

. k
t*=1+0.16 cschE (19.36)

The percentage of error e, is given for the auxiliary parameter in Table 19.2.
The agreement between the exact and the approximate values of ¢* is quite
good except at extremely small radius ratios (@, < 0.03). Once the value of ¢* is

determined, the position and value of the maximum subsurface orthogonal
shear stress can readily be calculated from Egs. (19.24) to (19.28).

h 4
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TABLE 19.3 )
Simplified equations

[From Hamrock and Brewe (1983)]

y

S

2
| s a <100 0.0l < a,
E=a;/r /:'=Ot;/'
o =_r
F==-+g,lna F=-r-qsIng
2 2
r
where g, = — — | where g, = — — |
! -
5:[-0-?2 € =1+qu0,

[F R

k
7* =1 +0.16 csch <> =1 +0.16 csch <;>

Table 19.3, from Hamrock and Brewe (1983), gives the simphﬁed equa-
tions for 0.01 < a, < 100, which is the complete range normally exp‘erlen‘ced mt
practice. It is important to make the proper evalugtlon of a,, since it hés }i;(reaz,
significance in the outcome of the simplified equatlor?s. Tabl(; 19.’3 Shows‘t' gt :
and 7* are unaffected by the orientation of the ellipse but Fhat the‘ eljlp]tlc‘}
integrals of the first and second kinds (# and &) are quite aﬁeclte(_. 1ft 1;
important to realize that the reciprocal w0 a, pfoduccs the same values af -
and & as are produced by changing the one_ntan(?n of Fhe elhpsg. .

Figure 19.5 shows three diverse situations in which the s'nmphj S
tions can be usefully applied. The locomotive wheel on a rail [Flg._l Sa
illustrates an example in which the ellipticity param;ter k and the rqd\ms T«'\Xllﬂ
«. are less than 1. The ball rolling against a plane [Fig. 19.5(b)} provides ‘a pure
ci’rcular contact (i.e., a, = k = 1.00). Figure 19.5(c) shows ho»y theH%oInﬂcf
ellipse is formed in the ball—outer-rac; co‘ntact of a ball bearmg.( L‘T(}," ,:.(
semimajor axis is normal to the rolling direction, and consequently «, (ml(‘ y t ,
greater than 1. The detailed geometry and the values that can be ciq (:\lt; L‘(w
from the simplified formulas are given in Tgblc 19.4 for each of thcsp [r}u
configurations. In using these formulas it is important to pay attention to th

1ed equa-
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FIGURE 19.5

Three degrees of conformity. (a)
Wheel on rail; (b) ball on plane;
(¢) ball-outer-face contact.
{From Hamrock and Brewe
(1983).]

sngg of the curvatur@. Note that the outer race in Fig. 19.5 is a concave surface
and therefore requires a negative sign. Table 19.4 shows both the maximum

prCSSUlC D,, dlld the maximum Sheal stress to be ll lleSt t()l [lle ha“-()]l-pla]le
: ). 1
g

19.5 RECTANGULAR CONJUNCTIONS

For rect.angular conjunctions the contact ellipse discussed throughout thi

chapter is of infinite width in the transverse direction (D, — oo) Tl%is ty l;

contact is e?(empliﬁed by a cylinder loaded against a plane,ya groo;'e or angfh:r
. paral{el cylinder or by a roller loaded against an inner or outer raée. In these
* situations the contact semiwidth is given by -

R .

' 8w \17?
| b* = R,(T) T (19.37)
~» where the dimensionless load is
! w’
W' = R, (19.38)

y o . .
?nd w Is the load per unit width along the contact. The maximum deformation
or a rectangular conjunction can be written as

L WR[ (2
w= m(—ﬁ)q} (19.39)

The maximum Hertzian pressure in a rectangular conjunction can be written as

W12
py =E'f —
w=e(5]
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TABLE 194
Practical applications for differing conformities

[From Hamrock and Brewe (1983); effective elastic modulus
E',2.197 x 10" Pa)

Contact | Wheel on rail | Ball on plane | Ball-outer-race

paramcters : contact
w. N 1.00 % 105 232.4111 222.4111
Fape M 0.5019 0.006350 0.006350
Py M ™ 0.006350 0.006350
Fop M o o —-0.038900
Fpw M 0.300000 o —0.006600
a, 0.5977 1.0000 22.0905
k 0.7099 1.0000 7.3649
k 0.7206 1.0000 7.1738
g 1.3526 1.5708 1.0267
I3 1.3412 1.5708 1.0258
5 1.8508 1.5708 3.3941
F 1.8645 1.5708 3.3375
D, m 0.010783 0.000426 0.001842
D, m 0.010807 0.000426 0.001810
D, m 0.015190 0.000426 0.000250
D, m 0.014996 0.000426 0.000252
8,y M 106 7.13 3.56
8,5 um 108 7.13 3.57
P GPa 1.166 2.34 0922 |
P GPa 1178 | 2.34 0.930
= 1.4354 1.2808 1.0090
L 1.4346 |. 1.3070 1.0089
Xo. M +0.008862 | +0.000195 £0.000096
%o m +0.008745 | +0.000197 £0.000097
M +0.005410 +0.000149 +0.000123
o m +£0.005350 | +0.000145 £0.000124
7, GPa 0.162 0.501 0.229
%5, GPa 0.164 0.494 0.232

19.6 CLOSURE -

This chapter has presented an alternative approach to the classical Hertzian
solution for the local stress and deformation of two elastic bodies in contact.
Simplified formulas that use curve-fit analysis are given in terms of the radius
ratio «, for the ellipticity parameter k and the complete integrals & and & of
the first and second kinds, respectively. Thus, their interdependence can be
uncoupled and solution of the resulting transcendental equation avoided. Sim-
plified equations were developed that permit a more direct and easier approach
to the calculation of the elliptical contact deformation and the maximum

R
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Hertzian pressure. In addition, a curve-fit analysis was used to derive a simpli-
fied formula for an auxiliary parameter ¢* as a function of a,. This eliminated
having to solve a cubic equation for * as a function of k. A shortcut calculation
could be made for the location and magnitude of the maximum subsurface
shear stress. Therefore, the elliptical contact deformation and stresses pre-
sented are applicable for any contact ranging from a disk rolling on a plane
(a, = 0.03) to a ball-on-plane contact (a, = 1) to a contact approaching a
normal line contact (a, — 100) such as a barrel-shaped roller against a plane.

19.7 PROBLEMS

19.7.1 A solid cylinder of radius 2 cm rolls around an inner ring with an internal radius
of 10 cm and a large width in the axial (y) direction. What is the radius of the
geometrically equivalent cylinder near a plane?

The cylinder is made of silicon nitride and the ring is made of stainless
steel. If a normal applied load per unit width is 1,000 N/m determine the contact
semiwidth b*, maximum deformation §,,, and maximum Hertzian pressure py,.
Also indicate what these values are if the silicon nitride cylinder is replaced with a
stainless steel cylinder. What conclusions can you make about these results?

19.7.2 A solid sphere of radius 2 cm rolls around the inner ring with an internal radius of
10 cm and a large width in the axial (y) is quite large. What is the curvature sum?
The sphere is made of silicon nitride while the ring is made of stainless
steel, If the normal applied load is 1,000 N, determine the maximum surface
stress, the maximum subsurface stress, the maximum deformation, and the dimen-
sion of the contact. That is, determine b, 7, &, (*, D,, D, é,, p, 19, x4 and
Zp-
Also indicate what these values are if the silicon nitride sphere is replaced
with a stainless steel sphere. What conclusions can be made about the results?
Also compare with Prob. 19.7.1 results,
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CHAPTER

GENERAL SOLUTION
FOR STRESSES AND
DEFORMATIONS

IN DRY CONTACTS

The previous chapter described simple formulas for t.he maximum surface and
subsurface stresses as well as the maximum deformatlgn at.the contact ccnt(fr.
This chapter defines the stresses and the deformations in a more general
manner. As in the previous chapter the contacts are assumed to be dry, or
icated. »
UHIUbw:l?en two elastic solids like those shown in Fig. 19.1 arc bmpght into
contact and subjected to a normal load, the solids deform and thg nom'mal point
of contact becomes an elliptical area. Two limiting cases can pe identificd frmT\
this general principle. In the first, a point contact becomes a circle, for examplc.
when the solid surfaces are a sphere on a sphere, 2 §phgre on a pl;mc,_ or
identical cylinders crossed at right angles. in the second hmntmg case, a nominal
line contact becomes a rectangle, for cxample, when the solid surfa;cs are 1
cylinder on a cylinder with parallel axes, a cylinder on a plane, ora cylinder in a
groove with parallel axes as in a journal. The stresses, defornlat}ons, and contqct
dimensions are presented here for normal loaded cont.acts with no tangential
loading, not only for the general elliptical contact solution but also for the two
limiting situations of circular and rectangular contacts.

417
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In this chapter it is assumed that the linear size of the contact area is small
relative to the radii of curvature of the contacting solids. This implies that one
body can be replaced by an elastic semi-infinite space. The second assumption
imposed in this chapter is that the friction forces arising between touching
bodies are neglected. :

20.1 GENERAL ELASTICITY THEOREMS

The behavior of an isotropic and homogeneous perfectly elastic material is
generally defined by equilibrium conditions in which the body forces have been
made equal to zero. Imposing these conditions vyields the following equations:

2

(1+V)V20[+5x—(o'_[+a +0,)=0 (20.1)

2 y 2

Y4

(r+ u)Vzay + -3—}}—2(0_x to,+0,)=0 L (20.2)
82
(1 + )V, + 3—2—2—(0x +o,+0,)=0 (20.3)
a?
(1 +v)V2r  + a—;a—}}-((fx+(ry+0'z) =0 (20.4)
@2
(1 +v)V2r,, + b—ya—Z(UX to,+t0,)=0 (20.5)
% 5 &2
. (1 +v)Vir, + Ea(ax +o0,+0,)=0 (20.6)
. where
) , (92 32 (92 .
V= + — + — (20.7)

T oax? ay?r 922

The solution to any elasticity problem must satisfy these conditions and the
given boundary equations. :

20.2 LINE LOAD SOLUTION

Figure 20.1 shows the plane polar coordinates used for a line load w, acting in
the z direction in the x = 0 plane on the boundary surface of an elastic
half-space. Also shown in this figure are the Cartesian coordinates. A line load

-

GENERAL SOLUTION FOR STRESSES AND DEFORMATIONS 419

’
w,

FIGURE 20.1

Plane polar coordinates used for line load w) acting in
z direction in x = 0 plane on boundary surface of
z elastic half-space. [ From Tripp (1985).]

condition is a two-dimensional problem, and the equilibrium conditions for this
problem reduce to the following:

do ar

a; + a: =0 (20.8)
do, dr, ’

e 9z * dx =0 ] (209)
éz 2 .

(;; 4 az_z)(ax Fe)=0 @)

Note that Eqgs. (20.8) to (20.10) for the two-dimensional problem are much
simpler than the three-dimensional equations [(20.1) to (20.6)).

Equations (20.8) to (20.10) may be solved by a “stress function approach,”
in which ¢, which is a function of x and z, is introduced and expressed in terms
of the stresses as

% % 3%

o, = o, =— T,= -
£ 972 i 2 dxdz

(20.11)

The parameter ¢ is referred to as an Airy stress function. These satisfy Eqgs.

. (20.8) and (20.9) identically, while Eq. (20.10) becomes

¢ AT o) \
pre + PR + Py 0=V ; (20.12)
This is a biharmonic governing.equation. To solve a particular problem such as
the line load problem, it is necessary to find the appropriate stress function that
will satisfy Eq. (20.12) and the appropriate boundary conditions. In many plane
problems it is advantageous to express line load in a polar coordinate system as
shown in Fig. 20.1 rather than in Cartesian coordinates. Equations (20.8) and
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(20.9) become ‘
da, 1 dr,, 0,— 0,
— LA S ) (20.13)
ar e 6([/ r
1490, " ar, 21,
+ 4 =0 (20.14)
r aw ar r
The stress function given in Eq. (20.11) can be expressed in polar coordinates as
1d¢ 1 3% % d[1dp
= 4 —— - — = - === 20.15
g, r or r2 ad,Z - 9y arZ ry r 311/ ( )

The corrésponding biharmonic equation in Eq. (20.12) is expressed in polar
coordinates as

2 1 a 1P\ (P 19 19?
— - ¢+——¢+ N0 (20.16)
ar rar 72 a.p

r or r? 0([1
The line load problem shown in Fig. 20.1 is solved by using the Boussinesq
stress function given as

w,ri
¢y = — sin ¢ (20.17)
m
Substituting Eq. (20.17) into Eq. (20.15) gives
2w, cos
g = -2V o =0 (20.18)
mr

This indicates that the stress is radial and directed toward the line where the
load is applied. Equations (20.18) are suitable for determinir}g the stress
dlstnbutlon within a semi-infinite solid.
in elastohydrodynamic lubrication: studies. It is more convenient to revert to
Cartesnan coordmates for the deformation considerations. The stress function
given in Eq (20.17) can be expressed in Cartesian coordinates as

!

2t fan1 L (20.19)
$p= = —tan”' - | .

The stress field in Cartesian coordinates is
. 2u,x%z (20.20)
g, = —-— .
w(x? + z2)°
2w,z°
0, = ————— (20.21)
m(x? +2%)

2w, xz* :
(20.22)

)
- m(x?+22)
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From Hooke’s law the plane strain components in the solids can be
expressed as ’ ,

s, 1
e, = Ix = E[UX - V(O'y + Uz)] ‘ (2023)
1
éy—_—. =0 = E{(ry—y(q_%—(fx)] (20.24)
1

e'z = = —E—[UZ — V(”x + ay)] ‘ (2()25\)

5 do, Tes 2(1 + ) 205
= + = = —— A .;.(

=%, Tax T G E e ( R

5

where G, is the shear modulus of elasticity. From Eq. (20.24), the plane strain
condition,

g, =v(o, + 0,) (20.27)
Substituting this into Eqgs. (20.23) and (20.25) gives
s, 1-v* v(l + )
é = = o, - ey, (20.28)
dx E E ‘
_ s 1—v? v(l + v) »
€, = a—z’- == (20.29)

Integrating Eqgs. (20.28) and (20 29) while makmg use of Eqs (20.20) and (20.21)

gives - .
0T (1= 20)(1 +v) o (I+v)ez ]
Y RS S —l(_)-—,— +A(z) (2030
i W[ 5 an~'| - Exi+ 20 | (z) (20.30)
5 (1 - n( %2 z? v(l + )x? .
2 +27) - + X
z T n(x"+27%) x4z E(x*+2z%) + B

(20.31)

By symmetry —8,(—x) = 6,(x). Hence, A(z) = 0.
Equation (20.26) must be used to determine B{(x). That is, substituting
Eqgs. (20.22), (20.30), and (20.31) into (20.26) gives

dB(x)
ax:

This implies that B is not dependent on the field point x but does depend on
the source point §, in this case chosen at the origin. The value of 5 is
determined by the relative positions of the source and the fixed datum. There-
fore, Egs. (20.30) .and (20.31) describe the elastic deformation anywhere in the
body due to a line load at the origin. The deformation can be found for any
applied surface pressure by an integration method that uses these basic results.

(20.32)
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FIGURE 20.2
z - Strip of pressure acting as line load.

Only the normal deformation at the surface is usually of interest, but for
completeness the general expression is given. From this point on in this text we
will only be concerned with normal deformations so that & = §,.

Sample problem 20.1 Establish what the normal deformation is for a strip of
pressure poand width @5 acting on a line on the surface (z = 0) at a distance §
from the origin (x = §).

Solution. Figure 20.2 shows the strip of pressure that is acting as a line load. In Eq.
03D if 2z =0,(x = §) — x, and o, = p(ds),

5=—p(d§){l_" [in(x = 5)7] +

v(l +v) .

— )+ B
™ E }
When displacements from the distribution of sources are superimposed, they must
all be referenced to the same datum. Thus, an expression for B is needed inside
the integral. The result of integration is C, and it will depend on the choice of the
datum.

-p(d5)(1 - v?)
§= ————In(x - 5)* + C(3)
wE
The displacement due to a variable pressure p(§) between x =3, and

x = §, is found by integrating the preceding equation.

5= -

I;Ew[h[l’(f YIn(x = 5)" + C(5)| ds (20.33)

When it is known how the pressure varies, this integral can be evaluated.

In gencral, one wants 1o know the displacement of the surface relative to
some fixed point bencath the surface, for example, the axis of a cylinder at depth
R. Since the integrand describes only the surface displacements (z = 0), it cannot
be used o evaluate 8. Thercfore, the integration will actually involve additional
terms in z that can be obtained from Eq. (20.31). If, on the other hand, the datum
can be taken somewhere on the surface itself, it is sufficient to evaluate the
integral in Eq. (20.33) and then adjust € by using the integrated results. Thus, the
deformation of the surface (z = 0) under a uniform pressure j_ extending between
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§= —b, and 5 = b, is given as
(1 -5, 1, 2
8= ‘Tf_bzln(x—s) &+ C
(1 -v¥)p, . i
=T F [(x = b)In(x = b,)? = (x + by) In(x + b,)’] + B (2034)

The preceding equation must be referred to a datum. Setting'd = 0 at x = 0 and
z = 0 while solving for D gives the following:

201 —v?) | lx — byl
6= y D xlnlx+bz’-b21n

{x2 — b%l
b3

20.3 ELASTIC DEFORMATIONS
IN RECTANGULAR CONJUNCTIONS

The general expressions for the deformations in a rectangular conjunction
having been developed, these formulas will now be used in elastohydrodynamic
lubrication analyses. For two surfaces having the same elasticity but made of
different materials coming into contact, Eq. (20.31) gives the elastic deformation
at any point x on the surface (z = 0) as

2

b= emGox)ter @039)
where o i iEram onamoogimoa.
1 1({1-22 1-?
S + ; (20.36)
E -2\ E E, ~

and p is pressure that is a functlon of x' varying from x,_;, to Xend: Note that
since B in Eq. (20.31) depends on the elastic constants, the expression for & in
Eq. (20.34) would have an added material-dependent term if the surfaces did
not have the same elasticity. Letting

x=bX x=bX' p=p,P §&=0b%%/R,
1 1 1 R, 1/ 7 /2 W w, 20.37
—_— = e o — —_— ——— = — .
R, r r. D, 4 ( 2w') E'R, (20.37)

where p,, is the maximum Hertzian pressure, causes Eq. (20.35) to become

- 1 8w’
5= - —[fx°"‘P In(X - X'y dX’ + m(Rg-——) X""“de'} (20.38)
271- Xmin m

min
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But the normal applied load per unit width is just the integration of the
pressure from the inlet to the outlet.

LW, = fpdx
This implies that
m
JPax’ = 5 (20.39)
Substituting Eq. (20.39) into Eq. (20.38) gives
; 1 K ) 1 ( 8W’)
= —~— [*"PIn(x - x")}dx' - — In| RZ-—— 40
5 ZWme n(X - X') dx’ - 7 In| Ri-— (20.40)

Note that the last term on the right side of Eq. (20.40), which is a constant,
depends on how X and P are made dimensioniess. This term represents, in
general, 80 to 90 percent of the total deformation. This grouping of the elastic
deformation was discovered by Houpert and Hamrock (1986) and proved to be a
useful separation in that the remaining pressure-dependent deformation is now
of the same order as the film thickness at moderate loads.
Using integration by parts on the integral given in Eq. (20.40), Houpert

and Hamrock (1986) found that

- 1 oo 1 ,x.,,dP , 1 28W’

5= - o IPlX, + 5 fx ’ A - 7 ln(R, = ) (20.41)

where
I=[in(X-X)dx' = —(X - x[in(x -x) -2 (204

Since the pressure is zero at X, and X, the first term on the right side of
Eq. (20.41) vanishes and

5 L@l x)[in(x - x')* - 2] ax’ L (RZSW’)
= e —— — — — — — — n —
2 b ax " i
(20.43)

The integral in Eq. (20.43) can be calculated analytically by assuming that the
pressure is described by a polynomial of second degree in the interval
[Xj_,,XjH]. The details of the calculations are given in Appendix A. The
resulting equation from their studies gives the dimensionless deformation §; at
node i as a function of the dimensionless pressure F; and the influence

coefficients D;;:

5 }:V",DP 1!(R28WI) 20.44
i_j=lijj 4"xﬂ_ (20.44)

The results obtained from Houpert and Hamrock (1986) are compared in
Table 20.1 with results obtained by Hamrock and Jacobson (1984) as well as by
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Okamura (1982), who used simpler approaches than that used by Houpert and
Hamrock (1986). Hamrock and Jacobson (1984} assumed the pressure to he
constant in the interval [X, — AX/2, X, + A X /2] ard used an analytical ex-
pression for the integral of In(X, — X’'). Okamura (1982) did not use any
analytical solutions and assumed simply that

(IXi+l+X1 + X,
2

=1 i <
> —X,') (20.45)

i

- AN
§=—— ) Pln

2r [T
where A = X,,, — X,. The three approaches can be compared by assuming a

Hertzian pressure. Between X = —1 and X = 1 the film shape while assuming

a Hertzian pressure should be flat, leading to AH = 0, where A [/ is defined as
X:  _

AH = EX + 68 -5, (20.40)

and §,, is the dimensionless maximum deformation. This can be compared with
the value of &, obtained by analytic integration of Eq. (20.40) with 2 Hertzmn
pressure distribution.

- 1 W 1
§y=—~— ln(Ri——-) + = 1In(2) +0.25 (20.47)
4 T 2

The largest value AH, /H, of AH/H, is found at X = —1 and X =i
(because of the slope discontinuity) and is shown in Table 20.1 with the
corresponding value of 3,,/8,, — 1. The film thickness H,, where dP/dX =0
has been chosen to be equal to 0.5; X,,;, and X . define the first and last
values of X; N,,,, is the number of nodes.

Table 20.1 shows that for a given mesh the best accuracy in calculating 5
and AH,, is obtained by using the Houpert and Hamrock (1986) approach. The
value of 8, from Hamrock and Jacobson (1984) is in some cases less accurate
than that from Okamura (1982) because they did not separate the constant as

TABLE 20.1

Three ways of calculating elastic deformations

[From Houpert and Hamrock (1986); OK denotes Okamura (1982); HJ denntes Hamrock
and Jacobson (1984); HH denotes Houpert and Hamrock (1986).]

2Nonuniform.

«

4
i

Y
4
H

Neax | Xein | Xend (6—,"/6_”— b AHIH,,
OK HJ HH 0K HJ L HH :
51| -1.0{ 1.0} —1.9x10-3{ ~2.7x10-}| 8.6x10-7|{ 94x10-' | ~5.5x10 ! 17
s5i ] =361 1.4] —49%x10-3) —1.1x10-2] 1.OXI10-5| 3.4x10-2 | —1.6x10-"| -RAh<H0
151 10| 1.0} -63x10-4| =5.1x10-4} 5.1x10-8{ 4.0x10-3 | —~1.4%10 '| ~64x10
150 | ~3.6] 1.4 —1.6x10-3] —2.0x1i0-3] S.4x10-7] 12x10-? | -4.4xi0 '| ~21x10
300 | -1.0] 1.0 =3.1x10-4| —1.8x10-4}| 8.1x10-°] 2.2x10-% | =5.6x10 ¢} -2 5x!0
301 ] -36] 1.4 -7.8x10-4]| =7.1%x10-4} 9.0x10~3| 6.0x10-* | -18x10 ° R 6xI10
661 -3.6 14| ——-o-mm-- 2.2X407°0 | e e 2610 71 o . -
51 {a=1.0] 3.0 | ———vemmmm | mmmmmee- 6.5% 07| oo | e 27100

7!
4
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was done in Eq. (20.40). But 5,,, is not really significant, since any inaccuracy in
its calculation can be compensated for by H,, in the film thickness equation. The
important parameter of Table 20.1 is A H,, since it is a measure of the flatness
of the fitm. This aspect is extremely important at high loads, where the elastic
deformations are two or three orders of magnitude larger than the film thick-
ness.

Also shown in Table 20.1 are the results obtained with a uniform mesh of
661 nodes by Hamrock and Jacobson (1984). Extremely small values of AH,,
were calculated and cannot be reproduced with the new approach because of
storage problems with the matrix D;; and because a large system of equations

" would have to be solved with such a mesh. By using a nonuniform mesh with a

fine grid ncar X = -1 and X = 1, similar results were found with a small value
e (N = 51, us indicated in Table 20.1. The latter case illustrates the
power of the approach developed by Houpert and Hamrock (1986).

20.4 POINT LOAD SOLUTION

The stress tensor for the problem of a concentrated point load acting along the
normal to the undeformed plane surface of an elastic half-space is chosen as the
starting point. Because of symmetry the coordinates best suited for these
considerations are the cylindrical system (r, 8, z) shown in Fig. 20.3.

Consider a point load w, acting along the positive z axis on the boundary
surface (z = 0) of an elastic half-space defined by z > 0 and having modulus of
elasticity £ and Poisson’s ratio v. By symmetry, polar angle # does not appear
in the stress tensor, and the shear stress components r,, and 74, vanish. The
four remaining stresses can be obtained from Timoshenko and Goodier (1951)

as _ .
w, 1 z 3zr?
0= 2=l = )| = - - 7] (2048)

rz(rz+zz)'/2 (r?+2%)
3wz’
e R (20.49)
w1 =20y 1 2
. T[_ﬁ ’ r2(r? + 22" ' (r’ +22)3/2] (2050
3w, rz?
S LR (20.51)

2m(r’ + 22)5/2

Note that (+2 + 27)'/? is the distance from the point where the load is applied.
The stress components given in Egs. (20.48) to (20.51) satisfy the general
requirements of mechanical equilibrium and compatibility. These ¢quations and
this physical situation can be likened to the line load solution given in Egs.
(20.20) to (20.22).
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FIGURE 20.3
Cylindrical polar coordinates used for point load w,

/ wz
X
acting in z direction at origin on bounding surface of

2 elastic half-space. [From Tripp (1985).]

The deformations in the direction of increasing (r, 8, z) compatible with
Egs. (20.48) to (20.51) are

(1-20)(1 +v)w, 22 1
8, = /2 I+ 3/2
! 2mwEr (r2+zz) 1-2v (r2+zz)
(20.52)
8,=10 i (20.53)
1+ v)2? 2102 T
N LD L Rt I (2054
z 27 E i(rZ + 22)3/ (r2 + 22) / Lo

From these equations note that 8, and 8, are singular at the origin.
The preceding equatioris>reduce to the following on the surface of the
solids, or when z = O:

('1 -2v)(1 + v)w,

S ’ 20.55
5 2mEr ( )
1 - 2
A ) (20.56)
z wEr

Equations (20.48) to (20.56) suggest that for small values of r, infinite stresses
and displacements occur. This is physically impossible, and this purely mathe-
matical condition is avoided by assuming that the point loading is replaced by a
hemispherical stress distribution that is equivalent to the load w,.

20.5 LOADING ON A SEMI-INFINITE BODY

Consider a circular area of radius a over which a pressure acts. The deforma-
tion at point M outside the circle is shown in Fig. 20.4. From;the figure

$i

Area of element = (d5)(5dy)

Load on element = p5dsdy

ity
i

L
it
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" FIGURE 20.4 )
Deformation outside circular area of radius a where
pressure p acts. [From Tripp (1985).]

Substituting these into Eq. (20.56) gives

1 -2

8, = p(d5 ) () —

Therefore, the total deflection due to all the elements of the loaded area is

1 -2

— [ [pdsay (20.57)

8, =

This equation is valid regardless of the shape of the loaded area.
Figure 20.5 illustrates the ‘situation when M lies within the loaded area.
From the triangle Omn

mn = 2acos @

Also from OmM and from the law of sines, when OM = r

or

r
sin 6 = P sin (20.58)

FIGURE 20.5 :
Deformation inside circular area of radius a where
pressure p acts. /Fr_om Tripp (1985).]
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Hence, [ d5 over the length mn is
2acosb
f ds = 2acos 8
0

Therefore,

f[ds'dt// = Zafﬂ:jzcosf)dw

From Eq. (20.58)
11/2

/2 ry?
cos @ = (1 — sin®9) ~=[1—(—) sin? ¢
a

.-./[dfdw = 2a/”/22[1 - (g)zsmzw]w dy
-/

Making use of Eq. (20.56) gives

4(] —Vz) w/2 r 2 .
o= =g ra [ = 5] s

1/2
dy (20.59)

This integral can be evaluated by using ta_bles of elliptic integrals for any

particular value of r/a.
At the center of the circle when r = 0 (OM = 0), the maximum deflection

iS R
44(1 -v3) 7 2pa(l —vY)
= ———pa - = —— " 20.60
(82 ) max P13 = ( )
Note also if r = a, from Eq. (20.59)
4(1 - Vz) /2 41 = v¥)pa
=7 _ Al g
(8.)rea= —0 ¢ pa[ cos iy dif = (20.61)
‘ 2
S (62)r=a = _(5z)mux (20(}2)
ka

Consider the stress at a point on the § axis that is produced by an clement
ring of pressure on the surface as shown in Fig. 20.6. From Eq. (20.49) the
normal stress in the 5 direction can be expressed as

3w Z3 ~-5/2
o= = (r2 457y (20.63)
2 . B

Now if w, = 2mrpdr, this equation becomes, due to the element, -

~5/2
o, = =3prsi(rt + 59 2 dr

r4
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FIGURE 20.6
Ring of pressure on surface of circular area of constant

pressure.

The normal stress produced by the entire distributed load is

/

o = =355 [r(r2 45T dr = p| 2(a? + )77 < 1] (20.64)
U .

Note that as § =0, o, = —p. .
The stresses o, and g, at axial points can be calculated while transforming
the stress tensor from cylindrical to Cartesian coordinates to give 7,, = 0 and

23
2(1 + v)s 5
(:2 3 ))sz - [( - 2)1/2] (20.65)

a’+3§

P
v, =0y = 5 -2(1 +v) +

»

20.6 ELASTIC DEFORMATIONS
IN ELLIPTICAL CONJUNCTIONS

Figure 20.7 shows a rectangular area of uniform pressure with the appropriate™=-
coordinate system. From Eq. (20.56) the elastic deformation at a point (x, y) of

a semi-infinite solid subjected to a pressure p at the point (x,;y,) can be
written as
2pdx, dy,

z wE'r

dd

The elastic deformation at a point (x, y) due to a uniform pressure over a

rectangular area 2a X 2b is

P i dx, d
5. = 2_6/“ [ T (20.66)
T (=)t ()]
where P = p/E' Integrating gives
2
8, = —PD* (20.67)
v
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where LE

(y+a)+ [(y+i1')2+(x+1;)2]|/2

D* = (x +b)In 2)1/2
(y—d)+[(y—ﬁ)2+(x+5)]
. 2 272
(x+b) + [(v +a) +(x+b)]
+(y+a)ln 21172
(,x_5)+[(y+d)2+(x—5)]
Y "‘d ’dz _‘5'2 V2
+(x—5)1n§-fy )+[(y S .)zll/z
fﬁy+ﬁ)+ky+ﬁf+<x—“]
(X_5)+[(y—&)2+(x—5)2]1/2
"G -y (20.68)

~ T 1172
(x+b)+[(y—d)2+(x+b)]

Hamrock and Dowson (1974) used the preceding equations in their elliptical
elasticity analysis as part of their treatment of elastohydrodynamic lubrication.
As can be seen from Eq. (20.66), the pressure on each element can be replaced
by a constant value; that is, the whole pressure distribution is replaced by blocks
of uniform pressure. In this way an analytical expression for integrating the
deformation is worked out, and the deformation of every node is expressed as a
linear combination of the nodal pressures. In the solution of Ranger et al.
(1975), a bilinear interpolating function is used to approximate the practical
pressure distribution. Evans and Snidle (1982) employed a different method that
was first presented by Biswas and Snidle (1977). For grid elements without
singularity they directly adopted Simpson’s integration rule, and for those with
singularity they used a biquadratic polynomial function to express the pressure
distribution approximately. In this way an analytical solution for the integration
is developed without directly expressing the deformation as a linear combina-
tion of the nodal pressure. Following in these footsteps Hou et al. (1985)
employed the biquadratic polynomial function for approaching the pressure
distribution on any. grid element. An influence coefficient matrix is introduced
to reduce the amount of calculating work when repeated caleulations of the
elastic deformation are needed. However, a shortcoming of their work is that
for a 2n + 1X2m + 1) finite difference grid, the influence matrix is composed
of (n X m}2n X 2m x 9) elements, which is not welcomed even with today’s
powerful computers.
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Surface deformation of semi-infinite body subjected to
uniform pressure over rectangular area. [From Ham-
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FIGURE 20.8

Coordinate system for computing element. (a) Rectangular element with nine nodes; (b) representa-

tion of pressure distribution for paraboloidal surfaces, [From Jeng and Hamrock (1987).]
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Jeng and Hamrock (1987) used a biquadratic polynomial expressed in
Lagrange form to approximate the pressure distribution on-all grid elements.
Figure 20.8 shows the coordinate system for the computing element. Node
(k, ¢) is the nodal point for the elastic deformation, and node (i, j) is the
central point of the grid element for the pressure distribution. An influence
matrix whose coefficient is dependent on the geometric factors and the distance
between node (k, 7) and node (i, j) is introduced only to express the deforma-
tion of every node as a linear combination of the nodal pressures. In this way,
only 2n X 2m X 9) elements are needed in the influence matrix for a 2n + 1)
(Zm + 1) equidistant rectangular grid. The computational time and computer
storage size for the influence coefficient matrix are greatly reduced.

20,7 CLOSURE

Stresses and deformations in nonconformal conjunctions were presented in a
general manner, describing what occurs on as well as within the solids in

contact. The conjunctions considered were assumed to be dry, or unlubricated,

as in the preceding chapter. The material presented in this chapter is the
foundation that will be used extensively in later chapters on clastohydrodynamic
lubrication.

A line (two-dimensional) load situation was presented. The general stress
equations were solved by a stress function approach that resulted in a bihar-
monic governing equation. This equation was solved by using the Boussinesq
stress function. Thus, not only general expressions for the stresses but also the
deformation of the surfaces could be obtained. These general line-contact
formulations were then reduced to define the elastic deformation on the
surfaces resulting from a rectangular contact area. An important result is that a
constant term in the elastic deformation equation accounted for 80 to 90
percent of the total deformation. Isolating this term is thus important in
accurately solving for the deformation of solids that have rectangular contact
areas. These results will be directly applicable when dealing with elastohydrody-
namic lubrication of rectangular conjunctions in Chap. 21.

A point (three-dimensional) load resuited in a stress tensor acting along
the normal to the undeformed plane surface of an elastic half-space. The results
indicate that for a small radius infinite stresses and displacements occur. This is
physically impossible and is avoided by assuming that the point loading is
replaced by a hemispherical stress distribution equivalent to the load. This
general formulation of the stresses and deformations was then applied to
describing the elastic deformation that results in elliptical contacts. The clastic
deformation analysis assumed uniform pressure over a small rectangular area.
Thus, the pressure could be placed in front of the integral equation, easing the
computation considerably. The resulting equation for the elastic deformation
was simply expressed as the pressure multiplied by a distance-influencing
function. These results will be used when dealing with elastohydrodynamic
lubrication of elliptical conjunctions in Chap. 22.
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20.8 PROBLEMS

20.8.1 Explain the use of the Airy stress function in the analysis of two-dimensional
problems in the theory of elasticity, with reference to both Cartesian and polar
coordinates.

20.8.2 A semi-infinite uniform plate has a stress system within it defined by the stress
function ¢ = Br26¢. The boundary of the plate is the line 6 = +m/2, and the
plate covers the portion of the plane where —m/2 < 0 < 7/2 and r is positive.
Find the conditions of stress that apply at the boundary and also the stress o, 7,
and 7_, al any point, in terms of 8. Assume that polar and Cartesian coordmates
have the same origin and that x = rsin 8 and y = r cos 6. A second stress system
cqual but opposite in sign is now added to the plate, but it is displaced a distance
a from the first. Thus, the second system is represented by the stress function

o = B(r’)zt}'
where (¢, 8") are referred to an origin at the point (a, 0) in the (r, 8) coordinate
system.

Show that the superposition of the boundary stresses of the twd systems results

in a uniform normal stress spread over the length r = 0 to r = ¢ and in no other
stress.
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