
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 119 (2017) 147–156

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Young Scientist conference in HPC and 
Simulation 
10.1016/j.procs.2017.11.171

10.1016/j.procs.2017.11.171

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Young Scientist conference in HPC and 
Simulation 

1877-0509

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2017) 000–000  

www.elsevier.com/locate/procedia 

 

1877-0509© 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 6th International Young Scientist conference in HPC and 
Simulation. 

6th International Young Scientists Conference in HPC and Simulation, YSC 2017, 1-3 November 
2017, Kotka, Finland 

Simulating robot groups with elements of a social structure using 

KVORUM 

  Rovbo M.A.
a*

, Ovsyannikova E.E.
a
 

aNational Research Centre “Kurchatov Insitute”,  Akademika Kurchatova pl, 1 , Moscow, 123182, Russia 

Abstract 

This paper describes the architecture of KVORUM, the agent-based modeling environment developed by the authors to explore 

certain design decisions and facilitate simulation usage in the field of group robotics, specifically for research of robotic systems 

with elements of a social structure. KVORUM is a prototype of a simulation system that should adequately abstract away 

complexities of a physical system while providing convenient interfaces and library modules for modeling groups of mobile land 

robots and individual agent’s intrinsic structures. It was built from the ground up as a modular, highly extensible system focused 

on speed of calculations that is  to be achieved by using proper simplification of physical and other effects, and by the ability to 

perform simulations using parallel computing. In KVORUM the developed abstractions and limitations of a parallel architecture 

are tested without fully adhering to parallel computing requirements. It is shown that the proposed method of simulating such 

systems is applicable to a wide variety of problems from the field of group robotics with elements of a social structure (and 

swarm robotics in general). Some features of the architecture and models used in KVORUM allow for it to be extended in next 

iterations to fully support simulations on parallel computing systems. 

 

© 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 6th International Young Scientist conference in HPC and 

Simulation. 

Keywords:artificial life; simulationmodeling; swarm robotics; agent-based simulation;robot;social behavior modeling; 

development tools; bioinspired systems; eusociality. 

 

 

 
* Corresponding author. Tel.: +7-985-305-2967. 

E-mail address:rovboma@gmail.com 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2017) 000–000  

www.elsevier.com/locate/procedia 

 

1877-0509© 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 6th International Young Scientist conference in HPC and 
Simulation. 

6th International Young Scientists Conference in HPC and Simulation, YSC 2017, 1-3 November 
2017, Kotka, Finland 

Simulating robot groups with elements of a social structure using 

KVORUM 

  Rovbo M.A.
a*

, Ovsyannikova E.E.
a
 

aNational Research Centre “Kurchatov Insitute”,  Akademika Kurchatova pl, 1 , Moscow, 123182, Russia 

Abstract 

This paper describes the architecture of KVORUM, the agent-based modeling environment developed by the authors to explore 

certain design decisions and facilitate simulation usage in the field of group robotics, specifically for research of robotic systems 

with elements of a social structure. KVORUM is a prototype of a simulation system that should adequately abstract away 

complexities of a physical system while providing convenient interfaces and library modules for modeling groups of mobile land 

robots and individual agent’s intrinsic structures. It was built from the ground up as a modular, highly extensible system focused 

on speed of calculations that is  to be achieved by using proper simplification of physical and other effects, and by the ability to 

perform simulations using parallel computing. In KVORUM the developed abstractions and limitations of a parallel architecture 

are tested without fully adhering to parallel computing requirements. It is shown that the proposed method of simulating such 

systems is applicable to a wide variety of problems from the field of group robotics with elements of a social structure (and 

swarm robotics in general). Some features of the architecture and models used in KVORUM allow for it to be extended in next 

iterations to fully support simulations on parallel computing systems. 

 

© 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 6th International Young Scientist conference in HPC and 

Simulation. 

Keywords:artificial life; simulationmodeling; swarm robotics; agent-based simulation;robot;social behavior modeling; 

development tools; bioinspired systems; eusociality. 

 

 

 
* Corresponding author. Tel.: +7-985-305-2967. 

E-mail address:rovboma@gmail.com 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.11.171&domain=pdf


148	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156
2 Author name / Procedia Computer Science 00 (2017) 000–000 

1. Introduction 

The main task of group robotics is the construction of such a system that would give new qualities and improved 

characteristics due to the interaction of many individual agents possessing relatively simple rules. The main method 

of studying these systems is simulation and agent modeling, for which researchers use different environments and 

libraries. 

The term “agent” means anything that can be viewed as perceiving its environment through sensors and acting 

upon that environment through effectors [17] and  Autonomous agents are computational systems that inhabit some 

complex, dynamic environment, sense and act autonomously in this environment, and by doing so realize a set of 

goals or tasks for which they are designed[12]. 

One of the areas of research in group robotics is the study of biological systems in order to apply the principles of 

their organization to build a team of robots, as they demonstrate many desirable qualities, such as resistance to 

external perturbations, ability to work in unknown environments and efficiency. A new and very promising direction 

in this area is the approach based on social behavior and the various mechanisms associated with it [6]. We will 

further refer to artificial groups that have these mechanisms as “groups with elements of a social structure”. 

The review of various existing simulation systems as well as analysis of the common problems in this field 

allowed to obtain a set of requirements and showed that no existing system fully satisfies them. First of all, let us 

briefly not some characteristic modeling systems, as well as their features in connection with the problem under 

consideration 

Gazebo[10]is a program and a set of libraries that allows one to simulate the behavior of robots with regard to 

physical effects. Capabilities of the simulation system can be expanded using readily available plugins or by writing 

new plugins, for example, by adding infrared rangefinders, a video camera or physical effects of movement through 

a liquid. However, Gazebo is poorly suited for simulating systems with a large number of agents because of the 

rather high computational cost (it is difficult to model more than 1000 agents). 

AnyLogic [3] and Repast[1]provide very versatile tools for agent-based (and other types in the case of AnyLogic) 

modeling. Both systems are undoubtedly powerful and advanced modeling tools, but they are aimed at a greater 

range of tasks than simulating robotic systems with social structure elements, and as a result, as far as we know, they 

do not provide any special libraries for modeling systems in this field. 

Unlike systems that support detailed modeling of physical processes, or the universal agent-based and simulation 

modeling systems, there are simulations and modeling libraries made explicitly for social systems. The examples are 

NetLogo[19], Myrmedrome [4] and AntMe! [18]. NetLogo, despite the power of the language itself, has very limited 

functionality for modeling robotic systems with elements of social structure, and the other two programs are not 

modeling libraries, but they rather illustrate and simulate some elements of behavior of ants. 

Myrmedrome [4] is an agent-based ant colony simulator, built on the principle of ants' reaction exclusively to 

local events. Ants interact with each other using chemical signals (Fig. 1a, white lines – pheromones’ paths). Agent 

control algorithms are nondeterministic: at every step, when all the parameters of the ants are updated, there is a 

possibility that the selected action will not be performed. This makes the system flexible to unforeseen situations. 

Myrmedrome imitates the life of an ant’s colony in a restricted area of the environment. The social organization is 

based on a caste system, in which there are workers and soldiers. The first perform basic functions to find food, 

which they store in joint stomachs (and which are shared with other ants). Workers will try to kill prey upon 

encountering it and will consider ants from other colonies a threat and announce their presence using pheromones. 

Soldiers defending the nest will find a source of danger and seek to destroy it. The program provides the user with 

the ability to manipulate the environment and ants: add food, move ants, change the parameters of pheromone, the 

number of ants and some other (Fig. 1a). It is an anthill simulation but not a library for modeling, and the source 

code of this program is not open for modification. 

 Author name / Procedia Computer Science 00 (2017) 000–000 3 

   a)      b) 

Fig. 1. (a) the simulation window; (b) NetLogo: Ants. 

AntMe!is a simulation software for Windows, written in C#. Supported languages are C# and Visual Basic. 

AntMe! was created with the purpose of teaching the basics of programming. In AntMe! one have to program the 

vital activity of ants – collecting food (sugar and apples) and defending themselves from attacks of bugs. There is an 

option of specializing in ants: some collect food, and some fight with beetles. The environment’s rules are not 

subject to change, its rules are set by the developer. The simulation supports built-in visualization and has a 

debugging mode. The main limitations of AntMe! is its inability to perform complex calculations for a large number 

of ants (agents) due to low performance (it cannot improve performance using computing clusters), the limitation on 

the number of commands for agents and the closed code of the program that does not allow to make substantial 

changes. 

NetLogo [20] is a flexible and extensible agent modeling tool with a large set of provided libraries. It is also a 

name of the corresponding language used in it. While very versatile, for our purposes it has the following drawbacks 

— it does not implement the various mechanisms necessary to build a group with a social structure (for example, 

emotions, language communication), leaving this problem for the researcher, its language imposes some limitations 

[11], unlike the programming languages used in many other environments and, while supporting parallel 

computation, it does so in a way that limits it to multiple runs speed-up, but each instance of the environment has to 

be run sequentially since its runtime model isn't naturally parallelizable. The developers of NetLogo explain that this 

happens because most of the information in the model is stored in agents, which have variables written and read 

many times per tick. As for KVORUM system, information about the world is stored in layers, which can be 

processed separately from each other and only local areas are processed at a time, so the performance can be 

increased by applying the parallel computations within each run. 

The existing model of the anthill is too limited, although it is extensible: it demonstrates only the standard 

foraging mechanism with the help of pheromones (Fig. 1b).  
In the development of the KVORUM we have considered the requirements for the system indicated in the above 

work: 

• Scalability, leverage of parallel computing systems; 

• Support of certain features of agent systems in general and their implementation in the form of libraries: 

concept of an agent, interaction between agents, environment, laws of interaction with the environment, 

space, time; 

• Basic structures and mechanisms of social behavior: 

o individual mental differences; 

o differentiation of functions; 

o local interaction of individuals and language communication; 



	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156� 149
2 Author name / Procedia Computer Science 00 (2017) 000–000 

1. Introduction 

The main task of group robotics is the construction of such a system that would give new qualities and improved 

characteristics due to the interaction of many individual agents possessing relatively simple rules. The main method 

of studying these systems is simulation and agent modeling, for which researchers use different environments and 

libraries. 

The term “agent” means anything that can be viewed as perceiving its environment through sensors and acting 

upon that environment through effectors [17] and  Autonomous agents are computational systems that inhabit some 

complex, dynamic environment, sense and act autonomously in this environment, and by doing so realize a set of 

goals or tasks for which they are designed[12]. 

One of the areas of research in group robotics is the study of biological systems in order to apply the principles of 

their organization to build a team of robots, as they demonstrate many desirable qualities, such as resistance to 

external perturbations, ability to work in unknown environments and efficiency. A new and very promising direction 

in this area is the approach based on social behavior and the various mechanisms associated with it [6]. We will 

further refer to artificial groups that have these mechanisms as “groups with elements of a social structure”. 

The review of various existing simulation systems as well as analysis of the common problems in this field 

allowed to obtain a set of requirements and showed that no existing system fully satisfies them. First of all, let us 

briefly not some characteristic modeling systems, as well as their features in connection with the problem under 

consideration 

Gazebo[10]is a program and a set of libraries that allows one to simulate the behavior of robots with regard to 

physical effects. Capabilities of the simulation system can be expanded using readily available plugins or by writing 

new plugins, for example, by adding infrared rangefinders, a video camera or physical effects of movement through 

a liquid. However, Gazebo is poorly suited for simulating systems with a large number of agents because of the 

rather high computational cost (it is difficult to model more than 1000 agents). 

AnyLogic [3] and Repast[1]provide very versatile tools for agent-based (and other types in the case of AnyLogic) 

modeling. Both systems are undoubtedly powerful and advanced modeling tools, but they are aimed at a greater 

range of tasks than simulating robotic systems with social structure elements, and as a result, as far as we know, they 

do not provide any special libraries for modeling systems in this field. 

Unlike systems that support detailed modeling of physical processes, or the universal agent-based and simulation 

modeling systems, there are simulations and modeling libraries made explicitly for social systems. The examples are 

NetLogo[19], Myrmedrome [4] and AntMe! [18]. NetLogo, despite the power of the language itself, has very limited 

functionality for modeling robotic systems with elements of social structure, and the other two programs are not 

modeling libraries, but they rather illustrate and simulate some elements of behavior of ants. 

Myrmedrome [4] is an agent-based ant colony simulator, built on the principle of ants' reaction exclusively to 

local events. Ants interact with each other using chemical signals (Fig. 1a, white lines – pheromones’ paths). Agent 

control algorithms are nondeterministic: at every step, when all the parameters of the ants are updated, there is a 

possibility that the selected action will not be performed. This makes the system flexible to unforeseen situations. 

Myrmedrome imitates the life of an ant’s colony in a restricted area of the environment. The social organization is 

based on a caste system, in which there are workers and soldiers. The first perform basic functions to find food, 

which they store in joint stomachs (and which are shared with other ants). Workers will try to kill prey upon 

encountering it and will consider ants from other colonies a threat and announce their presence using pheromones. 

Soldiers defending the nest will find a source of danger and seek to destroy it. The program provides the user with 

the ability to manipulate the environment and ants: add food, move ants, change the parameters of pheromone, the 

number of ants and some other (Fig. 1a). It is an anthill simulation but not a library for modeling, and the source 

code of this program is not open for modification. 

 Author name / Procedia Computer Science 00 (2017) 000–000 3 

   a)      b) 

Fig. 1. (a) the simulation window; (b) NetLogo: Ants. 

AntMe!is a simulation software for Windows, written in C#. Supported languages are C# and Visual Basic. 

AntMe! was created with the purpose of teaching the basics of programming. In AntMe! one have to program the 

vital activity of ants – collecting food (sugar and apples) and defending themselves from attacks of bugs. There is an 

option of specializing in ants: some collect food, and some fight with beetles. The environment’s rules are not 

subject to change, its rules are set by the developer. The simulation supports built-in visualization and has a 

debugging mode. The main limitations of AntMe! is its inability to perform complex calculations for a large number 

of ants (agents) due to low performance (it cannot improve performance using computing clusters), the limitation on 

the number of commands for agents and the closed code of the program that does not allow to make substantial 

changes. 

NetLogo [20] is a flexible and extensible agent modeling tool with a large set of provided libraries. It is also a 

name of the corresponding language used in it. While very versatile, for our purposes it has the following drawbacks 

— it does not implement the various mechanisms necessary to build a group with a social structure (for example, 

emotions, language communication), leaving this problem for the researcher, its language imposes some limitations 

[11], unlike the programming languages used in many other environments and, while supporting parallel 

computation, it does so in a way that limits it to multiple runs speed-up, but each instance of the environment has to 

be run sequentially since its runtime model isn't naturally parallelizable. The developers of NetLogo explain that this 

happens because most of the information in the model is stored in agents, which have variables written and read 

many times per tick. As for KVORUM system, information about the world is stored in layers, which can be 

processed separately from each other and only local areas are processed at a time, so the performance can be 

increased by applying the parallel computations within each run. 

The existing model of the anthill is too limited, although it is extensible: it demonstrates only the standard 

foraging mechanism with the help of pheromones (Fig. 1b).  
In the development of the KVORUM we have considered the requirements for the system indicated in the above 

work: 

• Scalability, leverage of parallel computing systems; 

• Support of certain features of agent systems in general and their implementation in the form of libraries: 

concept of an agent, interaction between agents, environment, laws of interaction with the environment, 

space, time; 

• Basic structures and mechanisms of social behavior: 

o individual mental differences; 

o differentiation of functions; 

o local interaction of individuals and language communication; 



150	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156
4 Author name / Procedia Computer Science 00 (2017) 000–000 

o Formation of coalitions, emergence of a hierarchical structure; 

• Support for creating models of the internal and external world of the agent; 

• Support of models with several interacting (but distinct) groups of agents. 

A more detailed review of the state-of-the-art systems and the motivation behind the requirements can be found 

in[16], which provides an analysis of the available specialized simulation systems suitable for solving the problems 

of collective robotics oriented to the creation of systems with elements of social structures. 

This motivated us to create a prototype of such a system that was called KVORUM. In this article its architecture 

is described and selected experimental results are showcased with the hope to demonstrate its ability to simulate 

systems for most of the problems encountered by researchers in this field. Despite the fact that this prototype itself is 

not designed to model large systems using distributed computing, its architecture and features allow us to test some 

concepts at a basic level, which makes it possible in the future to build upon it a specialized simulation system that 

leverages parallel computing. The developed KVORUM system implements a number of the aforementioned 

properties of the modeling system in addition to scalability for a distributed computing system. Since KVORUM is 

an experimental prototype, the library of high-level elements, such as the mechanisms of coalition formation, the 

model developer has to implement independently under the model instead of using the ready-made module, 

however, the extensibility of the system allows supplementing it with the necessary functionality. 

 

2. KVORUM architecture 

The KVORUM simulation system is designed to simulate the behavior of large groups of agents. The user can 

select several types of agents and any number of agents within each type. Each agent is equipped with "virtual 

sensors" that simulate real sensors on robots, such as sensors, locators, superlocators, position sensors, etc. 

KVORUM is a software tool that simulates the robots and their environment. A robot is a computer-controlled 

machine and involves technology closely associated with automation. Industrial robots can be defined as a particular 

field of automation in which the automated machine (that is, the robot) is designed to substitute for human labor[5]. 

One of the features of the system is the availability of interfaces that allow you to manage both virtual agents and 

real technical devices. Virtual agent is an agent without a physical body, for example, a computer simulation of a 

robotic agent. The configuration of the architecture for a particular control system is carried out in the corresponding 

user program modules. For example, the configuration for the TMU architecture is defined in the module 

tmurobot.py. 

Unlike modeling systems that allow simulating a variety of physical effects, KVORUM uses a simplified physical 

model to save resources and accelerate development. In particular, based on the characteristics of the subject field, a 

2D world model was chosen as a basis, in which the movement of agents and many interactions are geometricized. 

For example, the operation of ultrasonic and infrared rangers is modeled by calculating the rays and evaluating the 

"visibility" zone of the sensor. This approach allows to model larger groups of agents, preserving important elements 

for the region and abstracting their physical details. 

 Author name / Procedia Computer Science 00 (2017) 000–000 5 

Fig. 2. Conceptual scheme. 

The modeling system runs under Linux Kubuntu 14.04 and uses the ROS framework [14], which transfers data 

between system modules. Modules, scripts, application subsystems can be written in any supported ROS language. 

The main requirement is the implementation of interfaces through a message system of the so-called topics. 

The modeling system is based on two modules — KVORUM_m and KVORUM_v which form the core of the 

system. The modules are written in Python 2. The main task of the kernel of the system is to model behavior of a 

group of real technical objects. The interfaces of the kernel modules are defined in such a way as to maximally 

abstract the control program from the control object. 

Fig. 2 presents a conceptual diagram of the KVORUM simulation system, consisting of the core of the system 

(calculation module + visualizer + robot and environment description), robot models and application programs. The 

core of the system interacts with the robot simulation model and the application programs through the following 

topics: input (action_topic) and output (ardans_topic). The model simulating a robot consists of a control node and a 

logical model of the TMU robot. The application programs are created by the user depending on the problem at 

hand. 

The abstraction of the control program from the control object (a virtual or real robot, or a group of robots) is 

accomplished by the means of interaction between the kernel components and the user application, namely through 

the exchange of messages (Fig. 3). 

Fig. 3. Core of the system. 



	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156� 151
4 Author name / Procedia Computer Science 00 (2017) 000–000 

o Formation of coalitions, emergence of a hierarchical structure; 

• Support for creating models of the internal and external world of the agent; 

• Support of models with several interacting (but distinct) groups of agents. 

A more detailed review of the state-of-the-art systems and the motivation behind the requirements can be found 

in[16], which provides an analysis of the available specialized simulation systems suitable for solving the problems 

of collective robotics oriented to the creation of systems with elements of social structures. 

This motivated us to create a prototype of such a system that was called KVORUM. In this article its architecture 

is described and selected experimental results are showcased with the hope to demonstrate its ability to simulate 

systems for most of the problems encountered by researchers in this field. Despite the fact that this prototype itself is 

not designed to model large systems using distributed computing, its architecture and features allow us to test some 

concepts at a basic level, which makes it possible in the future to build upon it a specialized simulation system that 

leverages parallel computing. The developed KVORUM system implements a number of the aforementioned 

properties of the modeling system in addition to scalability for a distributed computing system. Since KVORUM is 

an experimental prototype, the library of high-level elements, such as the mechanisms of coalition formation, the 

model developer has to implement independently under the model instead of using the ready-made module, 

however, the extensibility of the system allows supplementing it with the necessary functionality. 

 

2. KVORUM architecture 

The KVORUM simulation system is designed to simulate the behavior of large groups of agents. The user can 

select several types of agents and any number of agents within each type. Each agent is equipped with "virtual 

sensors" that simulate real sensors on robots, such as sensors, locators, superlocators, position sensors, etc. 

KVORUM is a software tool that simulates the robots and their environment. A robot is a computer-controlled 

machine and involves technology closely associated with automation. Industrial robots can be defined as a particular 

field of automation in which the automated machine (that is, the robot) is designed to substitute for human labor[5]. 

One of the features of the system is the availability of interfaces that allow you to manage both virtual agents and 

real technical devices. Virtual agent is an agent without a physical body, for example, a computer simulation of a 

robotic agent. The configuration of the architecture for a particular control system is carried out in the corresponding 

user program modules. For example, the configuration for the TMU architecture is defined in the module 

tmurobot.py. 

Unlike modeling systems that allow simulating a variety of physical effects, KVORUM uses a simplified physical 

model to save resources and accelerate development. In particular, based on the characteristics of the subject field, a 

2D world model was chosen as a basis, in which the movement of agents and many interactions are geometricized. 

For example, the operation of ultrasonic and infrared rangers is modeled by calculating the rays and evaluating the 

"visibility" zone of the sensor. This approach allows to model larger groups of agents, preserving important elements 

for the region and abstracting their physical details. 

 Author name / Procedia Computer Science 00 (2017) 000–000 5 

Fig. 2. Conceptual scheme. 

The modeling system runs under Linux Kubuntu 14.04 and uses the ROS framework [14], which transfers data 

between system modules. Modules, scripts, application subsystems can be written in any supported ROS language. 

The main requirement is the implementation of interfaces through a message system of the so-called topics. 

The modeling system is based on two modules — KVORUM_m and KVORUM_v which form the core of the 

system. The modules are written in Python 2. The main task of the kernel of the system is to model behavior of a 

group of real technical objects. The interfaces of the kernel modules are defined in such a way as to maximally 

abstract the control program from the control object. 

Fig. 2 presents a conceptual diagram of the KVORUM simulation system, consisting of the core of the system 

(calculation module + visualizer + robot and environment description), robot models and application programs. The 

core of the system interacts with the robot simulation model and the application programs through the following 

topics: input (action_topic) and output (ardans_topic). The model simulating a robot consists of a control node and a 

logical model of the TMU robot. The application programs are created by the user depending on the problem at 

hand. 

The abstraction of the control program from the control object (a virtual or real robot, or a group of robots) is 

accomplished by the means of interaction between the kernel components and the user application, namely through 

the exchange of messages (Fig. 3). 

Fig. 3. Core of the system. 



152	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156
6 Author name / Procedia Computer Science 00 (2017) 000–000 

This architecture has an important property of portability of the code of model elements between the simulator 

and real robots. In particular, the robots developed by the authors, named YARP-2 and YARP-3 (Fig. 4), have a 

TMU architecture and therefore operate under the same control scheme. 

   a)      b) 

Fig. 4. (a) YARP-2; (b) YARP-3. 

The KVORUM modeling system is based on a two-dimensional representation of space. This is a convenient 

simplification, since many tasks of group robotics are considered in the context of ground mobile robots. The 

partition of this space into discrete elements, for example, cells, allows to further reduce the number of necessary 

computations, requesting and processing only those objects that are in the corresponding cells. The use of only 

continuous coordinates would lead to the need to search through a large number of objects to compare their 

coordinates with the given constraints. At the same time, despite the division into cells, continuous coordinates 

remain as parameters of objects and allow both to not degrade accuracy when simulating the displacement and 

estimating the distances between objects. A square grid is also easy to implement and allows to enjoy the advantages 

of the matrix calculation speed up techniques used in modern systems. However, it should be noted that this 

prototype is not suitable for testing the latter assertion, and only its modification that can be physically run on 

parallel computing systems will allow to explore it. 

When working with a discrete grid the operation of sensors, such as range finders, is modeled in a special way. 

Consider an ultrasonic range finder. To obtain a measurement a beam is drawn from the robot in the direction in 

which the range finder is looking. We restrict the length of the ray to some maximum value. The cells that it crossed 

are marked using the Bresenham’s algorithm. We select all objects located in these cells from the memory of the 

system. If they satisfy the conditions checked by the sensor (in this case — they must reflect the ultrasonic signal), 

then the smallest distance from the computed ones is returned. It is worth noting that instead of a ray, you can build a 

cone and select all the cells that are crossed by it. Thus, this approach allows some flexibility in describing operation 

of the sensors. 

The environment in which agents live, is a multitude of layers, each of which is responsible for representing a 

particular physical or logical sign. This means that each point of space (x, y) is described by a certain vector. The 

system represents the habitat in the form of a multidimensional array with dimensions [x, y, level]. For example, the 

interpretation of layers, depending on the task, can look like this (level values): 

• 0 (LEVEL_LIGHT) —luminosity; 

• 1 (LEVEL_COLOR) — the color of the surface; 

• 2 (LEVEL_IR) — "ether" (IR area) 

• 3 (LEVEL_GROUND) — the surface; 

• 4 (LEVEL_ONBOARD) — on-board tuning sensor (virtual level); 

• etc. 

The names of layers are defined in the dictionaries of the system. 

 Author name / Procedia Computer Science 00 (2017) 000–000 7 

Fig. 5. Representation of the field as layers. 

Such a representation allows us to separate various characteristics into different areas of memory and explicitly 

designate the independence of the pseudophysical characteristics of the medium. In addition to a more structured 

view of the world, this also has certain technical advantages: since different sensors tend to work with different 

characteristics of the world, and therefore in different layers, simulation of measuring and changing actions can be 

parallelized, simultaneously performing operations in different layers in each thread. This also largely unifies these 

operations, allowing similar features to handle different characteristics. 

Fig.5 shows the representation of the field in the form of layers. Each sensor has its own layer containing 

information about existing agents and objects on it. When creating sensors, you can change the values of the layer. 

The coordinate axes are represented by the Cartesian system. The coordinates of the point are always positive, the 

angles lie in the first quarter and are counted counterclockwise from the horizontal (x-axis). 

The main types of sensors are point detector, range finder, locator and superlocator. 

Rangefinder. Returns the distance to the object found on the LEVEL_GROUND layer. 

Locator is a sensor that is able to register surrounding objects in a certain sector, returning the results as a vector 

of values. And depending on the type of the locator, the vector of the returned values can contain either the distance 

to the detected objects on the given layer, or the values of the detected objects. 

A superlocator is a locator whose return values are a vector of pairs of the form (signal_value, distance). This 

allows not only to determine the distances to objects, but also to identify them. As for the locator, it is necessary to 

determine the correspondence between the angle and the index in the array of readings. 

The calculation module is responsible for step-by-step simulation of the system state and provides an interface 

between agents and user requests: obtaining data from the agent's sensor, setting the speed of the agent's forward and 

rotational motion, removing, initializing agents, rendering and initializing the modeling system. 

The visualization module provides a map and agents on the screen. 

To transfer the control system to real robots, it is necessary to perform additional tuning and use a robot-specific 

node that provides the required interface. Such a node is called ardsrv. It translates unified commands passed 

through actions_topic to signals perceived by the robot. In the case of YARP-2 and YARP-3, these commands are 

translated into the appropriate format and sent over wireless communication to on-board computers executing them. 

The answer coming from robots to the ardsrv node is translated back into a unified format and passed to the control 

system via ardans_topic. Thus, the modules of the simulation system are substituted for the robot driver module, and 

the communication topics remain unchanged together with the rest of the system. 

3. Results 

Below we give examples of modeling some representative problems. 

3.1. Sign-based communication 

One of the important elements of the construction of group robotic systems is the language interaction between 

robots [8]. It’s important element is symbolic structures, on the basis of which it is also possible to build control 

systems that implement some basic mechanisms of systems with social structure (for example, contagious behavior), 

which is illustrated by the work [5]. A special feature of the task is the modeling of communication between agents, 

in particular using elements of language communication. 



	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156� 153
6 Author name / Procedia Computer Science 00 (2017) 000–000 

This architecture has an important property of portability of the code of model elements between the simulator 

and real robots. In particular, the robots developed by the authors, named YARP-2 and YARP-3 (Fig. 4), have a 

TMU architecture and therefore operate under the same control scheme. 

   a)      b) 

Fig. 4. (a) YARP-2; (b) YARP-3. 

The KVORUM modeling system is based on a two-dimensional representation of space. This is a convenient 

simplification, since many tasks of group robotics are considered in the context of ground mobile robots. The 

partition of this space into discrete elements, for example, cells, allows to further reduce the number of necessary 

computations, requesting and processing only those objects that are in the corresponding cells. The use of only 

continuous coordinates would lead to the need to search through a large number of objects to compare their 

coordinates with the given constraints. At the same time, despite the division into cells, continuous coordinates 

remain as parameters of objects and allow both to not degrade accuracy when simulating the displacement and 

estimating the distances between objects. A square grid is also easy to implement and allows to enjoy the advantages 

of the matrix calculation speed up techniques used in modern systems. However, it should be noted that this 

prototype is not suitable for testing the latter assertion, and only its modification that can be physically run on 

parallel computing systems will allow to explore it. 

When working with a discrete grid the operation of sensors, such as range finders, is modeled in a special way. 

Consider an ultrasonic range finder. To obtain a measurement a beam is drawn from the robot in the direction in 

which the range finder is looking. We restrict the length of the ray to some maximum value. The cells that it crossed 

are marked using the Bresenham’s algorithm. We select all objects located in these cells from the memory of the 

system. If they satisfy the conditions checked by the sensor (in this case — they must reflect the ultrasonic signal), 

then the smallest distance from the computed ones is returned. It is worth noting that instead of a ray, you can build a 

cone and select all the cells that are crossed by it. Thus, this approach allows some flexibility in describing operation 

of the sensors. 

The environment in which agents live, is a multitude of layers, each of which is responsible for representing a 

particular physical or logical sign. This means that each point of space (x, y) is described by a certain vector. The 

system represents the habitat in the form of a multidimensional array with dimensions [x, y, level]. For example, the 

interpretation of layers, depending on the task, can look like this (level values): 

• 0 (LEVEL_LIGHT) —luminosity; 

• 1 (LEVEL_COLOR) — the color of the surface; 

• 2 (LEVEL_IR) — "ether" (IR area) 

• 3 (LEVEL_GROUND) — the surface; 

• 4 (LEVEL_ONBOARD) — on-board tuning sensor (virtual level); 

• etc. 

The names of layers are defined in the dictionaries of the system. 

 Author name / Procedia Computer Science 00 (2017) 000–000 7 

Fig. 5. Representation of the field as layers. 

Such a representation allows us to separate various characteristics into different areas of memory and explicitly 

designate the independence of the pseudophysical characteristics of the medium. In addition to a more structured 

view of the world, this also has certain technical advantages: since different sensors tend to work with different 

characteristics of the world, and therefore in different layers, simulation of measuring and changing actions can be 

parallelized, simultaneously performing operations in different layers in each thread. This also largely unifies these 

operations, allowing similar features to handle different characteristics. 

Fig.5 shows the representation of the field in the form of layers. Each sensor has its own layer containing 

information about existing agents and objects on it. When creating sensors, you can change the values of the layer. 

The coordinate axes are represented by the Cartesian system. The coordinates of the point are always positive, the 

angles lie in the first quarter and are counted counterclockwise from the horizontal (x-axis). 

The main types of sensors are point detector, range finder, locator and superlocator. 

Rangefinder. Returns the distance to the object found on the LEVEL_GROUND layer. 

Locator is a sensor that is able to register surrounding objects in a certain sector, returning the results as a vector 

of values. And depending on the type of the locator, the vector of the returned values can contain either the distance 

to the detected objects on the given layer, or the values of the detected objects. 

A superlocator is a locator whose return values are a vector of pairs of the form (signal_value, distance). This 

allows not only to determine the distances to objects, but also to identify them. As for the locator, it is necessary to 

determine the correspondence between the angle and the index in the array of readings. 

The calculation module is responsible for step-by-step simulation of the system state and provides an interface 

between agents and user requests: obtaining data from the agent's sensor, setting the speed of the agent's forward and 

rotational motion, removing, initializing agents, rendering and initializing the modeling system. 

The visualization module provides a map and agents on the screen. 

To transfer the control system to real robots, it is necessary to perform additional tuning and use a robot-specific 

node that provides the required interface. Such a node is called ardsrv. It translates unified commands passed 

through actions_topic to signals perceived by the robot. In the case of YARP-2 and YARP-3, these commands are 

translated into the appropriate format and sent over wireless communication to on-board computers executing them. 

The answer coming from robots to the ardsrv node is translated back into a unified format and passed to the control 

system via ardans_topic. Thus, the modules of the simulation system are substituted for the robot driver module, and 

the communication topics remain unchanged together with the rest of the system. 

3. Results 

Below we give examples of modeling some representative problems. 

3.1. Sign-based communication 

One of the important elements of the construction of group robotic systems is the language interaction between 

robots [8]. It’s important element is symbolic structures, on the basis of which it is also possible to build control 

systems that implement some basic mechanisms of systems with social structure (for example, contagious behavior), 

which is illustrated by the work [5]. A special feature of the task is the modeling of communication between agents, 

in particular using elements of language communication. 



154	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156
8 Author name / Procedia Computer Science 00 (2017) 000–000 

In KVORUM, communications between agents are modeled explicitly: one agent is the transmitter of the signal, 

and the other is the receiver. Communications are carried out by interpreting these signals. Communication 

capabilities were applied in the work [7], where a group of agents used them to coordinate efforts in a hunting task 

(Fig. 6). 

a)      b) 

Fig. 6. (a) Groups of agents are hunting red agents; (b) agroup is coordinating an attack. 

A leader of the group is selected, then the group is divided by roles that determine which direction the subgroup 

will be approaching the victim from. 

3.2. Presentation of a Route for a Mobile Robot Based on Visual Guides 

In [9] a method for constructing a path along visual landmarks by a mobile robot is proposed. This task belongs to 

the category of modeling the internal representation of the external world in an agent. 

Description of the route is based on spatial relationships. Simulation experiments were carried out for the 

foraging problem using the KVORUM simulation system. 

The reconnaissance robot performed a random walk to find an object of a given color on a polygon of n × m cells, 

along the way forming a description of the route. After reaching the goal, the description was transferred to the 

second robot, which repeated the route (Fig. 7). 

Fig. 7. Movement of the robot along the route discovered by a scout robot. 

3.3. Energetically self-sufficient robot group study kit 

One of the problems of collective robotics is the energy independence of the team. At the same time, both the task of 

 Author name / Procedia Computer Science 00 (2017) 000–000 9 

fulfilling the goal function simultaneously with maintaining a required energy level of agents, and the task of 

collecting energy from various sources can be considered. An example of the statement of the problem is given in 

[15], in which a multi-criteria evaluation of the robot's goals is formulated. The peculiarity of the problem from the 

point of view of the modeling system is the dynamical nature of the interactions of agents and the world: collection 

of various resources, changing parameters of the robot (energy level), the generation of energy in the central “nest”. 

In this model agents communicate via stigmergia in the form of directed pheromones [2]. Parametric regulation of 

individuals’ behavior variables is used to control the group’s performance. It is implemented by designating two 

roles and switching between them. Each role corresponds to a different set of characteristics, in particular the 

carrying capacity and the time after which the agent returns to the nest if no food has been collected. The 

mechanism used in this work is essentially a stochastic automaton with two states 1 and 2 with the corresponding 

strategies of role switching that are defined by special matrices for returning with food and for returning without 

food where and are the probabilities of a scout switching to a forager role and vice versa. 

In [13], the problem of maintaining a sufficient level of energy for functioning of the group is considered with the 

constraints of a necessity to use several resources and a centralized generator of energy. Several objects are placed 

on the test map: resource sources and a base station. The base station determines the resource requirements and 

informs of them the agents that are nearby. Agents are activated and begin to search for resources, extract them and 

bring them to the base. An agent can only collect one resource at a single run. Each agent has a limited supply of 

energy which he uses during the search. If it dries up before the agent reaches the base it “dies” (deactivates). The 

base plays the role of a charging station of the collective, producing energy from resources extracted by agents (Fig. 

8). The model for making the decision is based on Pareto optimization. The agents evaluate the discovered sources 

of food according to the following factors: how much time it had been searching
t

c ; how severe is the need for this 

type of resource was in the nest 
n

c ; what was its designated goal resource n
c . 

The influence of the factors is determined by the coefficients in the formula. In general, the objective function 

e
f is constructed in the following way: 

 ( ) ( ) ( ), ,
e t t n n g g

f c f t c f n s c f s g= + +    (1) 

where 1
t n g

c c c+ + =  are the coefficients of the corresponding factors’ influence. 

 

Fig. 8. Homogeneous agents collecting resources of different type for the base. 

On this picture there are 4 different types of resources denoted by similarly colored squares. The square in the 

center that is colored uniquely is the base, where agents store collected resources. The small turtles denote the 

robots. 

The system model was implemented to be simulated by KVORUM. Computational experiment allowed to 

evaluate the dynamics of the number of robots in the team for different parameters of the control system (the 

“characters” of agents). 



	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156� 155
8 Author name / Procedia Computer Science 00 (2017) 000–000 

In KVORUM, communications between agents are modeled explicitly: one agent is the transmitter of the signal, 

and the other is the receiver. Communications are carried out by interpreting these signals. Communication 

capabilities were applied in the work [7], where a group of agents used them to coordinate efforts in a hunting task 

(Fig. 6). 

a)      b) 

Fig. 6. (a) Groups of agents are hunting red agents; (b) agroup is coordinating an attack. 

A leader of the group is selected, then the group is divided by roles that determine which direction the subgroup 

will be approaching the victim from. 

3.2. Presentation of a Route for a Mobile Robot Based on Visual Guides 

In [9] a method for constructing a path along visual landmarks by a mobile robot is proposed. This task belongs to 

the category of modeling the internal representation of the external world in an agent. 

Description of the route is based on spatial relationships. Simulation experiments were carried out for the 

foraging problem using the KVORUM simulation system. 

The reconnaissance robot performed a random walk to find an object of a given color on a polygon of n × m cells, 

along the way forming a description of the route. After reaching the goal, the description was transferred to the 

second robot, which repeated the route (Fig. 7). 

Fig. 7. Movement of the robot along the route discovered by a scout robot. 

3.3. Energetically self-sufficient robot group study kit 

One of the problems of collective robotics is the energy independence of the team. At the same time, both the task of 

 Author name / Procedia Computer Science 00 (2017) 000–000 9 

fulfilling the goal function simultaneously with maintaining a required energy level of agents, and the task of 

collecting energy from various sources can be considered. An example of the statement of the problem is given in 

[15], in which a multi-criteria evaluation of the robot's goals is formulated. The peculiarity of the problem from the 

point of view of the modeling system is the dynamical nature of the interactions of agents and the world: collection 

of various resources, changing parameters of the robot (energy level), the generation of energy in the central “nest”. 

In this model agents communicate via stigmergia in the form of directed pheromones [2]. Parametric regulation of 

individuals’ behavior variables is used to control the group’s performance. It is implemented by designating two 

roles and switching between them. Each role corresponds to a different set of characteristics, in particular the 

carrying capacity and the time after which the agent returns to the nest if no food has been collected. The 

mechanism used in this work is essentially a stochastic automaton with two states 1 and 2 with the corresponding 

strategies of role switching that are defined by special matrices for returning with food and for returning without 

food where and are the probabilities of a scout switching to a forager role and vice versa. 

In [13], the problem of maintaining a sufficient level of energy for functioning of the group is considered with the 

constraints of a necessity to use several resources and a centralized generator of energy. Several objects are placed 

on the test map: resource sources and a base station. The base station determines the resource requirements and 

informs of them the agents that are nearby. Agents are activated and begin to search for resources, extract them and 

bring them to the base. An agent can only collect one resource at a single run. Each agent has a limited supply of 

energy which he uses during the search. If it dries up before the agent reaches the base it “dies” (deactivates). The 

base plays the role of a charging station of the collective, producing energy from resources extracted by agents (Fig. 

8). The model for making the decision is based on Pareto optimization. The agents evaluate the discovered sources 

of food according to the following factors: how much time it had been searching
t

c ; how severe is the need for this 

type of resource was in the nest 
n

c ; what was its designated goal resource n
c . 

The influence of the factors is determined by the coefficients in the formula. In general, the objective function 

e
f is constructed in the following way: 

 ( ) ( ) ( ), ,
e t t n n g g

f c f t c f n s c f s g= + +    (1) 

where 1
t n g

c c c+ + =  are the coefficients of the corresponding factors’ influence. 

 

Fig. 8. Homogeneous agents collecting resources of different type for the base. 

On this picture there are 4 different types of resources denoted by similarly colored squares. The square in the 

center that is colored uniquely is the base, where agents store collected resources. The small turtles denote the 

robots. 

The system model was implemented to be simulated by KVORUM. Computational experiment allowed to 

evaluate the dynamics of the number of robots in the team for different parameters of the control system (the 

“characters” of agents). 



156	 Rovbo M.A. et al. / Procedia Computer Science 119 (2017) 147–156
10 Author name / Procedia Computer Science 00 (2017) 000–000 

4. Conclusion 

The KVORUM simulation system was developed and tested on some representative group robotics problems, 

which validated viability of the proposed concepts and models that will form the basis of a specialized modeling 

system for collective robotics for parallel computing simulation. Another important property of the proposed and 

implemented architecture is the portability of the code of model elements between the simulator and real robots. It 

allows the same control code that was tested in simulation to be deployed in real world systems, which allows for a 

clearer interpretation of results obtained using such a simulation system. This capability was verified on real robots 

and the prototype version of the simulator. 

The next step in developing the system is to fully implement support for parallel computing systems and to test in 

on a computer cluster. The prospective gain in computing speed is expected to allow for simulation of tens of 

thousands of locally communicating agents in real time while maintaining an adequate representation of the 

simulated world. 

5. Funding 

This work was supported, in part, by the Russian Science Foundation, grant 16-11-00018 (which funded the 

section that contains the review (Introduction), 3.2 (Presentation of a Route for a Mobile Robot Based on Visual 

Guides) and partially 3.3 (Energetically self-sufficient robot group study kit) of this paper) and by the Russian 

Foundation for Basic Research, grant ofi-m 16-29-04412 (which funded the second (KVORUM architecture) 

section). 

References 

[1] Argonne National Laboratory Repast Simphony [Electronic  resource]. URL: http://repast.sourceforge.net/repast_simphony.php# ((date of 

access: 01.01.2017). 

[2] Boissard E., Degond P., Motsch S. Trail formation based on directed pheromone deposition // Journal of Mathematical Biology. 2013. No 6 

(66). pp. 1267–1301. 

[3] Borshchev A. The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 6 / Amazon Digital Services LLC, 2015. 614 p. 

[4] Cacace S., Cristiani E., D’Eustacchio D. Myrmedrome: Simulating the Life of an Ant Colony edited by. M. Emmer, Milano: Springer Milan, 

2013. pp. 201–210 . 

[5] Dorf R.., Bishop R.H. Modern Control Systems / New Jersey: Pearson Education, Inc, 2008. 1018 p. 

[6] Karpov V. Models of social behaviour in the group robotics // UBS. 2016. No 59. pp. 165–232. (in Russian) 

[7] Karpov V., Karpova I. Leader election algorithms for static swarms // Biologically Inspired Cognitive Architectures. 2015. No 0 (12). pp. 54–

64.(in Russian) 

[8] Karpova I.P. Concerning Presentation of a Route for a Mobile Robot Based on Visual Guides // Mekhatronika, Avtomatizatsiya, Upravlenie. 

2017. No 2 (18). pp. 81–89. (in Russian) 

[9] Karpov V.E. About Some Mechanisms of Parasite Manipulation of Robot’s Behaviour Kaufering: b-Quadrat Verlag, 2016.pp. 241–245. (in 

Russian) 

[10] Koenig N., Howard A. Design and use paradigms for gazebo, an open-source multi-robot simulator // 2004 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). 2004. (3). pp. 2149–2154. 

[11] Lytinen S.L., Railsback S.F. The evolution of agent-based simulation platforms: a review of NetLogo 5.0 and ReLogo // European Meetings 

on Cybernetics and Systems Research. 2010. pp. 1–11. 

[12] Maes P. Artificial life meets entertainment: lifelike autonomous agents // Communications of the ACM. 1995. No 11 (38). pp. 108–114. 

[13] Malyshev A.A. Research and Development Algorithms and Models of Searching Energy Sources by Robot. 2017. (in Russian) 

[14] Quigley M. [and oth.]. ROS: an open-source Robot Operating System 2009. 5 p. 

[15] Rovbo M.A., Malyshev A.A. Energetically self-sufficient robot group study kit // Open Education. 2017. No 2 (18). pp. 68–77. (in Russian) 

[16] Rovbo M.A., Ovsyannikova E.E., Chumachenko A.A. Review of simulation modeling tools for robot groups with social organization 

elements // Software & Systems. 2017. No 3 (30). pp.  425–434. (in Russian) 

[17] Russell S.J. [and oth..]. A Modern Approach, 1995. 106-10 p. 

[18]. Wendel T. AntMe [Electronic  resource]. URL: https://service.antme.net/ (date of access: 01.01.2017). 

[19] Wilensky U. NetLogo Ants model // Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL 

[Electronic  resource]. URL: http://ccl.northwestern.edu/netlogo/models/Ants (date of access: 05.16.2017). 

[20] Wilensky U. NetLogo // Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL [Electronic  

resource]. URL: http://ccl.northwestern.edu/netlogo/ (date of access: 16.05.2017). 

 


