
Abstract
The rising scales of FPGA deployments especially in cloud environments
scaling Acceleration as-a-Service or for datacenter-wide workload acceleration
have created an urgent need for a unified and simple software interface to
discover, access, and manage reconfigurable resources. Current system design
methodologies either abstract FPGA access and resource management to provide
a domain-specific interface, or generate register transfer level (RTL) outputs that
leave the actual integration to the developer, providing very limited system debug
and deployment support.

The Open Programmable Acceleration Engine (OPAE) is an open community
effort started by Intel to simplify and streamline the integration of various FPGA
acceleration devices into software applications and environments. The OPAE
currently consists of several software components and encompasses drivers
as well as user-space application programming interfaces (APIs). It presents
a unified, layered software access model for reconfigurable accelerators that
provides common and extensible methods for discovery, allocation, access, and
management of accelerator resources, while providing access to the software stack
at different layers to aid in debug, bring-up, and deployment. The OPAE is designed
to be light-weight and easy to integrate into existing software frameworks, from
domain-specific libraries to cloud orchestration frameworks. At the user API level,
it provides abstractions to simplify resource access and management without
significantly impacting performance, thus relieving system integrators, software
developers, and accelerator designers from having to re-implement basic FPGA
infrastructure components for register access, shared memory, synchronization,
and reconfiguration. The OPAE allows you to select the level of abstraction and
control by providing application interfaces throughout the software stack.

Introduction
The predominant model for the design and implementation of FPGA accelerators
is one of custom vertical integration of application, infrastructure, and RTL
development. In systems aiming at accelerating complex sequences of algorithms,
developers usually need to either create the physical and logical communication
layers between the FPGA implementation and the software executing on the
processor from scratch, or rely on standard IP libraries providing varying levels of
control and still involving heavy integration work and IP vendor specific software
libraries and conventions. That, of course, is on top of identifying, designing, and
implementing in RTL the portion of the algorithm to be accelerated.

With the rise of at-scale deployments of FPGAs in cloud environments and
continuing integration of FPGA accelerators into domain frameworks such as

Table of Contents
Abstract . . 1
Introduction . . 1
Acceleration Stack for Intel Xeon
CPU with FPGAs. 2
FPGA Accelerator Hardware. 3
FPGA Driver. . 4
FPGA Application Programming
Interface (API). 4
Binding or Framework Integration.5
Application Example. 5
Conclusion. . 6
References. . 6

Cross-Platform FPGA Programming Layer for Application Developers

Authors
Enno Luebbers

Senior Software Engineer
Intel® Corporation

Song Liu
Senior Software Engineering Manager

Intel Corporation

Michael Chu
FPGA Marketing Senior Manager

Intel Corporation

Simplify Software Integration for
FPGA Accelerators with OPAE

Intel® FPGA

white paper

2

White Paper | Versatile Channelizer with DSP Builder for Intel FPGAs

machine learning, the task of providing a standardized way of accessing FPGA accelerators and integrating them into existing
software environments is becoming just as important as the creation of the accelerator function itself. Efficient discovery,
allocation, and management of FPGA resources is a prerequisite of large-scale deployments of reconfigurable technology. At
the same time, developers of accelerator logic also need access at different levels of the software stack to aid in development,
debug, and bring-up of single-nodes and at-scale installations alike.

The OPAE provides a layered software access model for enumerating, accessing, and managing FPGA resources with the goal
of laying the groundwork for a unified API for FPGA development that can span horizontally across different domains and
platforms. With very light-weight support from the underlying FPGA-implemented infrastructure to identify and enumerate
hardware capabilities and features, the OPAE eliminates the need to reimplement standard hardware communication
primitives, such as accessing control registers or allocating shared memory, without limiting the scope of interconnect
mechanisms or impacting accelerator performance. In addition, the OPAE API model and driver framework is designed to be
extensible to also support unique hardware characteristics.

Acceleration Stack for Intel® Xeon® CPU with FPGAs
To provide a layered access model for FPGA accelerators that is applicable across devices, operating systems, and application
domains, we need to address the entire system stack from the FPGA implementation through drivers, user-space APIs,
application-specific libraries, and frameworks as depicted in Figure 1.

The actual accelerator hardware resources comprised of FPGA devices, interconnects, and infrastructure logic, form the
bottom layer and usually connect to the processor through standard system buses involving address translation logic, and
caching hierarchies. The OPAE does not impose a specific interconnect technology or topology. However, it does require
that the programmable logic exposes software-accessible data structures to identify and enumerate hardware components
and capabilities. The physical access interface of the reconfigurable hardware resources is usually not exposed directly to
applications.

Figure 1. Acceleration Stack for Intel Xeon CPUs with FPGAs

Dynamically Allocate Intel® FPGAs for
Workload Optimization

Simplified Application Development

Leverage Common Frameworks

Fast-Track Your Performance

Workload Optimization with Less Effort

Common Developer Interface for
Intel FPGA Data Center Products

Rack-Level Solutions

User Applications

Industry Standard Software Frameworks

Acceleration Libraries

Intel Developer Tools
(Intel Parallel Studio XE, Intel FPGA SDK for OpenCL™, Intel Quartus® Prime)

Acceleration Environment
(Intel Acceleration Engine with OPAE Technology, FPGA Interface Manager (FIM))

Intel Hardware

3

White Paper | Versatile Channelizer with DSP Builder for Intel FPGAs

On top of the programmable hardware resources and system interconnect, drivers connect and integrate the accelerator
resources into the operating system's (OS) device management and expose their fundamental access methods to user-space
applications. An important task of the driver layer is to enforce basic access policies to ensure system integrity, as well as
perform critical management tasks such as error, power, and thermal management in the background. The user-space driver
API is still OS and device-specific. For example, Linux* OS consists of a combination of device nodes, ioctl()calls and sysfs
interfaces.

To enable the benefits of portability across devices, platforms, and operating systems, but at the same time maintain
fine-grained control over individual resources, the OPAE provides a C API layer implemented in a thin user-space library
(libopae-c), which interfaces with the device driver APIs to create a low-level abstraction of accelerator resources and allows
enumeration, access, and management of these resources. It is still somewhat FPGA technology specific, as evident by the
components of the abstraction model it provides, but enables the desired level of expressiveness to cover a wide range of
accelerator resources, platforms, and deployment domains.

By integrating the FPGA software stack into standard software libraries and frameworks, (for example, linear algebra, deep
learning, cryptography, compression, or other common functions) it is then possible to transparently accelerate larger
numbers of applications and simplify larger scale deployments because individual applications do not need to deal with
individual accelerator instances, let alone low-level communication primitives. Optimization efforts within the FPGA API
library and driver stack are focused on improving management functions such as allocation or reconfiguration.

FPGA Accelerator Hardware
The fundamental task of accelerating a particular workload relies on the specific capabilities of the underlying FPGA hardware
platform. In order to be used with the OPAE, the platform needs to provide a minimum level of light-weight infrastructure
for discovering, allocating, and accessing reconfigurable hardware resources. The particular hardware specifics, such as the
number and type of communication links, the management and reconfiguration features are handled and abstracted in the
OPAE driver and API library layers so that applications developed for it can be ported with minimal effort to other platforms
exposing the same access model.

Figure 2. OPAE Layers and Components

Intel FPGA Hardware

Intel® FPGA Drivers

User-Space (Ring 3)

Kernel-Space (Ring 0)

Hardware

Linux*
fpga_manager

User Application
Other Langugage

Bindings

OPAE C API

OPAE C Library (libopae-c)

Enumeration Access Management

sysfs /dev/intel-fpga-fme. dev/intel-fpga-port.

FME
Platform Driver

PORT/AFU
Platform Driver

FPGA PCIe* Driver

4

White Paper | Versatile Channelizer with DSP Builder for Intel FPGAs

FPGA Driver
The FPGA driver architecture defines individual platform drivers for management functions, such as reconfiguration and
accelerator access. The former attaches to FPGA management logic while the latter is used to access generic methods to
communicate with an accelerator programmed into a slot of the FPGA.

To enable a reasonable degree of flexibility in the implementation of the driver layer, which is responsible for encapsulating
variations in the supported underlying hardware architectures, enabling multiple possible interconnection technologies, and
maintain system integrity and stability, the driver is segmented into a class driver and several feature drivers. The class driver
detects and discovers FPGA devices, and then instantiates individual feature drivers based on the top-level enumeration of
the device features exposed by the discovered devices.

FPGA Application Programming Interface (API)
As explained above, it is the goal of the user-space API to expose a low-level, but portable abstraction of accelerator resources
to application software, diagnostic tools, and upper-level frameworks alike. It is designed to be as light-weight as possible.
The API it provides follows an object-oriented pattern of modeling accelerator resources and associated operations; its
implementation is, however, written in C to minimize the footprint and dependencies for applications using it.

The OPAE C API is modeled around a set of base objects used to describe, identify, and reference FPGA resources. It is
worth emphasizing that the APIs presented here form the basic set that we believe are applicable to most FPGA accelerators
interfacing with software systems; the API allows for device or platform-specific extensions to model unique features of
specific target architectures. For example, we created a platform-specific API extension to expose a low-latency notification
mechanism over the coherent memory interconnect of the Intel® Xeon® processor with integrated FPGA.

Figure 4. OPAE C API Objects and Control Flow

FPGA API (Management)

Application A Application B

FPGA API (Access) FPGA API (Access)

FPGA Platform Driver FPGA Platform Driver FPGA Platform Driver

PF PCIe*
Device / PDO

PF / VF PCIe
Device / PDO

PF / VF PCIe
Device / PDO

PCIe
PF

PCIe
PF / VF

PCIe
PF / VF

FPGA Management
Logic

Slot Slot

AFU AFU

CPU

FPGA

fpgaPropertiesGetObjectType()

fpgaPropertiesGetSocket()

fpgaPropertiesSetGUID()

fpgaGetProperties()

Query Information about a Resource

Acquire Ownership of a Resource
fpgaOpen()

fpgaReset()

fpgaMapMMI0() fpga_handle

fpga_token

fpga_properties

Describes a
Resource

Enumerate Resources Based on Criteria
fpgaEnumerate()

Identifies a
Resource

Signifies
Ownership

Handle

Token

Properties

Figure 3. FPGA Driver

5

For an application that wants to acquire and access a specific accelerator, a typical flow through the API-provided functions
is depicted in Figure 4. First, the application creates a properties object specifying object characteristics it is looking for;
this properties object is passed into the fpgaEnumerate()call to yield a number of tokens identifying particular resource
instances. Holding a token does not imply ownership of the associated resource. After selecting a token, the application calls
fpgaOpen()to acquire ownership of the resource, which in turn yields a handle. This handle can be used to call the individual
API functions to actually access the FPGA accelerator, such as resetting the accelerator, reading/writing control registers, or
allocating shared memory. Finally, fpgaClose()closes a handle and releases ownership.

A similar flow is used by management tools, for example to reconfigure an FPGA slot. These management-type API calls
typically require a different privilege level than the accelerator access functions outlined above.

Binding or Framework Integration
Although the basic resource abstractions provided by the API already ease portability of applications across platforms
and operating systems, they still require application developers to understand the register maps, protocols, and flows for
accessing resources, which may be device- and definitely are accelerator-specific. Considering what we currently have in the
OPAE, one approach is to integrate FPGA accelerator resources into higher-level frameworks and libraries. They can then be
used by applications agnostic of the accelerator-specific access protocols. In this way, transparent acceleration of a larger
number of existing applications becomes possible. Examples of application domains that could benefit from transparent FPGA
acceleration through higher-level libraries are image recognition, data analytics, and data compression. How this integration
is carried out is very dependent on the upper framework and identified accelerator function; some frameworks may already
be partitioned in a way amenable to replacing one implementation with another; others may require extensions to selectively
utilize accelerated resources. The common access model and associated APIs simplifies the integration process and extends
the benefits of portability provided by the API layer to the upper stack.

From a large-scale deployment point of view, the management APIs exposed by the FPGA API layer allow seamless discovery
and allocation of FPGA resources in multi-node to data center installations.

Application Example
To illustrate the basic usage of the API, the following listing contains a typical, simple application that enumerates an AFU,
opens it, allocates a shared memory region, maps MMIO space, and interacts with control registers. Note that this example
omits error checking for brevity - all API functions return error codes to signal success or error conditions.

#include <opae/fpga.h>

int main(int argc, char *argv[])

{

	 fpga _ properties	 filter;
	 fpga _ token	 	 afu _ token;
	 fpga _ handle	 	 afu _ handle;
	 fpga _ guid	 	 guid;
	 uint32 _ t	 	 num _ matches = 1;

	 volatile uint64 _ t *mmio _ ptr;
	 volatile void	 	 *buf _ ptr;

	 uint64 _ t	 	 buf _ handle;

	 /* Enumerate */
	 fpgaCreateProperties(&filter);
	 fpgaPropertiesSetObjectType(filter, FPGA _ AFU);

	 /* (GUID 'guid' defined elsewhere) */
	 fpgaPropertiesSetGUID(filter, guid);
	 fpgaEnumerate(&filter, 1, &afu _ token, &num _ matches);
	 fpgaDestroyProperties(&filter);

	 /* Open and access */
	 fpgaOpen(afu _ token, &afu _ handle, 0);
	 fpgaMapMMIO(afu _ handle, 0, &mmio _ ptr);
	 fpgaPrepareBuffer(afu _ handle, BUF _ SIZE, &buf _ ptr,

	 &buf _ handle, 0);

	 fpgaReset(afu _ handle);

	 fpgaWriteMMIO64(afu _ handle, 0, CSR _ BUF _ ADDR, buf _ ptr);
	 fpgaWriteMMIO32(afu _ handle, 0, CSR _ CTL, 1); /* start */

White Paper | Versatile Channelizer with DSP Builder for Intel FPGAs

6

	 /* other accelerator logic */
	 fpgaWriteMMIO32(afu _ handle, 0, CSR _ CTL, 7); /* stop */

	 fpgaReleaseBuffer(afu _ handle, buf _ handle);
	 fpgaClose(afu _ handle);

	 return 0;

Conclusion
FPGA technology has been there since 1980s. But programming and integrating FPGA with applications are still challenging
and costly mainly due to the lack of a simple and common programming model that is accessible to everyday developers. The
OPAE brings everyone in the community and in the industry together to work on such a programming model so that we can
enable more developers to leverage FPGA acceleration and bring FPGA into the data center.

References
•	 OPAE website: http://01.org/OPAE

•	 OPAE source code: http://github.com/OPAE

•	 FPGAs in the Data Center website: https://builders.intel.com/blog/fpga-in-the-data-center-programming-for-all/

White Paper | Versatile Channelizer with DSP Builder for Intel FPGAs

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
© Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel Inside mark and logo, the Intel. Experience What’s Inside mark and logo, Altera, Arria, Cyclone, Enpirion, Intel Atom, Intel
Core, Intel Xeon, MAX, Nios, Quartus and Stratix are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel reserves the right to make changes to any products
and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services. *Other marks and brands may be claimed as the property of others.

WP-01276-1.0

http://01.org/OPAE
http://github.com/OPAE
https://builders.intel.com/blog/fpga-in-the-data-center-programming-for-all/

