
Research Article
Simulated Annealing Genetic Algorithm Based Schedule Risk
Management of IT Outsourcing Project

Fuqiang Lu, Hualing Bi, Min Huang, and Shupeng Duan

College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Correspondence should be addressed to Hualing Bi; bihualing081@126.com

Received 10 April 2017; Revised 20 July 2017; Accepted 3 August 2017; Published 28 September 2017

Academic Editor: M. L. R. Varela

Copyright © 2017 Fuqiang Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IT outsourcing is an effective way to enhance the core competitiveness for many enterprises. But the schedule risk of IT outsourcing
project may cause enormous economic loss to enterprise. In this paper, the Distributed Decision Making (DDM) theory and the
principal-agent theory are used to build a model for schedule risk management of IT outsourcing project. In addition, a hybrid
algorithm combining simulated annealing (SA) and genetic algorithm (GA) is designed, namely, simulated annealing genetic
algorithm (SAGA). The effect of the proposed model on the schedule risk management problem is analyzed in the simulation
experiment. Meanwhile, the simulation results of the three algorithms GA, SA, and SAGA show that SAGA is the most superior
one to the other two algorithms in terms of stability and convergence. Consequently, this paper provides the scientific quantitative
proposal for the decision maker who needs to manage the schedule risk of IT outsourcing project.

1. Introduction

With the increasing development of information technology,
IT outsourcing has been developing rapidly. It is currently
being used as an important strategy by many companies
to focus on the core competency, reduce cost, and increase
profit. In Europe and other developed countries, either small
businesses or large multinational companies always give
the noncore business to external professional company [1–
4]. According to Gartner, one of the leading information
technology research firms, global spending for IT services
was approximately $932 billion in 2013 and is expected to
grow to $967 billion in 2014, a growth of 3.8% from 2013 [5].

Although IT outsourcing has many advantages including
reducing cost and enhancing the core competence, there
also exist some problems that need to be solved urgently,
especially the problem of managing the schedule risk of IT
outsourcing, which may bring about huge loss to company.
Consequently, it is very vital to research how to manage the
schedule risk of IT outsourcing.

Researchers have done a lot of related research [6–12].
But most methods and models proposed in the literature
only discuss the risk management issues on project itself
and ignore the cooperation between principal and agent

and the distribution characteristics of the IT outsourcing
activities. In recent years, principal-agent theory has been
widely employed to solve the problem of risk management of
IT outsourcing and good results have been achieved through
these studies.

Earl et al. concluded some adverse consequences of IT
outsourcing based on existing literatures [13–16]. Then, he
argued that the risk of IT outsourcing came from enter-
prises, agents, and the process of IT activities and pro-
posed corresponding risk management measures based on
principal-agent theory [17–19]. Bahli and Rivard proposed
a scenario-based conceptualization of the IT outsourcing
risk and applied it to the specific context of IT outsourcing
using transaction cost and agency theory [20]. Osei-Bryson
and Ngwenyama offered a method and some mathemati-
cal models for analyzing risks and constructing incentive
contracts for information system outsourcing [21]. Sanfa et
al. analyzed risk factors of producer services outsourcing
from the perspective of engineering and afforded managers a
theoretic method to manage outsourcing risks by designing
the incentive and monitoring mechanism of the producer
services outsourcing contract [22]. Xianli et al. present the
idea of applying DDM (distributed decision making) to the
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risk management of virtual enterprises and design incentive
and punishment mechanism in the principal-agent model
[23].

In this paper, we build a two-level principal-agent model
combined with reward and punishment mechanism for
schedule risk management of IT outsourcing project based
on the Distributed Decision Making (DDM) theory and
principal-agent theory [24–26]. According to the feature of
problem, the SAGA is designed to solve the proposed model
and the optimal plan ofmanaging schedule risk is given based
on the simulation analysis. The purpose of this paper is to
provide crucial decision support for the people who need to
manage the schedule risk of IT outsourcing project.

The remainder of this paper is structured as follows.
Section 1 presents the schedule risk management model of IT
outsourcing project. In Section 2, the design of algorithm is
given. In addition, numerical examples and results analyzed
are depicted in Section 3. Finally, conclusion is given in
Section 4.

2. Schedule Risk Management Model of
IT Outsourcing Project

2.1. Problem Description. For IT outsourcing, principal
divides a whole project into some serial subprojects in the
IT developing process, as shown in Figure 1. The definition
of serial subprojects is that subproject 𝑖 (𝑖 = 2, . . . , 𝐼) is
performed after completion of subproject 𝑖 − 1.

The schedule risk is reflected in two aspects of duration
and risk loss. Each subproject has an initial duration and
initial risk loss. In order to effectively manage the schedule
risk, the reward and punishment mechanism is added in
outsourcing contract; that is, if the project is completed
in advance, the agent is rewarded; otherwise the agent is
punished. Each subproject will be contracted with different
agents, and a typical principal-agent relationship between
principal and agent will be generated. For the relationship
between principal and agents, see Figure 2.

The optimal solution of top-level model is the optimal
combination of risk management capital, and the optimal
solution of base-level model is the optimal combination of
riskmanagementmeasure of subproject. In the decisionmak-
ing process, the principal transfers risk management capital
to the predicted base-level model. The optimal solution of
top-level model is obtained based on the goal of maximizing
the profit of the principal and the information returned
from the predicted base-level model. Then, the optimal
solution of top-levelmodel is transferred to the real base-level
model. Under the constraint of risk management capital, the
agents obtain the best control measure combination of the
subproject according to the goal ofmaximizing the profit.The
information exchange process between the principal and the
agents is shown in Figure 3.

For the IT development, the duration of the subproject
is determined by the duration of the activities on the critical
path. Hence we only consider the schedule of the activities
on the critical path. Figure 4 shows the network diagram of
subproject 𝐼, in which the critical path is 1–3-4–6-7-8. So

agent 𝑖 only allocates risk management capital to activities 1,
2, 3, 6, 8, and 9.

2.2. Assumptions

(1) Subprojects are serial relation in the IT developing
process.

(2) The change of completion probability or duration of
subproject will not have an effect on other subpro-
jects; that is, subprojects are independent of each
other.

(3) The critical path of subproject will not become non-
critical path under the influence of risk management
capital.

(4) The duration and risk loss of project only are affected
by risk management capital.

(5) Due to the information asymmetry, the risk loss per
unit of subproject is clear to the agents, but the
principal only masters its distribution function.

2.3. The Two-Level Principal-Agent Model. Based on the
DDM theory and principal-agent theory, a two-level schedule
risk management model of IT outsourcing project is built
[27, 28]. In the top-level, the decision maker is the principal
who determines how to allocate the risk management capital
among agents. The objective of top-level is to maximize
the profit of principal, and the reward and punishment
mechanism is introduced into the model. In the base-level,
the decision maker is the agents who determine the best
combination of risk management measure of subproject. The
objective of base-level is to maximize the agent’s benefit.

2.3.1. Top-Level

Variable Definition

𝑥𝑖: risk management capital of subproject 𝑖
𝑦𝑖: the predicted combination of risk management
measure of subproject 𝑖
𝑏𝑖: the agent’s profit sharing coefficient of subproject 𝑖
𝐼: the number of agents or subprojects

𝑡𝑖(𝑦𝑖): predicted duration of subproject 𝑖
𝑇0𝑖 : planned duration of subproject 𝑖
Δ𝐿𝑖(𝑦𝑖): predicted saved risk loss of subproject 𝑖
𝐵𝑖(𝑥𝑖, 𝑦𝑖): predicted profit of agent 𝑖
𝑋max: risk management capital budget

ℎ𝑖(𝑦𝑖): predicted reward and punishment function of
subproject 𝑖
AL𝑖: the aspiration level of agent 𝑖
𝑒𝑖: additional profit per time unit of subproject 𝑖.
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Figure 1: The diagram of project construction.
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Figure 2: The relationship between principal and agents.
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Figure 3: The information exchange process between the principal and the agents.

max
𝐼∑
𝑖=1

𝑏𝑖Δ𝐿𝑖 (𝑦𝑖) − 𝑥𝑖 + ℎ𝑖 (𝑦𝑖) − 𝑒𝑖 (𝑡𝑖 (𝑦𝑖) − 𝑇0𝑖 )− (1)

s.t. 𝐵𝑖 (𝑥𝑖, 𝑦𝑖) ≥ AL𝑖 (2)

𝐵𝑖 (𝑥𝑖, 𝑦∗𝑖 ) ≥ 𝐵𝑖 (𝑥𝑖, 𝑦𝑖) (3)

𝐼∑
𝑖=1

𝑥𝑖 ≤ 𝑋max (4)

𝑥𝑖 ∈ 𝑁+. (5)

The objective of top-level shown in formula (1) is to
maximize the profit of principal; the reward and punishment
mechanism is fulfilled by item ℎ𝑖(𝑦𝑖). The operation (𝑥)− is
defined as

(𝑥)− = {{{
𝑥, 𝑥 < 0,
0, else. (6)

Formula (2) indicates participation constraint; formula
(3) indicates incentive compatibility constraint; formula (4)
indicates risk management capital constraint; formula (5)
indicates that the risk management capital 𝑥𝑖 is a natural
integer, which is the decision variable in the top-level model.

2.3.2. Predicted Base-Level. In the predicted base-level, the
decision makers are the agents, and there are 𝐼 agents. Take
agent 𝑖, for example.

Variable Definition

𝑌𝑖𝑗: the number of management measures of activity j
𝐽𝑖: the number of activities of subproject i
𝐿 𝑖: initial risk loss of subproject i𝜉𝑖: predicted risk loss per unit of subproject i
𝑞𝑖: reward and punishment standard of subproject i
𝑐𝑖(𝑡𝑖(𝑦𝑖)): predicted cost of subproject i
𝑑𝑖(𝑦𝑖): predicted invested risk management capital of
subproject i
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Figure 4: The network diagram of subproject 𝑖.
𝛼𝑖: confidence level𝐶max
𝑖 : the upper bound of cost of subproject i.

𝐵𝑖 (𝑥𝑖, 𝑦𝑖) = max 𝐵𝑖 (7)

s.t. pr {𝑏𝑖Δ𝐿𝑖 (𝑦𝑖) − 𝑐𝑖 (𝑡𝑖 (𝑦𝑖)) + 𝑥𝑖 − 𝑑𝑖 (𝑦𝑖) − ℎ𝑖 (𝑦𝑖) ≥ 𝐵𝑖} ≥ 𝛼𝑖 (8)

ℎ𝑖 (𝑦𝑖) = 𝑞𝑖 (𝑡𝑖 (𝑦𝑖) − 𝑇0𝑖 ) (9)

Δ𝐿𝑖 (𝑦𝑖) = 𝐿 𝑖 − 𝑎𝑖 (𝑡𝑖 (𝑦𝑖) − 𝑇0𝑖 )+ (10)

𝑑𝑖 (𝑦𝑖) ≤ 𝑥𝑖 (11)

𝑐𝑖 (𝑡𝑖 (𝑦𝑖)) ≤ 𝐶max
𝑖 (12)

𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝐽𝑖) (13)

𝑦𝑖𝑗 ∈ {1, 2, . . . , 𝑌𝑖𝑗} . (14)

Formula (7) indicates that the objective of predicted base-
level is to maximize agent’s benefit. Formula (8) indicates
chance constraint. Formula (9) indicates the reward and
penalty function based on the duration. Formula (10) indi-
cates the saved risk loss of subproject; the operation (𝑥)+ is
defined as

(𝑥)+ = {{{
𝑥, 𝑥 > 0,
0, else. (15)

Formula (11) indicates that the sum of used risk manage-
ment capital is not greater than the risk management capital
which is allocated to subproject; formula (13) represents a set
of the predicted base-level variables; formula (14) represents
the value range of 𝑦𝑖𝑗 that is the decision variable in the
predicted base-level model.

2.3.3. Real Base-Level. In the real base-level, the decision
makers are the agents, and there are 𝐼 agents. Take agent 𝑖,
for example.

Variable Definition

𝑦𝑖: the actual combination of risk management mea-
sure of subproject i
𝑎𝑖: risk loss per unit of subproject iΔ𝐿 𝑖(𝑦𝑖): actual saved risk loss of subproject i
𝑡𝑖(𝑦𝑖): actual duration of subproject i
ℎ𝑖(𝑦𝑖): actual reward and penalty function of subpro-
ject i
𝑑𝑖(𝑦𝑖): actual invested risk management capital of
subproject i
𝑐𝑖(𝑡𝑖(𝑦𝑖)): actual cost of subproject i.
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𝐵𝑖 (𝑥∗𝑖 , 𝑦𝑖) = max 𝑏𝑖Δ𝐿 𝑖 (𝑦𝑖) − 𝑐𝑖 (𝑡𝑖 (𝑦𝑖)) 𝑥∗𝑖 − 𝑑𝑖 (𝑦𝑖) − ℎ𝑖 (𝑦𝑖) (16)

s.t. ℎ𝑖 (𝑦𝑖) = 𝑞𝑖 (𝑡𝑖 (𝑦𝑖) − 𝑇0𝑖 ) (17)

Δ𝐿 𝑖 (𝑦𝑖) = 𝐿 𝑖 − 𝑎𝑖 (𝑡𝑖 (𝑦𝑖) − 𝑇0𝑖 )+ (18)

𝑑𝑖 (𝑦𝑖) ≤ 𝑥∗𝑖 (19)

𝑐𝑖 (𝑡𝑖 (𝑦𝑖)) ≤ 𝐶max
𝑖 (20)

𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝐽𝑖) (21)

𝑦𝑖𝑗 ∈ {1, 2, . . . , 𝑌𝑖𝑗} . (22)

Formula (16) indicates that the objective of real base-
level is to maximize agent’s benefit; formula (17) indicates the
reward and penalty function based on the duration; formula
(18) indicates the saved risk loss of subproject; formula (19)
indicates that the sum of used risk management capital is not
greater than the riskmanagement capital which is allocated to
subproject; formula (20) represents the cost that should not
be beyond the upper bound of cost for subproject 𝑖; formula
(21) represents a set of the real base-level variables; formula
(22) represents the value range of 𝑦𝑖𝑗 that is the decision
variable in the real base-level model.

3. Algorithm Design

The top-level model is an integer programming problem,
and the base-level model (including the predicted base-level
model) is a combinatorial optimization problem. The whole
problem is a NP hard problem, because the base-level is
embedded in the top-level. So, we use genetic algorithm (GA)
to solve the problem in this paper. It is well known that GA
that was first introduced by Holland is very effective for solv-
ing combinatorial optimization problems. For example, GA
has been successfully applied in solving traveling salesman
problem, knapsack problem, bin packing problem, and so
on. However, the disadvantage of GA is that the local search
capability is not strong [29–33]. Simulated annealing (SA) is
a general random search algorithm, which is an extension of
the local search algorithm [34–37]. Considering the strong
local search capability of SA, we designed a hybrid algorithm
named simulated annealing genetic algorithm (SAGA) by
combining simulated SA with GA.

The overall thought of SAGA is simple. Firstly, some
initial solutions of GA are generated randomly. After a period
of iteration, some superior solutions are produced.Then, sort
the corresponding fitness value of these superior solutions in
descending order. And then select the solutions in top 10% as
the initial solutions of SA. We try to find the best solution of
the proposed problem around these superior solutions. For
the random variables of the predicted base-level model, we
embed Monte Carlo Simulation in SAGA.

3.1. Encoding Scheme. In top-level, each chromosome repre-
sented by real number is a combination of risk management
capital and the length of chromosome represents the number
of agents. The top-level encoding scheme of SAGA is shown
in Figure 5. We can see that there are 4 agents, and $580.2 is
allocated to agent 1; $600.9 is allocated to agent 2; the rest can
be done in the same manner.

In base-level, each chromosome represented by real
number is a combination of risk management capital and the
length of chromosome represents the number of the activities
on the critical path. Take the base-level encoding scheme
shown in Figure 6 as example; it can be seen that there are 5
activities on the critical path, andmeasure 2 is used tomanage
the risk of activity 1, measure 4 is used to manage the risk of
activity 2, and so on.

3.2. Population Initialization. Initial population is generated
randomly. Punishment strategy is adopted to deal with the
constraints, so we do not have to judge whether the initial
solution meets the constraint conditions.

3.3. Fitness Function. Considering the proposed optimiza-
tion problems with constraints, we set up a fitness function
with punishment term to evaluate individuals. The top-level
fitness function is given as

𝐹𝑇 = 𝑓𝑇 − 𝐼∑
𝑖=1

(𝛼𝑖 (𝐵𝑖 (𝑥𝑖, 𝑦𝑖) − AL𝑖))

− 𝛽( 𝐼∑
𝑖=1

𝑥𝑖 − 𝑋max) ,
(23)

where

𝑓𝑇 = 𝐼∑
𝑖=1

𝑏𝑖Δ𝐿𝑖 (𝑦𝑖) − 𝑥𝑖 + ℎ𝑖 (𝑦𝑖) − 𝑒𝑖 (𝑡𝑖 (𝑦𝑖) − 𝑇0𝑖 )− . (24)

Function (24) is top-level objective function; 𝛼𝑖 and 𝛽 are
punishment coefficients, respectively.
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Figure 5: The top-level encoding scheme of SAGA.
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Figure 6: The base-level encoding scheme of SAGA.

The base-level fitness function is given as

𝐹𝐵𝑖 = 𝑓𝐵𝑖 − 𝛾𝑖 (𝑑𝑖 (𝑦𝑖) − 𝑥∗𝑖 )+
− 𝛿𝑖 (𝑐𝑖 (𝑡𝑖 (𝑦𝑖)) − 𝐶max

𝑖 )+ , (25)

where

𝑓𝐵𝑖 = 𝑏𝑖Δ𝐿 𝑖 (𝑦𝑖) − 𝑐𝑖 (𝑡𝑖 (𝑦𝑖)) + 𝑥∗𝑖 − 𝑑𝑖 (𝑦𝑖) − ℎ𝑖 (𝑦𝑖) . (26)

Function (25) is base-level objective function; 𝛾𝑖 and 𝛿𝑖 are
punishment coefficients, respectively.

The Monte Carlo Simulation method is used to deal with
the random variable [37–40]. The process of calculating the
fitness of the predicted base-level model by Monte Carlo
Simulation is shown as follows.

Step 1. Set 𝑄󸀠 is equal to [𝛼𝑖𝑄]; 𝑄 is sampling number.

Step 2. Samples 𝜉1𝑖 , 𝜉2𝑖 , . . . , 𝜉𝑄𝑖 are generated by normal distri-
bution function𝑁(𝑎𝑖, 0.01).
Step 3. Calculate 𝐹𝑡𝐵𝑖 that is the fitness value of the predicted
base-level model by formula (26), 𝑡 = 1, 2, . . . , 𝑄.
Step 4. The 𝑄󸀠th biggest element of {𝐹𝑡𝐵𝑖, 𝐹𝑡𝐵𝑖, . . . , 𝐹𝑡𝐵𝑖} can be
used as the fitness value of the 𝑖th predicted base-level model,
which can be seen by the law of large numbers.

3.4. Selection. This paper takes proportional selection strat-
egy [41, 42]. For each individual, the probability of being
selected is the proportion of its fitness to the sum of all indi-
viduals’ fitness. Then, the probability of selected individual 𝐼
is given by

𝑃𝑖 = 𝐹𝑖∑𝑁𝑃𝑖=1 𝐹𝑖 , (27)

where 𝐹𝑖 is the fitness of individual 𝑖 andNP is the population
size. Here, we adopt well-known Roulette Wheel scheme.
In order to prevent the best individual in each generation
from being destroyed, elite-preservation strategy is also used.
That is to say, the best individual of each generation directly
becomes one of individuals in the next generation without
crossover and mutation operation.

3.5. Crossover. Double-point crossover is adopted in this
paper, which is beneficial for keeping excellent individual.
Figure 7 shows the example of the double-point crossover
operator, where 𝑃1 = (1, 3, 3, 2, 4) and 𝑃2 = (2, 2, 5, 1, 3)
are parent chromosomes. So, the generated children chromo-
somes are 𝐶1 = (1, 2, 5, 1, 4) and 𝐶2 = (2, 3, 3, 2, 3).
3.6. Mutation. Reversal mutation is adopted in this paper
[35]. Under the condition of satisfying the mutation rate,
randomly select two points in the parent and sort the genes
between these two points in reverse order. The reversal
mutation operator of SAGA is shown in Figure 8. Parent
chromosome 𝑃 = (1, 4, 2, 3, 1) is selected for mutation
operation. And the generated children chromosome is 𝑃󸀠 =(1, 2, 4, 3, 1).
3.7. Neighborhood Definition. The bit 𝑥𝑖 is selected from the
current state 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑚], and the value of 𝑥𝑖 is
changed in the range of its value. So, a neighborhood solution
is generated.

3.8. Neighborhood Movement. The Metropolis criterion is
adopted in this paper. If the objective value of neighborhood
solution is smaller than the current solution’s objective
value, the current solution is replaced by the neighborhood
solution. Otherwise, the current solution moves according to
a certain probability.

3.9. Thermal Equilibrium. Thermal equilibrium is achieved
when the preset number of internal loop is reached.

3.10. Cooling Rule. Reduce 𝑇𝑘 by multiplying a number r,
which is in the range [0, 1] and close to 1. Cooling rule is
shown as

𝑇𝑘+1 = 𝑇𝑘, (28)
where 𝑇𝑘 is the current temperature, 𝑇0 is initial temperature,𝑘 is the iterative index, and 𝑟 ∈ (0.95, 0.99).
3.11. Procedure of SAGA. The flow chart of SAGA is shown in
Figure 9. The process of the SAGA is made up of two parts,
GA and SA. In Figure 9, the left part is the process of GA; GA
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Figure 7: The double-point crossover operator of SAGA.
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Figure 8: The reversal variation operator of SAGA.

is used firstly to find a good solution of the problem. To cover
the defect of GA on the local area search, SA is used to find an
optimal solution around the “good solution” find by GA.The
process of SA is shown on the right part of the figure. After
the local search of SA, the proposed algorithm ended.

4. Numerical Examples

4.1. Example 1. Take the IT outsourcing project including 1
principal and 1 agent (𝐼 = 1) for an example. The principal
outsources the whole project to the agent. Schedule risk is
reflected by duration and risk loss of project. It is assumed
that if the project is completed before planned duration, there
will be no risk loss. On the contrary, the project will lose $80
per day; namely, 𝑎1 = 80. Due to the information asymmetry,
the agent is clear for parameter 𝑎1, but the principal only
knows its distribution function, which is approximated as𝑁(80, 0.01). The planned duration of project 𝑇01 is 400, the
initial duration of project 𝑇1 is 500, and the initial duration
of activities 𝑡01𝑗 is {55, 60, 65, 70, 75, 80, 95}. The profit sharing
coefficient of principal 𝑏1 is 0.51, the expected profit of agent
AL1 is 2000, and confidence level 𝛼 is 0.9.

There is an initial schedule risk, which can be seen from
the parameters of duration. The principal prepares $900 to
manage schedule risk, 𝑋max = 900. The project consists of
7 activities, 𝐽1 = 7. There are 10 available risk management
measures for each activity, 𝑌1𝑗 = 10, 𝑗 ∈ {1, 2, . . . , 7}. It is
assumed that the agent must choose a numbered measure for
each activity and that the selected numbered measure can be
selected multiple times.

Riskmanagementmeasure is the only variable that affects
the duration and risk loss of project, which can be seen
from the proposed model. It is assumed that the impact
of risk management measure on the project is enhanced
with the increase of the number of measures. For example,
for an activity, the implementation of measure 7 will result
in a shorter duration and a smaller risk loss than the
implementation of measure 2. So, the monotonic decreasing
function is used to represent the duration function that is

shown in formula (29), and risk loss function is shown in
formula (30), respectively,

𝑡1 (𝑦1) = 𝐽1∑
𝑗=1

𝑡01𝑗 exp (−𝑦1𝑗𝜎1𝑗) , (29)

𝐿1 (𝑦1) = 𝑎1 (𝑡1 (𝑦1) − 𝑇01 )+ , (30)

where 𝜎1𝑗 is control parameter, which is used to represent
that a management measure has different effects on different
activities. The saved risk loss of project is shown as follows:

Δ𝐿1 (𝑦1) = 𝑎1 (𝑇1 − 𝑇01 ) − 𝐿1 (𝑦1) . (31)

If the project can be completed before the planned
duration, the principal will obtain additional profit. It is
assumed that the additional profit 𝑒1 is $25 per time unit. So,
the reward and punishment function about duration is shown
in formula (32), which is designed by the principal

ℎ1 (𝑦1) = 𝑞1 (𝑡1 (𝑦1) − 𝑇01 ) . (32)

It is assumed that the reward and punishment parameter 𝑞1 is
$21. If the subproject is completed in advance, the agent can
get $21 per day; otherwise, he will lose $21 per day.

4.1.1. The Parameters of SAGA. The parameters of SAGA
mainly include population size (𝑁𝑃), maximum generations(𝑁𝐺), crossover rate (𝑃𝑐), mutation rate (𝑃𝑚), initial temper-
ature (𝑇𝑖), termination temperature (𝑇𝑠), and internal loop
number (𝑁𝑖). The parameters have a significant impact on
the performance of algorithm. For example, big population
size may lead to slower convergence speed but can avoid
suboptimal solution. Small population size may lead to
premature but can ensure the quick speed of convergence.

In this paper, NG is determined by

𝑁𝐺 = 1500𝑁𝑃 . (33)
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Figure 9: The flow chart of SAGA.

Generally, Ts is a smaller positive number; let 𝑇𝑠 = 1 here. So,
we only need to test the other 5 parameters with the following
method.

(1) Provide two values for each parameter. One is rela-
tively small, and the other is relatively big.

(2) For each combination of parameter, run algorithm 20
times. There are 25 combinations.

(3) The final parameter combination is the one with best
average fitness value.
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Figure 10: The influence of 𝑞1 on duration.

The testing process is shown in Table 1. The final combi-
nation is {30, 50, 0.6, 0.1, 100, 10}.
4.1.2. Simulation Results. The simulation results of example
1 are shown in Table 2. For real results, agent is allocated
$597 and he selects measures 2 1 10 1 10 10 10 to manage
risk. After that, the duration of project is reduced from 500
days to 377.41 days; that is to say, the project is completed in
advance. For index duration and risk loss, the schedule risk
of IT outsourcing project has been well managed.

It can be seen that the predicted results and real results
are different, such as profit of principal, because there is
information asymmetry between principal and agent, and the
principal’s prediction is not completely correct in the real
situation, which always plays an important role in the process
of schedule risk management. If there is no prediction, the
whole project would be completely out of control; the effect
of schedule risk management will be worse than it is now.

4.1.3. Model Comparison. Model I refers to the proposed
model in Section 2.3; Model II is the one in which there is no
reward and punishment item. Model I is Model II, when the
parameter 𝑞1 = 0. For the simulation results in Table 3, from
index 3 to 8, Model I is better than Model II. Therefore, it is
significant to join the reward and punishment mechanism in
the model.

4.1.4. The Parameter of Reward and Punishment Mechanism.
If parameter 𝑞1 is not set reasonably, the reward and punish-
ment will not really play its role. Therefore, the effect of the
parameter 𝑞1 is tested on the proposedmodel.The test results
are shown in Table 4.The influence of 𝑞1 on the duration, the
profit of agent, and the profit of principal are shown in Figures
10–12, respectively.

We can get some information from Table 4 and Figures
10–12. When 𝑞1 ≤ 𝑐1 = 16 where 𝑐1 is additional cost per
day due to duration reduction, total risk loss is saved, but
duration is not significantly reduced compared to the planned
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Figure 11: The influence of 𝑞1 on the profit of agent.
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Figure 12: The influence of 𝑞1 on the profit of principal.

duration. The reason for the above phenomenon is that the
agent will not make efforts to shorten duration, if the reward
is not greater than the cost because of duration reduction.
When 𝑞1 ≥ 𝑒1 = 25, the reward of agent is greater than
the additional profit of principal due to shorting duration,
resulting in the decline of principal’s profit. Obviously, this
is not acceptable to the principal. So, we must determine
the specific value of 𝑞1 in the interval (𝑐1, 𝑒1) based on the 4
indexes: duration, saved risk loss, profit of agent, and profit
of principal. Considering managing the schedule risk of IT
outsourcing project, we set 𝑞1 to be 21. Finally, the way for
setting the reward and punishment mechanism’s parameter
is summarized as follows.

(1) Set the two values 𝑐 and 𝑒, 𝑐 < 𝑒.
(2) Determine the specific value of 𝑞1 in the interval [𝑐, 𝑒]

based on the 4 indexes: duration, recovered risk loss,
profit of agent, and profit of principal.
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Table 1: The parameters of SAGA.

NP NG Pc Pm Ti Ni Fitness
30 50 0.9 0.1 130 20 2417.8
30 50 0.9 0.1 130 10 2352.3
30 50 0.9 0.1 100 20 2344.9
30 50 0.9 0.1 100 10 2327.5
30 50 0.9 0.01 130 20 2417.3
30 50 0.9 0.01 130 10 2407.6
30 50 0.9 0.01 100 20 2327.9
30 50 0.9 0.01 100 10 2423.4
30 50 0.6 0.1 130 20 2334.8
30 50 0.6 0.1 130 10 2338.3
30 50 0.6 0.1 100 20 2348.7
30 50 0.6 0.1 100 10 2441.1
30 50 0.6 0.01 130 20 2417.4
30 50 0.6 0.01 130 10 2339.2
30 50 0.6 0.01 100 20 2326.3
30 50 0.6 0.01 100 10 2404.1
50 30 0.9 0.1 130 20 2319.5
50 30 0.9 0.1 130 10 2408.2
50 30 0.9 0.1 100 20 2328.6
50 30 0.9 0.1 100 10 2328.2
50 30 0.9 0.01 130 20 2402.0
50 30 0.9 0.01 130 10 2316.8
50 30 0.9 0.01 100 20 2322.8
50 30 0.9 0.01 100 10 2317.0
50 30 0.6 0.1 130 20 2394.7
50 30 0.6 0.1 130 10 2396.3
50 30 0.6 0.1 100 20 2324.5
50 30 0.6 0.1 100 10 2326.3
50 30 0.6 0.01 130 20 2361.7
50 30 0.6 0.01 130 10 2319.3
50 30 0.6 0.01 100 20 2367.9
50 30 0.6 0.01 100 10 2321.6

Table 2: The simulation results of example 1.

Index Predicted results Real results
Allocated capital 597 597
Measure combination 1 10 1 1 9 10 10 2 1 10 1 10 10 10
Duration 380.52 377.41
Finish the project before planned duration Y Y
Saved risk loss 7985.6 8000
Save total risk loss? Y Y
Profit of agent 2430.69 2440.50
Profit of principal 3565.15 3564.98

4.1.5. Performance Comparison of Algorithms. In this paper,
we use three algorithms, SA, GA, and SAGA to carry out the
simulation calculation for the proposed model. The simula-
tion results are compared in Table 5. Focusing on indexes,
duration, finishing the project before planned duration, saved

risk loss, total risk loss saved, profit of agent, and profit of
principal, the conclusion can be drawn that SAGA is better
than GA and SA

The convergence process of 3 algorithms in example 1 is
shown in Figure 13. For convergent speed, SA achieves its
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Table 3: The model comparison of example 1.

Index Mode I Model II
Allocated capital 597 502
Measure combination 2 1 10 1 10 10 10 2 1 1 9 1 10 10
Duration 377.41 400.98
Finish the project before planned duration Y N
Saved risk loss 8000 7921.60
Save total risk loss? Y N
Profit of agent 2440.50 2306.76
Profit of principal 3564.98 3532.84

Table 4: The effect of 𝑞1 on the model.

𝑞1 Duration Saved risk loss Profit of agent Profit of principal
14 399.09 8000 2312.44 3608.55
15 399.10 8000 2346.89 3573.18
16 399.10 8000 2322.08 3598.58
17 396.78 8000 2320.52 3602.54
18 394.08 8000 2327.17 3601.78
19 394.08 8000 2333.63 3594.37
20 382.58 8000 2392.89 3585.67
21 377.58 8000 2429.31 3587.50
22 389.46 8000 2379.02 3576.35
23 397.96 8000 2346.25 3575.10
24 396.28 8000 2354.21 3573.32
25 397.03 8000 2344.66 3548.59
26 399.09 8000 2346.40 3532.84
27 399.88 8000 2316.86 3514.58
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Figure 13: The convergence process of the three algorithms in
example 1.

convergence after about 40 iterations; GA and SAGA need
about 50 iterations. So, the convergence speed of the three
algorithms is near. However, considering the fitness from the

three algorithms, it is easy to see that SAGA finds the best
solution, among the three algorithms.Therefore, SAGA is the
best choice for the problem in example 1.

4.2. Example 2, 3, and 4. In this section, further examples 2,
3, and 4 are given in this section to test the performance of
SAGA. The values of the main parameters for models in the
three examples are shown in Table 6, and the values of others
parameters are the same to example 1.

4.2.1. The Parameters of SAGA. According to the method of
parameters setting in example 1, the parameters combination
of SAGA for example 2, 3, and 4 is shown in Table 7.

4.2.2. Simulation Results. The simulation results of examples
2 and 3 are shown in Tables 8 and 9, respectively. The
comprehensive results of example 4 are not shown in this
section, for its large amount of data, but a part of selected
results is used to analyze the algorithm in the next section.

For real results of example 3, the principal allocates $682,
$579, $579, $649, $609, $579, $689, $689, $617, and $646
to 10 agents, respectively. The agents select the measure
combination shown in table to manage risk. After that, the
duration of projects is reduced from 500 days to 391.4, 400.1,
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Table 5: The comparison of three algorithms.

Index GA SA SAGA
Allocated capital 542 556 597
Measure combination 1 2 9 1 5 10 7 1 2 1 1 9 10 10 2 1 10 1 10 10 10
Duration 399.76 400.07 377.41
Finish the project before planned duration? Y N Y
Saved risk loss 8000 7943.24 8000
Save total risk loss? Y N Y
Profit of agent 2325.04 2313.29 2440.50
Profit of principal 3540.89 3515.23 3564.98

Table 6: The model parameters of examples 2, 3, and 4.

Example Principal’s number Agent’s number Activity’s number Measure’s number Risk management capital
2 1 5 7 10 3500
3 1 10 7 10 7000
4 1 25 7 10 17500

400.1, 384.7, 397.1, 397.1, 384.7, 368.5, 386.4, and 379. days, and
total risk loss is saved except for subprojects 2 and 3. For the
two indexes of duration and risk loss, the schedule risk of IT
outsourcing project has been well managed.

We can see that the predicted results and real results are
different, such as profit of agent, because there is information
asymmetry between principal and agent, and the principal’s
prediction is not completely correct in the real situation,
which always plays an important role in the process of
schedule risk management. But if there is no prediction, the
whole project would be completely out of control; the effect
of schedule risk management will be worse than it is now.

4.2.3. Performance Comparison of Algorithms. Examples 2,
3, and 4 are solved by GA, SA, and the SAGA designed in
this paper to give a further test of the performance of SAGA.
The convergence process of three algorithms in examples 2,
3, and 4 is shown in Figures 14–16, respectively. In these
three examples, SAGA performs better than the other two
algorithms in terms of convergent speed and the best fitness
value. Therefore, SAGA is the best choice for the problem in
examples 2, 3, and 4.

In addition, for each example, run the 3 algorithms
20 times to collect some statistics information, including
maximum fitness (Max), minimum fitness (Min), average
fitness (Aver), and fitness variance (Var), which is processed
using the normalization method. The statistics information
is shown in Table 10, where Na represents the number of
agents, B represents risk management capital, A represents
algorithms, Δ𝐴 represents the average fitness increasing ratio
of SAGA relative to other two algorithms, and Δ𝑉 represents
the difference of fitness variance between SAGA and two
other algorithms.

The convergent degree of algorithm is shown by the
average fitness, and the reliability of algorithm is shown by

the fitness variance. The conclusion that the SAGA designed
in this paper shows a certain advantages in each example can
be seen from the table.With the increase of the problem scale,
the convergence and reliability of SAGA are also compared
with GA and SA in Figures 17 and 18, respectively. It can
be seen that SAGA performs better than GA and SA on
convergence and reliability, especially for the large scale
problem.

Besides convergence and reliability, the running time
of the algorithm is also an important index to measure
the performance of the algorithm. Running time is greatly
influenced by the experimental environment. The experi-
mental environment in this experiment: software conditions:
Windows 7, hardware conditions: DELL Optiplex 9020 +i7
Core, and development tools: Eclipse. Figure 19 shows the
running time of the three algorithms for the four examples.
From the Figure 19, it can be seen that when the problem scale
is relatively small, the running time of the three algorithms
is almost equal. When the scale of the problem is larger, for
examples 3 and 4, the running time of SAGA is significantly
longer than that of GA and SA, because SAGA takes more
time to operate its complex searching process. It also can be
seen that the running time of the three algorithms is always
in the same order of magnitude for each case. Therefore, the
running time of SAGA is acceptable.

5. Conclusion

This paper focuses on the schedule risk of IT outsourcing
project, the DDM theory and principal-agent theory are
applied to build a two-level principal-agent schedule risk
management model for IT outsourcing project, and the
SAGA is also designed to solve the resulting optimization
problem. The simulation results illustrate that the model
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Table 7: Parameters setting of SAGA for examples 2, 3, and 4.

Example NP NG Pc Pm Ti Ni
2 40 80 0.9 0.1 150 10
3 50 100 0.9 0.1 150 20
4 50 120 0.9 0.01 200 10
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Figure 14: The convergence process of the three algorithms in example 2.
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Figure 15: The convergence process of the three algorithms in
example 3.
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Figure 16: The convergence process of the three algorithms in
example 4.
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Table 8: The simulation results of example 2.

Index Predicted results Real results
Allocated capital 696 625 693 679 686 696 625 693 679 686

Measure combination

4 5 2 10 10 8 10 1 2 6 10 6 9 9
4 5 2 9 6 2 10 9 3 7 3 9 3 3
3 8 10 1 10 9 8 7 3 7 7 9 7 3
9 1 10 1 1 10 10 7 3 7 7 9 3 7
2 1 10 9 8 9 10 3 3 7 7 9 7 3

Duration 365.1 393.7 369.2 388.5 364.7 377.9 404.5 386.5 384.1 393.7
Finish the project before planned duration? Y YYYY Y N Y YY
Saved risk loss 7990.4 7988.4 7986.8 7987.5 7984.9 8000 7637.9 8000 8000 8000
Save total risk loss? Y YYYY Y N Y YY
Profit of agent 2494.6 2376.5 2482.9 2488.6 2505.2 2494.6 2150.6 2411.7 2409.7 2411.0
Profit of principal 17864.6 17762.6

Table 9: The simulation results of example 3.

Index Predicted results Real results

Allocated capital 682 579 579 646 609 682 579 579 646 609
579 689 689 617 646 579 689 689 617 646

Measure combination

9 1 9 2 10 10 10 3 1 6 3 10 8 7
10 2 1 9 1 7 9 4 3 10 4 1 5 9
1 2 6 7 9 3 8 1 3 10 4 9 5 4

5 10 2 5 10 2 10 1 3 10 4 9 5 9
2 6 2 2 9 9 9 1 3 10 4 4 5 9
1 3 6 1 8 9 9 1 3 10 4 4 5 9

8 4 1 10 7 10 10 1 3 10 4 9 5 9
1 10 10 1 10 8 9 1 3 10 10 9 5 10
1 3 7 1 10 10 8 1 1 10 4 9 5 10
8 2 1 8 10 9 7 1 3 10 4 10 5 10

Duration 364.0 394.9 396.6 382.5 388.3 391.4 400.1 400.1 384.7 397.1
392.4 364.8 369.3 386.5 377.7 397.1 384.7 368.5 386.4 379.7

Finish the project before planned duration? Y YYYY Y N N Y Y
Y YYYY Y YYYY

Saved risk loss 7986.9 7988.9 7983.4 7989.5 7985.6 8000 7998.5 7925.1 8000 8000
7988.7 7989.0 7988.0 7984.2 7986.2 8000 8000 8000 8000 8000

Save total risk loss? Y YYYY Y N N Y Y
Y YYYY Y YYYY

Profit of agent 2497.9 2355.7 2333.5 2413.4 2389.2 2451.1 2327.9 2279.9 2424.7 2366.7
2367.6 2490.7 2502.1 2415.9 2424.9 2336.7 2467.7 2498.7 2418.4 2441.3

Profit of principal 35750.6 35707.7

Table 10: The comparison of algorithms’ performance.

Example Na B A Max Min Aver Δ𝐴 (%) Var Δ𝑉
1 1 700 GA 2350.2 2300.8 2328.6 3.7 0.562 −0.39
1 1 700 SA 2380.7 2315.6 2344.0 2.9 0.264 −0.09
1 1 700 SAGA 2465.5 2400.2 2413.6 0 0.174 0
2 5 3500 GA 17726.1 17001.3 17419.6 2.1 0.657 −0.51
2 5 3500 SA 17466.0 17180.7 17353.8 2.5 0.196 −0.05
2 5 3500 SAGA 17911.0 17637.0 17787.3 0 0.147 0
3 10 7000 GA 35012.0 33567.9 34347.1 4.0 0.869 −0.85
3 10 7000 SA 35230.5 34616.1 35048.2 2.0 0.109 −0.09
3 10 7000 SAGA 35828.3 35546.4 35713.9 0 0.022 0
4 25 17500 GA 85000.4 84250.2 84706.0 6.1 0.399 −0.31
4 25 17500 SA 87526.4 86815.3 87236.5 2.7 0.509 −0.42
4 25 17500 SAGA 90006.3 89639.1 89860.5 0 0.092 0
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can greatly reduce the risk loss and the duration of IT
outsourcing project, which achieves the goal of managing the
schedule risk effectively. In addition, the proposed SAGA is
a greatly improved method, which can effectively solve the
described problem comparing with the other two algorithms.
Consequently, the above model and algorithm can provide
important decision support for managing the schedule risk
of IT outsourcing project.
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