
Simplifying Salesforce 
release management: 
a best-practice approach

gearset.com





3

Contents
Executive summary

The challenge of Salesforce deployments

How do people approach deployment at the moment?

Never deploy
Environment manager as a “gatekeeper”
Change sets
Force.com migration tool (Ant)

Release management – why is it important?

How do people approach release management 
at the moment?

Creating a best-practice release management model 
for Salesforce

Finding the right balance for your business

 How Gearset improves your release management
 Compare and deploy
 Schedule and automate
 Test
 Monitor
 Share and control
 Source control
 Access anywhere
 Secure by design

Conclusion

4

4

5

5
6
6
7

7

8

10

13

14
15
16
16
16
16
16
17
17

18



4

Executive summary
Managing deployments is generally considered one of the most difficult aspects of 
the Salesforce platform. Limited tools, complex functionality, and direct impacts on 
business as usual make it error-prone and labour intensive, particularly for larger 
organizations.

Gearset is changing this.

Gearset has developed a best-practice release management framework to help 
businesses gain the most from their Salesforce investment. From individual 
developers to complex, multi-team projects, this framework provides insights into 
managing risk, improving deployment success rates, and maximizing cost efficiency. 
With its combination of an intuitive user interface, powerful functionality, and access 
anywhere, Gearset supports every stage of this framework and provides a best-of-
breed solution for Salesforce release management.

This whitepaper explores what makes Salesforce deployments challenging, how to 
structure a best-practice release management solution for your business, and how 
Gearset can enable faster, more reliable deployments to your organizations.

The challenge of Salesforce deployments
With its easy-to-use point-and-click interface, Salesforce has made application 
development accessible to everyone. Teams all over the world are benefiting from 
the increased productivity Salesforce brings them. In fact, so many things about 
Salesforce are simple, quick, and effective that one area stands out as particularly 
tricky: deployment.

Deployment is the riskiest point in any software development project. It represents 
the moment of truth for development teams, as new features are pushed live for the 
first time, and there are many ways in which it can go wrong. Organizations can be 
extremely intricate, with huge numbers of objects, and dependencies between these 
objects add to the complexity, with the result that it’s all too easy to make an error



5

during the deployment process. Forgetting to deploy just one object can potentially 
cause a deployment to fail.

With infrastructure deployments, as in the typical Salesforce deployment scenario, 
the stakes are even higher, as the development team needs to fix any critical 
problems that arise before these problems start to interfere with people’s jobs. 
Failed deployments can mean delays, missed deadlines, and late nights for the 
development team while they attempt to troubleshoot the issues. 

How do people approach deployment at 
the moment?

Never deploy

For some people, deployment isn’t a problem, because they work directly in their 
production environment, which means they never have to deploy. This can be a 
quick and efficient way of working for some companies. It makes sense if, for 
example, you don’t have sufficient customization of your organization to require a 
development team, or if you need to keep costs to a minimum, as there’s no need 
for separate development or staging environments.

However, there’s always a risk associated with working directly in production, 
because you’re effectively making changes to the live organization that’s being 
used by your business on a daily basis. This means you need to be certain that 
the changes you’re making won’t break anything. In addition, there’s the possibility 
that if multiple people are editing the production organization directly, they might 
end up overwriting each other’s changes. There are also limitations in terms of the 
changes you can make – you can’t write Apex code in a production environment, 
for example.



6

Environment manager as a “gatekeeper”

At the other end of the spectrum, if there are existing applications and users 
to consider, an environment manager (or release manager) might make every 
developer work in their own sandbox environment. This person will then personally 
manage and review every change before it gets to production in order to ensure it 
won’t cause any problems when deployed.

As teams grow in size and organizations get more complex, this role of “gatekeeper” 
can become more than one person can handle, as well as being extremely manual 
and tedious. And, as with any time-consuming manual task, there’s a chance that 
things will be missed and mistakes will be made.

Change sets

This tool is available via the Salesforce portal. Two organizations are configured 
so that they can send and receive changes between each other, and you can look 
through the objects in the source organization and choose which ones to deploy. 
Once the change set has been built, it’s deployed and staged in the target org, 
where you can accept the changes. The two organizations will then have the same 
specific metadata described by the change set. 

The change set workflow is good for quick changes and for smaller organizations, 
and the graphical user interface (GUI) makes change sets accessible to a wide range 
of users, which is useful if non-developers need to implement changes. However, it 
can be hard to scale when you have many developers working on a team or many 
environments to manage as there’s no support for version or source control, and 
accidental overwriting of changes made by other developers is common. Destructive 
changes aren’t supported, and, while it does offer a basic dependency analysis, this 
can be unreliable, often flagging up false positives and making it cumbersome for 
larger deployments. The change sets tool doesn’t support any kind of governance 
control and there’s no way to track who has made changes to the organization, which 
limits how useful it is for auditing and reporting. But for many people, the biggest 
drawback is that many metadata object types are not supported in change sets.



7

Deployment teams often spend many hours running manual post-deployment steps 
to finish a release. This is cumbersome, error-prone, and entirely avoidable with the 
right deployment solution.

“We were exclusively using change sets and manual configuration for deployments. 
Custom settings or profiles could easily take a whole deployment window to manually 
deploy. If anything went wrong, or there were an excessive amount of changes that 
need to be done manually, things could get problematic.”
Nadia Mayard, Salesforce Program Manager at Sutter Health

Force.com migration tool (Ant)

The Salesforce migration tool is based on Ant and allows finer-grained access to 
the deployment process. It’s useful for automating or controlling the process more 
accurately, and creating artifacts that can be recorded or reused. Since it lacks a GUI, 
the Ant tool has a steeper learning curve than change sets, but brings greater power. 

The lack of GUI, however, is a barrier to many non-developers, and running 
deployments requires manual editing of metadata which is error-prone and time-
consuming. Dependencies for the deployment package must be individually 
identified and incorporated, requiring a deep knowledge of Salesforce. Comparison 
of files downloaded from different environments is a manual process, usually 
involving a specific diff tool to bridge the gap. Cases of deployment failures with 
obscure failure messages (which turn out to be down to missing a character when 
copying between text files) are all too common. As the tool is tied to a specific 
development environment on a computer, the Force.com tool is not well-suited for 
remote working or mobile teams, and its complexity makes it inaccessible to the 
majority of Salesforce users.

“Deployments with Ant take a lot of iteration. Unless you know exactly the patch you 
want to send, and the associated dependencies, you have to go back and forth and 
build the deployment piece by piece.”
Teodros Negussay, California Department of Industrial Relations



8

Release management – why is it important?
Release management provides a framework to control when and where changes are 
promoted from one Salesforce organization to another. This builds on deployment 
management, which looks at how to move a change from one organization to 
another. Whether from a developer sandbox to integration testing or from user 
acceptance testing (UAT) to production, release management is the framework to 
enable effective organizational control, and should be implemented alongside your 
deployment management process.

Developing applications on the Salesforce platform is fast and easy. As we outlined 
in the previous section, there are a number of tools currently used to manage 
the deployment of these applications, including change sets and the Force.com 
migration tool. While using deployment management tools alone may be enough 
in some small organizations, a more integrated approach which employs release 
management as well is preferable as organizations grow in size and complexity.

To demonstrate, consider working with large-scale enterprise applications or very 
complex changes to an organization. Performing live edits of an application with a 
highly customized interface in a production environment no longer makes sense. Not 
only is it inherently risky, but the limitations of the web tools may also make it simply 
unfeasible.

Similarly, development involving larger teams necessitates a process to manage 
integration testing. Changes and fixes from multiple development environments 
must pass through integration testing before they’re promoted to the production 
organization. This is beyond the scope of simply using change sets, and teams will 
quickly run into problems if they rely on this tool alone.

Many industries also have a legal obligation to meet certain regulatory 
requirements. A clear release management framework can help companies 
meet those requirements in key areas such as user access, data availability, and 
increased visibility across departments.



9

How do people approach release management at the 
moment?

The appropriate level of release management is heavily influenced by the size and 
complexity of your development projects and the tolerance of your business for risk.
 

No release management
For simple changes where the risk of interrupting business continuity is low, features 
are sometimes rapidly promoted from development to production environments, 
often with little concern for release management. Many businesses take the view 
that release management is not appropriate or will not deliver any value for these 
simple changes.

While these kinds of changes can be quickly deployed because they require little 
effort from the deployment management perspective, a reliable and simple process 
for release management is still advisable. Even basic records of deployment history 
and the changes released can provide a useful source of information when tracking 
progress, especially if you’re working within a large project or if a problem arises 
after deployment.

Basic release management
When working with complex changes or multiple development environments, basic 
release management is usually a requirement due to the need for source control 
and integration testing. Reintegrating changes back into the production organization 
adds complexity to the development process due to the continually moving 
goalposts of the production environment, and many businesses begin to implement 
some sort of formal process at this level.

With projects of this size, properly planned release management provides a way to 
track changes as they’re moved between organizations, create a clear audit trail, 
and reduce conflicts. Without proper planning, however, release management can 
become more of a hindrance than a benefit, slowing the development process down 
and creating choke points for project progress.



10

Integrated release management
Projects involving intricate applications that affect a large number of users often 
require multiple development and testing environments, and a dedicated UAT 
process. These projects, running over an extended period of time, usually involve 
several teams working on different development cycles and may require several 
rounds of integration testing before being deployed to production. Due to the 
complexity of these projects, with development efforts happening concurrently, 
release management is a complex but essential task, and almost all businesses 
employ a structured approach to support large project success.

Creating a best-practice release 
management model for Salesforce
To help businesses get the most from their Salesforce investment, Gearset has 
developed a best-practice model for release management in Salesforce. The model 
provides a high-level overview of organizational structure to best achieve successful 
deployments which meet users’ needs, and also integrates simple deployment 
management into the process using Gearset. The model can be adapted to suit all 
needs, from very simple changes which require minimal release management all the 
way through to complex projects with a lengthy development cycle.

The model is based around information flow between separate Salesforce 
organizations with different purposes. Salesforce provides several organization 
types, each with its own set of features, performance, and pricing. This model 
aims to provide a guideline for achieving a balance between cost-efficiency and 
functionality.

Development Integration testing
/QA

UAT/Staging Production

Developer
sandbox

Partial copy
sandbox

Full
sandbox Production



11

Org type: Developer sandbox
Used for: Development

Developer sandboxes are isolated organizations which copy metadata (but not 
production data) into a different environment for coding and testing.

Developer sandboxes should be used for all development work, and are completely 
removed from the production environment. Each team member should have 
access to a copy of the metadata from the production environment, and their own 
independent developer sandbox in which they can make their changes. They may 
manage this using the Salesforce portal or with local IDEs, such as Eclipse or 
MavensMate. In larger projects, developers may maintain multiple environments for 
this purpose, and developer sandboxes should be linked to a source control system 
to allow easy promotion to the partial copy sandbox.

Org type: Partial copy sandbox
Used for: Integration testing/QA

Partial copy sandboxes copy both metadata and some production data, and have 
a larger amount of storage space to work with. This makes them well-suited as 
testing environments using selected production data.

Once development work on a feature is complete, it should be checked in to your 
source control system and deployed to your partial copy sandbox for integration or 
QA testing. In large teams or projects, a process of continuous integration, whereby 
committed changes are automatically built and tested, should be applied between 
developer sandboxes and partial copy sandboxes for fast and automated functional 
testing of features. This will allow for rapid iteration and bug fixing on changes and 
minimize the risk of clashes with other developers’ environments. Having passed 
testing, features should be checked against project goals to ensure they’re meeting 
customer needs before being promoted to UAT.



12

Org type: Full sandbox
Used for: UAT/Staging

Full sandboxes copy the whole production organization and all data. They’re useful 
for coding and testing changes, and for training.

Before beginning UAT, the full sandbox organization should be cloned back 
from production. This allows new features to be tested in relation to your entire 
production environment, minimizing the risks of unexpected errors or unintended 
effects on other aspects of the organization. Due to the limitations on refreshing 
sandbox states, this should be carried out as part of a planned testing phase, rather 
than merely on the fly. Testing should cover whether the feature meets the needs 
and objectives of the project and users, as well as its stability and integration with 
the production environment. In the event of any issues, the feature must return to 
the development and testing process before coming back through to UAT.

Org type: Production
Used for: Production

The production environment is live and has users accessing data.

Before any feature is promoted to production, it should be functional (integration 
testing), meet the needs of the users (UAT) and not cause any disruption to the 
production environment (tested with real data). To minimize disruption, deployment 
to production should be made during scheduled maintenance windows, ideally 
when no users are on the system. Having been through this rigorous testing, there 
should be a very low chance of any unexpected errors or deployment failures 
which could disrupt the business. A detailed report should be maintained for 
every production deployment to aid project reporting and in case there are any 
unexpected issues.



13

Finding the right balance for your business

It may not be appropriate for your business to implement the entire release 
management model described above. Factors such as team size, budget, and 
organizational complexity will affect the depth to which the model is applied. 
To illustrate, let’s look at three examples using the different levels of release 
management outlined in the previous section: none, basic, and integrated.

For smaller projects currently working under the ‘No release management’ 
approach, it may be appropriate to skip the integration testing and UAT and simply 
deploy between a developer sandbox and production. While it may be tempting 
to work directly in production environments, it’s highly recommended that a 
development environment is used for testing prior to promotion to production. This 
structure supports rapid iteration and keeps complexity and cost to a minimum, 
while still significantly reducing the risks associated with working directly in 
production environments.

Teams working with several developers or under the ‘Basic release management’ 
approach will be using some form of source control and integration testing. In 
these scenarios, a process from development sandbox to partial copy sandbox to 
production (skipping the UAT phase) may provide enough structure to avoid code 
duplication and conflicts, while still allowing for some level of testing and code 
review prior to release.

People working in large teams, on complex projects, or on changes which affect 
a majority of the user base, are likely to already be working under the ‘Integrated 
release management’ approach. Projects of this nature require tracking and 
merging changes from different code branches, user acceptance testing, and other 
involved processes to ensure a successful release. For these teams, our model 
provides a best-practice template to guide their current release management 
approach. The creation of an effective audit trail as a result of our model simplifies 
project management and reporting while protecting data integrity.



14

How Gearset improves your release 
management
Gearset is a comprehensive release management solution which streamlines 
deployments, reporting, and compliance for your Salesforce environments. Designed 
to lower the technical barrier to entry, it enhances team collaboration and offers 
orders-of-magnitude improvements in the time spent on deployments.

“No matter how you operate, if you use Salesforce, Gearset immediately simplifies and 
expedites how you deploy.”
Alex Jones, Project Manager, Xaxis

“Being able to quantify the time saving - what used to take 8 hours, now takes less 
than an hour with Gearset - that’s huge, and it really speaks for itself.”
Nadia Mayard, Program Manager, Sutter Health

Development Integration testing
/QA

UAT/Staging Production

Developer
sandbox

Partial copy
sandbox

Full
sandbox Production

Dev

Customize

Make changes,
push to source

control

Select source &
target orgs, choose
objects to compare

Review results &
select objects to

deploy

Target org updated
from source org

Deployment
reports create an

audit trail

Compare Review Deploy Track

Recover

Automatic rollback of changes in
event of deployment failure



15

Compare and deploy

Compare any two Salesforce organizations and view line-by-line configuration 
differences, giving you instant insight into the state of your environments. Automatic 
XML highlighting helps you find what you want, fast, and dependency analysis 
suggests the components required for a successful deployment.

Validate your releases and deploy the changes, safe in the knowledge that rollback 
is available at any time, and a detailed audit trail of activity is maintained in the app. 
Full support of new, changed, and deleted objects (destructive changes) makes 
Gearset powerful yet easy to learn, and PDF deployment reports are simple to share 
or incorporate into your user story tracking.



16

Schedule and automate

Schedule deployments to coincide with maintenance windows or sprint finishes. 
Email notifications keep your team in the loop with all releases. Set up continuous 
integration jobs to automatically keep two orgs in sync.

Test

Automate your unit testing, receive test failure notifications and easily debug errors. 
Track code coverage change over time and share results with your team with simple 
email, SMS, Slack and Chatter integration.

Monitor

Track configuration changes being made to your orgs to prevent accidental 
overwrites. Inspect day-by-day audit logs and see exactly what changes were made, 
when, and by who, making managing multiple work streams a breeze. Roll back any 
unwanted changes with a couple of clicks.

Share and control

Collaborate with team members to prepare and deploy changes more effectively. 
Ensure SOX compliance with user roles and permissions, and delegated credential 
management. Manage team access and licensing self-service from the app.

Source control

Compare and deploy from any GitHub, Gitlab or Bitbucket repository and branch to 
your Salesforce organizations. Deploy files stored locally on your machine for full 
compatibility with on-premise version control or IDEs. Automate deployments from an 
integration branch to your Salesforce environments with continuous integration jobs.



17

Access anywhere

Access Gearset on almost any device with a web browser, with no packages to 
install in your orgs. Anywhere you can access Salesforce, you can access Gearset. 
Gearset is built around an intuitive, user-friendly GUI. Incredibly quick to master, you 
can get straight to work whether you’re a seasoned developer or you’ve just joined a 
new project. Everything is managed with just a few clicks and there’s no need to use 
a command line.

Secure by design

Data security is built into every facet of Gearset. Org access is managed via OAuth 
to protect user credentials. Advanced defence-in-depth techniques protect your 
metadata, including encryption at rest and in transit. Gearset is hosted in ISO 27001 
compliant AWS datacenters that Salesforce and Heroku trust for their compute 
needs, and is trusted by industry leaders in healthcare, government, financial and 
education institutions around the world.

Source
control

Update individual dev
sandboxes and sync to source
control using Gearset Deploy

Gearset Deploy continually
and automatically updates test

enviroments

Deploy manually to UAT
using Gearset Deploy

Promote manually to
your production org using

Gearset Deploy

Development 
cycle

Continuous 
integration

Deployment 
to UAT

Promotion to 
production

Dev

Dev

Dev

Integration
testing/QA

Partial copy
sandbox

UAT

Full
sandbox

Production



18

Conclusion
This whitepaper has demonstrated the challenges that face businesses around 
Salesforce deployment management, and the approaches commonly used to 
manage deployments. It then moved on to consider what release management 
is, how it builds upon deployment management, the benefits of employing it, and 
how businesses currently approach it. Based on best practice, Gearset presented a 
framework for the release management process, and demonstrated how the model 
can be modified to provide benefits to businesses and teams of any size. Finally, we 
looked at how Gearset provides a best-of-breed solution to enable effective
release management through streamlined deployments, reporting, and compliance 
for your Salesforce environments.

Find out more at www.gearset.com or get in touch with us at team@gearset.com





gearset.com


