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on a plane (err = 0.03). to a balloon-plane contact (ar = 1) to a contact ap-
proaching a nominal line contact (err ..•.• 100) such as a barrel-shaped roller
bearing against a plane. This chapter focuses on the results obtained by
Hamrock and Brewe in their 1983 paper.

19.1 CURVATURE SUM AND DIFFERENCE

The un deformed geometry of nonconformal contacting solids can be repre-
sented in general terms by two ellipsoids, as shown in Fig. 19.1. The two solids
with different radii of curvature in a pair of principal planes (x and y) passing
through the contact between the solids make contact at a single point under the
condition of zero applied load. Such a condition is called "point contact" and is
shown in Fig. 19.1, where the radii of curvature are denot~d by r's. It is
assumed throughout this book that convex surfaces, as sh6.wn in Fig. 19.1,
exhibit positive curvature and concave surfaces, negative curVature. Therefore,
if the center of curvature lies within the solid, the radius of curvature is positive;
if the center of curvature lies outside the solid, the radius of curvature is
negative. Figure 19.2 shows the sign designations for the radii of curvature for
various machine elements such as rolling elements and bearing races. The
importance of the sign of the radius of curvature presents itself later in the
chapter.
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In the preceding chapters the solid surfaces in a lubricated conjunction have
been considered to be rigid. This then is the demarcation point where elastic
deformation of the solid surfaces will begin to be considered and remain of
concern until the end of the book.

The classical Hertzian solution for deformation requires calculating the
ellipticity parameter k and the complete elliptic integrals of the first and second
kinds Y and !if, respectively. Simplifying expressions for k, 7, and g' as a
function of the radius ratio err were presented by Brewe and Hamrock (1977) in
a curve-fit analysis. With these expressions researchers could determine the
deformation at the contact center, with a slight sacrifice in accuracy, without
using involved mathematical methods or design charts. The simplified expres-
sions were useful for radius ratios ranging from circular point coritact to near
line contact normal to the rolling direction (that is, 1.0 ~ err ~ 100).

However, in a number of applications the semimajor axis of the elliptical
contact is parallel to the rolling direction, resulting in err < 1. Some of these
applications are (l) Novikov gear contacts, (2) locomotive wheel-rail contacts,
and (3) roller-flange contacts in an axial loaded roller bearing. The elliptical
contact deformation and stresses presented by Hamrock and Brewe (1983)
are applicable for any contact ranging from something similar to a disk rolling
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FIGURE 19.1
Geometry of contacting elastic solids.
[From Hamrock and Dawson {/98/}.]
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where

R,
+- ( I(j..+ )

'ax rhx

l'

R).
-+- (19.5 )

'ay rh\,
of

Equations (19.4) and (19.5) effectively redefine the problem of two ellipsoidal
solids approaching one another in terms of an equivalent solid of radii R, ami
R y approaching a plane. Note that the curvature difference expressed in Eq.
(19.3) is dimensionless.

The radius ratio ar defined in Eq. (18.57) is the same for this chapter.

Rv
,',ar =-R,

Thus, if Eq. 09.1) is satisfied, ar > 1; and if it is not satisfied, a,. < 1.

19.2 SURFACE STRESSES AND DEFORMATIONS

fiGURE 19.2
Sign designations for radii of curvature of various machine elements. (a) Rolling elements; (b) ball
bearing races; (c) rolling bearing races.

coordinate x then determines the direction of the semiminor axis of the contact
area when a load is applied and y, the direction of the semimajor axis. The
direction of the entraining motion is always considered to be along the x axis.
For those situations in which the principal curvature planes of the two contact-
ing bodies are not coincident, refer to Timoshenko and Goodier (1970).

The curvature sum and difference, which are quantities of some impor-
tance in analyzing contact stresses and deformation, are

Note that if coordinates x and yare chosen such that

111 1-+-~-+-
rax rbx ray rby

1 1 1
-=-+-
R Rx Ry

Rd = R( ~x - ~J

(19.1)

( 19.2)

( 19.3)

When an elastic solid is subjected to a load, stresses are produced that increase
as the load is increased. These stresses are associated with deformations. which
are defined by strains. Unique relationships exist between stresses and their
corresponding strains. For elastic solids the stresses are linearly related to the
strains, with the constant of proportionality being an elastic constant that adopts
different values for different materials as covered in Sec. 5.6.2. The modulus of
elasticity E and Poisson's ratio lJ are two important parameters descrihed ill

Chap. 5 that are used in this chapter to describe contacting solids.
As the stresses increase within the material, clastic hehavior is replaced hy

plastic flow in which the material is permanently deformed. The stress state ,It
which the transition from elastic to plastic behavior occurs. known as the "yield
stress," has a definite value for a given material at a given temperature. In 1hi,
book only elastic behavior is considered.

When two elastic solids are brought together under a load, a contact area
develops whose shape and size depend on the applied load, the elastic proper-
ties of the materials, and the curvatures of the surfaces. When the two solids
shown in Fig. 19.1 have a normal load applied to them. the contact areil is
elliptical. It has been common to refer to elliptical contacts as point contacts.
but since under load these contacts become elliptical, they are referred to
herein as such. For the special case where 'a, = 'a" and rhx = rh" the resulting
contact is a circle rather than an ellipse. Where raj' and rh). are both infinite,
the initial line contact develops into a rectangle when load is applied.

Hertz (881) considered the stresses and deformations in two perfectly
smooth, ellipsoidal, contacting solids much like those shown in Fig. 19.1. His
application of the classical elasticity theory to this problem forms the basis of



406 FUN[)AMENTAL~ OF FLUID FILM LUBRICATION SIMPLIFIED SOLUTIONS FOR STRESSESAND DEFORMATIONS 407

If Eq. (19.1) is satisfied and at' ~ 1, the contact ellipse will be, oriented with its
major diameter transverse to the direction of motion, and c6n~equently k ~ 1.
Otherwise, the major diameter would lie along the directldfi: of motion with
both ar < 1 and k < 1. To avoid confusion, the commonly used solutions to the
surface deformation and stresses are presented only for ar > 1. The simplified
solutions are presented, and then their application for ar < 1 is discussed.

Harris (1966) has shown that the ellipticity parameter can be written as a
transcendental equation relating the curvature difference [Eq. (19.3») and the
elliptic integrals of the first !T and second jff kinds as
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FIGURE 19.3
Pressure distribution in ellipsoidal contact.

stress calculations for machine elements such as ball and roller bearings, gears,
and cams and followers. Hertz made the following assumptions: II

in the x direction (direction of entraining motion), or

Dy
k= -Dx

[ ]

1/2
k= 2.9'-Z'(I+Rd)

jff(I-Rd)

( 19.8)

( 19.9)

i

i
; I

I
I

1. The materials are homogeneous and the yield stress is not exceeded.
2. No tangential forces are induced between the solids.

3. Contact is limited to a small portion of the surface such that the dimensions
of the contact region are small in comparison with the radii of the ellipsoids.

4. The solids are at rest and in equilibrium.

where

[ (
1 ) ] - 1/2

!T = r/2 1 - 1 - k2 sin2 <t> d<t>

jff = fu1T

/

2
[ 1 - (1 - k\ )sin2 <t>r2

d<t>

(19.10)

(19.11)

Making use of these assumptions, Hertz (188]) was able to obtain the
following expression for the pressure within the ellipsoidal con'tact (shown in
Fig. 19.3):

A one-point iteration method that was adopted by Hamrock and Anderson
(1973) can be used to obtain the ellipticity parameter, where

The iteration process is normally continued until kll+ 1 differs from kn by less
than 1.0 X 10-7• Note that the ellipticity parameter is a function only of the
solids' radii of curvature:

j-,
.J.,I."~

p ~ p,+ - (~ r - (~ )T'
where Dx = diameter of contact ellipse in x direction, m

Dy = diameter of contact ellipse in y direction, m

(19.6 )

kn+1 == k"

k =f(rax,rhx,ray,rhY)

( 19.12)

(19.13)

where Wz is the normal applied load. Equation (19.6) determin~l the distribu-
'tion of pressure or compressive stress on the common interfac~;\'it is clearly a
'maximum at the contact center and decreases to zero at the periphery.

The ellipticity parameter k is defined as the elliptical contact diameter in
the y direction (transverse dire~tion) divided by the elliptical contact diameter

\

If the pressure is integrated over the contact area, it is found that

6wz

Pm = rrDxD)'
( 19.7)

That is, as the load increases, the semiaxes in the x and y directions of the
contact ellipse increase proportionately to each other so that the ellipticity
parameter remains constant.

Figure 19.4 shows the ellipticity parameter and the elliptic integrals of the
first and second kinds for a radius ratio (ar = Ry/Rx) range usually encoun-
tered in nonconformal conjunctions. Note from Fig. 19.4 that jff = .9' when
ar = 1. Also both jff and .9' are discontinuous at ar = 1.

When the ellipticity parameter k, the normal applied load Wz' Poisson's
ratio II, and the modulus of elasticity E of the contacting solids are known, the
major and minor axes of the contact ellipse and the maximum deformation at

.~_.
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FIGURE 19.4
Variation of ellipticity parameter and elliptic integrals of first and second kinds as function of radius
ratio. [From Hamrock and Brewe (J983).j

...

( 19.20)

( 19.19)

(19. J 8)6wz cos2 <Pa sin <Pa sin Ya

7T( D; tan2 Ya + D; cos2 <pa)

_ I (2 2. 2 ) 1/2 .
X - '2 Dx + Dy tan Y" sm <Pa

Dy
z = 2 tan Ya cos <Pa

Tzx -

TO = (Tzx)max

where <Pa and Ya are auxiliary angles used in place of the coordinate set (x, z).
They are defined so as to satisfy the relationship of aconforrnal ellipsoid to the
pressure ellipse (for further details see Hertz, 1881, and Lundherg and

Palmgren, 1947).
The maximum shear stress is defined as

The stresses are referred to in a rectangular coordinate system with its
origin at the contact center, its z axis coinciding with the interior normal of the
body considered, its x axis in the rolling direction, and its y axis perpendicular
to the rolling direction. In the analysis that follows, it is assumed that y = O.

From Lundberg and Palmgren (1947) the following equations can he

written:
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(19.21)

( 19.22)

= 0
aYa

aTzx

Dx
Zo = ?*- ( 19.24)

2
D

Xu = :tC'-:' ( 19.25)
2

where ?* =
1

-\ (t* + 1)(2t* - 1)1/2
( 19.2/S)

* _ t* (2t* + 1 r/2

g ---
t* + I 2t* - 1

( 19.27)

Dx = {[(t*)2 _ 1](21* _ J)}1/2
Dy

where t* is the auxiliary parameter. The position of the maximum point is

determined by

For the point of maximum shear stress
j; tan2'<Pa = 1*

tan2 Ya = t* -

The amplitude of TO is obtained from

(lTzx
-=0
iI<Pa

the conta~t center can be written from the analysis of Hertz (1881) as

(
6k2Ww R ) t/3

Dy = 2 7TE: (19.14)

(
6Ww R) 1/3

Dx = 2 7Tk~' (19.15)

[
9 2] 1/3

Om = go 2WR (7T:~') (19.16)

2
where E' = ( 2) E ( 2) ( 19.17)1 - lIa / a + 1 - IIh /Eb

In these equations, Dx and Dy are proportional to w;/3 and om is proportional
to w2/3

z •

19.3 SUBSURFACE STRESSES

Fatigue cracks usually start at a certain depth below the surface in planes
parallel to the rolling direction. Because of this, special attention must be given
to the shear stress amplitude in this plane. Furthermore, a maximum shear
stress is reached at a certain depth below the surface. The analysis used by
Lundberg and Palmgren (1947) is used here to define this stress ..
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19.4 SIMPLIFIED SOLUTIONS

Furthermore, the magnitude of the maximum shear stress expressed in terms of
1* is given by

The asymptotic behavior of if' and Y (er, -> 1 implies W -> .'7 -> 1T' /2,
and er, -> 00 implies :7 -> 00 and fj'i' -> 1) was suggestive of the type of func-
tional dependence that F' and iT might follow. As a result, both inverse and
logarithmic curve fits were tried for ?f and .~, respectively. Hamrock and Brewe
(]983) obtained the following:

Radius Ellipticity Complete elliptic Comptete elliptic
ratio. integral of integral of
er, k k Error. first lUnd second kind

~,.
jpercent :J Error. f. f. Error.

~r' ~,.
percent percent

1.00 1.00 1.00 0 1.57 1.57 0 1.57 1.57 0
1.25 1.16 1.15 .66 1.68 1.69 -.50 1.46 1.45 .52
1.50 1.31 1.29 1.19 1.78 1.80 -.70 1.39 1.38 .76
1.75 1.45 1.42 1.61 1.87 1.89 -.75 1.33 1.32 .87
2.00 1.58 1.55 1.96 1.95 1.96 -.73 1.29 1.28 .91
3.00 2.07 2.01 2.87 2.18 2.19 -.44 1.20 1.19 .83
4.00 2.50 2.41 3.35 2.35 2.36 -.11 1.15 1.14 .69
5.00 2.89 2.78 3.61 2.49 2.48 .17 1.12 1.\1 .57
6.00 3.25 3.12 3.74 2.60 2.59 .40 1.10 1.09 .48
7.00 3.58 3.45 3.80 2.69 2.68 .59 1.08 1.08 .40
8.00 3.90 3.75 3.81 2.77 2.75 .75 1.07 1.07 .35
9.00 4.20 4.05 3.78 2.85 2.82 .88 1.06 1.06 .30
10.00 4.49 4.33 3.74 2.91 2.88 1.00 1.05 1.05 .26
15.00 5.79 5.60 3.32 3.16 3.11 1.38 1.03 1.03 .15
20.00 6.92 6.73 2.81 3.33 3.28 1.60 1.02 1.02 .10
25.00 7.94 7.76 2.29 3.46 3.40 1.74 1.02 1.02 .07
30.00 8.87 8.71 1.79 3.57 3.51 1.84 1.01 1.01 .05
35.00 9.74 9.61 1.32 3.67 3.60 1.90

j I .04
40.00 10.56 10.46 .87 3.74 3.67 1.95 .03
45.00 11.33 11.28 .44 3.81 3.74 1.99 .02
50.00 12.07 12.06 .03 3.88 3.80 2.02 .02
60.00 13.45 13.52 -.72 3.98 3.90 2.06 1.00 1.00 .01
70.00 14.74 14.94 -1.40 4.08 3.99 2.08 I I .01
80.00 15.95 16.27 -2.03 4.15 4.07 2.09 .01
90.00 17.09 17.54 -2.61 4.22 4.13 2.10 0
100.00 18.18 18.76 -3.15 4.28 4.19 2.10 0

TABLE 19.1
Comparison of numerically determined values with curve-fit
values for geometrically dependent variables
[From Hamrock and Brewe (1983); Rx = 1.0 cm]

( 19.28)

( 19.29)k = er;/TC

(21 * - 1) 1/2

TU = Pm 21*(1* + 1)

It should be emphasized that TO represents the maximum half-amplitude of the
subsurface orthogonal shear stress and is not to be confused with the maximum
subsurface shear stress that occurs below the center of the contact on the plane
oriented 45° to the surface. The Lundberg-Palmgren prediction of fatigue life is
based on the calculation of TO and was limited to cross sections lying in the
plane of symmetry of the roller path (y = 0).

The classical Hertzian solution presented in the previous sections requires the
calculation of the ellipticity parameter k and the complete elliptic integrals of
the first and second kinds .'7 and if. ,This entails finding a solution to a
transcendental equation relating k, .'7, and g' to the geometry of the contacting
solids, as expressed in Eq. (IY.9). This is usually accomplished by some iterative
numerical procedure, as described by Hamrock and Anderson (I973), or with
the aid of charts, as shown by Jones (] 946).

Table lY.1 shows various radius ratios er, and corresponding values of k,
.'7, and z~obtained from the numerical procedure given in Hamrock and
Anderson (J yn). Hamrock and Bn:we (I983) used a linear regression by the
method of least squares to power tit the set of pairs of data [(k;, err,)'
i = 1,2, ... , 26] shown in Table 19.1. They obtained the following equation:

where i={k,W,or.'7} (19.34)

I = {k, g;, or iT} (19.35)

The agreement between the exact solution and the approximate formulas is
quite good. The best agreement is with ?:, which is between 0 and 1 percent;
the worst agreement is with k, which is :l:4 percent.

qu
for er, 2. I (19.30)W=l+--

0',

1T'
where qu = "2 - 1 ( 19.31)

1T'
and .'iT = - + q In er for er, 2. 1 ( 19.32)2 a ,

Values of k, i, and .'iT are also pres(:nted in Table 19.1 and compared with the
numerically determined values of k, if', and .'7. Table 19.1 also gives the

percentage of error detennined as

e =r

(I" - i)100
( 19.33)
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x
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C; = I + qu"',

".where qu = - - I
2

k = Ct;'.
0.01 '" "', '" 1.0

:f = :': - qa In "',
2

.<
2

".where qu = - - I
2

2
I :5 "', :5 100

"',
- qa
C; = I +-

k = Q~/ •.

:f = ~ + qa In "',
2

,. = I + 0.16 csch G) I"~= I + 0.16 csch G)
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Table 19.3, from Hamrock and Brewe (1983), gives the simplified equa-
tions for 0.01 :$ a, :$ 100, which is the complete range normally experienced in
practice. It is important to make the proper evaluation of a,., since it has great
significance in the outcome of the simplified equations. Table 19.3 shows that k
and i* are unaffected by the orientation of the ellipse but that the elliptical
integrals of the first and second kinds (sr and iF) are quite affected. It is
important to realize that the reciprocal to a, produces the same values of i

and ?J as are produced by changing the orientation of the ellipse.
Figure 19.5 shows three diverse situations in which the simplified equa-

tions can be usefully applied. The locomotive wheel on a rail [Fig. ]lJ5{ a)1
illustrates an example in which the ellipticity parameter k and the radius ratio
a, are less than 1. The ball rolling against a plane [Fig. 19.5(b)] provides a pure
circular contact (i.e., a, = k = 1.00). Figure 19.5(c) shows how the contact
ellipse is formed in the ball-outer-race contact of a ball bearing. Here (he
semimajor axis is normal to the rolling direction, and consequently Ci, and k ;\fI:

greater than 1. The detailed geometry and the values that can be calculated
from the simplified formulas are given in Table 19.4 for each of these thft:c
configurations. In using these formulas it is impoI tant to pay attention to tl,.-

TABLE 19.3
Simplified equations
[From Hamrock and Brewe (1983)]

( 19.36)
k

i* = 1 + a 16csch-. 2

Radius Auxiliary parameter Radius Auxiliary parameter
ratio, ratio.
a, ,. ,. Error, a, t. ,. Error.e,. e,.

percent percent

0.01 S.71 7.00 -22.47 2.00 1.14 1.18 -3.71
.02 4.42 4.86 -9.87 3.00 1.09 1.13 -3.78
.03 3.81 3.98 -4.49 4.00 1.06 1.10 -3.45
.04 3.43 3.48 -1.51 5.00 1.05 1.08 -3.03
.05 3.16 3.15 .35 6.00 1.04 1.07 -2.62
.06 2.96 2.91 1.58 7.00 1.03 LOS -2.24
.07 2.80 2.73 2.42 8.00 1.03 LOS -1.91
.08 2.67 2.S9 3.01 9.00 1.02 1.04 -1.61
.09 2.56 2.47 3.43 10.00 1.02 1.03 -1.35
.10 2.47 2.38 3.72 15.00 1.01 1.01 -.50
.20 1.96 1.88 3.90 20.00 1.00 1.01 -.09
.30 1.73 1.68 2.86 25.00 1.00 .12
.40 1.59 1.56 1.79 30.00 .21
.50 1.50 1.48 .85 35.00 .26
.60 1.43 1.43 .OS 40.00 .27
.70 1.38 1.39 -.62 45.00 .27
.80 1.34 1.35 -1.19 50.00 .26
.90 1.30 1.33 -1.66 60.00 .24
1.00 1.28 1.30 -2.05 70.00 .21
1.25 1.22 1.26 -2.78 80.00 .19
1.50 1.19 1.23 -3.25 90.00 .17
1.75 1.16 1.20 -3.54 100.00 t .15

TABLE 19.2
Effect of radius ratio on auxiliary parameter used in
subsurface stress calculations
[From Hamrock and Brewe (l983)J

Table 19.2 shows various radius ratios a, and corresponding values of the
auxiliary parameter t* used in calculating the position and value of the
maximum subsurface orthogonal shear stress. The exact solution for (* was
obtained from the numerical procedures given in Hamrock and Anderson
(1973). For the set of data [<tt, a,.), i = 1,2, ... ,44] shown in Table 19.2 the
following simplified formula was obtained from Hamrock and Brewe (1983):

The percentage of error e, is given for the auxiliary parameter in Table 19.2.
The agreement between the exact and the approximate values of (* is Quite
good except at extremely small radius ratios (a, :$ 0.03). Once the value of (* is
determined, the position and value of the maximum subsurface orthogonal
shear stress can readily be calculated from EQs. (19.24) to (19.28).
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sign of the curvatures. Note that the outer race in Fig. 19.5 is a concave surface
and therefore requires a negative sign. Table 19.4 shows both the maximum
pressure Pm and the maximum shear stress to be highest for the ball-on-plane
configuration.

19.5 RECTANGULAR CONJUNCTIONS

For rectangular conjunctions the contact ellipse discussed throughout this
chapter is of infinite width in the transverse direction (Dy .•..•• (0). This type of
contact is exemplified by a cylinder loaded against a plane, a groove, or another
parallel cylinder or by a roller loaded against an inner or outer race. In these

0\ situations the contact semiwidth is given by

i.!~

'.

Contact Wheel on rail Ball on, plane Ball-outer-race

parameters , contact

"':' N 1.00 x lOS 222:4111 222.4111

'ax. m 0.5019 0.006350 0.006350

'ay' m co 0.006350 0.006350

rbx' m co co -0.038900

'by' m 0.300000 co -0.006600

Cl, 0.5977 1.0000 22.0905

k 0.7099 1.0000 7.3649

k 0.7206 1.0000 7.1738

t. 1.3526 1.5708 1.0267

i: 1.3412 1.5708 1.0258

5' 1.8508 1.5708 3.3941

5 1.8645 1.5708 3.3375

D, .• m 0.010783 0.000426 0.001842

ii,..m 0.010807 0.000426 0.001810

D:,o m 0.015190 0.000426 0.000250

b,. m 0.014996 0.000426 0.000252

0mo I'm 106 7.13 3.56

6m• I'm 108 7.13 3.57

Pm.OPa 1.166 2.34 0.922

Pmo OPa 1.178 2.34 0.930

/* 1.4354 1.2808 1.0090

/* 1.4346 1.3070 1.0089

.ro. m %0.008862 %0.000195 %0.000096

.to. m %0.008745 %0.000197 %0.000097

Zo.m %0.005410 %0.000149 %0.000123

Zo. m %0.005350 %0.000145 %0.000124

TO' OPa 0.162 0.501 0.229

To. OPa 0.164 0.494 0.232

TABLE 19.4
Practical applications for differing conformities
[From Hamrock and Brewe (J 983); effectfve elastic modulus
E', 2.197 X 1011PaJ

( 19.37)"

FIGURE 19.5
Three degrees of conformity. (a)
Wheel on rail; (b) ball on plane;
(c) ball-outer-race contact.
[From Hamrock and Brewe
(J983)]

$

7.ffi-

1$.

*_ .(8W')1/2, b -Rx -
~ rr

" where the dimensionless load is

uJ
W' =, E'R (19.38)

x

and uJ is the load per unit width along the contact. The maximum deformation
for a rectangular conjunction can be written as

2W'Rx[ (2rr) ]
8m = -rr- In W' - 1 (19.39)

The maximum Hertzian pressure in a rectangular conjunction can be written as

,( W')1/2
P" = E -2rr

19.6 CLOSURE
This chapter has presented an alternative approach to the classical Hertzian
solution for the local stress and deformation of two elastic bodies in contact.
Simplified formulas that use curve-fit analysis are given in terms of the radius
ratio a, for the ellipticity parameter k and the complete integrals .'7' and g' of
the first and second kinds, respectively. Thus, their interdependence can be
uncoupled and solution of the resulting transcendental equation avoided. Sim-
plified equations were developed that permit a more direct and easier approach
to the calculation of the elliptical contact deformation and the maximum

.;

~' :,



416 FUNDAMENTALS OF FLUID FILM LUBRICATION

Hertzian pressure. In addition, a curve-fit analysis was used to derive a simpli-
fied formula for an auxiliary parameter t* as a function of ar• This eliminated
having to solve a cubic equation for t* as a function of k. A shortcut calculation
could be made for the location and magnitude of the maximum subsurface
shear stress. Therefore, the elliptical contact deformation and stresses pre-
sented are applicable for any contact ranging from a disk rolling on a plane
(ar = 0.03) to a ball-on-plane contact (ar = 1) to a contact approaching a
normal line contact (ar -+ 100) such as a barrel-shaped roller against a plane.

19.7 PROBLEMS

19.7.1 A solid cylinder of radius 2 em rolls around an inner ring with an internal radius
of 10 em and a large width in the axial (y) direction. What is the radius of the
geometrically equivalent cylinder near a plane?

The cylinder is made of silicon nitride and the ring is made of stainless
steel. If a normal applied load per unit width is 1,000 N/m determine the contact
semiwidth b*, maximum deformation 8m, and maximum Hertzian pressure PH'
Also indicate what these values are if the silicon nitride cylinder is replaced with a
stainless steel cylinder. What conclusions can you make about these results?

19.7.2 A solid sphere of radius 2 em rolls around the inner ring with an internal radius of
10 em and a large width in the axial (y) is quite large. What is the curvature sum?

The sphere is made of silicon nitride while the ring is made of stainless
steel. If the normal applied load is 1,000 N, determine the maximum surface
stress, the maximum subsurface stress, the maximum deformation, and the dimen-
sion of t.he contact. That is, determine b. 7, ?:, 1*, Dx• Dy' om' Pm 7'0' xo, and
zoo

Also indicate what these values are if the silicon nitride sphere is replaced
with a stainless steel sphere. What conclusions can be made about the results?
Also compare with Prob. 19.7.1 results.
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CHAPTER20
GENERAL SOLUTION

FOR STRESSES AND
DEFORMATIONS

IN DRY CONTACTS

The previous chapter described simple formulas for the maximum surface ;'Inti
subsurface stresses as well as the maximum deformation at the contact center.
This chapter defines the stresses and the deformations in a more genera!
manner. As in the previous chapter the contacts are assumed to be dry. or
unlubricated.

When two elastic solids like those shown in Fig. 19.1 are brought intn
contact and subjected to a normal load, the solids deform and the nomina! Doint
of contact becomes an elliptical area. Two limiting cases can be identified from
this general principle. In the first, a point contact becomes a circle, for example.
when the solid surfaces are a sphere on a sphere, i\ sphere on a plane. nr
identical cylinders crossed at right angles. In the second limiting case, a nomin;'l\
line contact becomes a rectangle, for example, when the solid surfaces are a
cylinder on a cylinder with parallel axes, a cylinder on a plane, or a cylinder in ;1

groove with parallel axes as in a journal. The stresses, deformations, and contact
dimensions are presented here for normal loaded contacts with no tangent I;]!
loading, not only for the general elliptical contact solution but also for the two
limiting situations of circular and rectangular contacts.

417
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20.1 GENERAL ELASTICITY THEOREMS

In this chapter it is assumed that the linear size of the contact area is small
relative to the radii of curvature of the contacting solids. This implies that one
body can be replaced by an elastic semi-infinite space. The second assumption
imposed in this chapter is that the friction forces arising between touching
bodies are neglected.

(20.8)

(20.9)

aux aTxz
-+-=0
ax az

auz aTxz
-+-=0
az ax

FIGURE 20.1
Plane polar coordinates used for line load Wz acting in
z direction in x = 0 plane on boundary surface of
elastic half-space. [From Tripp (I985).]

x

z

y

condition is a two-dimensional problem, and the equilibrium conditions for this
problem reduce to the following:

(20.1 )

(20.2)

(20.3)
a2

(1 + v)'i72uz + --2(er, + uy + uz) = 0
iJz

a2

(I + IJ) 'i7 2UJ. + ';;-2 ((T, + (Ty + uz) = 0
oy

The behavior of an isotropic and homogeneous perfectly elastic material is
generally defined by equilibrium conditions in which the body forces have been
made equal to zero. Imposing these conditions yields the following equations:

a2
(1 + v)'i72ux + ax2(er, + uy + uJ = 0

(12
(1 + v) 'i7 2Txy + :-- (ux + uy + uJ = 0ax ay (20.4 ) (

a2 a2 )
ax 2 + az 2 (ux + uz) = 0 ,

(20.10)

The solution to any elasticity problem must satisfy these conditions and the
given boundary equations.

Note that Eqs. (20.8) to (20.10) for the two-dimensional problem are much
simpler than the three-dimensional equations [(20.1) to (20.6»).

Equations (20.8) to (20.10) may be solved by a "stress function approach,"
in which e/>, which is a function of x and z, i~ introduced and expressed in terms
of the stresses as

''f'';

(20.11 )

(20.12)

a2e/>
axiJz

Txz =
a2e/>

Uz = ax2
a2e/>

Ux = a;'i
The parameter e/> is referred to as an Airy stress function. These satisfy Eqs.

. (20.8) and (20.9) identically, while Eq. (20.10) becomes

iJ4e/> iJ4e/> iJ4e/>
- + 2-.-' - + -- = 0 = '\f4e/>
iJx4 ~x2iJz2 iJz4

(20.5)

(20.6)

(20.7)
a2 a2 a2

'i72= _ + _ +-
iJx2 ay2 iJz2

il2

(1 + 1J)'i72Tyz + --(ux + uy + uz) = 0. ayaz

a2

(1 + V)'i72Tzx + --(ux + uy + uz) = 0azax
...

-.I where

20.2 LINE LOAD SOLUTION

Figure 20.1 shows the plane polar coordinates used for a line load Wz acting in
the z direction in the x = 0 plane on the boundary surface of an elastic
half-space. Also shown in this figure are the Cartesian coordinates. A line load

This is a biharmonic governing,,'tt:luation. To solve a particular problem such as
the line load problem, it is necessary to find the appropriate stress function that
will satisfy Eq. (20.12) and the appropriate boundary conditions. In many plane
problems it is advantageous to express line load in a polar coordinate system as
shown in Fig. 20.1 rather than in Cartesian coordinates. Equations (20.8) and

,

I
I

'~
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The stress function given in Eq. (20.11) can be expressed in polar coordinates as

a = ~ acP + 2- a2cP a = a2cP T = _!..- (~ acP) (20.15)
" , a, ,2 aI/J2 '" a,2 ,'" ar r ai/J

The corresponding biharmonic equation in Eq. (20.12) is expressed in polar
coordinates as

(
iP 1 a 1 a2 ) ( a2cP 1 acP 1 a2cP)
- + - - + - - - + - - + - - = 0 (20.16)a,2 , a, ,2 aI/J2 a,2 , ar r2 aI/J2

The line load problem shown in Fig. 20.1 is solved by using the Boussinesq
stress function given as

I.
J 'II

!

"

(20.2J)

(20.24)

(2025 )

( 20.2h)

(2027)ay = v( O"x + a,)

(2(1.\1)

Wz [ (1 - 2v) (1 + v) ( x ) (1 + 11) xz] _
- - ------ tan-I - - , 2 + A( z) (20JO)

'IT E z E(x'+z)

_ Wz {_I 11_
2[In( x 2 + Z2) _ _z_2_] + _1/_(_1_+_j/_)_~_2} + fj ( x )

'IT E X2+Z2 E(x2+z')

D =x

D =z

aDx 1
ex = -a; = E [ax - v( ay + 0",)]

aDy 1
ey = a; = 0 = E [ITy - V (IT, + a,) ]

_ aD, 1 [
ez = "T';"". = - a, - v(ax + O"y)]a,z' E

! :'

_ aDx aDz Txz 2(1+1')
exz = - + - = - = ---Tn

az aX Gs E

where Gs is the shear modulus of elasticity. From Eq. (20.24), the plane stralll
condition,

Substituting this into Eqs. (20.23) and (20.25) gives

_ aDx I-v2 v(I+1I)
ex = -a; = -E-ITx - E az (20.2R)

aD, 1 - v2 v(1 + 11)e = - = -'-0" - ---IT (2029)
z az E' r x

Integrating Eqs. (20.28) and (20.29) while making use of Eqs. (20.20) and (2021 )
gives

From Hooke's law the plane strain components in the solids can be
expressed as

By symmetry -8/ -x) = Dx(X). Hence, A(z) = O.
Equation (20.26) must be used to determine B(x). That is. substituting

Eqs. (20.22), (20.30), and (20.31) into (20.26) gives

aB(x)
-- = 0 (20 ..12)ax

This implies that B is not dependent on the field point x but docs depend on
the source point :5, in this case chosen at the origin. The value of 13 is
determined by the relative positions of the source and the fixed datum. There-
fore, Eqs. (20.30).and (20.31) describe the elastic deformation anywhere in the
body due to a line load at the origin. The deformation can be found for anv
applied surface pressure by an integration method that uses these basic results.

(20.22)

(20.20)

(20.18)

(20.21)

(20.17)

(20.14)

(20.13)

T,,,, = 0a", = 0

2 wzz3

'IT(x2 + Z2)2

2 uJ.xz2

< 'IT(x2 + Z2)2

'IT'

a =z

a =x

Txz

aa, 1 aT,,,, a, - a",
- + --- + --- = 0a, ,.i,'ai/J ,

)~ T'

1 aa", aT,,,, 2T,,,,
--+-+--=0
, ai/J a, ,

a =-,

wz,l/J .
cPb = --- smi/J

'IT

This indicates that the stress is radial and directed toward the' iine where the
load is applied. Equations (20.18) are suitable for determining the stress
distribution within a semi-infinite solid. -

Besides the stresses the surface deformation is also of inten'st, especially
in elasto~)'drodynamic lubrication studies. It is more convenient to revert to
Cartesian",:coordinates for the deformation considerations. The stress function
given in EQ. (20.17) can be expressed in Cartesian coordinates as

I

w-zx I X
cPb = - - tan- - (20.19)

'IT z
The stress field in Cartesian coordinates is

2wzx2z
--- 2

'IT(x2 + Z2)

Substituting Eq. (20.17) into Eq. (20.15) gives
2 Wz cos I/J

(20.9) become
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ilS-j I-- s = -b2 and s = b2 is given as

x

y

'!
FIGURE 20.2
Strip of pressure acting as line load.

- _ (l-v
2
)Pcfb2 In(x-s)2ds+C8 - 7T£ -b

2

(l-v2)Pc[ 2 . 2] _
(x-b2)ln(x-b2) -(x+b2)ln(x+b2) +D (20.34)

The preceding equation must be referred to a datum. Setting: 8 = 0 at x = 0 and
z = 0 while solving for I5 gives the following:

_ 2(1 - 11
2
) _ ( Ix - b21 Ix2 - b~l)

8 - £ Pc x In -I --I - b2 In 2
7T X + b2 b2

Sample problem 20.1 Establish what the normal deformation is for a strip of
pressure p and width d.\: acting on a line on the surface (z = 0) at a distance s
from the origin (x = .I:).

When displacements from the distribution of sources are superimposed, they must
all be referenced to the same datum. Thus, an expression for B is needed inside
the integral. The result of integration is C, and it will depend on the choice of the
datum.

Only the normal deformation at the surface is usually of interest, but for
completeness the general expression is given. From this point on in this text we
will only be concerned with normal deformations so that 0 = oz,

-p(dS}(1 - 112)

8 = ------- In( x - S )2 + C(S)
7T£

The displacemt:nt due to a variable pressure p(S) between x = S1 and
x = .i'2 is found by intt:grating the preceding equation.

.~

" ...

......

(20.35)

(20.36)

x = bX x/ = bX' p = PHP o = b2B/Rx

Rx = ~(~ )'/2 ,
W

+- W' = _z_ (20.37)Rx 'ax 'bx Dx 4 2W' E'Rx

20.3 ELASTIC DEFORMATIONS
IN RECTANGULAR CONJUNCTIONS

8= __ 1 [fXendPln(X_X')2dX'+ln(R;8W')fX,ndPdX'] (20.38)
277" Xmin 11" x

min

The general expressions for the deformations in a rectangular conjunction
having been developed, these formulas will now be used in elastohydrodynamic
lubrication analyses. For two surfaces having the same elasticity but made of
different materials coming into contact, Eq. (20.31) gives the elastic deformation
at any point x on the surface (z = 0) as

2 IX,"d 20=--, pln(x-x')dx'
7TE Xmin

where

~ = .~.(1 - 11; + 1 - v~)
E' ,2 Ea Eb

and p is pressure that is a function of x' varying from xmin to xend• Note that
since B in Eq. (20.31) depends on the elastic constants, the expression for 0 in
Eq. (20.34) would have an added material-dependent term if the surfaces did
not have the same elasticity. Letting

where PH is the maximum Hertzian pressure, causes EQ. (20.35) to become

(20.33)
I - v2 '~I 2 _

{j = - --I [p(S) In(x - S) + C(S)j ds
7T£ "

Solution. Figure 20.2 shows the strip of pressure that is acting as a line load. In Eq.
(2031) if z = 0, (x - n -. x, and Wz = p(dO,

P(dS}{1-1I
2
[ 'j II(I+II)} _

(, = - -7T- -£_. In(x -.\')- + --£-- + B

When it is known how the pressure varies, this integral can be evaluated.
In general, one wants to know the displacement of the surface relative to

some fixed point bt:nt:ath the surface, for example, the axis of a cylinder at depth
R. Since thc integrand describes only the surface displacements (z = 0), it cannot
be used to evaluate B. Thereforc, the integration will actually involve additional
terms in z that can be obtained from Eq. (20.31). If, on the other hand, the datum
can be taken somewhere on the surface itself, it is sufficient to evaluate the
integral in Eg. (20.33) and then adjust C by using the integrated results. Thus, the
deformation of the surface (z = 0) under a uniform pressure Pc extending between

.'

."

...)

~~,
"L I, • d

t, . .1
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(20.40)

(20.39)

I2flA7)

(20A:')

(20,4h)

and 8m is the dimensionless maximum deformation. This can be compMc'] w;'i'
the value of 5H obtained by analytic integration of Eq. (20.40) with ;1 Herl;,',;'"
pressure distribution.

1 ( 8W' ) 15H = - - In R;-- + - In(2) + 0.25
4 7T 2

The largest value tiHm/Hm of tiH/Hm is found at X= -1 and )(o~:

(because of the slope discontinuity) and is shown in Table 20.] with the
corresponding value of 8m/5H - 1. The film thickness Hm where dP Ii/X = n
has been chosen to be equal to 0.5; X min and X max define the first and last
values of X; NmaJ< is the number of nodes.

Table 20.1 shows that for a given mesh the best accuracy in calculating ,5
and tiHm is obtained by using the Haupert and Hamrock (1986) approach. The
value of 0m from Hamrock and Jacobson (1984) is in some cases less ,lccurate
than that from Okamura (1982) because they did not separate the constant LlS

where ti = Xj+ I - Xj• The three approaches can be compared hy assuming a
Hertzian pressure. Between X = - 1 and X = 1 the film shape while ,lssuming
a Hertzian pressure should be flat, leading to ti H = O. where ti 11 is defined ,1\

X2 _ _

tiH = - + {j - {j2 m

TABLE 20.1
Three ways of calculating elastic deformations
[From Houpert and Hamrock (1986); OK denotes Okamura (I9X2); HJ denotes Hamrock
and Jacobson (1984); HH denotes Houpert and Hamrock (19il6).]

Okamura (1982), who used simpler approaches than that used by Houpert ,]11(1

Hamrock (1986). Hamrock and Jacobson (1984) assumed the pressure to he
cons,tant in the interval [Xj - tiX/2, X

j
+ uX/2J ::r::. used an analytical ex,

pression for the integral of In(Xi - X'). Okamura (1982) did not lise any
analytical solutions and assumed simply that

_ ti EN ( I X; + I + X, II X, - I + Xi I)o = .- - P. In ---- - X ---~ - X
27T. j 2 j 2 I

J= I

1= jln(X-X')2dX'= -(X-X')[ln(X-X,)2-2] (20.42)

where

. ' j•• Wz= pdx

Since the pressure is zero at Xmin and Xend, the first term on the right side of
Eq. (20.41) vanishes and

_ 1 IX ~ dP [ 2] 1 ( 8W' )0= - - en -, (X - X') In( X - X') - 2 dX' - - In R;-
27T Xmin dX 4 7T

(20.43)

jPdX' = ~

Substituting Eq. (20.39) into Eq. (20.38) gives

- 1 jX ~ 2 1 ( 2 8W' )0= - - en P In(X - X') dX' - -In Rx--
27T Xmin 4 7T

Note that the last term on the right side of Eq. (20.40), which is a constant,
depends on how X and P are made dimensionless. This term represents, in
general, 80 to 90 percent of the total deformation. This grouping of the elastic
deformation was discovered by Houpert and Hamrock (1986) and proved to be a
useful separation in that the remaining pressure-dependent deformation is now
of the same order as the film thickness at moderate loads.

Using integration by parts on the integral given in Eq. (20.40), Haupert
and Hamrock (1986) found that

_ 1 xend 1 jXen~ dP , 1 ( 2 8W' )
ij = - -JPllx . + - -ldX - -In R - (20.41)

27T mIn 27T Xmin dX' 4 x 7T

This implies that

But the normal applied load per unit width is just the integration of the
pressure from the inlet to the outlet.

(20.44 )

The integral in Eq. (20.43) can be calculated analytically by assuming that the
pressure is described by a polynomial of second degree in the interval
[X

j
_ •• Xj+ 11. The details of the calculations are given in Appendix A. Jhe

resulting equation from their studies gives the dimensionless deformation OJ at
node i as a function of the dimensionless pressure Fj and the influence
coefficients Djj: .

_ N 1 ( 8W')0; = E DijPj - - In R;--
j=1 4 7T

The results obtained from Houpert and Hamrock (1986) are compared in
Table 20.1 with results obtained by Hamrock and Jacobson (1984) as well as by

Nma• Xmin Xc ••• (h,.lhH-I) tlHm/Ho,

I ~---

OK HJ HH OK HJ ___ L HI

51 -1.0 1.0 -1.9x 10-) -2.7xI0-1 8.6x 10..7 'lAx 10-\ _).) x III I 2 7 (

51 -3.6 1.4 -4.9x 10-) -1.1 x 10-) LOx 10-1 3Ax 10-/ -1 Ii'" 10" X "
151 -1.0 1.0 -6.3x 10-4 -5.lxlO,4 5.1 X 10'.8 4.0 X 10-1 -1.4 x 10 ' --1\4,

151 -3.6 1.4 -1.6x 10-) -2.0x 10-.1 5.4xI0-7 I 2 X 10-1 -44x 10 \ - 2 I ~

301 -1.0 1.0 -3.1 x 10-4 -1.8x 10-' 8.1 x 10-0 2.2 X 10-\ -5.l\x III ' - 2 ) x

301 -3.6 1.4 -7.8xlO-4 -7.lxlO-4 9.0xlO-8 6.0 X 10-1 -18x10 \ R hx

661 -3.6 1.4 --------- 2.2 x IO-h --------- --------". -2hX III ,J

51 "-1.0 "1.0 --------- --------- 6.5xlO-7 -------_ .. -----~--~ 2 1"-_. ._-

aNonuniform.

:n
In Ii

10 "
Ill."

!O J'

10 I

1 () J ~
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(20.51)

From these equations note tHat' Dr and Oz are singular at the origin.
The preceding equatiori!;.reduce to the following on the surface of the

solids, or when z = 0:

Equations (20.48) to (20.56) suggest that for small values of r, infinite stresses
and displacements occur. This is physically impossible, and this purely mathe-
matical condition is avoided by assuming that the point loading is replaced by a
hemispherical stress distribution that is equivalent to the load wz'

,""

.~.

.t:

(20.54)

(20.56)

(20.55)

p

1 > r2z ]
+ -- 3/2

1-211(r2+z2)
(20.52)

(20.53)

+ 2( 1 - 11
2
) ].'

2 I 2 .(r +Z2) /,\;

FIGURE 20.3
Cylindrical polar coordinates used for point load w.
acting in z direction at origin pn bounding surface of
elastic half-space. {From Tripp i/985)./

x

(1 - 211)( 1 + II) Wz

2rrEr

wz(1 - 112)
0=----
z rrEr

o =,

08 = 0

W [(1 + II)Z2
Oz = 2:E'Xr2 + Z2)

.~

20.5 LOADING ON A SEMI-INFINITE BODY

Consider a circular area of radius a over which a pressure acts. The deforma-
tion at point M outside the circle is shown in Fig. 20.4. Fro~i~he figure

Area of element = (ds ) (s dljJ)

Load on elemen t = ps ds d IjJ

The deformations in the direction of increasing (r, 9, z) compatible with
Eqs. (20.48) to (20.51) are .

o = _(1_-_2_1I_)(_1_+_II_)_W_z[ __ Z_2 1
r 2 rr Er ( r 2 + z 2 ) 1/2

y

3 Wz rz 2

Tn = - 5/2
2rr(r2 + Z2)"

Note that (r2 + Z2)1/2 is the distance from the point where the load is applied.
The stress components given in Eqs. (20.48) to (20.51) satisfy the general
requirements of mechanical equilibrium and compatibility. Thesee'quations and
this physical situation can bc likened to the line load solution given in Eqs.
(20.20) to (20.22)

20.4 POINT LOAD SOLUTION

The stress tensor for the problem of a concentrated point load acting along the
normal to (~e undeformed plane surface of an elastic half-space is chosen as the
starting point. Because of symmetry the coordinates best suited for these
considerations arc the cylindrical system (r, 9, z) shown in Fig. 20.3.

Consider a point load Wz acting along the positive z axis on the boundary
surface (z = 0) of an elastic half-space defined by z > 0 and having modulus of
elasticity E and Poisson's ratio II. By symmetry, polar angle 9 does not appear
in the stress tensor, and the shear stress components Tr8 and T8z vanish. The
four remaining stresses can be obtained from Timoshenko and Goodier (1951)
as

was done in Eq. (2(J.40). But 8", is not really significant, since any inaccuracy in
its calculation can be compensated for by H(J in the film thickness eq,uation. The
important parameter of Table 20.1 is A H"" since it is a measure o(ihe flatness
of the film. This aspect is extremely important at high loads, where the elastic
deformations are two or three orders of magnitude larger than the film thick-
ness.

Also shown in Table 20.1 ar~ the results obtained with a uniform mesh of
661 nodes by Hamrock and Jacobson (1984). Extremely small values of AHm
were calculated and cannot be reproduced with the new approach because of
storage problems with the matrix Dij and because a large system of equations
would have to be solved with such a mesh. By using a nonuniform mesh with a
fine grid near X = - 1 and X = 1, similar results were found with a small value

'" of Nil"" (Nm", = 5 I), as indicated in Tablc 20.1. The latter case illustrates the
power of the approach developed by Houpert and Hamrock (1986).

,~
Wz { [ 1 z] 3 zr 2 }

(T, = - (1 - 211) 2 - 1/2 - 5/2 (20.48)
" 2rr r r2(r2 + Z2) (r2 + Z2)
.'., 3wzz'

(T = -
2 5/2

(20.49)
"

z
2rr(r2 + z )

W.(1-211)[ 1 Z z] (20.50)(TH = . - 2 + I 2 + . 3 2
2rr r r2(r2 + z2) / (r2 + Z2) /

it
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~.' .. ~

ds'

FIGURE 20.4
Deformation outside circular area of radius a where
pressure p acts. [From Tripp (J985).]

Hence, f ds over the length mn is

J2a cos e
ds = 2a cos fJ

o
Therefore,

II dsdt/J = 2a ITT/2 cos fI dt/J
- TT /2 <I

Substituting these into Eq. (20.56) gives From Eq. (20.58)

1 - v2
Oz = peds )(dt/J)~ [

']1/2
coslJ = (1 - sin21J)1/2 = I - (~fsin2~l

(,

mn = 2a cos IJ

Therefore, the total deflection due to all the elements of the loaded area is

Also from OmM and from the law of sines, when OM = r

This equation is valid regardless of the shape of the loaded area.
Figure 20.5 illustrates the 'situation when M lies within the loaded area.

From the triangle Omn
(205'))

[

2 ] 1/2".11ds dt/J = 2a 1"/2 I - (~) sin2
l/J dljJ

-TT/2 a

Making use of Eq. (20.56) gives

4(1 - v
2
) TT/2[ ( r )2 ] 1/2

Oz = ~ 17 pa fa I - ~ sin2
l/J dl/!

This integral can be evaluated by using tables of elliptic integrals for any
particular value of r/ a.

At the center of the circle when r = 0 (OM = 0), the maximum dcAection

(20.57)Oz = 1 - v
2

7TE IIpdsdt/J

r a
"tsin'lJ = sin t/J 4(1 - V 2 ) 7T 2 pa (1 - V 2 )

( 0 z ) max = 7T E pa 2. = E -

Note also if r = a, from Eq. (20.59)

4(1 - v2) JTT/2 4( I - v2)pa
(ozt=a = ---pa cosljJdl/! = --.--

7TE 0 E7T

or
r

sin IJ = - sin t/J
a

(20.58)

is
':;'~l-

,

( 20.60)

(20.61 )

~:.

l'

..
;t'

~

Now if Wz = 27Trpdr, this equation becomes, due to the element,

- 5/2
Uz = -3prs'(r2 + S2) dr

( 20.(2)

(20.().'\ )u =z

2
:.(ozL~a = -(8,)max

TT

Consider the stress at a point on the .s axis that is produced by an clcment
ring of pressure on the surface as shown in Fig. 20.6. From Eq. (20A9) the
normal stress in the s direction can be expressed as

3 :J
Wzl 2 -S/2---(r +S2)
27T

FIGURE 20.5
Deformation inside circular area of radius a where
pressure p acts. [From Tripp {/985).j
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FIGURE 20.6
Ring of pressure on surface of circular area of constant
pressure.

~,

"
• The normal stress produced by the entire distributed load is

GENERAL SOLUTION FOR STRESSES AND,qEFORMATIONS 431

where

[
2 - 2J 1/2* _ _ (y + 5) + (y + a) + (x + b)

D - (x + b) In ...
[ 2 - 2J(y-a)+ (y-a) +(x+b)

- [ 2 - 2]1/2(x + b) + (y + a) + (x + b)
+ (y + a) In ._

- [ 2 - 2](x-b)+ (y+a) +(x-b)

Note that as s = 0, if, = -po
The stresses 0', and O'e at axial points can be calculated while transforming

the stress tensor from cylindrical to Cartesian coordinates to give T,e = 0 and

fa -5/2 [ -3/2 1
if, = -3p.i:] r(r2 + 52) dr = p z3(a2 + 52) - 1

u .

1\

a,. = Uti =

. 3)fJ 2( 1 + IJ) 5 5-f-2(1+1J)+ 1/2-[ 2 -21/2]
2 \ (a2 +'S) (a + s )

(20.64)

(20.65)

[
2 - 2] 1/2_ ,;(y-a)+ (y-a) + (x-'b)

+(x - b) 1m ._
U(y+o) + [(y+a)2+(x-b)2J

- [ 2 - 2] 1/2_ (x - b) + (y - a) + (x - b)
+ (y - a) In . . ..

(x + b) + [(y - 0)2 + (x + b)2]
(20.68)

.'

do = 2 p dx I dy I
z 7TE'r

The elastic deformation at a point (x, y) due to a uniform pr~¥~ure over a
rectangular area 25 X 2b is

20.6 ELASTIC DEFORMATIONS
IN ELLIPTICAL CONJUNCTIONS

Figure 20.7 shows a rectangular area of uniform pressure with the appropriate~~~'
coordinate system. From Eq. (20.56) the elastic deformation at a point (x, y) of
a semi.infinite solid subjected to a pressure p at the point (xt; Yt) can be
written as

~.

'>
"

"

. ,
r:\

dxl dYI
2 P fU fh .-------:--- 2]1/2

8, = -;;; _"~-h [CY - YI/ + (x - XI)

where P = piE'. Integrating gives

2o = -PD*
z 7T

(20.66)

(20.67)

Hamrock and Dowson (1974) used the preceding equations in their elliptical
elasticity analysis as part of their treatment of elastohydrodynamic lubrication.
As can be seen from Eq. (20.66), the pressure on each element can be replaced
by a constant value; that is, the whole pressure distribution is replaced by blocks
of uniform pressure. In this wayan analytical expression for integrating the
deformation is worked out, and the deformation of every node is expressed as a
linear combination of the nodal pressures. In the solution of Ranger et al.
(1975), a bilinear interpolating function is used to approximate the practical
pressure distribution. Evans and Snidle (J 982) employed a different method that
was first presented by Biswas and Snidle (1977). For grid elements without
singularity they directly adopted Simpson's integration rule, and for those with
singularity they used a biquadratic polynomial function to express the pressure
distribution approximately. In this wayan analytical solution for the integration
is developed without directly expressing the deformation as a linear combina-
tion of the nodal pressure. Following in these footsteps Hou et al. (J985)
employed the biquadratic polynomial function for approaching the pressure
distribution on any. grid element. An influence coefficient matdx is introduced
to reduce the amount of calculating work when repeated c11culations of the
elastic deformation are needed. However, a shortcoming of their work is that
for a (2n + lX2m + 1) finite difference grid, the influence matrix is composed
of (n X m)(2n X 2m X 9) elements, which is not welcomed even with today's
powerful computers.

;1



432 FUNDAMENTALS OF FLUID FILM LUBRICATION GENERAL SOLUTION FOR STRESSESAND DEFORMATIONS 4]]

p

~t'~
z

p

x

Jeng and Hamrock (1987) used a biquadratic polynomial expressed in
Lagrange form to approximate the pressure distribution on all grid elements.
Figure 20.8 shows the coordinate system for the computing element. Node
(k, t) is the nodal point for the elastic deformation, and node U, j) is the
central point of the grid element for the pressure distribution. An influence
matrix whose coefficient is dependent on the geometric factors and the distance
between node (k, t) and node 0, j) is introduced only to express the deforma-
tion of every node as a linear combination of the nodal pressures. In this way,
only (2n X 2m X 9) elements are needed in the influence matrix for a (2n + 1)
(2m + 1) equidistant rectangular grid. The computational time and computer
storage size for the influence coefficient matrix are greatly reduced. (,

FIGURE 20.8
Coordinate system for computing element. (a) Rectangular element with nine nodes; (b) representa-
tion of pressure distribution for paraboloidal surfaces. {From Jeng and Hamrock {/987).j

20.7 CLOSURE
Stresses and deformations in nonconformal conjunctions were presented in a
general manner, describing what occurs on as well as within the solids in
contact. The conjunctions considered were assumed to be dry, or unlubricated,
as in the preceding chapter. The material presented in this chapter is the
foundation that will be used extensively in later chapters on dastohydrodynamic
lubrication.

A line (two-dimensional) load situation was presented. The general stress
equations were solved by a stress function approach that resulted in a hihar-
monic governing equation. This equation was solved by using the Boussinesq
stress function. Thus, not only general expressions for the stresses but also the
deformation of the surfaces could be obtained. These general line-contact
formulations were then reduced to define the elastic deformation on the
surfaces resulting from a rectangular contact area. An important result is that a
constant term in the elastic deformation equation accounted for 80 to 9()

percent of the total deformation. Isolating this term is thus important in
accurately solving for the deformation of solids that have rectangular contact
areas. These results will be directly applicable when dealing with elastohydrody-
namic lubrication of rectangular conjunctions in Chap. 21.

A point (three-dimensional) load resulted in a stress tensor acting along
the normal to the undeformed plane surface of an elastic half-space. The results
indicate that for a small radius infinite stresses and displacements occur. This is
physically impossible and is avoided by assuming that the point loading is
replaced by a hemispherical stress distribution equivalent to the load. This
general formulation of the stresses and deformation~ was then applied to
describing the elastic deformation that results in elliptical contacts. The clastic
deformation analysis assumed uniform pressure over a small rectangular area.
Thus, the pressure could be placed in front of the integral equation, easing the
computation considerably. The resulting equation for the dastic deformation
was simply expressed as the pressure multiplied by a distance-influencing
function. These results will be used when dealing with e.lastohydrodynamic
lubrication of elliptical conjunctions in Chap. 22.

xX2

------1!l1,,,

(b)

(k, f)

FIGURE 20.7
Surface deformation of semi-infinite body subjected to
uniform pressure over rectangular area. {From Ham-
rock and Dowson {/98I).j
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20.8 PROBLEMS

20.8.1 Explain th~ use of the Airy stress function in the analysis of two-dimensional

problems in the theory of elasticity, with reference to both Cartesian and polar

coordinates.

20.8.2 A semi-intinite uniform plate has a stress systcm within it defined by thc stress

function </J = Br211. Thc boundary of the plate is the line e = :t'lT/2, and the

plate cuvers the portion of the plane where - 'IT /2 ~ 0 ~ 'IT /2 and r is positive.

Find the cunditions of stress that apply at the boundary and also the stress uX' uy'
and T", at any point, in terms of e. Assume that polar and Cartesian coordinates
have tile same origin and that x = r sin 11 and y = r cos e, A second stress system

equal but upposite in sign is now added to the plate, hut it is displaced a distance

II from the first. Thus, the second system is represented hy the stress function

</J' = B( r' )'11'

where (r', 0') are referred to an origin at the point (11,0) in the (r, e) coordinate

system. .
Show that the superposition of the boundary stresses of the two systems results

in a unifurm normal stress spread over the length r = 0 to r = II and in no other

stress.
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