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Their task

These are feps

Show me all the feps



Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared with the data
from adults in Experiment 1 and those from children in Experiment 3. Sub. ! subordinate; super. !
superordinate.
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additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared with the data
from adults in Experiment 1 and those from children in Experiment 3. Sub. ! subordinate; super. !
superordinate.
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the
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variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.
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(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-
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judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.
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Model without basic-
level bias

Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the

basic-level bias, r ! .89 with the basic-level bias). Because the
additional parameter " does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the
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in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) !
1 if the examples X are consistent with the hypothesis h (i.e., xi !
h for all i) and p(X|h) ! 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the
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matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
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We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y ! C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r ! .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.
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The strength of the basic-level bias is a free parameter, here set to
" ! 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r ! .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r ! .91 without the
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cally, this corresponds to replacing the size-based likelihood in
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Why might adults and children come to this word 
learning task with different priors?



New topic: Frequency learning and regularization



Variation in language

• An observation: languages tend to avoid having two or more forms which 
occur in identical contexts and perform precisely the same functions


• Within individual languages: phonological or sociolinguistic conditioning 
of alternation


• Over time: historical tendency towards analogical levelling  



• “wugs”


• Not “wugen”


• ox, oxen


• Not “wug”


• sheep, sheep


• Not “weeg”


• foot, feet

These ways of marking the plural are relics of older systems which 
have died out: loss of variability

The wug test (Berko, 1958)



The wug test continued

• Three allomorphs for the regular 
plural, conditioned on phonology of 
stem


• One wug, two /wʌgz/


• One wup, two /wʌps/


• One wass, two /wasəz/


• Conditioning of variation



Variation in language

• An observation: languages tend to avoid having two or more forms which 
occur in identical contexts and perform precisely the same functions


• Within individual languages: phonological or sociolinguistic conditioning of 
alternation


• Over time: historical tendency towards analogical levelling  


• During development: Mutual exclusivity; overregularization of 
morphological paradigms


Maybe biases in learning, patterns of language change, and the way 
languages work are all related somehow? 



Hudson-Kam & Newport (2005)

• Adults trained and tested on an artificial language 


• 36 nouns, 12 verbs, negation, 2 determiners

• Multiple training sessions

• Variable (unpredictable) use of ‘determiners’

An artificial language learning study



Hudson-Kam & Newport (2005), Experiment 1

• Adults trained and tested on an artificial language 


• 36 nouns, 12 verbs, negation, 2 determiners

• Multiple training sessions

• Variable (unpredictable) use of ‘determiners’

An artificial language learning study

flern 	 blergen    (ka)    flugat  (ka)

rams	 elephant  (Det)  giraffe (Det)

“the elephant rams the giraffe”



Adults probability match

Probability matching: if trained on variable input, produce variable output, 
matching the input frequencies. 

ber of determiners produced by participants in the count/mass condition versus the
gender condition. The interaction between the two factors, meaning and level of
consistency, was also not significant. Because there was no effect of meaning and
no significant interaction henceforth the data will be reported for the two meaning
groups combined.

However, this pattern of performance does not necessarily indicate probability
matching rather than rule formation or regularization. The group means could per-
haps be an average across individuals who each formed regular rules. We thus ex-
amined the consistency of production among individual participants.

One type of rule participants could have imposed would be to produce deter-
miners categorically, either all or none of the time. (The significant effect of input
level in our data would in this case result from a changing proportion of partici-
pants using all versus none.) To examine this, we categorized participants as exhib-
iting a categorical rule when they showed determiner use at or below 10% (cate-
gorical no-determiner rule) or determiner use at or above 90% (categorical use of
determiners). We found 6 participants (out of 37) who appeared to have created
one of these rules. Four participants adopted a no-det rule. These 4 used determin-
ers 10%, 3%, 0%, and 9% of the time. They were distributed among the consis-
tency conditions: one in the high consistency condition, two in the mid consistency
condition, and one in the low consistency condition. Two participants used deter-
miners categorically, at 93% and 100%. These 2 participants were both in the high
consistency condition. However, most participants (31 out of 37) did not qualify as
exhibiting either categorical rule.
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FIGURE 3 Mean percentage of nouns produced with determiners by input level and meaning
condition.



Adults probability match

Probability matching: if trained on variable input, produce variable output, 
matching the input frequencies. 

this, we examined each participant’s productions for evidence of patterns in her
speech and then classified the participant according to the presence or absence of a
pattern. There were two subtypes of patterned or systematic use of determiners.
Systematic user includes participants who used determiners with all NPs. System-
atic non-user includes participants who used no determiners at all.17 Participants
who used determiners variably, without a systematic pattern but like the inconsis-
tent input we provided, were classified as Variable users. Table 1 shows the per-
centage of participants in each of the four input percentage groups who fell into
these three categories. The data in this table confirm the overall analyses: Only
those exposed to perfect consistency produce it; those exposed to variable input al-
most always produce variability.

In summary, participants generally used determiners in their productions about
as often as they heard them in the input, although a few participants did show evi-
dence of having imposed more categorical rules on their determiner systems. Al-
though the input had no categorical or probabilistic patterns involving any kind of
subregularities, participants used determiners less often the first time they used a
noun and more often the second time. There was also a slight tendency for partici-
pants to use determiners more often with transitive subjects than with other NPs.

Grammaticality Judgment Task

This task was designed to assess participants’ knowledge of the determiner sys-
tem of the language through grammaticality judgments. The use of grammaticality
judgments was intended to remove constraints imposed by the production system
and permit a different view of the participants’ grammars. It is possible that the
variability seen in the production task was due to something other than variable
grammatical knowledge. If participants had internalized a categorical rule, they
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TABLE 1
Percentage of Participants in Each Production Systematicity Category

by Input Group

Production Type

Input Group Systematic User Systematic Non-User Variable User

100 100.0 0.0 0.0
75 11.1 11.1 77.8
60 0.0 25.0 75.0
45 0.0 0.0 100.0

17Participants were allowed one exception to their pattern. For instance, several participants used
the determiner only with the noun /f!mpo"!/‘bird’, suggesting that they may have been treating it as
part of the noun form itself. These participants were nevertheless categorized as non-users on the basis
of the rest of their productions.



• Adults and children (age 6;4) trained and tested on an artificial language 

• 12 nouns, 4 verbs, 1 determiner


• Multiple training sessions

• Variable (unpredictable) use of the determiner

Hudson-Kam & Newport (2005), Experiment 2



Kids are more variable?

atic, rule-like pattern of determiner use in their productions. The data from the
same conditions of Experiment 1 are included in the figure for comparison. Figure
8 clearly shows a very different picture than Figure 7. Children are very likely to
produce consistent patterns, even when receiving inconsistent input; adults, how-
ever, are not. Adults are systematic when their input is consistent and variable
when their input contains variation. In Experiment 2 it appears that a slightly
higher proportion of adults were systematic than was seen in Experiment 1. How-
ever, this was actually an increase of only one adult participant. Due to the small
size of the adult sample, the difference between children and adults from Experi-
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FIGURE 7 Mean percentage of nouns produced with determiners by input level and age
group.

TABLE 3
Percentage of Participants in Each Production Systematicity Category

by Input Group

Production Type

Input Group
Systematic

User
Systematic
Nonuser

Systematic
Other

Systematic
Total

Variable
User

Children
100% 50.0 25.0 12.5 87.5 12.5

60% 14.3 57.0 0.0 71.3 28.6
Adults

100% 100.0 0.0 0.0 100.0 0.0
60% 0.0 50.0 0.0 50.0 50.0

Note. Variable user data stands in contrast to the systematic data.



Kids (somewhat) more likely to regularize

Regularization: if trained on variable input, produce non-variable output. 

atic, rule-like pattern of determiner use in their productions. The data from the
same conditions of Experiment 1 are included in the figure for comparison. Figure
8 clearly shows a very different picture than Figure 7. Children are very likely to
produce consistent patterns, even when receiving inconsistent input; adults, how-
ever, are not. Adults are systematic when their input is consistent and variable
when their input contains variation. In Experiment 2 it appears that a slightly
higher proportion of adults were systematic than was seen in Experiment 1. How-
ever, this was actually an increase of only one adult participant. Due to the small
size of the adult sample, the difference between children and adults from Experi-
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FIGURE 7 Mean percentage of nouns produced with determiners by input level and age
group.

TABLE 3
Percentage of Participants in Each Production Systematicity Category

by Input Group

Production Type

Input Group
Systematic

User
Systematic
Nonuser

Systematic
Other

Systematic
Total

Variable
User

Children
100% 50.0 25.0 12.5 87.5 12.5
60% 14.3 57.0 0.0 71.3 28.6

Adults
100% 100.0 0.0 0.0 100.0 0.0
60% 0.0 50.0 0.0 50.0 50.0

Note. Variable user data stands in contrast to the systematic data.



What’s going on here?

• Do adults have the ‘wrong’ bias to explain how language is, how language 
changes?


• Do kids have different biases (i.e. a different prior)?


• Or do we just have bad intuitions about how a biased learner should behave?


• We need a model


• Beta-binomial model from Reali & Griffiths (2009) - we’ll get to their paper 
next week



The model in a nutshell

• Let’s simplify: one grammatical function, two words which could mark it


• word 0, word 1


• The learner gets some data


• word 0, word 0, word 1, word 1, word 0, ...


• ∅, ∅, ka, ka, ∅, ...


• And has to infer how often it should use each word


• “I will use word 0 60% of the time, and word 1 40% of the time”


• “I will use word 1 40% of the time”


• θ = 0.4



A little more detail

• The learner gets some data, d


• word 0, word 0, word 1, word 1, word 0, ...


• And has to infer how often it should use each word, based on that data


• θ


• The learner will consider several possible hypotheses about θ


• Is word 1 being used 5% of the time? 15%? 25%? ...


• θ = 0.05? θ = 0.15? θ = 0.25? ...


• The learner will use Bayesian inference to decide what θ is

P (h|d) / P (d|h)P (h)

P (✓|d) / P (d|✓)P (✓)



The likelihood

• Let’s say that the probability of using word 1 is 0.5 - both words are equally 
likely to be used


• θ = 0.5


• Let’s say your data consists of a single item: a single occurrence of word 1


• d = [1]


• What is the likelihood of this data, given that θ = 0.5? i.e. what is p(d = [1] | θ 
= 0.5)?


• What is p(d = [1,1,1] | θ = 0.5)?


• What is p(d = [1,1,1] | θ = 0.1)?



The likelihood: summary

• When θ is high, data containing lots of word 1 is very likely


• When θ is around 0.5, data containing lots of word 1 is less likely 


• A mix of 1s and 0s is more likely


• When θ is low, data containing lots of word 1 is very unlikely


• Lots of word 0 is more likely



The prior

• Let’s say our learner considers 10 possible values of θ


• 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95


• Our prior says, for each possible value of θ, how likely our learner thinks it 
is, before they have seen any data


• High prior probability for a given value of θ means, before seeing any 
data, the learner thinks that value is likely


• Low prior probability for a given value of θ means, a priori, the learner 
thinks that value is unlikely



Which of these possible priors would be a good model for an unbiased 
learner, who thinks each possible value of θ is equally probable a priori?

A B

C D



Which of these possible priors would be a good model for a biased learner, 
who thinks each word should be used roughly equally often?

A B

C D



Which of these possible priors would be a good model for a biased learner, 
who thinks only one word should be used (but isn’t sure if it should be word 
0 or word 1)?

A B

C D



α = 5

Our prior: the (symmetrical) beta distribution

α = 0.1 α = 1



Putting it together

• Let’s say our learner considers 10 possible values of θ, i.e. our hypothesis 
space looks like this: 0.05, 0.15, 0.25, … 0.75, 0.85, 0.95


• They have a uniform prior


• And they have some data: d = [1,1]


• We can calculate the posterior probability for each possible value of θ


• This gives us a posterior probability distribution

P (✓|d) / P (d|✓)P (✓)



Putting it together

• Uniform prior, d=[1,1]


• Consider just  θ=0.25 and θ=0.75. 


• Which has higher posterior probability?


• How much higher?

P (✓|d) / P (d|✓)P (✓)



Putting it together

• Uniform prior, d=[1,1]

P (✓|d) / P (d|✓)P (✓)



Putting it together

• Uniform prior, d=[1,1,1,1,1,1,1,1,1,1]

P (✓|d) / P (d|✓)P (✓)



Putting it together

• Uniform prior, d=[1,1,1,1,1,1,1,0,0,0]

P (✓|d) / P (d|✓)P (✓)



Putting it together

• Uniform prior, d=[70 occurrences of word 1, 30 of word 0]

P (✓|d) / P (d|✓)P (✓)



Putting it together

• What happens if we plug in a prior favouring regularity?


• Becomes quite hard to guess: let’s run the model! 

P (✓|d) / P (d|✓)P (✓)



Coming up next!

• This week’s lab: a simple Bayesian model of frequency learning


• Play around with amount of data and the prior


• See if you can get probability matching and/or regularization 
behaviours


• Next week: extending this model to iterated learning 

• What happens when learners learn from other learners?
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